line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Delta; |
2
|
1
|
|
|
1
|
|
80537
|
use strict; |
|
1
|
|
|
|
|
11
|
|
|
1
|
|
|
|
|
29
|
|
3
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
47
|
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = '0.06'; ## VERSION |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 NAME |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Delta |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=head1 DESCRIPTION |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
Gets the delta for different options, Vanilla and Foreign for all contract types |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=head1 COMMENTS |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
It is tricky to decide what form to use. Should the delta be with respect to |
18
|
|
|
|
|
|
|
1/$S, or with respect to $S? For the binary bets, whether foreign or domestic |
19
|
|
|
|
|
|
|
we are differentiating with respect to $S. |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
For a vanilla, the correct way should be with respect to 1/$S (so that we know |
22
|
|
|
|
|
|
|
how many units of the domestic currency to hedge), but to keep things standard, |
23
|
|
|
|
|
|
|
we do it with respect to $S. |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
For example take USDJPY vanilla call with premium in USD. Thus this is a vanilla |
26
|
|
|
|
|
|
|
contract on JPY. Thus delta with respect to 1/$S tells us how many units of JPY |
27
|
|
|
|
|
|
|
to hedge, but with respect to $S, there really isn't a meaning and needs to be |
28
|
|
|
|
|
|
|
converted back before interpretation. |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=cut |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
=head1 SUBROUTINES |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
See L |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
=cut |
37
|
|
|
|
|
|
|
|
38
|
1
|
|
|
1
|
|
5
|
use List::Util qw(max); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
119
|
|
39
|
1
|
|
|
1
|
|
466
|
use Math::CDF qw(pnorm); |
|
1
|
|
|
|
|
2889
|
|
|
1
|
|
|
|
|
58
|
|
40
|
1
|
|
|
1
|
|
522
|
use Math::Trig; |
|
1
|
|
|
|
|
13360
|
|
|
1
|
|
|
|
|
156
|
|
41
|
1
|
|
|
1
|
|
609
|
use Math::Business::BlackScholesMerton::Binaries; |
|
1
|
|
|
|
|
3850
|
|
|
1
|
|
|
|
|
37
|
|
42
|
1
|
|
|
1
|
|
422
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( dgauss ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1607
|
|
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
sub vanilla_call { |
45
|
6
|
|
|
6
|
0
|
15545
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
46
|
|
|
|
|
|
|
|
47
|
6
|
|
|
|
|
28
|
my $d1 = (log($S / $K) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
48
|
|
|
|
|
|
|
|
49
|
6
|
|
|
|
|
39
|
return exp(($mu - $r_q) * $t) * pnorm($d1); |
50
|
|
|
|
|
|
|
} |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
sub vanilla_put { |
53
|
6
|
|
|
6
|
0
|
15592
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
54
|
|
|
|
|
|
|
|
55
|
6
|
|
|
|
|
25
|
my $d1 = (log($S / $K) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
56
|
|
|
|
|
|
|
|
57
|
6
|
|
|
|
|
40
|
return -exp(($mu - $r_q) * $t) * pnorm(-$d1); |
58
|
|
|
|
|
|
|
} |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
sub call { |
61
|
16
|
|
|
16
|
0
|
15738
|
my ($S, $U, $t, $r_q, $mu, $vol) = @_; |
62
|
|
|
|
|
|
|
|
63
|
16
|
|
|
|
|
103
|
my $d2 = (log($S / $U) + ($mu - $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
64
|
|
|
|
|
|
|
|
65
|
16
|
|
|
|
|
61
|
return exp(-$r_q * $t) * dgauss($d2) / ($vol * sqrt($t) * $S); |
66
|
|
|
|
|
|
|
} |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
sub put { |
69
|
16
|
|
|
16
|
0
|
16267
|
my ($S, $D, $t, $r_q, $mu, $vol) = @_; |
70
|
|
|
|
|
|
|
|
71
|
16
|
|
|
|
|
77
|
my $d2 = (log($S / $D) + ($mu - $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
72
|
|
|
|
|
|
|
|
73
|
16
|
|
|
|
|
52
|
return -exp(-$r_q * $t) * dgauss($d2) / ($vol * sqrt($t) * $S); |
74
|
|
|
|
|
|
|
} |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub expirymiss { |
77
|
10
|
|
|
10
|
0
|
16131
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
78
|
|
|
|
|
|
|
|
79
|
10
|
|
|
|
|
33
|
return call($S, $U, $t, $r_q, $mu, $vol) + put($S, $D, $t, $r_q, $mu, $vol); |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub expiryrange { |
83
|
5
|
|
|
5
|
0
|
13561
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
84
|
|
|
|
|
|
|
|
85
|
5
|
|
|
|
|
18
|
return -1 * expirymiss($S, $U, $D, $t, $r_q, $mu, $vol); |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub onetouch { |
89
|
13
|
|
|
13
|
0
|
18196
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
# w = 0, rebate paid at hit. |
92
|
|
|
|
|
|
|
# w = 1, rebate paid at end. |
93
|
13
|
100
|
|
|
|
38
|
if (not defined $w) { |
94
|
7
|
|
|
|
|
13
|
$w = 0; |
95
|
|
|
|
|
|
|
} |
96
|
|
|
|
|
|
|
|
97
|
13
|
|
|
|
|
24
|
my $sqrt_t = sqrt($t); |
98
|
|
|
|
|
|
|
|
99
|
13
|
|
|
|
|
31
|
my $theta_ = ($mu / $vol) - (0.5 * $vol); |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
# Floor v_ squared near zero in case negative interest rates push it negative. |
102
|
13
|
|
|
|
|
56
|
my $v_ = sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($theta_ * $theta_) + (2 * (1 - $w) * $r_q))); |
103
|
|
|
|
|
|
|
|
104
|
13
|
|
|
|
|
48
|
my $e = (log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
105
|
|
|
|
|
|
|
|
106
|
13
|
|
|
|
|
38
|
my $e_ = (-log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
107
|
|
|
|
|
|
|
|
108
|
13
|
100
|
|
|
|
38
|
my $eta = ($S > $U) ? 1 : -1; |
109
|
|
|
|
|
|
|
|
110
|
13
|
|
|
|
|
95
|
my $part1 = |
111
|
|
|
|
|
|
|
($theta_ + $v_) * pnorm(-$eta * $e) + $eta * dgauss($e) / $sqrt_t; |
112
|
13
|
|
|
|
|
71
|
my $part2 = |
113
|
|
|
|
|
|
|
($theta_ - $v_) * pnorm($eta * $e_) + $eta * dgauss($e_) / $sqrt_t; |
114
|
|
|
|
|
|
|
|
115
|
13
|
|
|
|
|
48
|
my $delta = (($U / $S)**(($theta_ + $v_) / $vol)) * $part1 + (($U / $S)**(($theta_ - $v_) / $vol)) * $part2; |
116
|
|
|
|
|
|
|
|
117
|
13
|
|
|
|
|
46
|
return -$delta * exp(-$w * $r_q * $t) / ($vol * $S); |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
sub notouch { |
121
|
6
|
|
|
6
|
0
|
17284
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# No touch bet always pay out at end |
124
|
6
|
|
|
|
|
11
|
$w = 1; |
125
|
|
|
|
|
|
|
|
126
|
6
|
|
|
|
|
18
|
return -1 * onetouch($S, $U, $t, $r_q, $mu, $vol, $w); |
127
|
|
|
|
|
|
|
} |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
sub upordown { |
130
|
13
|
|
|
13
|
0
|
22814
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
# $w = 0, paid at hit |
133
|
|
|
|
|
|
|
# $w = 1, paid at end |
134
|
13
|
100
|
|
|
|
48
|
if (not defined $w) { $w = 0; } |
|
7
|
|
|
|
|
18
|
|
135
|
|
|
|
|
|
|
|
136
|
13
|
|
|
|
|
47
|
return ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w) + ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
137
|
|
|
|
|
|
|
} |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
sub x_common_function_pelsser_1997 { |
140
|
104
|
|
|
104
|
0
|
249
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta) = @_; |
141
|
|
|
|
|
|
|
|
142
|
104
|
|
|
|
|
151
|
my $pi = Math::Trig::pi; |
143
|
|
|
|
|
|
|
|
144
|
104
|
|
|
|
|
233
|
my $h = log($U / $D); |
145
|
104
|
|
|
|
|
153
|
my $x = log($S / $D); |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
148
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
149
|
|
|
|
|
|
|
# This variable used to check stability |
150
|
104
|
50
|
|
|
|
235
|
if (not defined $eta) { |
151
|
0
|
|
|
|
|
0
|
die |
152
|
|
|
|
|
|
|
"$0: (x_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
153
|
|
|
|
|
|
|
} |
154
|
104
|
100
|
|
|
|
238
|
if ($eta == 0) { $x = $h - $x; } |
|
52
|
|
|
|
|
74
|
|
155
|
|
|
|
|
|
|
|
156
|
104
|
|
|
|
|
166
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
157
|
104
|
|
|
|
|
312
|
my $mu_dash = |
158
|
|
|
|
|
|
|
sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($mu_new * $mu_new) + (2 * $vol * $vol * $r_q * (1 - $w)))); |
159
|
|
|
|
|
|
|
|
160
|
104
|
|
|
|
|
197
|
my $series_part = 0; |
161
|
104
|
|
|
|
|
185
|
my $hyp_part = 0; |
162
|
|
|
|
|
|
|
|
163
|
104
|
|
|
|
|
254
|
my $stability_constant = |
164
|
|
|
|
|
|
|
Math::Business::BlackScholesMerton::Binaries::get_stability_constant_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 2); |
165
|
|
|
|
|
|
|
|
166
|
104
|
|
|
|
|
2205
|
my $iterations_required = Math::Business::BlackScholesMerton::Binaries::get_min_iterations_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
167
|
|
|
|
|
|
|
|
168
|
104
|
|
|
|
|
7555
|
for (my $k = 1; $k < $iterations_required; $k++) { |
169
|
2280
|
|
|
|
|
4125
|
my $lambda_k_dash = (0.5 * (($mu_dash * $mu_dash) / ($vol * $vol) + ($k * $k * $pi * $pi * $vol * $vol) / ($h * $h))); |
170
|
|
|
|
|
|
|
|
171
|
2280
|
|
|
|
|
4142
|
my $phi = ($vol * $vol) / ($h * $h * $h) * exp(-$lambda_k_dash * $t) * $k * $k / $lambda_k_dash; |
172
|
|
|
|
|
|
|
|
173
|
2280
|
|
|
|
|
3716
|
$series_part += $phi * $pi * $pi * cos($k * $pi * ($h - $x) / $h); |
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
# |
176
|
|
|
|
|
|
|
# For delta, the stability function is $phi/$S, for gamma it is different, |
177
|
|
|
|
|
|
|
# but we shall ignore for now. |
178
|
|
|
|
|
|
|
# |
179
|
2280
|
50
|
66
|
|
|
5470
|
if ($k == 1 and (not(abs($phi / $S) < $stability_constant))) { |
180
|
0
|
|
|
|
|
0
|
die |
181
|
|
|
|
|
|
|
"$0: PELSSER DELTA formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER DELTA stability conditions ($phi / $S less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# Need to take care when $mu goes to zero |
186
|
104
|
50
|
|
|
|
223
|
if (abs($mu_new) < $Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU) { |
187
|
0
|
0
|
|
|
|
0
|
my $sign = ($mu_new >= 0) ? 1 : -1; |
188
|
0
|
|
|
|
|
0
|
$mu_new = $sign * $Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU; |
189
|
0
|
|
|
|
|
0
|
$mu_dash = sqrt(($mu_new * $mu_new) + (2 * $vol * $vol * $r_q * (1 - $w))); |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
104
|
|
|
|
|
348
|
$hyp_part = ($mu_dash / ($vol * $vol)) * (Math::Trig::cosh($mu_dash * $x / ($vol * $vol)) / Math::Trig::sinh($mu_dash * $h / ($vol * $vol))); |
193
|
|
|
|
|
|
|
|
194
|
104
|
|
|
|
|
1946
|
my $dc_dx = ($hyp_part + $series_part) * exp(-$r_q * $t * $w); |
195
|
|
|
|
|
|
|
|
196
|
104
|
|
|
|
|
242
|
return $dc_dx; |
197
|
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
200
|
13
|
|
|
13
|
0
|
42
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
201
|
|
|
|
|
|
|
|
202
|
13
|
|
|
|
|
49
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
203
|
13
|
|
|
|
|
46
|
my $h = log($U / $D); |
204
|
13
|
|
|
|
|
30
|
my $x = log($S / $D); |
205
|
|
|
|
|
|
|
|
206
|
13
|
|
|
|
|
68
|
my $dVu_dx = |
207
|
|
|
|
|
|
|
-(($mu_new / ($vol * $vol)) * |
208
|
|
|
|
|
|
|
Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1)); |
209
|
|
|
|
|
|
|
|
210
|
13
|
|
|
|
|
3787
|
$dVu_dx += x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
211
|
13
|
|
|
|
|
30
|
$dVu_dx *= exp($mu_new * ($h - $x) / ($vol * $vol)); |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
# dV/dS = dV/dx * dx/dS = dV/dx * 1/S |
214
|
13
|
|
|
|
|
52
|
return $dVu_dx / $S; |
215
|
|
|
|
|
|
|
} |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
218
|
13
|
|
|
13
|
0
|
41
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
219
|
|
|
|
|
|
|
|
220
|
13
|
|
|
|
|
28
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
221
|
13
|
|
|
|
|
29
|
my $x = log($S / $D); |
222
|
|
|
|
|
|
|
|
223
|
13
|
|
|
|
|
49
|
my $dVl_dx = |
224
|
|
|
|
|
|
|
-(($mu_new / ($vol * $vol)) * |
225
|
|
|
|
|
|
|
Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0)); |
226
|
|
|
|
|
|
|
|
227
|
13
|
|
|
|
|
3680
|
$dVl_dx -= x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
228
|
13
|
|
|
|
|
34
|
$dVl_dx *= exp(-$mu_new * $x / ($vol * $vol)); |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
# dV/dS = dV/dx * dx/dS = dV/dx * 1/S |
231
|
13
|
|
|
|
|
46
|
return $dVl_dx / $S; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub range { |
235
|
6
|
|
|
6
|
0
|
17089
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
# Range always pay out at end |
238
|
6
|
|
|
|
|
11
|
$w = 1; |
239
|
|
|
|
|
|
|
|
240
|
6
|
|
|
|
|
79
|
return -1 * upordown($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
1; |
244
|
|
|
|
|
|
|
|