line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=head1 NAME |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Math::Brent - Single Dimensional Function Minimisation |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 SYNOPSIS |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Math::Brent qw(Minimise1D); |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
my ($x, $y) = Minimise1D($guess, $scale, \&func, $tol, $itmax); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
or |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
use Math::Brent qw(BracketMinimum Brent); |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
my ($ax, $bx, $cx, $fa, $fb, $fc) = BracketMinimum($ax, $bx, \&func); |
16
|
|
|
|
|
|
|
my ($x, $y) = Brent($ax, $bx, $cx, \&func, $tol, $itmax); |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 DESCRIPTION |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
This is an implementation of Brent's method for One-Dimensional |
21
|
|
|
|
|
|
|
minimisation of a function without using derivatives. This algorithm |
22
|
|
|
|
|
|
|
cleverly uses both the Golden Section Search and parabolic |
23
|
|
|
|
|
|
|
interpolation. |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=head2 FUNCTIONS |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
The functions may be imported by name, or by using the export |
28
|
|
|
|
|
|
|
tag "all". |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head3 Minimise1D() |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
Provides a simple interface to the L and L |
33
|
|
|
|
|
|
|
routines. |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
Given a function, an initial guess for the function's |
36
|
|
|
|
|
|
|
minimum, and its scaling, this routine converges |
37
|
|
|
|
|
|
|
to the function's minimum using Brent's method. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
($x, $y) = Minimise1D($guess, $scale, \&func); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
The minimum is reached within a certain tolerance (defaulting 1e-7), and |
42
|
|
|
|
|
|
|
attempts to do so within a maximum number of iterations (defaulting to 100). |
43
|
|
|
|
|
|
|
You may override them by providing alternate values: |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
($x, $y) = Minimise1D($guess, $scale, \&func, 1.5e-8, 120); |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=head3 Brent() |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
Given a function and a triplet of abcissas B<$ax>, B<$bx>, B<$cx>, such that |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
=over 4 |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
=item 1. B<$bx> is between B<$ax> and B<$cx>, and |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
=item 2. B is less than both B and B), |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
=back |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
Brent() isolates the minimum to a fractional precision of about B<$tol> |
60
|
|
|
|
|
|
|
using Brent's method. |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
A maximum number of iterations B<$itmax> may be specified for this search - it |
63
|
|
|
|
|
|
|
defaults to 100. Returned is a list consisting of the abcissa of the minum |
64
|
|
|
|
|
|
|
and the function value there. |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=head3 BracketMinimum() |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
Given a function reference B<\&func> and |
69
|
|
|
|
|
|
|
distinct initial points B<$ax> and B<$bx> searches in the downhill |
70
|
|
|
|
|
|
|
direction (defined by the function as evaluated at the initial points) |
71
|
|
|
|
|
|
|
and returns a list of the three points B<$ax>, B<$bx>, B<$cx> which |
72
|
|
|
|
|
|
|
bracket the minimum of the function and the function values at those |
73
|
|
|
|
|
|
|
points. |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
=head1 EXAMPLE |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
use Math::Brent qw(Minimise1D); |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
sub sinc { |
80
|
|
|
|
|
|
|
my $x = shift ; |
81
|
|
|
|
|
|
|
return $x ? sin($x)/$x: 1; |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
my($x, $y) = Minimise1D(1, 1, \&sinc, 1e-7); |
85
|
|
|
|
|
|
|
print "Minimum is at sinc($x) = $y\n"; |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
produces the output |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
Minimum is at sinc(4.4934094397196) = -.217233628211222 |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
Anonymous subroutines may also be used as the function reference: |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
my $cubic_ref = sub {my($x) = @_; return 6.25 + $x*$x*(-24 + $x*8));}; |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
my($x, $y) = Minimise1D(3, 1, $cubic_ref); |
96
|
|
|
|
|
|
|
print "Minimum of the cubic at $x = $y\n"; |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=head1 BUGS |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
Please report any bugs or feature requests via Github's L |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=head1 AUTHOR |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
John A.R. Williams B |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
John M. Gamble B (current maintainer) |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=head1 SEE ALSO |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
"Numerical Recipies: The Art of Scientific Computing" |
112
|
|
|
|
|
|
|
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. |
113
|
|
|
|
|
|
|
Cambridge University Press. ISBN 0 521 30811 9. |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
Richard P. Brent, L |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
Professor (Emeritus) Richard Brent has a web page at |
118
|
|
|
|
|
|
|
L |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
=cut |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
package Math::Brent; |
123
|
|
|
|
|
|
|
|
124
|
2
|
|
|
2
|
|
40797
|
use strict; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
67
|
|
125
|
2
|
|
|
2
|
|
10
|
use warnings; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
60
|
|
126
|
2
|
|
|
2
|
|
27
|
use 5.8.3; |
|
2
|
|
|
|
|
10
|
|
127
|
|
|
|
|
|
|
|
128
|
2
|
|
|
2
|
|
9
|
use Exporter; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
282
|
|
129
|
|
|
|
|
|
|
our (@ISA, @EXPORT_OK, %EXPORT_TAGS); |
130
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
131
|
|
|
|
|
|
|
%EXPORT_TAGS = ( |
132
|
|
|
|
|
|
|
all => [qw( |
133
|
|
|
|
|
|
|
FindMinima |
134
|
|
|
|
|
|
|
BracketMinimum |
135
|
|
|
|
|
|
|
Brent Minimise1D |
136
|
|
|
|
|
|
|
) ], |
137
|
|
|
|
|
|
|
); |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
@EXPORT_OK = ( @{ $EXPORT_TAGS{all} } ); |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
our $VERSION = 0.04; |
142
|
|
|
|
|
|
|
|
143
|
2
|
|
|
2
|
|
1316
|
use Math::VecStat qw(max min); |
|
2
|
|
|
|
|
2547
|
|
|
2
|
|
|
|
|
181
|
|
144
|
2
|
|
|
2
|
|
1145
|
use Math::Fortran qw(sign); |
|
2
|
|
|
|
|
969
|
|
|
2
|
|
|
|
|
134
|
|
145
|
2
|
|
|
2
|
|
13
|
use Carp; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
1983
|
|
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
sub Minimise1D |
148
|
|
|
|
|
|
|
{ |
149
|
5
|
|
|
5
|
1
|
1534
|
my ($guess, $scale, $func, $tol, $itmax) = @_; |
150
|
5
|
|
|
|
|
17
|
my ($a, $b, $c) = BracketMinimum($guess - $scale, $guess + $scale, $func); |
151
|
|
|
|
|
|
|
|
152
|
5
|
|
|
|
|
13
|
return Brent($a, $b, $c, $func, $tol, $itmax); |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
# |
156
|
|
|
|
|
|
|
# BracketMinimum |
157
|
|
|
|
|
|
|
# |
158
|
|
|
|
|
|
|
# BracketMinimum is MNBRAK minimum bracketing routine from section 10.1 |
159
|
|
|
|
|
|
|
# of Numerical Recipies |
160
|
|
|
|
|
|
|
# |
161
|
|
|
|
|
|
|
# Given a function func, and distinct initial points ax & bx this |
162
|
|
|
|
|
|
|
# routine searches in the downhill direction and returns new points ax, |
163
|
|
|
|
|
|
|
# bx, cx which bracket the minimum. The function values at the 3 points |
164
|
|
|
|
|
|
|
# are returned in fa, fb, fc respectively. |
165
|
|
|
|
|
|
|
# |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
my $GOLD = 0.5 + sqrt(1.25); # Default magnification ratio for intervals is phi. |
168
|
|
|
|
|
|
|
my $GLIMIT = 100.0; # Max magnification for parabolic fit step |
169
|
|
|
|
|
|
|
my $TINY = 1E-20; |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
sub BracketMinimum |
172
|
|
|
|
|
|
|
{ |
173
|
5
|
|
|
5
|
1
|
7
|
my ($ax, $bx, $func) = @_; |
174
|
5
|
|
|
|
|
14
|
my ($fa, $fb) = (&$func($ax), &$func($bx)); |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# |
177
|
|
|
|
|
|
|
# Swap the a and b values if we weren't going in |
178
|
|
|
|
|
|
|
# a downhill direction. |
179
|
|
|
|
|
|
|
# |
180
|
5
|
100
|
|
|
|
85
|
if ($fb > $fa) |
181
|
|
|
|
|
|
|
{ |
182
|
2
|
|
|
|
|
4
|
my $t = $ax; $ax = $bx; $bx = $t; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
3
|
|
183
|
2
|
|
|
|
|
3
|
$t = $fa; $fa = $fb; $fb = $t; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
4
|
|
184
|
|
|
|
|
|
|
} |
185
|
|
|
|
|
|
|
|
186
|
5
|
|
|
|
|
12
|
my $cx = $bx + $GOLD * ($bx - $ax); |
187
|
5
|
|
|
|
|
9
|
my $fc = &$func($cx); |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# Loop here until we bracket |
190
|
5
|
|
|
|
|
43
|
while ($fb >= $fc) |
191
|
|
|
|
|
|
|
{ |
192
|
|
|
|
|
|
|
# |
193
|
|
|
|
|
|
|
# Compute U by parabolic extrapolation from |
194
|
|
|
|
|
|
|
# a, b, c. TINY used to prevent div by zero |
195
|
|
|
|
|
|
|
# |
196
|
2
|
|
|
|
|
7
|
my $r = ($bx - $ax) * ($fb - $fc); |
197
|
2
|
|
|
|
|
4
|
my $q = ($bx - $cx) * ($fb - $fa); |
198
|
2
|
|
|
|
|
14
|
my $u = $bx - (($bx - $cx) * $q - ($bx - $ax) * $r)/ |
199
|
|
|
|
|
|
|
(2.0 * sign(max(abs($q - $r), $TINY), $q - $r)); |
200
|
|
|
|
|
|
|
|
201
|
2
|
|
|
|
|
56
|
my $ulim = $bx + $GLIMIT * ($cx - $bx); # We won't go further than this |
202
|
2
|
|
|
|
|
2
|
my $fu; |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
# |
205
|
|
|
|
|
|
|
# Parabolic U between B & C - try it |
206
|
|
|
|
|
|
|
# |
207
|
2
|
50
|
|
|
|
15
|
if (($bx - $u) * ($u - $cx) > 0.0) |
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
208
|
|
|
|
|
|
|
{ |
209
|
0
|
|
|
|
|
0
|
$fu = &$func($u); |
210
|
|
|
|
|
|
|
|
211
|
0
|
0
|
|
|
|
0
|
if ($fu < $fc) |
|
|
0
|
|
|
|
|
|
212
|
|
|
|
|
|
|
{ |
213
|
|
|
|
|
|
|
# Minimum between B & C |
214
|
0
|
|
|
|
|
0
|
$ax = $bx; $fa = $fb; $bx = $u; $fb = $fu; |
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
215
|
0
|
|
|
|
|
0
|
next; |
216
|
|
|
|
|
|
|
} |
217
|
|
|
|
|
|
|
elsif ($fu > $fb) |
218
|
|
|
|
|
|
|
{ |
219
|
|
|
|
|
|
|
# Minimum between A & U |
220
|
0
|
|
|
|
|
0
|
$cx = $u; $fc = $fu; |
|
0
|
|
|
|
|
0
|
|
221
|
0
|
|
|
|
|
0
|
next; |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
0
|
|
|
|
|
0
|
$u = $cx + $GOLD * ($cx - $bx); |
225
|
0
|
|
|
|
|
0
|
$fu = &$func($u); |
226
|
|
|
|
|
|
|
} |
227
|
|
|
|
|
|
|
elsif (($cx - $u) * ($u - $ulim) > 0) |
228
|
|
|
|
|
|
|
{ |
229
|
|
|
|
|
|
|
# parabolic fit between C and limit |
230
|
2
|
|
|
|
|
8
|
$fu = &$func($u); |
231
|
|
|
|
|
|
|
|
232
|
2
|
50
|
|
|
|
18
|
if ($fu < $fc) |
233
|
|
|
|
|
|
|
{ |
234
|
0
|
|
|
|
|
0
|
$bx = $cx; $cx = $u; |
|
0
|
|
|
|
|
0
|
|
235
|
0
|
|
|
|
|
0
|
$u = $cx + $GOLD * ($cx - $bx); |
236
|
0
|
|
|
|
|
0
|
$fb = $fc; $fc = $fu; |
|
0
|
|
|
|
|
0
|
|
237
|
0
|
|
|
|
|
0
|
$fu = &$func($u); |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
elsif (($u - $ulim) * ($ulim - $cx) >= 0) |
241
|
|
|
|
|
|
|
{ |
242
|
|
|
|
|
|
|
# Limit parabolic U to maximum |
243
|
0
|
|
|
|
|
0
|
$u = $ulim; |
244
|
0
|
|
|
|
|
0
|
$fu = &$func($u); |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
else |
247
|
|
|
|
|
|
|
{ |
248
|
|
|
|
|
|
|
# eject parabolic U, use default magnification |
249
|
0
|
|
|
|
|
0
|
$u = $cx + $GOLD * ($cx - $bx); |
250
|
0
|
|
|
|
|
0
|
$fu = &$func($u); |
251
|
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
# Eliminate oldest point & continue |
254
|
2
|
|
|
|
|
5
|
$ax = $bx; $bx = $cx; $cx = $u; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
2
|
|
255
|
2
|
|
|
|
|
3
|
$fa = $fb; $fb = $fc; $fc = $fu; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
6
|
|
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
|
258
|
5
|
|
|
|
|
18
|
return ($ax, $bx, $cx, $fa, $fb, $fc); |
259
|
|
|
|
|
|
|
} |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
# |
262
|
|
|
|
|
|
|
# The complementary step is (3 - sqrt(5))/2, which resolves to 2 - phi. |
263
|
|
|
|
|
|
|
# |
264
|
|
|
|
|
|
|
my $CGOLD = 2 - $GOLD; |
265
|
|
|
|
|
|
|
my $ZEPS = 1e-10; |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
sub Brent |
268
|
|
|
|
|
|
|
{ |
269
|
5
|
|
|
5
|
1
|
7
|
my ($ax, $bx, $cx, $func, $tol, $ITMAX) = @_; |
270
|
5
|
|
|
|
|
41
|
my ($d, $u, $x, $w, $v); # ordinates |
271
|
0
|
|
|
|
|
0
|
my ($fu, $fx, $fw, $fv); # function evaluations |
272
|
|
|
|
|
|
|
|
273
|
5
|
50
|
|
|
|
14
|
$ITMAX = 100 unless (defined $ITMAX); |
274
|
5
|
100
|
|
|
|
16
|
$tol = 1e-8 unless (defined $tol); |
275
|
|
|
|
|
|
|
|
276
|
5
|
|
|
|
|
15
|
my $a = min($ax, $cx); |
277
|
5
|
|
|
|
|
79
|
my $b = max($ax, $cx); |
278
|
|
|
|
|
|
|
|
279
|
5
|
|
|
|
|
54
|
$x = $w = $v = $bx; |
280
|
5
|
|
|
|
|
12
|
$fx = $fw = $fv = &$func($x); |
281
|
5
|
|
|
|
|
26
|
my $e = 0.0; # will be distance moved on the step before last |
282
|
5
|
|
|
|
|
6
|
my $iter = 0; |
283
|
|
|
|
|
|
|
|
284
|
5
|
|
|
|
|
14
|
while ($iter < $ITMAX) |
285
|
|
|
|
|
|
|
{ |
286
|
49
|
|
|
|
|
86
|
my $xm = 0.5 * ($a + $b); |
287
|
49
|
|
|
|
|
69
|
my $tol1 = $tol * abs($x) + $ZEPS; |
288
|
49
|
|
|
|
|
51
|
my $tol2 = 2.0 * $tol1; |
289
|
|
|
|
|
|
|
|
290
|
49
|
100
|
|
|
|
125
|
last if (abs($x - $xm) <= ($tol2 - 0.5 * ($b - $a))); |
291
|
|
|
|
|
|
|
|
292
|
44
|
100
|
|
|
|
74
|
if (abs($e) > $tol1) |
293
|
|
|
|
|
|
|
{ |
294
|
39
|
|
|
|
|
49
|
my $r = ($x-$w) * ($fx-$fv); |
295
|
39
|
|
|
|
|
44
|
my $q = ($x-$v) * ($fx-$fw); |
296
|
39
|
|
|
|
|
51
|
my $p = ($x-$v) * $q-($x-$w)*$r; |
297
|
|
|
|
|
|
|
|
298
|
39
|
100
|
|
|
|
78
|
$p = -$p if (($q = 2 * ($q - $r)) > 0.0); |
299
|
|
|
|
|
|
|
|
300
|
39
|
|
|
|
|
33
|
$q = abs($q); |
301
|
39
|
|
|
|
|
34
|
my $etemp = $e; |
302
|
39
|
|
|
|
|
33
|
$e = $d; |
303
|
|
|
|
|
|
|
|
304
|
39
|
50
|
66
|
|
|
259
|
unless ( (abs($p) >= abs(0.5 * $q * $etemp)) || |
|
|
|
66
|
|
|
|
|
305
|
|
|
|
|
|
|
($p <= $q * ($a - $x)) || ($p >= $q * ($b - $x)) ) |
306
|
|
|
|
|
|
|
{ |
307
|
|
|
|
|
|
|
# |
308
|
|
|
|
|
|
|
# Parabolic step OK here - take it. |
309
|
|
|
|
|
|
|
# |
310
|
34
|
|
|
|
|
34
|
$d = $p/$q; |
311
|
34
|
|
|
|
|
32
|
$u = $x + $d; |
312
|
|
|
|
|
|
|
|
313
|
34
|
100
|
100
|
|
|
125
|
if ( (($u - $a) < $tol2) || (($b - $u) < $tol2) ) |
314
|
|
|
|
|
|
|
{ |
315
|
5
|
|
|
|
|
14
|
$d = sign($tol1, $xm - $x); |
316
|
|
|
|
|
|
|
} |
317
|
34
|
|
|
|
|
317
|
goto dcomp; # Skip the golden section step. |
318
|
|
|
|
|
|
|
} |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
# |
322
|
|
|
|
|
|
|
# Golden section step. |
323
|
|
|
|
|
|
|
# |
324
|
10
|
100
|
|
|
|
20
|
$e = (($x >= $xm) ? $a : $b) - $x; |
325
|
10
|
|
|
|
|
9
|
$d = $CGOLD * $e; |
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
# |
328
|
|
|
|
|
|
|
# We arrive here with d from Golden section or parabolic step. |
329
|
|
|
|
|
|
|
# |
330
|
44
|
100
|
|
|
|
92
|
dcomp: |
331
|
|
|
|
|
|
|
$u = $x + ((abs($d) >= $tol1) ? $d : sign($tol1, $d)); |
332
|
44
|
|
|
|
|
111
|
$fu = &$func($u); # 1 &$function evaluation per iteration |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
# |
335
|
|
|
|
|
|
|
# Decide what to do with &$function evaluation |
336
|
|
|
|
|
|
|
# |
337
|
44
|
100
|
|
|
|
238
|
if ($fu <= $fx) |
338
|
|
|
|
|
|
|
{ |
339
|
33
|
100
|
|
|
|
46
|
if ($u >= $x) |
340
|
|
|
|
|
|
|
{ |
341
|
14
|
|
|
|
|
15
|
$a = $x; |
342
|
|
|
|
|
|
|
} |
343
|
|
|
|
|
|
|
else |
344
|
|
|
|
|
|
|
{ |
345
|
19
|
|
|
|
|
22
|
$b = $x; |
346
|
|
|
|
|
|
|
} |
347
|
33
|
|
|
|
|
31
|
$v = $w; $fv = $fw; |
|
33
|
|
|
|
|
33
|
|
348
|
33
|
|
|
|
|
29
|
$w = $x; $fw = $fx; |
|
33
|
|
|
|
|
29
|
|
349
|
33
|
|
|
|
|
29
|
$x = $u; $fx = $fu; |
|
33
|
|
|
|
|
32
|
|
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
else |
352
|
|
|
|
|
|
|
{ |
353
|
11
|
100
|
|
|
|
17
|
if ($u < $x) |
354
|
|
|
|
|
|
|
{ |
355
|
5
|
|
|
|
|
6
|
$a = $u; |
356
|
|
|
|
|
|
|
} |
357
|
|
|
|
|
|
|
else |
358
|
|
|
|
|
|
|
{ |
359
|
6
|
|
|
|
|
7
|
$b = $u; |
360
|
|
|
|
|
|
|
} |
361
|
|
|
|
|
|
|
|
362
|
11
|
100
|
100
|
|
|
60
|
if ($fu <= $fw || $w == $x) |
|
|
50
|
33
|
|
|
|
|
|
|
|
33
|
|
|
|
|
363
|
|
|
|
|
|
|
{ |
364
|
7
|
|
|
|
|
10
|
$v = $w; $fv = $fw; |
|
7
|
|
|
|
|
5
|
|
365
|
7
|
|
|
|
|
7
|
$w = $u; $fw = $fu; |
|
7
|
|
|
|
|
8
|
|
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
elsif ( $fu <= $fv || $v == $x || $v == $w ) |
368
|
|
|
|
|
|
|
{ |
369
|
4
|
|
|
|
|
4
|
$v = $u; $fv = $fu; |
|
4
|
|
|
|
|
5
|
|
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
|
373
|
44
|
|
|
|
|
99
|
$iter++; |
374
|
|
|
|
|
|
|
} |
375
|
|
|
|
|
|
|
|
376
|
5
|
50
|
|
|
|
19
|
carp "Brent Exceed Maximum Iterations.\n" if ($iter >= $ITMAX); |
377
|
5
|
|
|
|
|
21
|
return ($x, $fx); |
378
|
|
|
|
|
|
|
} |
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
1; |