line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Vega; |
2
|
1
|
|
|
1
|
|
3
|
use strict; use warnings; |
|
1
|
|
|
1
|
|
1
|
|
|
1
|
|
|
|
|
22
|
|
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
0
|
|
|
1
|
|
|
|
|
29
|
|
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
our $VERSION = '0.04'; |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vega |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 DESCRIPTION |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
Gets the Vega for different options, Vanilla and Foreign for all our bet types |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=cut |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 SUBROUTINES |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
See L |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=cut |
21
|
|
|
|
|
|
|
|
22
|
1
|
|
|
1
|
|
2
|
use List::Util qw( max ); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
40
|
|
23
|
1
|
|
|
1
|
|
10
|
use Math::CDF qw( pnorm ); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
24
|
|
24
|
1
|
|
|
1
|
|
2
|
use Math::Trig; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
114
|
|
25
|
1
|
|
|
1
|
|
5
|
use Math::Business::BlackScholes::Binaries; |
|
1
|
|
|
|
|
0
|
|
|
1
|
|
|
|
|
16
|
|
26
|
1
|
|
|
1
|
|
4
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( dgauss ); |
|
1
|
|
|
|
|
0
|
|
|
1
|
|
|
|
|
1395
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
sub vanilla_call { |
29
|
36
|
|
|
36
|
0
|
2050
|
my ( $S, $K, $t, $r_q, $mu, $vol ) = @_; |
30
|
|
|
|
|
|
|
|
31
|
36
|
|
|
|
|
69
|
my $d1 = |
32
|
|
|
|
|
|
|
( log( $S / $K ) + ( $mu + $vol * $vol / 2.0 ) * $t ) / |
33
|
|
|
|
|
|
|
( $vol * sqrt($t) ); |
34
|
36
|
|
|
|
|
84
|
my $vega = $S * sqrt($t) * exp( ( $mu - $r_q ) * $t ) * dgauss($d1); |
35
|
36
|
|
|
|
|
45
|
return $vega; |
36
|
|
|
|
|
|
|
} |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
sub vanilla_put { |
39
|
6
|
|
|
6
|
0
|
1883
|
my ( $S, $K, $t, $r_q, $mu, $vol ) = @_; |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# Same as vega of vanilla call |
42
|
6
|
|
|
|
|
9
|
return vanilla_call( $S, $K, $t, $r_q, $mu, $vol ); |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
sub call { |
46
|
16
|
|
|
16
|
0
|
2051
|
my ( $S, $U, $t, $r_q, $mu, $vol ) = @_; |
47
|
|
|
|
|
|
|
|
48
|
16
|
|
|
|
|
73
|
my $d1 = |
49
|
|
|
|
|
|
|
( log( $S / $U ) + ( $mu + $vol * $vol / 2.0 ) * $t ) / |
50
|
|
|
|
|
|
|
( $vol * sqrt($t) ); |
51
|
16
|
|
|
|
|
23
|
my $d2 = $d1 - $vol * sqrt($t); |
52
|
16
|
|
|
|
|
49
|
my $vega = -exp( -$r_q * $t ) * dgauss($d2) * $d1 / $vol; |
53
|
16
|
|
|
|
|
38
|
return $vega; |
54
|
|
|
|
|
|
|
} |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
sub put { |
57
|
16
|
|
|
16
|
0
|
2003
|
my ( $S, $D, $t, $r_q, $mu, $vol ) = @_; |
58
|
|
|
|
|
|
|
|
59
|
16
|
|
|
|
|
59
|
my $d1 = |
60
|
|
|
|
|
|
|
( log( $S / $D ) + ( $mu + $vol * $vol / 2.0 ) * $t ) / |
61
|
|
|
|
|
|
|
( $vol * sqrt($t) ); |
62
|
16
|
|
|
|
|
24
|
my $d2 = $d1 - $vol * sqrt($t); |
63
|
16
|
|
|
|
|
42
|
my $vega = exp( -$r_q * $t ) * dgauss($d2) * $d1 / $vol; |
64
|
16
|
|
|
|
|
25
|
return $vega; |
65
|
|
|
|
|
|
|
} |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
sub expirymiss { |
68
|
10
|
|
|
10
|
0
|
2244
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol ) = @_; |
69
|
|
|
|
|
|
|
|
70
|
10
|
|
|
|
|
29
|
return call( $S, $U, $t, $r_q, $mu, $vol ) + |
71
|
|
|
|
|
|
|
put( $S, $D, $t, $r_q, $mu, $vol ); |
72
|
|
|
|
|
|
|
} |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub expiryrange { |
75
|
5
|
|
|
5
|
0
|
1614
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol ) = @_; |
76
|
|
|
|
|
|
|
|
77
|
5
|
|
|
|
|
14
|
return -1 * expirymiss( $S, $U, $D, $t, $r_q, $mu, $vol ); |
78
|
|
|
|
|
|
|
} |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
sub onetouch { |
81
|
13
|
|
|
13
|
0
|
2367
|
my ( $S, $U, $t, $r_q, $mu, $vol, $w ) = @_; |
82
|
|
|
|
|
|
|
|
83
|
13
|
100
|
|
|
|
36
|
if ( not defined $w ) { |
84
|
7
|
|
|
|
|
9
|
$w = 0; |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
13
|
|
|
|
|
17
|
my $sqrt_t = sqrt($t); |
88
|
|
|
|
|
|
|
|
89
|
13
|
|
|
|
|
28
|
my $theta = ( $mu / $vol ) + ( 0.5 * $vol ); |
90
|
|
|
|
|
|
|
|
91
|
13
|
|
|
|
|
17
|
my $theta_ = ( $mu / $vol ) - ( 0.5 * $vol ); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
# Floor v_ squared at just above zero in case negative interest rates push it negative. |
94
|
13
|
|
|
|
|
52
|
my $v_ = sqrt( max( $Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU, ( $theta_ * $theta_ ) + ( 2 * ( 1 - $w ) * $r_q ) ) ); |
95
|
|
|
|
|
|
|
|
96
|
13
|
|
|
|
|
37
|
my $e = ( log( $S / $U ) - ( $vol * $v_ * $t ) ) / ( $vol * $sqrt_t ); |
97
|
|
|
|
|
|
|
|
98
|
13
|
|
|
|
|
25
|
my $e_ = ( -log( $S / $U ) - ( $vol * $v_ * $t ) ) / ( $vol * $sqrt_t ); |
99
|
|
|
|
|
|
|
|
100
|
13
|
100
|
|
|
|
32
|
my $eta = ( $S > $U ) ? 1 : -1; |
101
|
|
|
|
|
|
|
|
102
|
13
|
|
|
|
|
36
|
my $pa_e = |
103
|
|
|
|
|
|
|
( log( $U / $S ) / ( $vol * $vol * $sqrt_t ) ) + |
104
|
|
|
|
|
|
|
( ( $theta_ * $theta ) / ( $vol * $v_ ) * $sqrt_t ); |
105
|
13
|
|
|
|
|
27
|
my $pa_e_ = |
106
|
|
|
|
|
|
|
( -log( $U / $S ) / ( $vol * $vol * $sqrt_t ) ) + |
107
|
|
|
|
|
|
|
( ( $theta_ * $theta ) / ( $vol * $v_ ) * $sqrt_t ); |
108
|
13
|
|
|
|
|
24
|
my $A = |
109
|
|
|
|
|
|
|
-( $theta + $theta_ + ( $theta_ * $theta / $v_ ) + $v_ ) / |
110
|
|
|
|
|
|
|
( $vol * $vol ); |
111
|
13
|
|
|
|
|
24
|
my $A_ = |
112
|
|
|
|
|
|
|
-( $theta + $theta_ - ( $theta_ * $theta / $v_ ) - $v_ ) / |
113
|
|
|
|
|
|
|
( $vol * $vol ); |
114
|
|
|
|
|
|
|
|
115
|
13
|
|
|
|
|
78
|
my $part1 = |
116
|
|
|
|
|
|
|
pnorm( -$eta * $e ) * $A * log( $U / $S ) - $eta * dgauss($e) * $pa_e; |
117
|
13
|
|
|
|
|
52
|
my $part2 = |
118
|
|
|
|
|
|
|
pnorm( $eta * $e_ ) * $A_ * log( $U / $S ) + $eta * dgauss($e_) * $pa_e_; |
119
|
13
|
|
|
|
|
51
|
my $vega = |
120
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ + $v_ ) / $vol ) ) * $part1 + |
121
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ - $v_ ) / $vol ) ) * $part2; |
122
|
|
|
|
|
|
|
|
123
|
13
|
|
|
|
|
31
|
return $vega * exp( -$w * $r_q * $t ); |
124
|
|
|
|
|
|
|
} |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
sub notouch { |
127
|
6
|
|
|
6
|
0
|
1950
|
my ( $S, $U, $t, $r_q, $mu, $vol, $w ) = @_; |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# No touch bet always pay out at end |
130
|
6
|
|
|
|
|
7
|
$w = 1; |
131
|
|
|
|
|
|
|
|
132
|
6
|
|
|
|
|
16
|
return -1 * onetouch( $S, $U, $t, $r_q, $mu, $vol, $w ); |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
sub upordown { |
136
|
13
|
|
|
13
|
0
|
4197
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# $w = 0, paid at hit |
139
|
|
|
|
|
|
|
# $w = 1, paid at end |
140
|
13
|
100
|
|
|
|
43
|
if ( not defined $w ) { $w = 0; } |
|
7
|
|
|
|
|
12
|
|
141
|
|
|
|
|
|
|
|
142
|
13
|
|
|
|
|
44
|
return ot_up_ko_down_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) + |
143
|
|
|
|
|
|
|
ot_down_ko_up_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
sub w_common_function_pelsser_1997 { |
147
|
78
|
|
|
78
|
0
|
146
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta ) = @_; |
148
|
|
|
|
|
|
|
|
149
|
78
|
|
|
|
|
79
|
my $pi = Math::Trig::pi; |
150
|
|
|
|
|
|
|
|
151
|
78
|
|
|
|
|
100
|
my $h = log( $U / $D ); |
152
|
78
|
|
|
|
|
99
|
my $x = log( $S / $D ); |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
155
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
156
|
|
|
|
|
|
|
# This variable used to check stability |
157
|
78
|
50
|
|
|
|
178
|
if ( not defined $eta ) { |
158
|
0
|
|
|
|
|
0
|
die |
159
|
|
|
|
|
|
|
"$0: (w_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
160
|
|
|
|
|
|
|
} |
161
|
78
|
100
|
|
|
|
142
|
if ( $eta == 0 ) { $x = $h - $x; } |
|
39
|
|
|
|
|
40
|
|
162
|
|
|
|
|
|
|
|
163
|
78
|
|
|
|
|
104
|
my $r_dash = $r_q * ( 1 - $w ); |
164
|
78
|
|
|
|
|
104
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
165
|
78
|
|
|
|
|
201
|
my $mu_dash = sqrt( max( $Math::Business::BlackScholes::Binaries::SMALL_VALUE_MU, ( $mu_new * $mu_new ) + ( 2 * $vol * $vol * $r_dash ) ) ); |
166
|
|
|
|
|
|
|
|
167
|
78
|
|
|
|
|
90
|
my $omega = ( $vol * $vol ); |
168
|
|
|
|
|
|
|
|
169
|
78
|
|
|
|
|
69
|
my $series_part = 0; |
170
|
78
|
|
|
|
|
72
|
my $hyp_part = 0; |
171
|
|
|
|
|
|
|
|
172
|
78
|
|
|
|
|
152
|
my $stability_constant = |
173
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::get_stability_constant_pelsser_1997( |
174
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 1 ); |
175
|
|
|
|
|
|
|
|
176
|
78
|
|
|
|
|
965
|
my $iterations_required = |
177
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::get_min_iterations_pelsser_1997( |
178
|
|
|
|
|
|
|
$S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
179
|
|
|
|
|
|
|
|
180
|
78
|
|
|
|
|
3142
|
for ( my $k = 1 ; $k < $iterations_required ; $k++ ) { |
181
|
1710
|
|
|
|
|
2226
|
my $lambda_k_dash = ( |
182
|
|
|
|
|
|
|
0.5 * ( |
183
|
|
|
|
|
|
|
( $mu_dash * $mu_dash ) / $omega + |
184
|
|
|
|
|
|
|
( $k * $k * $pi * $pi * $vol * $vol ) / ( $h * $h ) |
185
|
|
|
|
|
|
|
) |
186
|
|
|
|
|
|
|
); |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
# d{lambda_k}/dw |
189
|
1710
|
|
|
|
|
2223
|
my $dlambdak_domega = |
190
|
|
|
|
|
|
|
0.5 * |
191
|
|
|
|
|
|
|
( -( $mu_new / $omega ) - |
192
|
|
|
|
|
|
|
( ( $mu_new * $mu_new ) / ( $omega * $omega ) ) + |
193
|
|
|
|
|
|
|
( ( $k * $k * $pi * $pi ) / ( $h * $h ) ) ); |
194
|
|
|
|
|
|
|
|
195
|
1710
|
|
|
|
|
1721
|
my $beta_k = exp( -$lambda_k_dash * $t ) / $lambda_k_dash; |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
# d{beta_k}/d{lambda_k} |
198
|
1710
|
|
|
|
|
2081
|
my $dbetak_dlambdak = |
199
|
|
|
|
|
|
|
-exp( -$lambda_k_dash * $t ) * |
200
|
|
|
|
|
|
|
( ( $t * $lambda_k_dash + 1 ) / ( $lambda_k_dash**2 ) ); |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# d{beta_k}/dw |
203
|
1710
|
|
|
|
|
1285
|
my $dbetak_domega = $dlambdak_domega * $dbetak_dlambdak; |
204
|
|
|
|
|
|
|
|
205
|
1710
|
|
|
|
|
1990
|
my $phi = |
206
|
|
|
|
|
|
|
( 1.0 / ( $h * $h ) ) * ( $omega * $dbetak_domega + $beta_k ) * $k; |
207
|
|
|
|
|
|
|
|
208
|
1710
|
|
|
|
|
2026
|
$series_part += $phi * $pi * sin( $k * $pi * ( $h - $x ) / $h ); |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
# |
211
|
|
|
|
|
|
|
# For vega, the stability function is 2* $vol * $phi, for volga/vanna it is different, |
212
|
|
|
|
|
|
|
# but we shall ignore for now. |
213
|
|
|
|
|
|
|
# |
214
|
1710
|
50
|
66
|
|
|
4506
|
if ( $k == 1 |
215
|
|
|
|
|
|
|
and ( not( abs( 2 * $vol * $phi ) < $stability_constant ) ) ) |
216
|
|
|
|
|
|
|
{ |
217
|
0
|
|
|
|
|
0
|
die |
218
|
|
|
|
|
|
|
"$0: PELSSER VEGA formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER VEGA stability conditions (2 * $vol * $phi less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
219
|
|
|
|
|
|
|
} |
220
|
|
|
|
|
|
|
} |
221
|
|
|
|
|
|
|
|
222
|
78
|
|
|
|
|
110
|
my $alpha = $mu_dash / ( $vol * $vol ); |
223
|
78
|
|
|
|
|
157
|
my $dalpha_domega = |
224
|
|
|
|
|
|
|
-( ( $mu_new * $omega ) + |
225
|
|
|
|
|
|
|
( 2 * $mu_new * $mu_new ) + |
226
|
|
|
|
|
|
|
( 2 * $r_dash * $omega ) ) / |
227
|
|
|
|
|
|
|
( 2 * $alpha * $omega * $omega * $omega ); |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# We have to handle the special case where the denominator approaches 0, see our documentation in |
230
|
|
|
|
|
|
|
# quant/Documents/Breakout_bet.tex under the SVN "quant" module. |
231
|
78
|
50
|
|
|
|
231
|
if ( ( Math::Trig::sinh( $alpha * $h )**2 ) == 0 ) { |
232
|
0
|
|
|
|
|
0
|
$hyp_part = 0; |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
else { |
235
|
78
|
|
|
|
|
737
|
$hyp_part = |
236
|
|
|
|
|
|
|
( $dalpha_domega / ( 2 * ( Math::Trig::sinh( $alpha * $h )**2 ) ) ) * |
237
|
|
|
|
|
|
|
( ( $h + $x ) * Math::Trig::sinh( $alpha * ( $h - $x ) ) - |
238
|
|
|
|
|
|
|
( $h - $x ) * Math::Trig::sinh( $alpha * ( $h + $x ) ) ); |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
|
241
|
78
|
|
|
|
|
1267
|
my $dc_domega = ( $hyp_part - $series_part ) * exp( -$r_q * $w * $t ); |
242
|
|
|
|
|
|
|
|
243
|
78
|
|
|
|
|
165
|
return $dc_domega; |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
247
|
13
|
|
|
13
|
0
|
48
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
248
|
|
|
|
|
|
|
|
249
|
13
|
|
|
|
|
34
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
250
|
13
|
|
|
|
|
38
|
my $h = log( $U / $D ); |
251
|
13
|
|
|
|
|
20
|
my $x = log( $S / $D ); |
252
|
13
|
|
|
|
|
18
|
my $omega = ( $vol * $vol ); |
253
|
|
|
|
|
|
|
|
254
|
13
|
|
|
|
|
49
|
my $c = |
255
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::common_function_pelsser_1997( $S, |
256
|
|
|
|
|
|
|
$U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
257
|
13
|
|
|
|
|
2134
|
my $dc_domega = |
258
|
|
|
|
|
|
|
w_common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w, 1 ); |
259
|
|
|
|
|
|
|
|
260
|
13
|
|
|
|
|
53
|
my $dVu_domega = |
261
|
|
|
|
|
|
|
-( ( 0.5 * $omega + $mu_new ) * ( $h - $x ) / ( $omega * $omega ) ) * $c; |
262
|
13
|
|
|
|
|
20
|
$dVu_domega += $dc_domega; |
263
|
13
|
|
|
|
|
28
|
$dVu_domega *= exp( $mu_new * ( $h - $x ) / $omega ); |
264
|
|
|
|
|
|
|
|
265
|
13
|
|
|
|
|
53
|
return $dVu_domega * ( 2 * $vol ); |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
269
|
13
|
|
|
13
|
0
|
34
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
270
|
|
|
|
|
|
|
|
271
|
13
|
|
|
|
|
34
|
my $mu_new = $mu - ( 0.5 * $vol * $vol ); |
272
|
13
|
|
|
|
|
27
|
my $h = log( $U / $D ); |
273
|
13
|
|
|
|
|
19
|
my $x = log( $S / $D ); |
274
|
13
|
|
|
|
|
29
|
my $omega = ( $vol * $vol ); |
275
|
|
|
|
|
|
|
|
276
|
13
|
|
|
|
|
37
|
my $c = |
277
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::common_function_pelsser_1997( $S, |
278
|
|
|
|
|
|
|
$U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
279
|
13
|
|
|
|
|
1991
|
my $dc_domega = |
280
|
|
|
|
|
|
|
w_common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $vol, $w, 0 ); |
281
|
|
|
|
|
|
|
|
282
|
13
|
|
|
|
|
36
|
my $dVl_domega = |
283
|
|
|
|
|
|
|
( ( 0.5 * $omega + $mu_new ) * $x / ( $omega * $omega ) ) * $c; |
284
|
13
|
|
|
|
|
14
|
$dVl_domega += $dc_domega; |
285
|
13
|
|
|
|
|
23
|
$dVl_domega *= exp( -$mu_new * $x / $omega ); |
286
|
|
|
|
|
|
|
|
287
|
13
|
|
|
|
|
51
|
return $dVl_domega * ( 2 * $vol ); |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
sub range { |
291
|
6
|
|
|
6
|
0
|
3586
|
my ( $S, $U, $D, $t, $r_q, $mu, $vol, $w ) = @_; |
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
# Range always pay out at end |
294
|
6
|
|
|
|
|
8
|
$w = 1; |
295
|
|
|
|
|
|
|
|
296
|
6
|
|
|
|
|
21
|
return -1 * upordown( $S, $U, $D, $t, $r_q, $mu, $vol, $w ); |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
1; |
300
|
|
|
|
|
|
|
|