line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright (c) 2002-2008 Anders Johnson. All rights reserved. This program is |
2
|
|
|
|
|
|
|
# free software; you can redistribute it and/or modify it under the same terms |
3
|
|
|
|
|
|
|
# as Perl itself. The author categorically disclaims any liability for this |
4
|
|
|
|
|
|
|
# software. |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Math::Business::BlackScholes - Black-Scholes option price model functions |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 SYNOPSIS |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use Math::Business::BlackScholes |
13
|
|
|
|
|
|
|
qw/call_price call_put_prices implied_volatility_call/; |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
my $volatility=implied_volatility_call( |
16
|
|
|
|
|
|
|
$current_market_price, $option_price_in, $strike_price_in, |
17
|
|
|
|
|
|
|
$remaining_term_in, $interest_rate, $fractional_yield |
18
|
|
|
|
|
|
|
); |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
my $call=call_price( |
21
|
|
|
|
|
|
|
$current_market_price, $volatility, $strike_price, |
22
|
|
|
|
|
|
|
$remaining_term, $interest_rate, $fractional_yield |
23
|
|
|
|
|
|
|
); |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
$volatility=Math::Business::BlackScholes::historical_volatility( |
26
|
|
|
|
|
|
|
\@closing_prices, 251 |
27
|
|
|
|
|
|
|
); |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
my $put=Math::Business::BlackScholes::put_price( |
30
|
|
|
|
|
|
|
$current_market_price, $volatility, $strike_price, |
31
|
|
|
|
|
|
|
$remaining_term, $interest_rate |
32
|
|
|
|
|
|
|
); # $fractional_yield defaults to 0.0 |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
my ($c, $p)=call_put_prices( |
35
|
|
|
|
|
|
|
$current_market_price, $volatility, $strike_price, |
36
|
|
|
|
|
|
|
$remaining_term, $interest_rate, $fractional_yield |
37
|
|
|
|
|
|
|
); |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
my $call_discrete_div=call_price( |
40
|
|
|
|
|
|
|
$current_market_price, $volatility, $strike_price, |
41
|
|
|
|
|
|
|
$remaining_term, $interest_rate, |
42
|
|
|
|
|
|
|
{ 0.3 => 0.35, 0.55 => 0.35 } |
43
|
|
|
|
|
|
|
); |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=head1 DESCRIPTION |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Estimates the fair market price of a European stock option |
48
|
|
|
|
|
|
|
according to the Black-Scholes model. |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
call_price() returns the price of a call option. |
51
|
|
|
|
|
|
|
put_price() returns the value of a put option. |
52
|
|
|
|
|
|
|
call_put_prices() returns a 2-element array whose first element is the price |
53
|
|
|
|
|
|
|
of a call option, and whose second element is the price of the put option |
54
|
|
|
|
|
|
|
with the same parameters; it is expected to be computationally more efficient |
55
|
|
|
|
|
|
|
than calling call_price() and put_price() sequentially with the same arguments. |
56
|
|
|
|
|
|
|
Each of these routines accepts the same set of parameters: |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
C<$current_market_price> is the price for which the underlying security is |
59
|
|
|
|
|
|
|
currently trading. |
60
|
|
|
|
|
|
|
C<$volatility> is the standard deviation of the probability distribution of |
61
|
|
|
|
|
|
|
the natural logarithm of the stock price one year in the future. |
62
|
|
|
|
|
|
|
C<$strike_price> is the strike price of the option. |
63
|
|
|
|
|
|
|
C<$remaining_term> is the time remaining until the option expires, in years. |
64
|
|
|
|
|
|
|
C<$interest_rate> is the risk-free interest rate (per year) as a fraction. |
65
|
|
|
|
|
|
|
C<$fractional_yield> is the fraction of the stock price that the stock |
66
|
|
|
|
|
|
|
yields in dividends per year; it is assumed to be zero if unspecified. |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=head2 Discrete Dividends |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
If C<$fractional_yield> is specified as a number, then the actual timing of |
71
|
|
|
|
|
|
|
the ex-dividend dates relative to the current time and the option expiration |
72
|
|
|
|
|
|
|
time can affect the option price by as much as the value of a single dividend. |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
C<$fractional_yield> may instead be specified as a hashref, each key of which |
75
|
|
|
|
|
|
|
is the remaining amount of time before the dividend is paid, in years, |
76
|
|
|
|
|
|
|
and each value of which is the dividend amount. |
77
|
|
|
|
|
|
|
This produces more accurate results when the dividends that will be assigned |
78
|
|
|
|
|
|
|
during the term of the option are reliably predictable. |
79
|
|
|
|
|
|
|
The ex-dividend date of each dividend so represented is assumed to occur |
80
|
|
|
|
|
|
|
within the I term of the option, even if the dividend is paid |
81
|
|
|
|
|
|
|
after the term expires. |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=head2 Determining Parameter Values |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
C<$volatility> and C<$fractional_yield> are traditionally estimated based on |
86
|
|
|
|
|
|
|
historical data. |
87
|
|
|
|
|
|
|
C<$interest_rate> is traditionally equal to the current T-bill rate. |
88
|
|
|
|
|
|
|
The model assumes that these parameters are stable over the term of the |
89
|
|
|
|
|
|
|
option. |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
C<$volatility> (a.k.a. I) is sometimes expressed as a percentage, |
92
|
|
|
|
|
|
|
which is misleading because it's not a ratio. |
93
|
|
|
|
|
|
|
If you have it as a percentage, then you'll need to divide it by 100 before |
94
|
|
|
|
|
|
|
passing it to this module. |
95
|
|
|
|
|
|
|
Ditto for C<$interest_rate> and C<$fractional_yield>. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
Two ways to estimate C<$volatility> are provided. |
98
|
|
|
|
|
|
|
historical_volatility() takes an arrayref of at least 10 (preferably 100 or |
99
|
|
|
|
|
|
|
more) consecutive daily closing prices of the underlying security, in either |
100
|
|
|
|
|
|
|
chronological or reverse chronological order. |
101
|
|
|
|
|
|
|
It then multiplies the variance of the log of day-to-day returns by the number |
102
|
|
|
|
|
|
|
of trading days per year specified by the second argument (or 250 by default). |
103
|
|
|
|
|
|
|
The square-root of this yearly variance is returned. |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
implied_volatility_call() computes the implied volatility based on the known |
106
|
|
|
|
|
|
|
trading price of a "reference" call option on the same underlying security with |
107
|
|
|
|
|
|
|
a different strike price and/or term, using the Newton-Raphson method, or the |
108
|
|
|
|
|
|
|
bisection method if it fails to converge otherwise. |
109
|
|
|
|
|
|
|
It's invoked like call_price(), except that the second argument is taken as |
110
|
|
|
|
|
|
|
the price of the call option, and the volatility is returned. |
111
|
|
|
|
|
|
|
You can override the default option price tolerance of 1e-4 by passing an |
112
|
|
|
|
|
|
|
additional argument beyond C<$fractional_yield>. |
113
|
|
|
|
|
|
|
If called in an array context, the second element of the return value is an |
114
|
|
|
|
|
|
|
estimate of the error magnitude, and the third element is the number of |
115
|
|
|
|
|
|
|
iterations required to obtain the result. |
116
|
|
|
|
|
|
|
The error magnitude may be quite large unless you use a |
117
|
|
|
|
|
|
|
reference option whose price exceeds its intrinsic value by an amount larger |
118
|
|
|
|
|
|
|
than or comparable to the absolute difference of the market price and the |
119
|
|
|
|
|
|
|
strike price, and it is undefined if the price of the reference option is |
120
|
|
|
|
|
|
|
less than what would be calculated with zero volatility. |
121
|
|
|
|
|
|
|
If the price of the reference option is greater than what would be calculated |
122
|
|
|
|
|
|
|
with infinite volatility, then both the result and the error estimate are |
123
|
|
|
|
|
|
|
undefined. |
124
|
|
|
|
|
|
|
An exception is thrown if it fails to converge within |
125
|
|
|
|
|
|
|
C<$Math::Business::BlackScholes::max_iter> (100 by default) iterations. |
126
|
|
|
|
|
|
|
An analogous implied_volatility_put() is also available. |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
=head2 American Options |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
Whereas a European stock option may be exercised only when it expires, |
131
|
|
|
|
|
|
|
an American option may be exercised any time prior to its expiration. |
132
|
|
|
|
|
|
|
The price of an American option can be approximated as the maximum price |
133
|
|
|
|
|
|
|
of similar European options over all possible remaining terms not greater |
134
|
|
|
|
|
|
|
than the remaining term of the American option. |
135
|
|
|
|
|
|
|
This maximum usually occurs at the end of the remaining term, or just before |
136
|
|
|
|
|
|
|
or just after the final ex-dividend date within the remaining term. |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
=head2 Negative Market Value |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
An underlying security with a negative market value is assumed to be a short. |
141
|
|
|
|
|
|
|
Buying a short is equivalent to selling the security, so a call option on |
142
|
|
|
|
|
|
|
a short is equivalent to a put option. |
143
|
|
|
|
|
|
|
This is somewhat confusing, and arguably a warning ought to be generated if |
144
|
|
|
|
|
|
|
it gets invoked. |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
=head1 DIAGNOSTICS |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
Attempting to evaluate an option with a negative term will result in a croak(), |
149
|
|
|
|
|
|
|
because that's meaningless. |
150
|
|
|
|
|
|
|
Passing suspicious arguments (I a negative interest rate) will result |
151
|
|
|
|
|
|
|
in descriptive warning messages. |
152
|
|
|
|
|
|
|
To disable such messages, try this: |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
{ |
155
|
|
|
|
|
|
|
local($SIG{__WARN__})=sub{}; |
156
|
|
|
|
|
|
|
$value=call_price( ... ); |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
=head1 CAVEATS |
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
=over 2 |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=item * |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
This module requires C. |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
=item * |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
The fractional computational error of call_price() and put_price() is |
170
|
|
|
|
|
|
|
usually negligible. |
171
|
|
|
|
|
|
|
However, while the computational error of second result of call_put_prices() |
172
|
|
|
|
|
|
|
is typically small in comparison to the current market price, it might be |
173
|
|
|
|
|
|
|
significant in comparison to the result itself. |
174
|
|
|
|
|
|
|
That's probably unimportant for most purposes. |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
=item * |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
historical_volatility() tends to produce misleading results because the |
179
|
|
|
|
|
|
|
behavior of the underlying security is most likely not truly log-normal. |
180
|
|
|
|
|
|
|
In particular, the price varies predictably after a dividend is distributed, |
181
|
|
|
|
|
|
|
and the daily variance is expected to be greater after financial announcements |
182
|
|
|
|
|
|
|
are made. |
183
|
|
|
|
|
|
|
Also, a large number of data points are required to obtain statistically |
184
|
|
|
|
|
|
|
meaningful results, but having a large number of data points implies that the |
185
|
|
|
|
|
|
|
results are outdated. |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=item * |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
The author categorically disclaims any liability for this module. |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=back |
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
=head1 BUGS |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
=over 2 |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=item * |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
The length of the namespace component "BlackScholes" is said to cause |
200
|
|
|
|
|
|
|
unspecified portability problems for DOS and other 8.3 filesystems, |
201
|
|
|
|
|
|
|
but the consensus of the Perl community was that it is more important |
202
|
|
|
|
|
|
|
to have a descriptive name. |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
=item * |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
You can't passed a blessed reference with the C<0+> (numeric conversion) |
207
|
|
|
|
|
|
|
operator overloaded (see L) as a numerical C<$fractional_yield>. |
208
|
|
|
|
|
|
|
Instead, convert it into a numeric scalar before calling these functions. |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=back |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=head1 SEE ALSO |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
L |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
=head1 AUTHOR |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
Anders Johnson > |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
=head1 ACKNOWLEDGMENTS |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
Thanks to Richard Solberg for helping to debug the implied volatility |
223
|
|
|
|
|
|
|
functions. |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
=cut |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
package Math::Business::BlackScholes; |
228
|
|
|
|
|
|
|
|
229
|
3
|
|
|
3
|
|
40983
|
use strict; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
171
|
|
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
BEGIN { |
232
|
3
|
|
|
3
|
|
16
|
use Exporter; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
131
|
|
233
|
3
|
|
|
3
|
|
17
|
use vars qw/$VERSION @ISA @EXPORT_OK/; |
|
3
|
|
|
|
|
25
|
|
|
3
|
|
|
|
|
468
|
|
234
|
3
|
|
|
3
|
|
8
|
$VERSION = 1.01; |
235
|
3
|
|
|
|
|
58
|
@ISA = qw/Exporter/; |
236
|
3
|
|
|
|
|
77
|
@EXPORT_OK = ( |
237
|
|
|
|
|
|
|
qw/call_price put_price call_put_prices/, |
238
|
|
|
|
|
|
|
qw/historical_volatility/, |
239
|
|
|
|
|
|
|
qw/implied_volatility_call implied_volatility_put/ |
240
|
|
|
|
|
|
|
); |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
3
|
|
|
3
|
|
3126
|
use Math::CDF qw/pnorm/; |
|
3
|
|
|
|
|
22804
|
|
|
3
|
|
|
|
|
1111
|
|
244
|
3
|
|
|
3
|
|
38
|
use Carp; |
|
3
|
|
|
|
|
8
|
|
|
3
|
|
|
|
|
7056
|
|
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# Don't call this directly -- it might change without notice |
247
|
|
|
|
|
|
|
sub _precompute1 { |
248
|
|
|
|
|
|
|
my ( |
249
|
299
|
|
|
299
|
|
619
|
$st, $lsx, $put, $adj_market, $sigma, $strike, $term, |
250
|
|
|
|
|
|
|
$interest, $adj_yield |
251
|
|
|
|
|
|
|
)=@_; |
252
|
|
|
|
|
|
|
|
253
|
299
|
|
|
|
|
563
|
my $seyt=$adj_market * exp(-$adj_yield * $term); |
254
|
299
|
|
|
|
|
444
|
my $xert=$strike * exp(-$interest * $term); |
255
|
299
|
|
|
|
|
278
|
my $d1; |
256
|
|
|
|
|
|
|
my $nd1; |
257
|
0
|
|
|
|
|
0
|
my $nd2; |
258
|
299
|
100
|
100
|
|
|
2127
|
if($sigma==0.0 || $term==0.0 || $adj_market==0.0 || $strike<=0.0) { |
|
|
|
66
|
|
|
|
|
|
|
|
66
|
|
|
|
|
259
|
61
|
100
|
|
|
|
105
|
if($seyt > $xert) { |
260
|
38
|
100
|
|
|
|
89
|
($nd1, $nd2) = $put ? (0.0, 0.0) : (1.0, 1.0); |
261
|
|
|
|
|
|
|
} |
262
|
|
|
|
|
|
|
else { |
263
|
23
|
100
|
|
|
|
59
|
($nd1, $nd2) = $put ? (-1.0, -1.0) : (0.0, 0.0); |
264
|
|
|
|
|
|
|
} |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
else { |
267
|
238
|
|
|
|
|
274
|
my $ssrt=$sigma * $st; |
268
|
238
|
|
|
|
|
440
|
$d1=( |
269
|
|
|
|
|
|
|
$lsx + ($interest - $adj_yield + 0.5*$sigma*$sigma)*$term |
270
|
|
|
|
|
|
|
) / $ssrt; |
271
|
238
|
|
|
|
|
245
|
my $d2=$d1 - $ssrt; |
272
|
238
|
100
|
|
|
|
1352
|
($nd1, $nd2) = $put ? |
273
|
|
|
|
|
|
|
(-pnorm(-$d1), -pnorm(-$d2)) : (pnorm($d1), pnorm($d2)); |
274
|
|
|
|
|
|
|
} |
275
|
299
|
|
|
|
|
1321
|
return ($seyt*$nd1 - $xert*$nd2, $seyt, $xert, $d1); |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
# Don't call this directly -- it might change without notice |
279
|
|
|
|
|
|
|
sub _precompute { |
280
|
141
|
50
|
|
141
|
|
279
|
@_<6 && carp("Too few arguments"); |
281
|
141
|
|
|
|
|
237
|
my ($put, $market, $sigma, $strike, $term, $interest, $yield)=@_; |
282
|
|
|
|
|
|
|
|
283
|
141
|
50
|
|
|
|
277
|
$market>=0.0 || croak("Negative market price"); |
284
|
141
|
100
|
|
|
|
277
|
if($sigma<0.0) { |
285
|
5
|
|
|
|
|
945
|
carp("Negative volatility (using absolute value instead)"); |
286
|
5
|
|
|
|
|
23
|
$sigma=-$sigma; |
287
|
|
|
|
|
|
|
} |
288
|
141
|
100
|
|
|
|
981
|
$strike>=0.0 || carp("Negative strike price"); |
289
|
141
|
50
|
|
|
|
283
|
$term>=0.0 || croak("Negative remaining term"); |
290
|
141
|
100
|
|
|
|
1095
|
$interest>=0.0 || carp("Negative interest rate"); |
291
|
141
|
|
|
|
|
189
|
my ($adj_market, $adj_yield) = ($market, $yield); |
292
|
141
|
100
|
|
|
|
342
|
if(ref $yield) { |
|
|
100
|
|
|
|
|
|
293
|
15
|
|
|
|
|
14
|
my $warned; |
294
|
15
|
|
|
|
|
37
|
for my $when (keys %$yield) { |
295
|
23
|
100
|
|
|
|
60
|
unless($when>=0) { |
296
|
7
|
50
|
|
|
|
17
|
unless($warned++) { |
297
|
7
|
|
|
|
|
1127
|
carp("Negative dividend time"); |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
} |
300
|
23
|
|
|
|
|
339
|
$adj_market -= $yield->{$when}*exp(-$interest * $when); |
301
|
|
|
|
|
|
|
} |
302
|
15
|
|
|
|
|
25
|
$adj_yield=0.0; |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
elsif(!defined $yield) { |
305
|
19
|
|
|
|
|
24
|
$adj_yield=0.0; |
306
|
|
|
|
|
|
|
} |
307
|
141
|
100
|
|
|
|
1242
|
$adj_yield>=0.0 || carp("Negative yield"); |
308
|
141
|
100
|
|
|
|
1003
|
@_>7 && carp("Ignoring additional arguments"); |
309
|
|
|
|
|
|
|
|
310
|
141
|
|
|
|
|
229
|
my $st=sqrt($term); |
311
|
141
|
|
|
|
|
168
|
my $sx=$adj_market / $strike; |
312
|
141
|
100
|
|
|
|
366
|
my $lsx=log($sx) if $sx>0; |
313
|
|
|
|
|
|
|
return ( |
314
|
141
|
|
|
|
|
276
|
_precompute1( |
315
|
|
|
|
|
|
|
$st, $lsx, $put, $adj_market, $sigma, $strike, $term, |
316
|
|
|
|
|
|
|
$interest, $adj_yield |
317
|
|
|
|
|
|
|
), $st, $lsx, $adj_market, $adj_yield |
318
|
|
|
|
|
|
|
); |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
sub call_price { |
322
|
44
|
100
|
|
44
|
0
|
6531
|
if($_[0]<0.0) { |
323
|
2
|
|
|
|
|
8
|
return put_price(-$_[0], $_[1], -$_[2], @_[3..$#_]); |
324
|
|
|
|
|
|
|
} |
325
|
42
|
|
|
|
|
114
|
my ($price) = _precompute(0, @_); |
326
|
42
|
|
|
|
|
107
|
return $price; |
327
|
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
sub put_price { |
330
|
43
|
100
|
|
43
|
0
|
1057
|
if($_[0]<0.0) { |
331
|
2
|
|
|
|
|
9
|
return call_price(-$_[0], $_[1], -$_[2], @_[3..$#_]); |
332
|
|
|
|
|
|
|
} |
333
|
41
|
|
|
|
|
77
|
my ($price) = _precompute(1, @_); |
334
|
41
|
|
|
|
|
103
|
return $price; |
335
|
|
|
|
|
|
|
} |
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
sub call_put_prices { |
338
|
22
|
100
|
|
22
|
0
|
90
|
if($_[0]<0.0) { |
339
|
1
|
|
|
|
|
8
|
my ($put, $call)=call_put_prices( |
340
|
|
|
|
|
|
|
-$_[0], $_[1], -$_[2], @_[3..$#_] |
341
|
|
|
|
|
|
|
); |
342
|
1
|
|
|
|
|
3
|
return ($call, $put); |
343
|
|
|
|
|
|
|
} |
344
|
21
|
|
|
|
|
37
|
my ($call, $seyt, $xert) = _precompute(0, @_); |
345
|
21
|
|
|
|
|
62
|
return ($call, $call - $seyt + $xert); |
346
|
|
|
|
|
|
|
} |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
sub historical_volatility { |
349
|
3
|
|
|
3
|
0
|
139
|
my ($close, $days)=@_; |
350
|
3
|
100
|
|
|
|
12
|
$days=250 unless defined $days; |
351
|
3
|
|
|
|
|
13
|
my @close=@$close; # Don't clobber the argument |
352
|
3
|
50
|
|
|
|
9
|
if(@close<10) { |
353
|
0
|
|
|
|
|
0
|
croak "Not enough data points" |
354
|
|
|
|
|
|
|
} |
355
|
3
|
|
|
|
|
7
|
my ($tot, $sqtot, $n)=(0.0, 0.0, 0); |
356
|
3
|
|
|
|
|
12
|
my $last=log(shift(@close)); |
357
|
3
|
|
|
|
|
18
|
while(@close) { |
358
|
49
|
|
|
|
|
79
|
my $next=log(shift(@close)); |
359
|
49
|
|
|
|
|
57
|
my $ret=$next-$last; |
360
|
49
|
|
|
|
|
50
|
$tot+=$ret; |
361
|
49
|
|
|
|
|
59
|
$sqtot+=$ret*$ret; |
362
|
49
|
|
|
|
|
46
|
$n++; |
363
|
49
|
|
|
|
|
101
|
$last=$next; |
364
|
|
|
|
|
|
|
} |
365
|
3
|
|
|
|
|
20
|
return sqrt($days * ($sqtot - $tot*$tot/$n)/($n-1)); |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
sub implied_volatility_call { |
369
|
20
|
100
|
|
20
|
0
|
752
|
if($_[0]<0.0) { |
370
|
1
|
|
|
|
|
4
|
return implied_volatility_put( |
371
|
|
|
|
|
|
|
-$_[0], $_[1], -$_[2], @_[3..$#_] |
372
|
|
|
|
|
|
|
); |
373
|
|
|
|
|
|
|
} |
374
|
19
|
|
|
|
|
57
|
return _implied_volatility(0, @_); |
375
|
|
|
|
|
|
|
} |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
sub implied_volatility_put { |
378
|
19
|
100
|
|
19
|
0
|
768
|
if($_[0]<0.0) { |
379
|
1
|
|
|
|
|
3
|
return implied_volatility_call( |
380
|
|
|
|
|
|
|
-$_[0], $_[1], -$_[2], @_[3..$#_] |
381
|
|
|
|
|
|
|
); |
382
|
|
|
|
|
|
|
} |
383
|
18
|
|
|
|
|
53
|
return _implied_volatility(1, @_); |
384
|
|
|
|
|
|
|
} |
385
|
|
|
|
|
|
|
|
386
|
3
|
|
|
3
|
|
40
|
use vars qw/$max_iter/; |
|
3
|
|
|
|
|
8
|
|
|
3
|
|
|
|
|
3851
|
|
387
|
|
|
|
|
|
|
$max_iter=100; |
388
|
|
|
|
|
|
|
my $pipi; # becomes 1/sqrt(2*PI) when needed |
389
|
|
|
|
|
|
|
# Don't call this directly -- it might change without notice |
390
|
|
|
|
|
|
|
sub _implied_volatility { |
391
|
37
|
|
|
37
|
|
49
|
my $put=shift; |
392
|
37
|
|
|
|
|
62
|
my ($market, $option_price, $strike, $term, $interest, $yield, $tol)=@_; |
393
|
37
|
100
|
|
|
|
77
|
$yield=0 unless defined $yield; |
394
|
37
|
50
|
|
|
|
92
|
if(@_>7) { |
395
|
0
|
|
|
|
|
0
|
carp("Ignoring additional arguments"); |
396
|
0
|
|
|
|
|
0
|
pop(@_) while @_>7; |
397
|
|
|
|
|
|
|
} |
398
|
37
|
100
|
|
|
|
69
|
pop(@_) if defined $tol; |
399
|
37
|
100
|
|
|
|
91
|
$tol=1e-4 unless defined $tol; |
400
|
37
|
|
|
|
|
41
|
$tol=abs($tol); |
401
|
37
|
50
|
|
|
|
79
|
$market>0.0 || |
402
|
|
|
|
|
|
|
croak("Positive market price required to determine volatility"); |
403
|
37
|
50
|
|
|
|
65
|
$strike>0.0 || |
404
|
|
|
|
|
|
|
croak("Positive strike price required to determine volatility"); |
405
|
37
|
50
|
|
|
|
78
|
$term>0.0 || croak("Positive term required to determine volatility"); |
406
|
37
|
50
|
|
|
|
116
|
$option_price>0.0 || croak("Option price must be positive"); |
407
|
37
|
|
|
|
|
40
|
my $sigma_low=0.0; |
408
|
37
|
|
|
|
|
106
|
my ($price_low, $seyt, $xert, $d1, $st, $lsx, $adj_market, $adj_yield) = |
409
|
|
|
|
|
|
|
_precompute( |
410
|
|
|
|
|
|
|
$put, $market, 0.0, @_[2..$#_] |
411
|
|
|
|
|
|
|
); |
412
|
37
|
|
|
|
|
124
|
my @precomp_args = @_[2..$#_]; |
413
|
37
|
|
|
|
|
48
|
$precomp_args[3] = $adj_yield; |
414
|
37
|
0
|
|
|
|
70
|
return wantarray ? (0.0, undef, 0) : 0.0 if $price_low > $option_price; |
|
|
50
|
|
|
|
|
|
415
|
37
|
100
|
|
|
|
129
|
return wantarray ? (undef, undef, 0) : undef |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
416
|
|
|
|
|
|
|
if $option_price > ($put ? $xert : $seyt); |
417
|
35
|
|
|
|
|
80
|
my $sigma_high=($option_price)/(0.398*$market*$st); |
418
|
35
|
|
|
|
|
34
|
my $price_high; |
419
|
35
|
|
|
|
|
45
|
my $n=0; |
420
|
35
|
|
|
|
|
70
|
while($n<$max_iter) { |
421
|
66
|
|
|
|
|
122
|
($price_high, $seyt, $xert, $d1) = _precompute1( |
422
|
|
|
|
|
|
|
$st, $lsx, $put, $adj_market, $sigma_high, @precomp_args |
423
|
|
|
|
|
|
|
); |
424
|
66
|
100
|
|
|
|
186
|
last if $price_high > $option_price-$tol; |
425
|
31
|
|
|
|
|
36
|
($sigma_low, $price_low) = ($sigma_high, $price_high); |
426
|
31
|
|
|
|
|
34
|
$sigma_high += $sigma_high; |
427
|
31
|
|
|
|
|
63
|
$n++; |
428
|
|
|
|
|
|
|
} |
429
|
35
|
100
|
|
|
|
72
|
$pipi=1/sqrt(4*atan2(1,0)) unless defined $pipi; |
430
|
35
|
|
|
|
|
43
|
my ($sigma, $price)=($sigma_high, $price_high); |
431
|
35
|
|
|
|
|
42
|
while(1) { |
432
|
111
|
|
|
|
|
133
|
my $diff=$option_price - $price; |
433
|
111
|
|
|
|
|
150
|
my $done=abs($diff) < $tol; |
434
|
111
|
100
|
100
|
|
|
369
|
return $sigma if $done && !wantarray; |
435
|
94
|
100
|
|
|
|
149
|
if($diff>0.0) { |
436
|
38
|
|
|
|
|
52
|
($sigma_low, $price_low)=($sigma, $price); |
437
|
|
|
|
|
|
|
} |
438
|
|
|
|
|
|
|
else { |
439
|
56
|
|
|
|
|
73
|
($sigma_high, $price_high)=($sigma, $price); |
440
|
|
|
|
|
|
|
} |
441
|
94
|
100
|
|
|
|
207
|
my $npd1=defined($d1) ? $pipi * exp(-0.5*$d1*$d1) : 0.0; |
442
|
94
|
|
|
|
|
120
|
my $vega=$seyt * $st * $npd1; |
443
|
94
|
50
|
|
|
|
240
|
return ($sigma, $vega==0.0 ? undef : $tol/$vega, $n) if $done; |
|
|
100
|
|
|
|
|
|
444
|
77
|
100
|
|
|
|
154
|
last if $vega==0.0; |
445
|
76
|
|
|
|
|
84
|
$sigma+=$diff/$vega; |
446
|
76
|
100
|
|
|
|
202
|
$sigma=$sigma_low if $sigma<$sigma_low; |
447
|
76
|
50
|
66
|
|
|
219
|
last if $diff>0.0 && $sigma>0.5*($sigma_low+$sigma_high); |
448
|
76
|
|
|
|
|
78
|
$n++; |
449
|
76
|
50
|
|
|
|
141
|
last if $n>=$max_iter; |
450
|
76
|
|
|
|
|
148
|
($price, $seyt, $xert, $d1) = _precompute1( |
451
|
|
|
|
|
|
|
$st, $lsx, $put, $adj_market, $sigma, @precomp_args |
452
|
|
|
|
|
|
|
); |
453
|
|
|
|
|
|
|
} |
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
# If Newton-Raphson fails, try the bisection method |
456
|
1
|
|
|
|
|
6
|
while($n<$max_iter) { |
457
|
16
|
|
|
|
|
25
|
$sigma=0.5 * ($sigma_low + $sigma_high); |
458
|
16
|
|
|
|
|
30
|
($price) = _precompute1( |
459
|
|
|
|
|
|
|
$st, $lsx, $put, $adj_market, $sigma, @precomp_args |
460
|
|
|
|
|
|
|
); |
461
|
16
|
100
|
|
|
|
47
|
if(abs($option_price - $price) < $tol) { |
462
|
|
|
|
|
|
|
return wantarray ? |
463
|
1
|
50
|
|
|
|
8
|
($sigma, $tol * ($sigma_high-$sigma_low) / ($price_high-$price_low), $n) : |
464
|
|
|
|
|
|
|
$sigma; |
465
|
|
|
|
|
|
|
} |
466
|
15
|
100
|
|
|
|
86
|
if($price > $option_price) { |
467
|
9
|
|
|
|
|
13
|
($sigma_high, $price_high) = ($sigma, $price); |
468
|
|
|
|
|
|
|
} |
469
|
|
|
|
|
|
|
else { |
470
|
6
|
|
|
|
|
9
|
($sigma_low, $price_low) = ($sigma, $price); |
471
|
|
|
|
|
|
|
} |
472
|
15
|
|
|
|
|
34
|
$n++; |
473
|
|
|
|
|
|
|
} |
474
|
0
|
|
|
|
|
|
confess "_implied_volatility() failed to converge"; |
475
|
|
|
|
|
|
|
} |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
1; |
478
|
|
|
|
|
|
|
|