line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Volga; |
2
|
1
|
|
|
1
|
|
392
|
use strict; use warnings; |
|
1
|
|
|
1
|
|
1
|
|
|
1
|
|
|
|
|
29
|
|
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
31
|
|
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
our $VERSION = '0.04'; |
5
|
|
|
|
|
|
|
|
6
|
1
|
|
|
1
|
|
4
|
use List::Util qw( max ); |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
102
|
|
7
|
1
|
|
|
1
|
|
4
|
use Math::Business::BlackScholes::Binaries; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
18
|
|
8
|
1
|
|
|
1
|
|
3
|
use Math::Business::BlackScholes::Binaries::Greeks::Vega; |
|
1
|
|
|
|
|
6
|
|
|
1
|
|
|
|
|
14
|
|
9
|
1
|
|
|
1
|
|
3
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( dgauss ); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
32
|
|
10
|
1
|
|
|
1
|
|
3
|
use Math::CDF qw( pnorm ); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
27
|
|
11
|
1
|
|
|
1
|
|
3
|
use Math::Trig; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
1666
|
|
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=head1 NAME |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Volga |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=head1 DESCRIPTION |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
Gets the Volga for different options, Vanilla and Foreign for all our bet types |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=cut |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=head1 SUBROUTINES |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
See L |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=cut |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
sub vanilla_call { |
30
|
12
|
|
|
12
|
0
|
2125
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
31
|
|
|
|
|
|
|
|
32
|
12
|
|
|
|
|
38
|
my $d1 = (log($S / $K) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
33
|
12
|
|
|
|
|
13
|
my $d2 = $d1 - ($vol * sqrt($t)); |
34
|
|
|
|
|
|
|
|
35
|
12
|
|
|
|
|
20
|
my $vega = Math::Business::BlackScholes::Binaries::Greeks::Vega::vanilla_call($S, $K, $t, $r_q, $mu, $vol); |
36
|
|
|
|
|
|
|
|
37
|
12
|
|
|
|
|
15
|
my $volga = $vega * $d1 * $d2 / $vol; |
38
|
12
|
|
|
|
|
15
|
return $volga; |
39
|
|
|
|
|
|
|
} |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
sub vanilla_put { |
42
|
6
|
|
|
6
|
0
|
1820
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# Same as volga of vanilla call (because vega_vanilla_call = vega_vanilla_put) |
45
|
6
|
|
|
|
|
7
|
return vanilla_call($S, $K, $t, $r_q, $mu, $vol); |
46
|
|
|
|
|
|
|
} |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
sub call { |
49
|
32
|
|
|
32
|
0
|
2063
|
my ($S, $U, $t, $r_q, $mu, $vol) = @_; |
50
|
|
|
|
|
|
|
|
51
|
32
|
|
|
|
|
113
|
my $d1 = (log($S / $U) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
52
|
32
|
|
|
|
|
29
|
my $d2 = $d1 - ($vol * sqrt($t)); |
53
|
|
|
|
|
|
|
|
54
|
32
|
|
|
|
|
63
|
my $volga = -dgauss($d2) * exp(-$r_q * $t) / ($vol * $vol) * (-$d1 - $d2 + ($d1 * $d1 * $d2)); |
55
|
32
|
|
|
|
|
157
|
return $volga; |
56
|
|
|
|
|
|
|
} |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
sub put { |
59
|
16
|
|
|
16
|
0
|
2023
|
my ($S, $D, $t, $r_q, $mu, $vol) = @_; |
60
|
|
|
|
|
|
|
|
61
|
16
|
|
|
|
|
38
|
return -1 * call($S, $D, $t, $r_q, $mu, $vol); |
62
|
|
|
|
|
|
|
} |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
sub expirymiss { |
65
|
10
|
|
|
10
|
0
|
2167
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
66
|
|
|
|
|
|
|
|
67
|
10
|
|
|
|
|
28
|
return call($S, $U, $t, $r_q, $mu, $vol) + put($S, $D, $t, $r_q, $mu, $vol); |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub expiryrange { |
71
|
5
|
|
|
5
|
0
|
1780
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
72
|
|
|
|
|
|
|
|
73
|
5
|
|
|
|
|
15
|
return -1 * expirymiss($S, $U, $D, $t, $r_q, $mu, $vol); |
74
|
|
|
|
|
|
|
} |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub onetouch { |
77
|
13
|
|
|
13
|
0
|
2768
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
78
|
13
|
100
|
|
|
|
34
|
if (not defined $w) { |
79
|
7
|
|
|
|
|
7
|
$w = 0; |
80
|
|
|
|
|
|
|
} |
81
|
13
|
|
|
|
|
18
|
my $sqrt_t = sqrt($t); |
82
|
|
|
|
|
|
|
|
83
|
13
|
|
|
|
|
24
|
my $theta = (($mu) / $vol) + (0.5 * $vol); |
84
|
13
|
|
|
|
|
22
|
my $theta_ = (($mu) / $vol) - (0.5 * $vol); |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# Floor v_ squared at just above zero in case negative interest rates push it negative. |
87
|
13
|
|
|
|
|
42
|
my $v_ = sqrt( max( $Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU, ( $theta_ * $theta_ ) + ( 2 * ( 1 - $w ) * $r_q ) ) ); |
88
|
|
|
|
|
|
|
|
89
|
13
|
|
|
|
|
34
|
my $e = (log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
90
|
13
|
|
|
|
|
27
|
my $e_ = (-log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
91
|
|
|
|
|
|
|
|
92
|
13
|
100
|
|
|
|
27
|
my $eta = ($S > $U) ? 1 : -1; |
93
|
|
|
|
|
|
|
|
94
|
13
|
|
|
|
|
24
|
my $pa_e = (log($U / $S) / ($vol * $vol * $sqrt_t)) + ($theta_ * $theta) / ($vol * $v_) * $sqrt_t; |
95
|
13
|
|
|
|
|
25
|
my $pa_e_ = (-log($U / $S) / ($vol * $vol * $sqrt_t)) + (($theta_ * $theta) / ($vol * $v_) * $sqrt_t); |
96
|
|
|
|
|
|
|
|
97
|
13
|
|
|
|
|
27
|
my $A = -($theta + $theta_ + ($theta_ * $theta / $v_) + $v_) / ($vol * $vol); |
98
|
13
|
|
|
|
|
23
|
my $A_ = -($theta + $theta_ - ($theta_ * $theta / $v_) - $v_) / ($vol * $vol); |
99
|
|
|
|
|
|
|
|
100
|
13
|
|
|
|
|
39
|
my $g = 1 / ($vol * $vol * $v_) * (-$theta * $theta - $theta_ * $theta_ - $theta * $theta_ + $theta * $theta_ * $theta * $theta_ / ($v_ * $v_)); |
101
|
|
|
|
|
|
|
|
102
|
13
|
|
|
|
|
23
|
my $pa_2_e = -2 * log($U / $S) / ($vol * $vol * $vol * $sqrt_t) + $g * $sqrt_t; |
103
|
13
|
|
|
|
|
21
|
my $pa_2_e_ = 2 * log($U / $S) / ($vol * $vol * $vol * $sqrt_t) + $g * $sqrt_t; |
104
|
|
|
|
|
|
|
|
105
|
13
|
|
|
|
|
63
|
my $pa_A = ($theta + $theta_) / ($vol * $vol * $vol) - (2 * $A + $g) / $vol; |
106
|
13
|
|
|
|
|
22
|
my $pa_A_ = ($theta + $theta_) / ($vol * $vol * $vol) - (2 * $A_ - $g) / $vol; |
107
|
|
|
|
|
|
|
|
108
|
13
|
|
|
|
|
12
|
my ($part1, $part2, $subpart_1_1, $subpart_1_2, $subpart_2_1, $subpart_2_2); |
109
|
|
|
|
|
|
|
|
110
|
13
|
|
|
|
|
67
|
$subpart_1_1 = pnorm(-$eta * $e) * log($U / $S) * ($A * $A * log($U / $S) + $pa_A); |
111
|
13
|
|
|
|
|
29
|
$subpart_1_2 = $eta * dgauss($e) * (2 * log($U / $S) * $A * $pa_e - $e * $pa_e * $pa_e + $pa_2_e); |
112
|
|
|
|
|
|
|
|
113
|
13
|
|
|
|
|
37
|
$subpart_2_1 = pnorm($eta * $e_) * log($U / $S) * ($A_ * $A_ * log($U / $S) + $pa_A_); |
114
|
13
|
|
|
|
|
20
|
$subpart_2_2 = $eta * dgauss($e_) * (2 * log($U / $S) * $A_ * $pa_e_ - $e_ * $pa_e_ * $pa_e_ + $pa_2_e_); |
115
|
|
|
|
|
|
|
|
116
|
13
|
|
|
|
|
20
|
$part1 = (($U / $S)**(($theta_ + $v_) / $vol)) * ($subpart_1_1 - $subpart_1_2); |
117
|
13
|
|
|
|
|
17
|
$part2 = (($U / $S)**(($theta_ - $v_) / $vol)) * ($subpart_2_1 + $subpart_2_2); |
118
|
|
|
|
|
|
|
|
119
|
13
|
|
|
|
|
27
|
return exp(-$w * $r_q * $t) * ($part1 + $part2); |
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
sub notouch { |
123
|
6
|
|
|
6
|
0
|
1848
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
# No touch bet always pay out at end |
126
|
6
|
|
|
|
|
7
|
$w = 1; |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
# Since the value VALUE_NOTOUCH = D(T) - VALUE_ONETOUCH, where D(T) |
129
|
|
|
|
|
|
|
# is the discount from time T, any derivative (other than with |
130
|
|
|
|
|
|
|
# respect to time or discount rate) of the value of notouch |
131
|
|
|
|
|
|
|
# is just the negative of the onetouch derivative. |
132
|
6
|
|
|
|
|
15
|
return (-1 * onetouch($S, $U, $t, $r_q, $mu, $vol, $w)); |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
sub upordown { |
136
|
13
|
|
|
13
|
0
|
3487
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# $w = 0, paid at hit |
139
|
|
|
|
|
|
|
# $w = 1, paid at end |
140
|
13
|
100
|
|
|
|
36
|
if (not defined $w) { $w = 0; } |
|
7
|
|
|
|
|
15
|
|
141
|
|
|
|
|
|
|
|
142
|
13
|
|
|
|
|
50
|
return ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w) + ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
143
|
|
|
|
|
|
|
} |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
sub w_common_function_pelsser_1997 { |
146
|
26
|
|
|
26
|
0
|
47
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta) = @_; |
147
|
|
|
|
|
|
|
|
148
|
26
|
|
|
|
|
35
|
my $pi = Math::Trig::pi; |
149
|
|
|
|
|
|
|
|
150
|
26
|
|
|
|
|
46
|
my $h = log($U / $D); |
151
|
26
|
|
|
|
|
36
|
my $x = log($S / $D); |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
154
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
155
|
|
|
|
|
|
|
# This variable used to check stability |
156
|
26
|
50
|
|
|
|
60
|
if (not defined $eta) { |
157
|
0
|
|
|
|
|
0
|
die |
158
|
|
|
|
|
|
|
"$0: (w_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
159
|
|
|
|
|
|
|
} |
160
|
26
|
100
|
|
|
|
57
|
if ($eta == 0) { $x = $h - $x; } |
|
13
|
|
|
|
|
20
|
|
161
|
|
|
|
|
|
|
|
162
|
26
|
|
|
|
|
54
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
163
|
26
|
|
|
|
|
105
|
my $mu_dash = sqrt(max($Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU,($mu_new * $mu_new) + (2 * $vol * $vol * $r_q * (1 - $w)))); |
164
|
|
|
|
|
|
|
|
165
|
26
|
|
|
|
|
40
|
my $r_dash = $r_q * (1 - $w); |
166
|
26
|
|
|
|
|
34
|
my $omega = ($vol * $vol); |
167
|
|
|
|
|
|
|
|
168
|
26
|
|
|
|
|
36
|
my $series_part = 0; |
169
|
26
|
|
|
|
|
25
|
my $hyp_part = 0; |
170
|
|
|
|
|
|
|
|
171
|
26
|
|
|
|
|
66
|
my $stability_constant = Math::Business::BlackScholes::Binaries::get_stability_constant_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 1); |
172
|
|
|
|
|
|
|
|
173
|
26
|
|
|
|
|
345
|
my $iterations_required = Math::Business::BlackScholes::Binaries::get_min_iterations_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
174
|
|
|
|
|
|
|
|
175
|
26
|
|
|
|
|
1048
|
for (my $k = 1; $k < $iterations_required; $k++) { |
176
|
570
|
|
|
|
|
812
|
my $lambda_k_dash = (0.5 * (($mu_dash * $mu_dash) / ($vol * $vol) + ($k * $k * $pi * $pi * $vol * $vol) / ($h * $h))); |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
# d{lambda_k}/dw |
179
|
570
|
|
|
|
|
782
|
my $dlambdak_domega = 0.5 * (-($mu_new / $omega) - (($mu_new * $mu_new) / ($omega * $omega)) + (($k * $k * $pi * $pi) / ($h * $h))); |
180
|
570
|
|
|
|
|
601
|
my $d2lambdak_domega2 = 0.5 * ($omega + 2 * $mu_new) / (2 * $omega * $omega); |
181
|
570
|
|
|
|
|
517
|
$d2lambdak_domega2 *= (1 + (2 * $mu_new / $omega)); |
182
|
|
|
|
|
|
|
|
183
|
570
|
|
|
|
|
561
|
my $beta_k = exp(-$lambda_k_dash * $t) / $lambda_k_dash; |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# d{beta_k}/d{lambda_k} |
186
|
570
|
|
|
|
|
717
|
my $dbetak_dlambdak = -exp(-$lambda_k_dash * $t) * (($t * $lambda_k_dash + 1) / ($lambda_k_dash**2)); |
187
|
570
|
|
|
|
|
1198
|
my $d2betak_dlambdak2 = -($t * $dbetak_dlambdak) + exp(-$lambda_k_dash * $t) * (($t / ($lambda_k_dash**2)) + (2 / ($lambda_k_dash**3))); |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# d{beta_k}/dw |
190
|
570
|
|
|
|
|
462
|
my $dbetak_domega = $dlambdak_domega * $dbetak_dlambdak; |
191
|
570
|
|
|
|
|
573
|
my $d2betak_domega2 = ($dlambdak_domega * $dlambdak_domega * $d2betak_dlambdak2) + ($dbetak_dlambdak * $d2lambdak_domega2); |
192
|
|
|
|
|
|
|
|
193
|
570
|
|
|
|
|
681
|
my $phi = (1.0 / ($h * $h)) * ($omega * $d2betak_domega2 + 2 * $dbetak_domega) * $k; |
194
|
|
|
|
|
|
|
|
195
|
570
|
|
|
|
|
713
|
$series_part += $phi * $pi * sin($k * $pi * ($h - $x) / $h); |
196
|
|
|
|
|
|
|
|
197
|
570
|
50
|
66
|
|
|
1507
|
if ($k == 1 and (not(abs(4 * $vol * $vol * $phi) < $stability_constant))) { |
198
|
0
|
|
|
|
|
0
|
die |
199
|
|
|
|
|
|
|
"$0: PELSSER VOLGA formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER VOLGA stability conditions (4 * $vol * $vol * $phi less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
} |
202
|
|
|
|
|
|
|
|
203
|
26
|
|
|
|
|
36
|
my $alpha = $mu_dash / ($vol * $vol); |
204
|
26
|
|
|
|
|
70
|
my $dalpha_domega = -(($mu_new * $omega) + (2 * $mu_new * $mu_new) + (2 * $r_dash * $omega)) / (2 * $alpha * $omega * $omega * $omega); |
205
|
|
|
|
|
|
|
|
206
|
26
|
|
|
|
|
54
|
my $d2alpha_domega2 = $alpha * ($omega**3) * (2 * $mu_new + $omega - 4 * $r_dash); |
207
|
26
|
|
|
|
|
78
|
$d2alpha_domega2 += |
208
|
|
|
|
|
|
|
(($mu_new * $omega) + (2 * $mu_new * $mu_new) + (2 * $r_dash * $omega)) * |
209
|
|
|
|
|
|
|
((6 * $alpha * $omega * $omega) + (2 * $omega * $omega * $omega * $dalpha_domega)); |
210
|
26
|
|
|
|
|
52
|
$d2alpha_domega2 = $d2alpha_domega2 / (4 * $alpha * $alpha * ($omega**6)); |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# We have to handle the special case where the denominator approaches 0, see our documentation in |
213
|
|
|
|
|
|
|
# quant/Documents/Breakout_bet.tex under the SVN "quant" module. |
214
|
26
|
|
|
|
|
23
|
my $hyp_part1; |
215
|
26
|
50
|
|
|
|
86
|
if ((Math::Trig::sinh($alpha * $h)**3) == 0) { |
216
|
0
|
|
|
|
|
0
|
$hyp_part1 = 0; |
217
|
|
|
|
|
|
|
} else { |
218
|
26
|
|
|
|
|
277
|
$hyp_part1 = |
219
|
|
|
|
|
|
|
Math::Trig::sinh($alpha * $h) * |
220
|
|
|
|
|
|
|
($h**2 - $x**2) * |
221
|
|
|
|
|
|
|
(Math::Trig::cosh($alpha * ($h - $x)) - Math::Trig::cosh($alpha * ($h + $x))) - |
222
|
|
|
|
|
|
|
(2 * $h * Math::Trig::cosh($alpha * $h)) * |
223
|
|
|
|
|
|
|
((($h + $x) * Math::Trig::sinh($alpha * ($h - $x))) - (($h - $x) * Math::Trig::sinh($alpha * ($h + $x)))); |
224
|
26
|
|
|
|
|
824
|
$hyp_part1 *= ($dalpha_domega**2) / (2 * (Math::Trig::sinh($alpha * $h)**3)); |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
|
227
|
26
|
|
|
|
|
161
|
my $hyp_part2; |
228
|
26
|
50
|
|
|
|
55
|
if ((Math::Trig::sinh($alpha * $h)**2) == 0) { |
229
|
0
|
|
|
|
|
0
|
$hyp_part2 = 0; |
230
|
|
|
|
|
|
|
} else { |
231
|
26
|
|
|
|
|
188
|
$hyp_part2 = |
232
|
|
|
|
|
|
|
($d2alpha_domega2 / (2 * (Math::Trig::sinh($alpha * $h)**2))) * |
233
|
|
|
|
|
|
|
(($h + $x) * Math::Trig::sinh($alpha * ($h - $x)) - ($h - $x) * Math::Trig::sinh($alpha * ($h + $x))); |
234
|
|
|
|
|
|
|
} |
235
|
|
|
|
|
|
|
|
236
|
26
|
|
|
|
|
424
|
$hyp_part = $hyp_part1 + $hyp_part2; |
237
|
|
|
|
|
|
|
|
238
|
26
|
|
|
|
|
58
|
my $d2c_domega2 = ($hyp_part - $series_part) * exp(-$r_q * $w * $t); |
239
|
|
|
|
|
|
|
|
240
|
26
|
|
|
|
|
47
|
return $d2c_domega2; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
244
|
13
|
|
|
13
|
0
|
23
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
245
|
|
|
|
|
|
|
|
246
|
13
|
|
|
|
|
40
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
247
|
13
|
|
|
|
|
34
|
my $h = log($U / $D); |
248
|
13
|
|
|
|
|
26
|
my $x = log($S / $D); |
249
|
13
|
|
|
|
|
18
|
my $omega = ($vol * $vol); |
250
|
|
|
|
|
|
|
|
251
|
13
|
|
|
|
|
40
|
my $c = Math::Business::BlackScholes::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
252
|
13
|
|
|
|
|
2097
|
my $dc_domega = Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
253
|
13
|
|
|
|
|
47
|
my $d2c_domega2 = w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
254
|
|
|
|
|
|
|
|
255
|
13
|
|
|
|
|
47
|
my $Vu = Math::Business::BlackScholes::Binaries::ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
256
|
13
|
|
|
|
|
2216
|
my $dVu_domega = -((0.5 * $omega + $mu_new) * ($h - $x) / ($omega * $omega)) * $c; |
257
|
13
|
|
|
|
|
18
|
$dVu_domega += $dc_domega; |
258
|
13
|
|
|
|
|
30
|
$dVu_domega *= exp($mu_new * ($h - $x) / $omega); |
259
|
|
|
|
|
|
|
|
260
|
13
|
|
|
|
|
104
|
my $d2Vu_domega2 = |
261
|
|
|
|
|
|
|
-((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * ($h - $x) * $dVu_domega) + |
262
|
|
|
|
|
|
|
((($omega + (2 * $mu_new)) / ($omega**3)) * ($h - $x) * $Vu) - |
263
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * ($h - $x) * exp($mu_new * ($h - $x) / $omega) * $dc_domega) + |
264
|
|
|
|
|
|
|
(exp($mu_new * ($h - $x) / $omega) * $d2c_domega2); |
265
|
|
|
|
|
|
|
|
266
|
13
|
|
|
|
|
60
|
return (4 * $vol * $vol * $d2Vu_domega2) + (2 * $dVu_domega); |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
270
|
13
|
|
|
13
|
0
|
28
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
271
|
|
|
|
|
|
|
|
272
|
13
|
|
|
|
|
29
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
273
|
13
|
|
|
|
|
24
|
my $h = log($U / $D); |
274
|
13
|
|
|
|
|
23
|
my $x = log($S / $D); |
275
|
13
|
|
|
|
|
23
|
my $omega = ($vol * $vol); |
276
|
|
|
|
|
|
|
|
277
|
13
|
|
|
|
|
34
|
my $c = Math::Business::BlackScholes::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
278
|
13
|
|
|
|
|
1940
|
my $dc_domega = Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
279
|
13
|
|
|
|
|
45
|
my $d2c_domega2 = w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
280
|
|
|
|
|
|
|
|
281
|
13
|
|
|
|
|
51
|
my $Vl = Math::Business::BlackScholes::Binaries::ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
282
|
13
|
|
|
|
|
2121
|
my $dVl_domega = ((0.5 * $omega + $mu_new) * $x / ($omega * $omega)) * $c; |
283
|
13
|
|
|
|
|
19
|
$dVl_domega += $dc_domega; |
284
|
13
|
|
|
|
|
28
|
$dVl_domega *= exp(-$mu_new * $x / $omega); |
285
|
|
|
|
|
|
|
|
286
|
13
|
|
|
|
|
74
|
my $d2Vl_domega2 = |
287
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * $x * $dVl_domega) - |
288
|
|
|
|
|
|
|
((($omega + (2 * $mu_new)) / ($omega**3)) * $x * $Vl) + |
289
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * $x * exp(-$mu_new * $x / $omega) * $dc_domega) + |
290
|
|
|
|
|
|
|
(exp(-$mu_new * $x / $omega) * $d2c_domega2); |
291
|
|
|
|
|
|
|
|
292
|
13
|
|
|
|
|
57
|
return (4 * $vol * $vol * $d2Vl_domega2) + (2 * $dVl_domega); |
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
sub range { |
296
|
6
|
|
|
6
|
0
|
3324
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
# Range always pay out at end |
299
|
6
|
|
|
|
|
11
|
$w = 1; |
300
|
|
|
|
|
|
|
|
301
|
6
|
|
|
|
|
24
|
return -1 * upordown($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
1; |
305
|
|
|
|
|
|
|
|