line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries; |
2
|
10
|
|
|
10
|
|
550561
|
use strict; |
|
10
|
|
|
|
|
25
|
|
|
10
|
|
|
|
|
345
|
|
3
|
10
|
|
|
10
|
|
49
|
use warnings; |
|
10
|
|
|
|
|
14
|
|
|
10
|
|
|
|
|
589
|
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = '1.2'; |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
my $SMALLTIME = 1 / ( 60 * 60 * 24 * 365 ); # 1 second in years; |
8
|
|
|
|
|
|
|
|
9
|
10
|
|
|
10
|
|
61
|
use List::Util qw(max); |
|
10
|
|
|
|
|
20
|
|
|
10
|
|
|
|
|
1016
|
|
10
|
10
|
|
|
10
|
|
5123
|
use Math::CDF qw(pnorm); |
|
10
|
|
|
|
|
28936
|
|
|
10
|
|
|
|
|
653
|
|
11
|
10
|
|
|
10
|
|
6447
|
use Math::Trig; |
|
10
|
|
|
|
|
157815
|
|
|
10
|
|
|
|
|
1694
|
|
12
|
10
|
|
|
10
|
|
5665
|
use Machine::Epsilon; |
|
10
|
|
|
|
|
3170
|
|
|
10
|
|
|
|
|
32196
|
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 VERSION |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
Version 1.2 |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=head1 SYNOPSIS |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
use Math::Business::BlackScholes::Binaries; |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
# price of a Call option |
27
|
|
|
|
|
|
|
my $price_call_option = Math::Business::BlackScholes::Binaries::call( |
28
|
|
|
|
|
|
|
1.35, # stock price |
29
|
|
|
|
|
|
|
1.36, # barrier |
30
|
|
|
|
|
|
|
(7/365), # time |
31
|
|
|
|
|
|
|
0.002, # payout currency interest rate (0.05 = 5%) |
32
|
|
|
|
|
|
|
0.001, # quanto drift adjustment (0.05 = 5%) |
33
|
|
|
|
|
|
|
0.11, # volatility (0.3 = 30%) |
34
|
|
|
|
|
|
|
); |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
=head1 DESCRIPTION |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
Prices options using the GBM model, all closed formulas. |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
Important(a): Basically, onetouch, upordown and doubletouch have two cases of |
41
|
|
|
|
|
|
|
payoff either at end or at hit. We treat them differently. We use parameter |
42
|
|
|
|
|
|
|
$w to differ them. |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
$w = 0: payoff at hit time. |
45
|
|
|
|
|
|
|
$w = 1: payoff at end. |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Our current contracts pay rebate at hit time, so we set $w = 0 by default. |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
Important(b) :Furthermore, for all contracts, we allow a different |
50
|
|
|
|
|
|
|
payout currency (Quantos). |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
Paying domestic currency (JPY if for USDJPY) = correlation coefficient is ZERO. |
53
|
|
|
|
|
|
|
Paying foreign currency (USD if for USDJPY) = correlation coefficient is ONE. |
54
|
|
|
|
|
|
|
Paying another currency = correlation is between negative ONE and positive ONE. |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
See [3] for Quanto formulas and examples |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=head1 SUBROUTINES |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
=head2 vanilla_call |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
USAGE |
63
|
|
|
|
|
|
|
my $price = vanilla_call($S, $K, $t, $r_q, $mu, $sigma) |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
DESCRIPTION |
66
|
|
|
|
|
|
|
Price of a Vanilla Call |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=cut |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub vanilla_call { |
71
|
2
|
|
|
2
|
1
|
1274
|
my ( $S, $K, $t, $r_q, $mu, $sigma ) = @_; |
72
|
|
|
|
|
|
|
|
73
|
2
|
|
|
|
|
11
|
my $d1 = |
74
|
|
|
|
|
|
|
( log( $S / $K ) + ( $mu + $sigma * $sigma / 2.0 ) * $t ) / |
75
|
|
|
|
|
|
|
( $sigma * sqrt($t) ); |
76
|
2
|
|
|
|
|
6
|
my $d2 = $d1 - ( $sigma * sqrt($t) ); |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
return |
79
|
2
|
|
|
|
|
23
|
exp( -$r_q * $t ) * |
80
|
|
|
|
|
|
|
( $S * exp( $mu * $t ) * pnorm($d1) - $K * pnorm($d2) ); |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=head2 vanilla_put |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
USAGE |
86
|
|
|
|
|
|
|
my $price = vanilla_put($S, $K, $t, $r_q, $mu, sigma) |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
DESCRIPTION |
89
|
|
|
|
|
|
|
Price a standard Vanilla Put |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
=cut |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
sub vanilla_put { |
94
|
2
|
|
|
2
|
1
|
1273
|
my ( $S, $K, $t, $r_q, $mu, $sigma ) = @_; |
95
|
|
|
|
|
|
|
|
96
|
2
|
|
|
|
|
12
|
my $d1 = |
97
|
|
|
|
|
|
|
( log( $S / $K ) + ( $mu + $sigma * $sigma / 2.0 ) * $t ) / |
98
|
|
|
|
|
|
|
( $sigma * sqrt($t) ); |
99
|
2
|
|
|
|
|
4
|
my $d2 = $d1 - ( $sigma * sqrt($t) ); |
100
|
|
|
|
|
|
|
|
101
|
2
|
|
|
|
|
27
|
return -1 * |
102
|
|
|
|
|
|
|
exp( -$r_q * $t ) * |
103
|
|
|
|
|
|
|
( $S * exp( $mu * $t ) * pnorm( -$d1 ) - $K * pnorm( -$d2 ) ); |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=head2 call |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
USAGE |
109
|
|
|
|
|
|
|
my $price = call($S, $K, $t, $r_q, $mu, $sigma) |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
PARAMS |
112
|
|
|
|
|
|
|
$S => stock price |
113
|
|
|
|
|
|
|
$K => barrier |
114
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
115
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
116
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
117
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
DESCRIPTION |
120
|
|
|
|
|
|
|
Price a Call and remove the N(d2) part if the time is too small |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
EXPLANATION |
123
|
|
|
|
|
|
|
The definition of the contract is that if S > K, it gives |
124
|
|
|
|
|
|
|
full payout (1). However the formula DC(T,K) = e^(-rT) N(d2) will not be |
125
|
|
|
|
|
|
|
correct when T->0 and K=S. The value of DC(T,K) for this case will be 0.5. |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
The formula is actually "correct" because when T->0 and S=K, the probability |
128
|
|
|
|
|
|
|
should just be 0.5 that the contract wins, moving up or down is equally |
129
|
|
|
|
|
|
|
likely in that very small amount of time left. Thus the only problem is |
130
|
|
|
|
|
|
|
that the math cannot evaluate at T=0, where divide by 0 error occurs. Thus, |
131
|
|
|
|
|
|
|
we need this check that throws away the N(d2) part (N(d2) will evaluate |
132
|
|
|
|
|
|
|
"wrongly" to 0.5 if S=K). |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
NOTE |
135
|
|
|
|
|
|
|
Note that we have call = - dCall/dStrike |
136
|
|
|
|
|
|
|
pair Foreign/Domestic |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
see [3] for $r_q and $mu for quantos |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=cut |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
sub call { |
143
|
13
|
|
|
13
|
1
|
11508
|
my ( $S, $K, $t, $r_q, $mu, $sigma ) = @_; |
144
|
|
|
|
|
|
|
|
145
|
13
|
100
|
|
|
|
51
|
if ( $t < $SMALLTIME ) { |
146
|
2
|
100
|
|
|
|
13
|
return ( $S > $K ) ? exp( -$r_q * $t ) : 0; |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
|
149
|
11
|
|
|
|
|
63
|
return exp( -$r_q * $t ) * pnorm( d2( $S, $K, $t, $r_q, $mu, $sigma ) ); |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
=head2 put |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
USAGE |
155
|
|
|
|
|
|
|
my $price = put($S, $K, $t, $r_q, $mu, $sigma) |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
PARAMS |
158
|
|
|
|
|
|
|
$S => stock price |
159
|
|
|
|
|
|
|
$K => barrier |
160
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
161
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
162
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
163
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
DESCRIPTION |
166
|
|
|
|
|
|
|
Price a standard Digital Put |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
=cut |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
sub put { |
171
|
13
|
|
|
13
|
1
|
4624
|
my ( $S, $K, $t, $r_q, $mu, $sigma ) = @_; |
172
|
|
|
|
|
|
|
|
173
|
13
|
100
|
|
|
|
44
|
if ( $t < $SMALLTIME ) { |
174
|
2
|
100
|
|
|
|
21
|
return ( $S < $K ) ? exp( -$r_q * $t ) : 0; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
return |
178
|
11
|
|
|
|
|
34
|
exp( -$r_q * $t ) * pnorm( -1 * d2( $S, $K, $t, $r_q, $mu, $sigma ) ); |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
=head2 d2 |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
returns the DS term common to many BlackScholes formulae. |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
=cut |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
sub d2 { |
188
|
22
|
|
|
22
|
1
|
30
|
my ( $S, $K, $t, $r_q, $mu, $sigma ) = @_; |
189
|
|
|
|
|
|
|
|
190
|
22
|
|
|
|
|
298
|
return ( log( $S / $K ) + ( $mu - $sigma * $sigma / 2.0 ) * $t ) / |
191
|
|
|
|
|
|
|
( $sigma * sqrt($t) ); |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
=head2 expirymiss |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
USAGE |
197
|
|
|
|
|
|
|
my $price = expirymiss($S, $U, $D, $t, $r_q, $mu, $sigma) |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
PARAMS |
200
|
|
|
|
|
|
|
$S => stock price |
201
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
202
|
|
|
|
|
|
|
$U => barrier |
203
|
|
|
|
|
|
|
$D => barrier |
204
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
205
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
206
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
DESCRIPTION |
209
|
|
|
|
|
|
|
Price an expiry miss contract (1 Call + 1 Put) |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
[3] for $r_q and $mu for quantos |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=cut |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
sub expirymiss { |
216
|
6
|
|
|
6
|
1
|
1278
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma ) = @_; |
217
|
|
|
|
|
|
|
|
218
|
6
|
|
|
|
|
14
|
my ($call_price) = call( $S, $U, $t, $r_q, $mu, $sigma ); |
219
|
6
|
|
|
|
|
15
|
my ($put_price) = put( $S, $D, $t, $r_q, $mu, $sigma ); |
220
|
|
|
|
|
|
|
|
221
|
6
|
|
|
|
|
21
|
return $call_price + $put_price; |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
=head2 expiryrange |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
USAGE |
227
|
|
|
|
|
|
|
my $price = expiryrange($S, $U, $D, $t, $r_q, $mu, $sigma) |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
PARAMS |
230
|
|
|
|
|
|
|
$S => stock price |
231
|
|
|
|
|
|
|
$U => barrier |
232
|
|
|
|
|
|
|
$D => barrier |
233
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
234
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
235
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
236
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
DESCRIPTION |
239
|
|
|
|
|
|
|
Price an Expiry Range contract as Foreign/Domestic. |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
[3] for $r_q and $mu for quantos |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=cut |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
sub expiryrange { |
246
|
3
|
|
|
3
|
1
|
1627
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma ) = @_; |
247
|
|
|
|
|
|
|
|
248
|
3
|
|
|
|
|
39
|
return exp( -$r_q * $t ) - expirymiss( $S, $U, $D, $t, $r_q, $mu, $sigma ); |
249
|
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=head2 onetouch |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
PARAMS |
254
|
|
|
|
|
|
|
$S => stock price |
255
|
|
|
|
|
|
|
$U => barrier |
256
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
257
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
258
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
259
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
[3] for $r_q and $mu for quantos |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
=cut |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
sub onetouch { |
266
|
36
|
|
|
36
|
1
|
2632
|
my ( $S, $U, $t, $r_q, $mu, $sigma, $w ) = @_; |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
# w = 0, rebate paid at hit (good way to remember is that waiting |
269
|
|
|
|
|
|
|
# time to get paid = 0) |
270
|
|
|
|
|
|
|
# w = 1, rebate paid at end. |
271
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
# When the contract already reached it expiry and not yet reach it |
273
|
|
|
|
|
|
|
# settlement time, it is consider an unexpired contract but will come to |
274
|
|
|
|
|
|
|
# here with t=0 and it will caused the formula to die hence set it to the |
275
|
|
|
|
|
|
|
# SMALLTIME which is 1 second |
276
|
36
|
|
|
|
|
74
|
$t = max( $SMALLTIME, $t ); |
277
|
|
|
|
|
|
|
|
278
|
36
|
|
100
|
|
|
133
|
$w ||= 0; |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# eta = -1, one touch up |
281
|
|
|
|
|
|
|
# eta = 1, one touch down |
282
|
36
|
100
|
|
|
|
60
|
my $eta = ( $S < $U ) ? -1 : 1; |
283
|
|
|
|
|
|
|
|
284
|
36
|
|
|
|
|
44
|
my $sqrt_t = sqrt($t); |
285
|
|
|
|
|
|
|
|
286
|
36
|
|
|
|
|
48
|
my $theta = ( ($mu) / $sigma ) + ( 0.5 * $sigma ); |
287
|
36
|
|
|
|
|
49
|
my $theta_ = ( ($mu) / $sigma ) - ( 0.5 * $sigma ); |
288
|
|
|
|
|
|
|
|
289
|
36
|
|
|
|
|
61
|
my $v_ = sqrt( ( $theta_ * $theta_ ) + ( 2 * ( 1 - $w ) * $r_q ) ); |
290
|
|
|
|
|
|
|
|
291
|
36
|
|
|
|
|
70
|
my $e = ( log( $S / $U ) - ( $sigma * $v_ * $t ) ) / ( $sigma * $sqrt_t ); |
292
|
36
|
|
|
|
|
56
|
my $e_ = ( -log( $S / $U ) - ( $sigma * $v_ * $t ) ) / ( $sigma * $sqrt_t ); |
293
|
|
|
|
|
|
|
|
294
|
36
|
|
|
|
|
289
|
my $price = |
295
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ + $v_ ) / $sigma ) ) * pnorm( -$eta * $e ) + |
296
|
|
|
|
|
|
|
( ( $U / $S )**( ( $theta_ - $v_ ) / $sigma ) ) * pnorm( $eta * $e_ ); |
297
|
|
|
|
|
|
|
|
298
|
36
|
|
|
|
|
97
|
return exp( -$w * $r_q * $t ) * $price; |
299
|
|
|
|
|
|
|
} |
300
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
=head2 notouch |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
USAGE |
304
|
|
|
|
|
|
|
my $price = notouch($S, $U, $t, $r_q, $mu, $sigma, $w) |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
PARAMS |
307
|
|
|
|
|
|
|
$S => stock price |
308
|
|
|
|
|
|
|
$U => barrier |
309
|
|
|
|
|
|
|
$t => time (1 = 1 year) |
310
|
|
|
|
|
|
|
$r_q => payout currency interest rate (0.05 = 5%) |
311
|
|
|
|
|
|
|
$mu => quanto drift adjustment (0.05 = 5%) |
312
|
|
|
|
|
|
|
$sigma => volatility (0.3 = 30%) |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
DESCRIPTION |
315
|
|
|
|
|
|
|
Price a No touch contract. |
316
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
Payoff with domestic currency |
318
|
|
|
|
|
|
|
Identity: |
319
|
|
|
|
|
|
|
price of notouch = exp(- r t) - price of onetouch(rebate paid at end) |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
[3] for $r_q and $mu for quantos |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
=cut |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
sub notouch { |
326
|
7
|
|
|
7
|
1
|
2031
|
my ( $S, $U, $t, $r_q, $mu, $sigma ) = @_; |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
# No touch contract always pay out at end |
329
|
7
|
|
|
|
|
11
|
my $w = 1; |
330
|
|
|
|
|
|
|
|
331
|
7
|
|
|
|
|
27
|
return exp( -$r_q * $t ) - onetouch( $S, $U, $t, $r_q, $mu, $sigma, $w ); |
332
|
|
|
|
|
|
|
} |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
# These variables require 'our' only because they need to be |
335
|
|
|
|
|
|
|
# accessed by a test script. |
336
|
|
|
|
|
|
|
our $MAX_ITERATIONS_UPORDOWN_PELSSER_1997 = 1000; |
337
|
|
|
|
|
|
|
our $MIN_ITERATIONS_UPORDOWN_PELSSER_1997 = 16; |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
# |
340
|
|
|
|
|
|
|
# This variable requires 'our' only because it needs to be |
341
|
|
|
|
|
|
|
# accessed via test script. |
342
|
|
|
|
|
|
|
# Min accuracy. Accurate to 1 dollar for 100,000 notional |
343
|
|
|
|
|
|
|
# |
344
|
|
|
|
|
|
|
our $MIN_ACCURACY_UPORDOWN_PELSSER_1997 = 1.0 / 100000.0; |
345
|
|
|
|
|
|
|
our $SMALL_VALUE_MU = 1e-10; |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
# The smallest (in magnitude) floating-point number which, |
348
|
|
|
|
|
|
|
# when added to the floating-point number 1.0, produces a |
349
|
|
|
|
|
|
|
# floating-point result different from 1.0 is termed the |
350
|
|
|
|
|
|
|
# machine accuracy, e. |
351
|
|
|
|
|
|
|
# |
352
|
|
|
|
|
|
|
# This value is very important for knowing stability to |
353
|
|
|
|
|
|
|
# certain formulas used. e.g. Pelsser formula for UPORDOWN |
354
|
|
|
|
|
|
|
# and RANGE contracts. |
355
|
|
|
|
|
|
|
# |
356
|
|
|
|
|
|
|
my $MACHINE_EPSILON = machine_epsilon(); |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
=head2 upordown |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
USAGE |
361
|
|
|
|
|
|
|
my $price = upordown(($S, $U, $D, $t, $r_q, $mu, $sigma, $w)) |
362
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
PARAMS |
364
|
|
|
|
|
|
|
$S stock price |
365
|
|
|
|
|
|
|
$U barrier |
366
|
|
|
|
|
|
|
$D barrier |
367
|
|
|
|
|
|
|
$t time (1 = 1 year) |
368
|
|
|
|
|
|
|
$r_q payout currency interest rate (0.05 = 5%) |
369
|
|
|
|
|
|
|
$mu quanto drift adjustment (0.05 = 5%) |
370
|
|
|
|
|
|
|
$sigma volatility (0.3 = 30%) |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
see [3] for $r_q and $mu for quantos |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
DESCRIPTION |
375
|
|
|
|
|
|
|
Price an Up or Down contract |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
=cut |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
sub upordown { |
380
|
15
|
|
|
15
|
1
|
4858
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ) = @_; |
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
# When the contract already reached it's expiry and not yet reach it |
383
|
|
|
|
|
|
|
# settlement time, it is considered an unexpired contract but will come to |
384
|
|
|
|
|
|
|
# here with t=0 and it will caused the formula to die hence set it to the |
385
|
|
|
|
|
|
|
# SMALLTIME whiich is 1 second |
386
|
15
|
|
|
|
|
40
|
$t = max( $t, $SMALLTIME ); |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
# $w = 0, paid at hit |
389
|
|
|
|
|
|
|
# $w = 1, paid at end |
390
|
15
|
100
|
|
|
|
39
|
if ( not defined $w ) { $w = 0; } |
|
8
|
|
|
|
|
11
|
|
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
# spot is outside [$D, $U] --> contract is expired with full payout, |
393
|
|
|
|
|
|
|
# one barrier is already hit (can happen due to shift markup): |
394
|
15
|
100
|
100
|
|
|
75
|
if ( $S >= $U or $S <= $D ) { |
395
|
4
|
100
|
|
|
|
14
|
return $w ? exp( -$t * $r_q ) : 1; |
396
|
|
|
|
|
|
|
} |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
# |
399
|
|
|
|
|
|
|
# SANITY CHECKS |
400
|
|
|
|
|
|
|
# |
401
|
|
|
|
|
|
|
# For extreme cases, the price will be wrong due the values in the |
402
|
|
|
|
|
|
|
# infinite series getting too large or too small, which causes |
403
|
|
|
|
|
|
|
# roundoff errors in the computer. Thus no matter how many iterations |
404
|
|
|
|
|
|
|
# you make, the errors will never go away. |
405
|
|
|
|
|
|
|
# |
406
|
|
|
|
|
|
|
# For example try this: |
407
|
|
|
|
|
|
|
# |
408
|
|
|
|
|
|
|
# my ($S, $U, $D, $t, $r, $q, $vol, $w) |
409
|
|
|
|
|
|
|
# = (100.00, 118.97, 99.00, 30/365, 0.1, 0.02, 0.01, 1); |
410
|
|
|
|
|
|
|
# $up_price = Math::Business::BlackScholes::Binaries::ot_up_ko_down_pelsser_1997( |
411
|
|
|
|
|
|
|
# $S,$U,$D,$t,$r,$q,$vol,$w); |
412
|
|
|
|
|
|
|
# $down_price= Math::Business::BlackScholes::Binaries::ot_down_ko_up_pelsser_1997( |
413
|
|
|
|
|
|
|
# $S,$U,$D,$t,$r,$q,$vol,$w); |
414
|
|
|
|
|
|
|
# |
415
|
|
|
|
|
|
|
# Thus we put a sanity checks here such that |
416
|
|
|
|
|
|
|
# |
417
|
|
|
|
|
|
|
# CONDITION 1: UPORDOWN[U,D] < ONETOUCH[U] + ONETOUCH[D] |
418
|
|
|
|
|
|
|
# CONDITION 2: UPORDOWN[U,D] > ONETOUCH[U] |
419
|
|
|
|
|
|
|
# CONDITION 3: UPORDOWN[U,D] > ONETOUCH[D] |
420
|
|
|
|
|
|
|
# CONDITION 4: ONETOUCH[U] + ONETOUCH[D] >= $MIN_ACCURACY_UPORDOWN_PELSSER_1997 |
421
|
|
|
|
|
|
|
# |
422
|
11
|
|
|
|
|
26
|
my $onetouch_up_prob = onetouch( $S, $U, $t, $r_q, $mu, $sigma, $w ); |
423
|
11
|
|
|
|
|
26
|
my $onetouch_down_prob = onetouch( $S, $D, $t, $r_q, $mu, $sigma, $w ); |
424
|
|
|
|
|
|
|
|
425
|
11
|
|
|
|
|
13
|
my $upordown_prob; |
426
|
|
|
|
|
|
|
|
427
|
11
|
100
|
75
|
|
|
66
|
if ( $onetouch_up_prob + $onetouch_down_prob < |
|
|
100
|
|
|
|
|
|
428
|
|
|
|
|
|
|
$MIN_ACCURACY_UPORDOWN_PELSSER_1997 ) |
429
|
|
|
|
|
|
|
{ |
430
|
|
|
|
|
|
|
|
431
|
|
|
|
|
|
|
# CONDITION 4: |
432
|
|
|
|
|
|
|
# The probability is too small for the Pelsser formula to be correct. |
433
|
|
|
|
|
|
|
# Do this check first to avoid PELSSER stability condition to be |
434
|
|
|
|
|
|
|
# triggered. |
435
|
|
|
|
|
|
|
# Here we assume that the ONETOUCH formula is perfect and never give |
436
|
|
|
|
|
|
|
# wrong values (e.g. negative). |
437
|
1
|
|
|
|
|
4
|
return 0; |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
elsif ( $onetouch_up_prob xor $onetouch_down_prob ) { |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
# One of our ONETOUCH probabilities is 0. |
442
|
|
|
|
|
|
|
# That means our upordown prob is equivalent to the other one. |
443
|
|
|
|
|
|
|
# Pelsser recompute will either be the same or wrong. |
444
|
|
|
|
|
|
|
# Continuing to assume the ONETOUCH is perfect. |
445
|
4
|
|
|
|
|
43
|
$upordown_prob = max( $onetouch_up_prob, $onetouch_down_prob ); |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
else { |
448
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
# THIS IS THE ONLY PLACE IT SHOULD BE! |
450
|
6
|
|
|
|
|
15
|
$upordown_prob = |
451
|
|
|
|
|
|
|
ot_up_ko_down_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ) + |
452
|
|
|
|
|
|
|
ot_down_ko_up_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ); |
453
|
|
|
|
|
|
|
} |
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
# CONDITION 4: |
456
|
|
|
|
|
|
|
# Now check on the other end, when the contract is too close to payout. |
457
|
|
|
|
|
|
|
# Not really needed to check for payout at hit, because RANGE is |
458
|
|
|
|
|
|
|
# always at end, and thus the value (DISCOUNT - UPORDOWN) is not |
459
|
|
|
|
|
|
|
# evaluated. |
460
|
10
|
100
|
|
|
|
26
|
if ( $w == 1 ) { |
461
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
# Since the difference is already less than the min accuracy, |
463
|
|
|
|
|
|
|
# the value [payout - upordown], which is the RANGE formula |
464
|
|
|
|
|
|
|
# can become negative. |
465
|
5
|
50
|
|
|
|
22
|
if ( |
466
|
|
|
|
|
|
|
abs( exp( -$r_q * $t ) - $upordown_prob ) < |
467
|
|
|
|
|
|
|
$MIN_ACCURACY_UPORDOWN_PELSSER_1997 ) |
468
|
|
|
|
|
|
|
{ |
469
|
0
|
|
|
|
|
0
|
$upordown_prob = exp( -$r_q * $t ); |
470
|
|
|
|
|
|
|
} |
471
|
|
|
|
|
|
|
} |
472
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
# CONDITION 1-3 |
474
|
|
|
|
|
|
|
# We use hardcoded small value of $SMALL_TOLERANCE, because if we were to increase |
475
|
|
|
|
|
|
|
# the minimum accuracy, and this small value uses that min accuracy, it is |
476
|
|
|
|
|
|
|
# very hard for the conditions to pass. |
477
|
10
|
|
|
|
|
9
|
my $SMALL_TOLERANCE = 0.00001; |
478
|
10
|
50
|
33
|
|
|
56
|
if ( |
|
|
|
33
|
|
|
|
|
479
|
|
|
|
|
|
|
not( $upordown_prob < |
480
|
|
|
|
|
|
|
$onetouch_up_prob + $onetouch_down_prob + $SMALL_TOLERANCE ) |
481
|
|
|
|
|
|
|
or not( $upordown_prob + $SMALL_TOLERANCE > $onetouch_up_prob ) |
482
|
|
|
|
|
|
|
or not( $upordown_prob + $SMALL_TOLERANCE > $onetouch_down_prob ) |
483
|
|
|
|
|
|
|
) |
484
|
|
|
|
|
|
|
{ |
485
|
0
|
|
|
|
|
0
|
die "UPORDOWN price sanity checks failed for S=$S, U=$U, " |
486
|
|
|
|
|
|
|
. "D=$D, t=$t, r_q=$r_q, mu=$mu, sigma=$sigma, w=$w. " |
487
|
|
|
|
|
|
|
. "UPORDOWN PROB=$upordown_prob , " |
488
|
|
|
|
|
|
|
. "ONETOUCH_UP PROB=$onetouch_up_prob , " |
489
|
|
|
|
|
|
|
. "ONETOUCH_DOWN PROB=$onetouch_down_prob"; |
490
|
|
|
|
|
|
|
} |
491
|
|
|
|
|
|
|
|
492
|
10
|
|
|
|
|
24
|
return $upordown_prob; |
493
|
|
|
|
|
|
|
} |
494
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
=head2 common_function_pelsser_1997 |
496
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
USAGE |
498
|
|
|
|
|
|
|
my $c = common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w, $eta) |
499
|
|
|
|
|
|
|
|
500
|
|
|
|
|
|
|
DESCRIPTION |
501
|
|
|
|
|
|
|
Return the common function from Pelsser's Paper (1997) |
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
=cut |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
sub common_function_pelsser_1997 { |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
# h: normalized high barrier, log(U/L) |
508
|
|
|
|
|
|
|
# x: normalized spot, log(S/L) |
509
|
14
|
|
|
14
|
1
|
2462
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, $eta ) = @_; |
510
|
|
|
|
|
|
|
|
511
|
14
|
|
|
|
|
18
|
my $pi = Math::Trig::pi; |
512
|
|
|
|
|
|
|
|
513
|
14
|
|
|
|
|
28
|
my $h = log( $U / $D ); |
514
|
14
|
|
|
|
|
16
|
my $x = log( $S / $D ); |
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
517
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
518
|
|
|
|
|
|
|
# This variable used to check stability |
519
|
14
|
100
|
|
|
|
29
|
if ( not defined $eta ) { |
520
|
1
|
|
|
|
|
22
|
die "Wrong usage of this function for S=$S, U=$U, D=$D, " |
521
|
|
|
|
|
|
|
. "t=$t, r_q=$r_q, mu=$mu, sigma=$sigma, w=$w, eta not defined."; |
522
|
|
|
|
|
|
|
} |
523
|
13
|
100
|
|
|
|
24
|
if ( $eta == 0 ) { $x = $h - $x; } |
|
7
|
|
|
|
|
10
|
|
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
# $w = 0, paid at hit |
526
|
|
|
|
|
|
|
# $w = 1, paid at end |
527
|
|
|
|
|
|
|
|
528
|
13
|
|
|
|
|
17
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
529
|
13
|
|
|
|
|
28
|
my $mu_dash = sqrt( |
530
|
|
|
|
|
|
|
( $mu_new * $mu_new ) + ( 2 * $sigma * $sigma * $r_q * ( 1 - $w ) ) ); |
531
|
|
|
|
|
|
|
|
532
|
13
|
|
|
|
|
12
|
my $series_part = 0; |
533
|
13
|
|
|
|
|
9
|
my $hyp_part = 0; |
534
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
# These constants will determine whether or not this contract can be |
536
|
|
|
|
|
|
|
# evaluated to a predefined accuracy. It is VERY IMPORTANT because |
537
|
|
|
|
|
|
|
# if these conditions are not met, the prices can be complete nonsense!! |
538
|
13
|
|
|
|
|
25
|
my $stability_constant = |
539
|
|
|
|
|
|
|
get_stability_constant_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, |
540
|
|
|
|
|
|
|
$w, $eta, 1 ); |
541
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
# The number of iterations is important when recommending the |
543
|
|
|
|
|
|
|
# range of the upper/lower barriers on our site. If we recommend |
544
|
|
|
|
|
|
|
# a range that is too big and our iteration is too small, the |
545
|
|
|
|
|
|
|
# price will be wrong! We must know the rate of convergence of |
546
|
|
|
|
|
|
|
# the formula used. |
547
|
13
|
|
|
|
|
23
|
my $iterations_required = |
548
|
|
|
|
|
|
|
get_min_iterations_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ); |
549
|
|
|
|
|
|
|
|
550
|
13
|
|
|
|
|
29
|
for ( my $k = 1 ; $k < $iterations_required ; $k++ ) { |
551
|
195
|
|
|
|
|
233
|
my $lambda_k_dash = ( |
552
|
|
|
|
|
|
|
0.5 * ( |
553
|
|
|
|
|
|
|
( $mu_dash * $mu_dash ) / ( $sigma * $sigma ) + |
554
|
|
|
|
|
|
|
( $k * $k * $pi * $pi * $sigma * $sigma ) / ( $h * $h ) |
555
|
|
|
|
|
|
|
) |
556
|
|
|
|
|
|
|
); |
557
|
|
|
|
|
|
|
|
558
|
195
|
|
|
|
|
231
|
my $phi = |
559
|
|
|
|
|
|
|
( $sigma * $sigma ) / |
560
|
|
|
|
|
|
|
( $h * $h ) * |
561
|
|
|
|
|
|
|
exp( -$lambda_k_dash * $t ) * |
562
|
|
|
|
|
|
|
$k / |
563
|
|
|
|
|
|
|
$lambda_k_dash; |
564
|
|
|
|
|
|
|
|
565
|
195
|
|
|
|
|
255
|
$series_part += $phi * $pi * sin( $k * $pi * ( $h - $x ) / $h ); |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
# |
568
|
|
|
|
|
|
|
# Note that greeks may also call this function, and their |
569
|
|
|
|
|
|
|
# stability constant will differ. However, for simplicity |
570
|
|
|
|
|
|
|
# we will not bother (else the code will get messy), and |
571
|
|
|
|
|
|
|
# just use the price stability constant. |
572
|
|
|
|
|
|
|
# |
573
|
195
|
50
|
66
|
|
|
485
|
if ( $k == 1 and ( not( abs($phi) < $stability_constant ) ) ) { |
574
|
0
|
|
|
|
|
0
|
die |
575
|
|
|
|
|
|
|
"PELSSER VALUATION formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, " |
576
|
|
|
|
|
|
|
. "mu=$mu, vol=$sigma, w=$w, eta=$eta, cannot be evaluated because" |
577
|
|
|
|
|
|
|
. "PELSSER VALUATION stability conditions ($phi less than " |
578
|
|
|
|
|
|
|
. "$stability_constant) not met. This could be due to barriers " |
579
|
|
|
|
|
|
|
. "too big, volatilities too low, interest/dividend rates too high, " |
580
|
|
|
|
|
|
|
. "or machine accuracy too low. Machine accuracy is " |
581
|
|
|
|
|
|
|
. $MACHINE_EPSILON . "."; |
582
|
|
|
|
|
|
|
} |
583
|
|
|
|
|
|
|
} |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
# |
586
|
|
|
|
|
|
|
# Some math basics: When A -> 0, |
587
|
|
|
|
|
|
|
# |
588
|
|
|
|
|
|
|
# sinh(A) -> 0.5 * [ (1 + A) - (1 - A) ] = 0.5 * 2A = A |
589
|
|
|
|
|
|
|
# cosh(A) -> 0.5 * [ (1 + A) + (1 - A) ] = 0.5 * 2 = 1 |
590
|
|
|
|
|
|
|
# |
591
|
|
|
|
|
|
|
# Thus for sinh(A)/sinh(B) when A & B -> 0, we have |
592
|
|
|
|
|
|
|
# |
593
|
|
|
|
|
|
|
# sinh(A) / sinh(B) -> A / B |
594
|
|
|
|
|
|
|
# |
595
|
|
|
|
|
|
|
# Since the check of the spot == lower/upper barrier has been done in the |
596
|
|
|
|
|
|
|
# _upordown subroutine, we can assume that $x and $h will never be 0. |
597
|
|
|
|
|
|
|
# So we only need to check that $mu_dash is too small. Also note that |
598
|
|
|
|
|
|
|
# $mu_dash is always positive. |
599
|
|
|
|
|
|
|
# |
600
|
|
|
|
|
|
|
# For example, even at 0.0001 the error becomes small enough |
601
|
|
|
|
|
|
|
# |
602
|
|
|
|
|
|
|
# 0.0001 - Math::Trig::sinh(0.0001) = -1.66688941837835e-13 |
603
|
|
|
|
|
|
|
# |
604
|
|
|
|
|
|
|
# Since h > x, we only check for (mu_dash * h) / (vol * vol) |
605
|
|
|
|
|
|
|
# |
606
|
13
|
100
|
|
|
|
26
|
if ( abs( $mu_dash * $h / ( $sigma * $sigma ) ) < $SMALL_VALUE_MU ) { |
607
|
1
|
|
|
|
|
1
|
$hyp_part = $x / $h; |
608
|
|
|
|
|
|
|
} |
609
|
|
|
|
|
|
|
else { |
610
|
12
|
|
|
|
|
29
|
$hyp_part = |
611
|
|
|
|
|
|
|
Math::Trig::sinh( $mu_dash * $x / ( $sigma * $sigma ) ) / |
612
|
|
|
|
|
|
|
Math::Trig::sinh( $mu_dash * $h / ( $sigma * $sigma ) ); |
613
|
|
|
|
|
|
|
} |
614
|
|
|
|
|
|
|
|
615
|
13
|
|
|
|
|
160
|
return ( $hyp_part - $series_part ) * exp( -$r_q * $t * $w ); |
616
|
|
|
|
|
|
|
} |
617
|
|
|
|
|
|
|
|
618
|
|
|
|
|
|
|
=head2 get_stability_constant_pelsser_1997 |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
USAGE |
621
|
|
|
|
|
|
|
my $constant = get_stability_constant_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w, $eta, $p) |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
DESCRIPTION |
624
|
|
|
|
|
|
|
Get the stability constant (Pelsser 1997) |
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
=cut |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
sub get_stability_constant_pelsser_1997 { |
629
|
15
|
|
|
15
|
1
|
2804
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, $eta, $p ) = @_; |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
632
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
633
|
|
|
|
|
|
|
|
634
|
15
|
100
|
|
|
|
31
|
if ( not defined $eta ) { |
635
|
1
|
|
|
|
|
24
|
die "Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, " |
636
|
|
|
|
|
|
|
. "r_q=$r_q, mu=$mu, sigma=$sigma, w=$w, Eta not defined."; |
637
|
|
|
|
|
|
|
} |
638
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
# p is the power of pi |
640
|
|
|
|
|
|
|
# p=1 for price/theta/vega/vanna/volga |
641
|
|
|
|
|
|
|
# p=2 for delta |
642
|
|
|
|
|
|
|
# p=3 for gamma |
643
|
14
|
50
|
66
|
|
|
42
|
if ( $p != 1 and $p != 2 and $p != 3 ) { |
|
|
|
66
|
|
|
|
|
644
|
1
|
|
|
|
|
20
|
die "Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, " |
645
|
|
|
|
|
|
|
. "r_q=$r_q, mu=$mu, sigma=$sigma, w=$w, Power of PI must " |
646
|
|
|
|
|
|
|
. "be 1, 2 or 3. Given $p."; |
647
|
|
|
|
|
|
|
} |
648
|
|
|
|
|
|
|
|
649
|
13
|
|
|
|
|
18
|
my $h = log( $U / $D ); |
650
|
13
|
|
|
|
|
13
|
my $x = log( $S / $D ); |
651
|
13
|
|
|
|
|
17
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
652
|
13
|
|
|
|
|
28
|
my $mu_dash = sqrt( |
653
|
|
|
|
|
|
|
( $mu_new * $mu_new ) + ( 2 * $sigma * $sigma * $r_q * ( 1 - $w ) ) ); |
654
|
|
|
|
|
|
|
|
655
|
13
|
|
|
|
|
29
|
my $numerator = $MIN_ACCURACY_UPORDOWN_PELSSER_1997 * |
656
|
|
|
|
|
|
|
exp( 1.0 - $mu_new * ( ( $eta * $h ) - $x ) / ( $sigma * $sigma ) ); |
657
|
13
|
|
|
|
|
42
|
my $denominator = |
658
|
|
|
|
|
|
|
( exp(1) * ( Math::Trig::pi + $p ) ) + |
659
|
|
|
|
|
|
|
( max( $mu_new * ( ( $eta * $h ) - $x ), 0.0 ) * |
660
|
|
|
|
|
|
|
Math::Trig::pi / |
661
|
|
|
|
|
|
|
( $sigma**2 ) ); |
662
|
13
|
|
|
|
|
23
|
$denominator *= ( Math::Trig::pi**( $p - 1 ) ) * $MACHINE_EPSILON; |
663
|
|
|
|
|
|
|
|
664
|
13
|
|
|
|
|
17
|
my $stability_condition = $numerator / $denominator; |
665
|
|
|
|
|
|
|
|
666
|
13
|
|
|
|
|
20
|
return $stability_condition; |
667
|
|
|
|
|
|
|
} |
668
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
=head2 ot_up_ko_down_pelsser_1997 |
670
|
|
|
|
|
|
|
|
671
|
|
|
|
|
|
|
USAGE |
672
|
|
|
|
|
|
|
my $price = ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w) |
673
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
DESCRIPTION |
675
|
|
|
|
|
|
|
This is V_{RAHU} in paper [5], or ONETOUCH-UP-KNOCKOUT-DOWN, |
676
|
|
|
|
|
|
|
a contract that wins if it touches upper barrier, but expires |
677
|
|
|
|
|
|
|
worthless if it touches the lower barrier first. |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
=cut |
680
|
|
|
|
|
|
|
|
681
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
682
|
6
|
|
|
6
|
1
|
9
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ) = @_; |
683
|
|
|
|
|
|
|
|
684
|
6
|
|
|
|
|
9
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
685
|
6
|
|
|
|
|
10
|
my $h = log( $U / $D ); |
686
|
6
|
|
|
|
|
7
|
my $x = log( $S / $D ); |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
return |
689
|
6
|
|
|
|
|
19
|
exp( $mu_new * ( $h - $x ) / ( $sigma * $sigma ) ) * |
690
|
|
|
|
|
|
|
common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, 1 ); |
691
|
|
|
|
|
|
|
} |
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
=head2 ot_down_ko_up_pelsser_1997 |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
USAGE |
696
|
|
|
|
|
|
|
my $price = ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w) |
697
|
|
|
|
|
|
|
|
698
|
|
|
|
|
|
|
DESCRIPTION |
699
|
|
|
|
|
|
|
This is V_{RAHL} in paper [5], or ONETOUCH-DOWN-KNOCKOUT-UP, |
700
|
|
|
|
|
|
|
a contract that wins if it touches lower barrier, but expires |
701
|
|
|
|
|
|
|
worthless if it touches the upper barrier first. |
702
|
|
|
|
|
|
|
|
703
|
|
|
|
|
|
|
=cut |
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
706
|
6
|
|
|
6
|
1
|
8
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ) = @_; |
707
|
|
|
|
|
|
|
|
708
|
6
|
|
|
|
|
9
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
709
|
6
|
|
|
|
|
8
|
my $h = log( $U / $D ); |
710
|
6
|
|
|
|
|
6
|
my $x = log( $S / $D ); |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
return |
713
|
6
|
|
|
|
|
16
|
exp( -$mu_new * $x / ( $sigma * $sigma ) ) * |
714
|
|
|
|
|
|
|
common_function_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, 0 ); |
715
|
|
|
|
|
|
|
} |
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
=head2 get_min_iterations_pelsser_1997 |
718
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
USAGE |
720
|
|
|
|
|
|
|
my $min = get_min_iterations_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w, $accuracy) |
721
|
|
|
|
|
|
|
|
722
|
|
|
|
|
|
|
DESCRIPTION |
723
|
|
|
|
|
|
|
An estimate of the number of iterations required to achieve a certain |
724
|
|
|
|
|
|
|
level of accuracy in the price. |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
=cut |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
sub get_min_iterations_pelsser_1997 { |
729
|
16
|
|
|
16
|
1
|
3142
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, $accuracy ) = @_; |
730
|
|
|
|
|
|
|
|
731
|
16
|
100
|
|
|
|
36
|
if ( not defined $accuracy ) { |
732
|
14
|
|
|
|
|
18
|
$accuracy = $MIN_ACCURACY_UPORDOWN_PELSSER_1997; |
733
|
|
|
|
|
|
|
} |
734
|
|
|
|
|
|
|
|
735
|
16
|
100
|
|
|
|
50
|
if ( $accuracy > $MIN_ACCURACY_UPORDOWN_PELSSER_1997 ) { |
|
|
100
|
|
|
|
|
|
736
|
1
|
|
|
|
|
4
|
$accuracy = $MIN_ACCURACY_UPORDOWN_PELSSER_1997; |
737
|
|
|
|
|
|
|
} |
738
|
|
|
|
|
|
|
elsif ( $accuracy <= 0 ) { |
739
|
1
|
|
|
|
|
2
|
$accuracy = $MIN_ACCURACY_UPORDOWN_PELSSER_1997; |
740
|
|
|
|
|
|
|
} |
741
|
|
|
|
|
|
|
|
742
|
16
|
|
|
|
|
26
|
my $h = log( $U / $D ); |
743
|
16
|
|
|
|
|
22
|
my $x = log( $S / $D ); |
744
|
|
|
|
|
|
|
|
745
|
16
|
|
|
|
|
28
|
my $it_up = |
746
|
|
|
|
|
|
|
_get_min_iterations_ot_up_ko_down_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, |
747
|
|
|
|
|
|
|
$sigma, $w, $accuracy ); |
748
|
16
|
|
|
|
|
30
|
my $it_down = |
749
|
|
|
|
|
|
|
_get_min_iterations_ot_down_ko_up_pelsser_1997( $S, $U, $D, $t, $r_q, $mu, |
750
|
|
|
|
|
|
|
$sigma, $w, $accuracy ); |
751
|
|
|
|
|
|
|
|
752
|
16
|
|
|
|
|
26
|
my $min = max( $it_up, $it_down ); |
753
|
|
|
|
|
|
|
|
754
|
16
|
|
|
|
|
36
|
return $min; |
755
|
|
|
|
|
|
|
} |
756
|
|
|
|
|
|
|
|
757
|
|
|
|
|
|
|
=head2 _get_min_iterations_ot_up_ko_down_pelsser_1997 |
758
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
USAGE |
760
|
|
|
|
|
|
|
my $k_min = _get_min_iterations_ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $sigma, $w, $accuracy) |
761
|
|
|
|
|
|
|
|
762
|
|
|
|
|
|
|
DESCRIPTION |
763
|
|
|
|
|
|
|
An estimate of the number of iterations required to achieve a certain |
764
|
|
|
|
|
|
|
level of accuracy in the price for ONETOUCH-UP-KNOCKOUT-DOWN. |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
=cut |
767
|
|
|
|
|
|
|
|
768
|
|
|
|
|
|
|
sub _get_min_iterations_ot_up_ko_down_pelsser_1997 { |
769
|
35
|
|
|
35
|
|
1175
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, $accuracy ) = @_; |
770
|
|
|
|
|
|
|
|
771
|
35
|
100
|
|
|
|
61
|
if (!defined $accuracy) { |
772
|
1
|
|
|
|
|
10
|
die "accuracy required"; |
773
|
|
|
|
|
|
|
} |
774
|
|
|
|
|
|
|
|
775
|
34
|
|
|
|
|
28
|
my $pi = Math::Trig::pi; |
776
|
|
|
|
|
|
|
|
777
|
34
|
|
|
|
|
36
|
my $h = log( $U / $D ); |
778
|
34
|
|
|
|
|
33
|
my $x = log( $S / $D ); |
779
|
34
|
|
|
|
|
41
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
780
|
34
|
|
|
|
|
60
|
my $mu_dash = sqrt( |
781
|
|
|
|
|
|
|
( $mu_new * $mu_new ) + ( 2 * $sigma * $sigma * $r_q * ( 1 - $w ) ) ); |
782
|
|
|
|
|
|
|
|
783
|
34
|
|
|
|
|
31
|
my $A = ( $mu_dash * $mu_dash ) / ( 2 * $sigma * $sigma ); |
784
|
34
|
|
|
|
|
37
|
my $B = ( $pi * $pi * $sigma * $sigma ) / ( 2 * $h * $h ); |
785
|
|
|
|
|
|
|
|
786
|
34
|
|
|
|
|
29
|
my $delta_dash = $accuracy; |
787
|
34
|
|
|
|
|
68
|
my $delta = |
788
|
|
|
|
|
|
|
$delta_dash * |
789
|
|
|
|
|
|
|
exp( -$mu_new * ( $h - $x ) / ( $sigma * $sigma ) ) * |
790
|
|
|
|
|
|
|
( ( $h * $h ) / ( $pi * $sigma * $sigma ) ); |
791
|
|
|
|
|
|
|
|
792
|
|
|
|
|
|
|
# This can happen when stability condition fails |
793
|
34
|
100
|
|
|
|
67
|
if ( $delta * $B <= 0 ) { |
794
|
1
|
|
|
|
|
28
|
die "(_get_min_iterations_ot_up_ko_down_pelsser_1997) Cannot " |
795
|
|
|
|
|
|
|
. "evaluate minimum iterations because too many iterations " |
796
|
|
|
|
|
|
|
. "required!! delta=$delta, B=$B for input parameters S=$S, " |
797
|
|
|
|
|
|
|
. "U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, sigma=$sigma, w=$w, " |
798
|
|
|
|
|
|
|
. "accuracy=$accuracy"; |
799
|
0
|
|
|
|
|
0
|
return $MAX_ITERATIONS_UPORDOWN_PELSSER_1997; |
800
|
|
|
|
|
|
|
} |
801
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
# Check that condition is satisfied |
803
|
33
|
|
|
|
|
64
|
my $condition = max( exp( -$A * $t ) / ( $B * $delta ), 1 ); |
804
|
|
|
|
|
|
|
|
805
|
33
|
|
|
|
|
49
|
my $k_min = log($condition) / ( $B * $t ); |
806
|
33
|
|
|
|
|
22
|
$k_min = sqrt($k_min); |
807
|
|
|
|
|
|
|
|
808
|
33
|
100
|
|
|
|
51
|
if ( $k_min < $MIN_ITERATIONS_UPORDOWN_PELSSER_1997 ) { |
|
|
50
|
|
|
|
|
|
809
|
|
|
|
|
|
|
|
810
|
32
|
|
|
|
|
65
|
return $MIN_ITERATIONS_UPORDOWN_PELSSER_1997; |
811
|
|
|
|
|
|
|
} |
812
|
|
|
|
|
|
|
elsif ( $k_min > $MAX_ITERATIONS_UPORDOWN_PELSSER_1997 ) { |
813
|
|
|
|
|
|
|
|
814
|
1
|
|
|
|
|
2
|
return $MAX_ITERATIONS_UPORDOWN_PELSSER_1997; |
815
|
|
|
|
|
|
|
} |
816
|
|
|
|
|
|
|
|
817
|
0
|
|
|
|
|
0
|
return int($k_min); |
818
|
|
|
|
|
|
|
} |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
=head2 _get_min_iterations_ot_down_ko_up_pelsser_1997 |
821
|
|
|
|
|
|
|
|
822
|
|
|
|
|
|
|
USAGE |
823
|
|
|
|
|
|
|
|
824
|
|
|
|
|
|
|
DESCRIPTION |
825
|
|
|
|
|
|
|
An estimate of the number of iterations required to achieve a certain |
826
|
|
|
|
|
|
|
level of accuracy in the price for ONETOUCH-UP-KNOCKOUT-UP. |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
=cut |
829
|
|
|
|
|
|
|
|
830
|
|
|
|
|
|
|
sub _get_min_iterations_ot_down_ko_up_pelsser_1997 { |
831
|
16
|
|
|
16
|
|
34
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w, $accuracy ) = @_; |
832
|
|
|
|
|
|
|
|
833
|
16
|
|
|
|
|
22
|
my $h = log( $U / $D ); |
834
|
16
|
|
|
|
|
16
|
my $x = log( $S / $D ); |
835
|
16
|
|
|
|
|
21
|
my $mu_new = $mu - ( 0.5 * $sigma * $sigma ); |
836
|
|
|
|
|
|
|
|
837
|
16
|
|
|
|
|
25
|
$accuracy = $accuracy * exp( $mu_new * $h / ( $sigma * $sigma ) ); |
838
|
|
|
|
|
|
|
|
839
|
16
|
|
|
|
|
25
|
return _get_min_iterations_ot_up_ko_down_pelsser_1997( $S, $U, $D, $t, $r_q, |
840
|
|
|
|
|
|
|
$mu, $sigma, $w, $accuracy ); |
841
|
|
|
|
|
|
|
} |
842
|
|
|
|
|
|
|
|
843
|
|
|
|
|
|
|
=head2 range |
844
|
|
|
|
|
|
|
|
845
|
|
|
|
|
|
|
USAGE |
846
|
|
|
|
|
|
|
my $price = range($S, $U, $D, $t, $r_q, $mu, $sigma, $w) |
847
|
|
|
|
|
|
|
|
848
|
|
|
|
|
|
|
PARAMS |
849
|
|
|
|
|
|
|
$S stock price |
850
|
|
|
|
|
|
|
$t time (1 = 1 year) |
851
|
|
|
|
|
|
|
$U barrier |
852
|
|
|
|
|
|
|
$D barrier |
853
|
|
|
|
|
|
|
$r_q payout currency interest rate (0.05 = 5%) |
854
|
|
|
|
|
|
|
$mu quanto drift adjustment (0.05 = 5%) |
855
|
|
|
|
|
|
|
$sigma volatility (0.3 = 30%) |
856
|
|
|
|
|
|
|
|
857
|
|
|
|
|
|
|
see [3] for $r_q and $mu for quantos |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
DESCRIPTION |
860
|
|
|
|
|
|
|
Price a range contract. |
861
|
|
|
|
|
|
|
|
862
|
|
|
|
|
|
|
=cut |
863
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
sub range { |
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
# payout time $w is only a dummy. range contracts always payout at end. |
867
|
7
|
|
|
7
|
1
|
3077
|
my ( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ) = @_; |
868
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
# range always pay out at end |
870
|
7
|
|
|
|
|
12
|
$w = 1; |
871
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
return |
873
|
7
|
|
|
|
|
31
|
exp( -$r_q * $t ) - upordown( $S, $U, $D, $t, $r_q, $mu, $sigma, $w ); |
874
|
|
|
|
|
|
|
} |
875
|
|
|
|
|
|
|
|
876
|
|
|
|
|
|
|
=head1 DEPENDENCIES |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
* Math::CDF |
879
|
|
|
|
|
|
|
* Machine::Epsilon |
880
|
|
|
|
|
|
|
|
881
|
|
|
|
|
|
|
=head1 SOURCE CODE |
882
|
|
|
|
|
|
|
|
883
|
|
|
|
|
|
|
https://github.com/binary-com/perl-math-business-blackscholes-binaries |
884
|
|
|
|
|
|
|
|
885
|
|
|
|
|
|
|
=head1 REFERENCES |
886
|
|
|
|
|
|
|
|
887
|
|
|
|
|
|
|
[1] P.G Zhang [1997], "Exotic Options", World Scientific |
888
|
|
|
|
|
|
|
Another good refernce is Mark rubinstein, Eric Reiner [1991], "Binary Options", RISK 4, pp 75-83 |
889
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
[2] Anlong Li [1999], "The pricing of double barrier options and their variations". |
891
|
|
|
|
|
|
|
Advances in Futures and Options, 10, 1999. (paper). |
892
|
|
|
|
|
|
|
|
893
|
|
|
|
|
|
|
[3] Uwe Wystup. FX Options and Strutured Products. Wiley Finance, England, 2006. pp 93-96 (Quantos) |
894
|
|
|
|
|
|
|
|
895
|
|
|
|
|
|
|
[4] Antoon Pelsser, "Pricing Double Barrier Options: An Analytical Approach", Jan 15 1997. |
896
|
|
|
|
|
|
|
http://repub.eur.nl/pub/7807/1997-0152.pdf |
897
|
|
|
|
|
|
|
|
898
|
|
|
|
|
|
|
=head1 AUTHOR |
899
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
binary.com, C<< >> |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
=head1 BUGS |
903
|
|
|
|
|
|
|
|
904
|
|
|
|
|
|
|
Please report any bugs or feature requests to |
905
|
|
|
|
|
|
|
C, or through the web |
906
|
|
|
|
|
|
|
interface at |
907
|
|
|
|
|
|
|
L. |
908
|
|
|
|
|
|
|
I will be notified, and then you'll automatically be notified of progress on |
909
|
|
|
|
|
|
|
your bug as I make changes. |
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
=head1 SUPPORT |
912
|
|
|
|
|
|
|
|
913
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
914
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
perldoc Math::Business::BlackScholes::Binaries |
916
|
|
|
|
|
|
|
|
917
|
|
|
|
|
|
|
|
918
|
|
|
|
|
|
|
You can also look for information at: |
919
|
|
|
|
|
|
|
|
920
|
|
|
|
|
|
|
=over 4 |
921
|
|
|
|
|
|
|
|
922
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker (report bugs here) |
923
|
|
|
|
|
|
|
|
924
|
|
|
|
|
|
|
L |
925
|
|
|
|
|
|
|
|
926
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
927
|
|
|
|
|
|
|
|
928
|
|
|
|
|
|
|
L |
929
|
|
|
|
|
|
|
|
930
|
|
|
|
|
|
|
=item * CPAN Ratings |
931
|
|
|
|
|
|
|
|
932
|
|
|
|
|
|
|
L |
933
|
|
|
|
|
|
|
|
934
|
|
|
|
|
|
|
=item * Search CPAN |
935
|
|
|
|
|
|
|
|
936
|
|
|
|
|
|
|
L |
937
|
|
|
|
|
|
|
|
938
|
|
|
|
|
|
|
=back |
939
|
|
|
|
|
|
|
|
940
|
|
|
|
|
|
|
|
941
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
942
|
|
|
|
|
|
|
|
943
|
|
|
|
|
|
|
Copyright 2014 binary.com. |
944
|
|
|
|
|
|
|
|
945
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
946
|
|
|
|
|
|
|
under the terms of the the Artistic License (2.0). You may obtain a |
947
|
|
|
|
|
|
|
copy of the full license at: |
948
|
|
|
|
|
|
|
|
949
|
|
|
|
|
|
|
L |
950
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
Any use, modification, and distribution of the Standard or Modified |
952
|
|
|
|
|
|
|
Versions is governed by this Artistic License. By using, modifying or |
953
|
|
|
|
|
|
|
distributing the Package, you accept this license. Do not use, modify, |
954
|
|
|
|
|
|
|
or distribute the Package, if you do not accept this license. |
955
|
|
|
|
|
|
|
|
956
|
|
|
|
|
|
|
If your Modified Version has been derived from a Modified Version made |
957
|
|
|
|
|
|
|
by someone other than you, you are nevertheless required to ensure that |
958
|
|
|
|
|
|
|
your Modified Version complies with the requirements of this license. |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
This license does not grant you the right to use any trademark, service |
961
|
|
|
|
|
|
|
mark, tradename, or logo of the Copyright Holder. |
962
|
|
|
|
|
|
|
|
963
|
|
|
|
|
|
|
This license includes the non-exclusive, worldwide, free-of-charge |
964
|
|
|
|
|
|
|
patent license to make, have made, use, offer to sell, sell, import and |
965
|
|
|
|
|
|
|
otherwise transfer the Package with respect to any patent claims |
966
|
|
|
|
|
|
|
licensable by the Copyright Holder that are necessarily infringed by the |
967
|
|
|
|
|
|
|
Package. If you institute patent litigation (including a cross-claim or |
968
|
|
|
|
|
|
|
counterclaim) against any party alleging that the Package constitutes |
969
|
|
|
|
|
|
|
direct or contributory patent infringement, then this Artistic License |
970
|
|
|
|
|
|
|
to you shall terminate on the date that such litigation is filed. |
971
|
|
|
|
|
|
|
|
972
|
|
|
|
|
|
|
Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER |
973
|
|
|
|
|
|
|
AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. |
974
|
|
|
|
|
|
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR |
975
|
|
|
|
|
|
|
PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY |
976
|
|
|
|
|
|
|
YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER OR |
977
|
|
|
|
|
|
|
CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR |
978
|
|
|
|
|
|
|
CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, |
979
|
|
|
|
|
|
|
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
980
|
|
|
|
|
|
|
|
981
|
|
|
|
|
|
|
|
982
|
|
|
|
|
|
|
=cut |
983
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
1; |
985
|
|
|
|
|
|
|
|