line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::BigSym; |
2
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
13178
|
use 5.014; |
|
1
|
|
|
|
|
2
|
|
4
|
1
|
|
|
1
|
|
4
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
16
|
|
5
|
1
|
|
|
1
|
|
2
|
use warnings; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
26
|
|
6
|
|
|
|
|
|
|
|
7
|
1
|
|
|
1
|
|
212
|
use Math::GMPq qw(); |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
use Math::GMPz qw(); |
9
|
|
|
|
|
|
|
use Scalar::Util qw(); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
use Math::Algebra::Symbols (symbols => '_sym'); |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
our $VERSION = '0.01'; |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=encoding utf8 |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=head1 NAME |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
Math::BigSym - Fast symbolic calculations with arbitrary large rationals. |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=head1 VERSION |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
Version 0.01 |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=head1 SYNOPSIS |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
use 5.014; |
28
|
|
|
|
|
|
|
use Math::BigSym qw(:constant); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
# Rational operations |
31
|
|
|
|
|
|
|
my $x = 2/3; |
32
|
|
|
|
|
|
|
say $x * 3; # => 2 |
33
|
|
|
|
|
|
|
say 2 / $x; # => 3 |
34
|
|
|
|
|
|
|
say $x; # => "2/3" |
35
|
|
|
|
|
|
|
say 1 + 4.5**(-3); # => "737/729" |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# Floating-point operations |
38
|
|
|
|
|
|
|
say "equal" if (1.1 + 2.2 == 3.3); # => "equal" |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# Symbolic operations |
41
|
|
|
|
|
|
|
say log(-5) / 2; # => "1/2*log(-5)" |
42
|
|
|
|
|
|
|
say sqrt(exp(-1)); # => "sqrt(exp(-1))" |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
=head1 DESCRIPTION |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
Math::BigSym provides a transparent interface to L and L, |
47
|
|
|
|
|
|
|
focusing on performance and easy-to-use. |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
=head1 HOW IT WORKS |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
Math::BigSym tries really hard to do the right thing and as efficiently as possible. |
52
|
|
|
|
|
|
|
For example, if you say C<$x**$y>, it first checks to see if C<$x> and C<$y> are integers, |
53
|
|
|
|
|
|
|
so it can optimize the operation to integer exponentiation, by calling the corresponding |
54
|
|
|
|
|
|
|
I function. Otherwise, it will check to see if C<$y> is an integer and will do rational |
55
|
|
|
|
|
|
|
exponentiation, by multiplying C<$x> by itself C<$y> times. If both conditions fail, it will |
56
|
|
|
|
|
|
|
do symbolic exponentiation, using the relation: C. |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
All numbers in Math::BigSym are stored as rational L objects. Each operation |
59
|
|
|
|
|
|
|
outside the functions provided by L, is done symbolically, calling the corresponding |
60
|
|
|
|
|
|
|
L functions. |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
=head1 IMPORT/EXPORT |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
Math::BigSym does not export anything by default, but it recognizes the following list of words: |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
:constant # will make any number a Math::BigSym object |
67
|
|
|
|
|
|
|
i # "i" number (sqrt(-1)) |
68
|
|
|
|
|
|
|
e # "e" constant (2.7182...) |
69
|
|
|
|
|
|
|
pi # "pi" constant (3.1415...) |
70
|
|
|
|
|
|
|
tau # "tau" constant (2*pi) |
71
|
|
|
|
|
|
|
phi # Golden ratio constant (1.618...) |
72
|
|
|
|
|
|
|
ln2 # Natural logarithm of two (log(2)) |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
The syntax for importing something, is: |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
use Math::BigSym qw(:constant pi); |
77
|
|
|
|
|
|
|
say cos(2*pi); |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
B C<:constant> is lexical to the current scope only. |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
=head1 SUBROUTINES/METHODS |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=cut |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
use overload |
86
|
|
|
|
|
|
|
'""' => \&stringify, |
87
|
|
|
|
|
|
|
'0+' => \&numify, |
88
|
|
|
|
|
|
|
bool => \&boolify, |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
'+' => sub { $_[0]->add($_[1]) }, |
91
|
|
|
|
|
|
|
'*' => sub { $_[0]->mul($_[1]) }, |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
'==' => sub { $_[0]->eq($_[1]) }, |
94
|
|
|
|
|
|
|
'!=' => sub { $_[0]->ne($_[1]) }, |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
#'&' => sub { $_[0]->and($_[1]) }, |
97
|
|
|
|
|
|
|
#'|' => sub { $_[0]->ior($_[1]) }, |
98
|
|
|
|
|
|
|
#'^' => sub { $_[0]->xor($_[1]) }, |
99
|
|
|
|
|
|
|
'~' => \&conjugate, |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
#'++' => \&binc, |
102
|
|
|
|
|
|
|
#'--' => \&bdec, |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
'>' => sub { Math::BigSym::gt($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
105
|
|
|
|
|
|
|
'>=' => sub { Math::BigSym::ge($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
106
|
|
|
|
|
|
|
'<' => sub { Math::BigSym::lt($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
107
|
|
|
|
|
|
|
'<=' => sub { Math::BigSym::le($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
108
|
|
|
|
|
|
|
'<=>' => sub { Math::BigSym::cmp($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
#'>>' => sub { Math::BigSym::rsft($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
111
|
|
|
|
|
|
|
#'<<' => sub { Math::BigSym::lsft($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
'**' => sub { Math::BigSym::pow($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
114
|
|
|
|
|
|
|
'-' => sub { Math::BigSym::sub($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
115
|
|
|
|
|
|
|
'/' => sub { Math::BigSym::div($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
#'%' => sub { Math::BigSym::mod($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
118
|
|
|
|
|
|
|
#atan2 => sub { Math::BigSym::atan2($_[2] ? ($_[1], $_[0]) : ($_[0], $_[1])) }, |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
eq => sub { "$_[0]" eq "$_[1]" }, |
121
|
|
|
|
|
|
|
ne => sub { "$_[0]" ne "$_[1]" }, |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
cmp => sub { $_[2] ? "$_[1]" cmp $_[0]->stringify : $_[0]->stringify cmp "$_[1]" }, |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
neg => \&neg, |
126
|
|
|
|
|
|
|
sin => \&sin, |
127
|
|
|
|
|
|
|
cos => \&cos, |
128
|
|
|
|
|
|
|
exp => \&exp, |
129
|
|
|
|
|
|
|
log => \&ln, |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
#int => \&int, |
132
|
|
|
|
|
|
|
abs => \&abs, |
133
|
|
|
|
|
|
|
sqrt => \&sqrt; |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
{ |
136
|
|
|
|
|
|
|
my %constants = ( |
137
|
|
|
|
|
|
|
e => \&e, |
138
|
|
|
|
|
|
|
i => \&i, |
139
|
|
|
|
|
|
|
phi => \&phi, |
140
|
|
|
|
|
|
|
ln2 => \&ln2, |
141
|
|
|
|
|
|
|
tau => \&tau, |
142
|
|
|
|
|
|
|
pi => \&pi, |
143
|
|
|
|
|
|
|
); |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
sub import { |
146
|
|
|
|
|
|
|
shift; |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
my $caller = caller(0); |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
foreach my $name (@_) { |
151
|
|
|
|
|
|
|
if ($name eq ':constant') { |
152
|
|
|
|
|
|
|
overload::constant |
153
|
|
|
|
|
|
|
integer => sub { _new_int(shift, 10) }, |
154
|
|
|
|
|
|
|
float => sub { _new_float(shift) }, |
155
|
|
|
|
|
|
|
binary => sub { |
156
|
|
|
|
|
|
|
my ($const) = @_; |
157
|
|
|
|
|
|
|
my $prefix = substr($const, 0, 2); |
158
|
|
|
|
|
|
|
$prefix eq '0x' ? _new_int(substr($const, 2), 16) |
159
|
|
|
|
|
|
|
: $prefix eq '0b' ? _new_int(substr($const, 2), 2) |
160
|
|
|
|
|
|
|
: _new_int(substr($const, 1), 8); |
161
|
|
|
|
|
|
|
}, |
162
|
|
|
|
|
|
|
; |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
elsif (exists $constants{$name}) { |
165
|
|
|
|
|
|
|
no strict 'refs'; |
166
|
|
|
|
|
|
|
my $caller_sub = $caller . '::' . $name; |
167
|
|
|
|
|
|
|
if (!defined &$caller_sub) { |
168
|
|
|
|
|
|
|
my $sub = $constants{$name}; |
169
|
|
|
|
|
|
|
my $value = Math::BigSym->$sub; |
170
|
|
|
|
|
|
|
*$caller_sub = sub() { $value } |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
else { |
174
|
|
|
|
|
|
|
die "unknown import: <<$name>>"; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
return; |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
# Convert any mpz object to mpq |
182
|
|
|
|
|
|
|
sub _mpz2mpq { |
183
|
|
|
|
|
|
|
my $r = Math::GMPq::Rmpq_init(); |
184
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_z($r, $_[0]); |
185
|
|
|
|
|
|
|
$r; |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
# Return the numerator of an mpq integer object as mpz |
189
|
|
|
|
|
|
|
sub _int2mpz { |
190
|
|
|
|
|
|
|
my $z = Math::GMPz::Rmpz_init(); |
191
|
|
|
|
|
|
|
Math::GMPq::Rmpq_get_num($z, $_[0]); |
192
|
|
|
|
|
|
|
$z; |
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
sub _either { |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
my $same = 1; |
198
|
|
|
|
|
|
|
my ($ref, @args); |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
foreach my $val (@_) { |
201
|
|
|
|
|
|
|
if (ref($val) eq __PACKAGE__) { |
202
|
|
|
|
|
|
|
push @args, $$val; |
203
|
|
|
|
|
|
|
} |
204
|
|
|
|
|
|
|
else { |
205
|
|
|
|
|
|
|
push @args, _str2mpq($val); |
206
|
|
|
|
|
|
|
} |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
if ($same) { |
209
|
|
|
|
|
|
|
my $arg = $args[-1]; |
210
|
|
|
|
|
|
|
if (defined($ref)) { |
211
|
|
|
|
|
|
|
if (ref($arg) eq $ref) { |
212
|
|
|
|
|
|
|
$same = ref($arg); |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
else { |
215
|
|
|
|
|
|
|
$same = 0; |
216
|
|
|
|
|
|
|
} |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
else { |
219
|
|
|
|
|
|
|
$ref = ref($arg); |
220
|
|
|
|
|
|
|
} |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
$same ? @args : (map { ref($_) eq 'Math::GMPq' ? _sym($_) : $_ } @args); |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
sub _symbols { |
228
|
|
|
|
|
|
|
map { |
229
|
|
|
|
|
|
|
my $val = ref($_) eq __PACKAGE__ ? $$_ : $_; |
230
|
|
|
|
|
|
|
index(ref($val), 'Math::Algebra::Symbols') == 0 ? $val : _sym($val); |
231
|
|
|
|
|
|
|
} @_; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub _str2rat { |
235
|
|
|
|
|
|
|
my $str = lc($_[0] || "0"); |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
my $sign = substr($str, 0, 1); |
238
|
|
|
|
|
|
|
if ($sign eq '-') { |
239
|
|
|
|
|
|
|
substr($str, 0, 1, ''); |
240
|
|
|
|
|
|
|
$sign = '-'; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
else { |
243
|
|
|
|
|
|
|
substr($str, 0, 1, '') if ($sign eq '+'); |
244
|
|
|
|
|
|
|
$sign = ''; |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
my $i; |
248
|
|
|
|
|
|
|
if (($i = index($str, 'e')) != -1) { |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
my $exp = substr($str, $i + 1); |
251
|
|
|
|
|
|
|
my ($before, $after) = split(/\./, substr($str, 0, $i)); |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
if (!defined($after)) { # return faster for numbers like "13e2" |
254
|
|
|
|
|
|
|
if ($exp >= 0) { |
255
|
|
|
|
|
|
|
return ("$sign$before" . ('0' x $exp)); |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
else { |
258
|
|
|
|
|
|
|
$after = ''; |
259
|
|
|
|
|
|
|
} |
260
|
|
|
|
|
|
|
} |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
my $numerator = "$before$after"; |
263
|
|
|
|
|
|
|
my $denominator = "1"; |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
if ($exp < 1) { |
266
|
|
|
|
|
|
|
$denominator .= '0' x (CORE::abs($exp) + length($after)); |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
else { |
269
|
|
|
|
|
|
|
my $diff = ($exp - length($after)); |
270
|
|
|
|
|
|
|
if ($diff >= 0) { |
271
|
|
|
|
|
|
|
$numerator .= '0' x $diff; |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
else { |
274
|
|
|
|
|
|
|
my $s = "$before$after"; |
275
|
|
|
|
|
|
|
substr($s, $exp + length($before), 0, '.'); |
276
|
|
|
|
|
|
|
return _str2rat("$sign$s"); |
277
|
|
|
|
|
|
|
} |
278
|
|
|
|
|
|
|
} |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
"$sign$numerator/$denominator"; |
281
|
|
|
|
|
|
|
} |
282
|
|
|
|
|
|
|
elsif (($i = index($str, '.')) != -1) { |
283
|
|
|
|
|
|
|
my ($before, $after) = (substr($str, 0, $i), substr($str, $i + 1)); |
284
|
|
|
|
|
|
|
if ($after =~ tr/0// == length($after)) { |
285
|
|
|
|
|
|
|
return "$sign$before"; |
286
|
|
|
|
|
|
|
} |
287
|
|
|
|
|
|
|
$sign . ("$before$after/1" =~ s/^0+//r) . ('0' x length($after)); |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
else { |
290
|
|
|
|
|
|
|
"$sign$str"; |
291
|
|
|
|
|
|
|
} |
292
|
|
|
|
|
|
|
} |
293
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
# Converts a string into an mpq object |
295
|
|
|
|
|
|
|
sub _str2mpq { |
296
|
|
|
|
|
|
|
my $r = Math::GMPq::Rmpq_init(); |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
$_[0] || do { |
299
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_ui($r, 0, 1); |
300
|
|
|
|
|
|
|
return $r; |
301
|
|
|
|
|
|
|
}; |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
my $rat = $_[0] =~ tr/.Ee// ? _str2rat($_[0] =~ tr/_//dr) : ($_[0] =~ tr/_+//dr); |
304
|
|
|
|
|
|
|
if ($rat !~ m{^\s*[-+]?[0-9]+(?>\s*/\s*[1-9]+[0-9]*)?\s*\z}) { |
305
|
|
|
|
|
|
|
require Carp; |
306
|
|
|
|
|
|
|
Carp::confess("Not a base-10 numerical value: <<$_[0]>>"); |
307
|
|
|
|
|
|
|
} |
308
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_str($r, $rat, 10); |
309
|
|
|
|
|
|
|
Math::GMPq::Rmpq_canonicalize($r) if (index($rat, '/') != -1); |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
$r; |
312
|
|
|
|
|
|
|
} |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
# |
315
|
|
|
|
|
|
|
## Constants |
316
|
|
|
|
|
|
|
# |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
my $ZERO = _new_int(0); |
319
|
|
|
|
|
|
|
my $ONE = _new_int(1); |
320
|
|
|
|
|
|
|
my $INF = _new(-Math::Algebra::Symbols::Sum::zero()->Log); |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=head2 pi |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
BigSym->pi # => BigSym |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
Returns a symbolic object to represent the number B. |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
=cut |
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
{ |
331
|
|
|
|
|
|
|
my $pi = _new(Math::Algebra::Symbols::Sum::pi()); |
332
|
|
|
|
|
|
|
##my $pi = _new(CORE::log(Math::Algebra::Symbols::Sum::mOne()) / Math::Algebra::Symbols::Sum::i()); |
333
|
|
|
|
|
|
|
sub pi { $pi } |
334
|
|
|
|
|
|
|
} |
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
=head2 tau |
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
BigSym->tau # => BigSym |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
Returns a symbolic object to represent the number B (which is C<2*PI>). |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=cut |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
{ |
345
|
|
|
|
|
|
|
my $tau = _new(Math::Algebra::Symbols::Sum::pi()->multiply(Math::Algebra::Symbols::Sum::two())); |
346
|
|
|
|
|
|
|
sub tau { $tau } |
347
|
|
|
|
|
|
|
} |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
=head2 i |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
BigSym->i # => BigSym |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
Returns a symbolic object to represent the number B. |
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
=cut |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
{ |
358
|
|
|
|
|
|
|
my $i = _new(Math::Algebra::Symbols::Sum::i()); |
359
|
|
|
|
|
|
|
sub i { $i } |
360
|
|
|
|
|
|
|
} |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
=head2 e |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
BigSym->e # => BigSym |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
Returns a symbolic object to represent the B mathematical constant. |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
=cut |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
{ |
371
|
|
|
|
|
|
|
my $e = _new(Math::Algebra::Symbols::Sum::one()->Exp); |
372
|
|
|
|
|
|
|
sub e { $e } |
373
|
|
|
|
|
|
|
} |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
=head2 ln2 |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
BigSym->ln2 # => BigSym |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
Returns a symbolic object to represent the natural logarithm of two (C). |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
=cut |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
{ |
384
|
|
|
|
|
|
|
my $ln2 = _new(Math::Algebra::Symbols::Sum::two()->Log); |
385
|
|
|
|
|
|
|
sub ln2 { $ln2 } |
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
=head2 phi |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
BigSym->phi # => BigSym |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
Returns a symbolic object to represent the Golden Ratio constant (C<(sqrt(5)+1)/2>). |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
=cut |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
{ |
397
|
|
|
|
|
|
|
my $phi = _new(Math::Algebra::Symbols::Sum::one()->add(_sym(5)->Sqrt)->divide(Math::Algebra::Symbols::Sum::two())); |
398
|
|
|
|
|
|
|
sub phi { $phi } |
399
|
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
# |
402
|
|
|
|
|
|
|
## Initialization |
403
|
|
|
|
|
|
|
# |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
sub _new { |
406
|
|
|
|
|
|
|
bless \$_[0], __PACKAGE__; |
407
|
|
|
|
|
|
|
} |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
=head2 new |
410
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
BigSym->new(Scalar) # => BigSym |
412
|
|
|
|
|
|
|
BigSym->new(Scalar, Scalar) # => BigSym |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
Returns a new BigSym object with the value specified in the first argument, |
415
|
|
|
|
|
|
|
which can be a Perl numerical value, a string representing a number in a |
416
|
|
|
|
|
|
|
rational form, such as C<"1/2">, a string holding a floating-point number, |
417
|
|
|
|
|
|
|
such as C<"0.5">, or a string holding an integer, such as C<"255">, or a symbol. |
418
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
The second argument specifies the base of the number, which can range from 2 |
420
|
|
|
|
|
|
|
to 36 inclusive and defaults to 10. |
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
This sets a symbol: |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
my $x = Math::BigSym->new('x'); |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
This sets an hexadecimal number: |
427
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
my $y = Math::BigSym->new("deadbeef", 16); |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
B no prefix, such as C<"0x"> or C<"0b">, is allowed as part of the number. |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
=cut |
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
sub new { |
435
|
|
|
|
|
|
|
my ($class, $str, $base) = @_; |
436
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
$str || return $ZERO; |
438
|
|
|
|
|
|
|
$str =~ tr/_//d; |
439
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
if (defined($base)) { |
441
|
|
|
|
|
|
|
if ($base < 2 or $base > 36) { |
442
|
|
|
|
|
|
|
require Carp; |
443
|
|
|
|
|
|
|
Carp::croak("base must be between 2 and 36, got $base"); |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
} |
446
|
|
|
|
|
|
|
else { |
447
|
|
|
|
|
|
|
$base = 10; |
448
|
|
|
|
|
|
|
} |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
my $obj; |
451
|
|
|
|
|
|
|
if ($base == 10 and Scalar::Util::looks_like_number($str)) { |
452
|
|
|
|
|
|
|
if ((~$str & $str) eq '0' and CORE::int($str) eq $str) { |
453
|
|
|
|
|
|
|
$obj = Math::GMPq::Rmpq_init(); |
454
|
|
|
|
|
|
|
if ($str >= 0) { |
455
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_ui($obj, $str, 1); |
456
|
|
|
|
|
|
|
} |
457
|
|
|
|
|
|
|
else { |
458
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_si($obj, $str, 1); |
459
|
|
|
|
|
|
|
} |
460
|
|
|
|
|
|
|
} |
461
|
|
|
|
|
|
|
else { |
462
|
|
|
|
|
|
|
$obj = _str2mpq($str); |
463
|
|
|
|
|
|
|
} |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
elsif ($base != 10 or $str =~ m{^\s*[-+]?[0-9]+(?>\s*/\s*[1-9]+[0-9]*)?\s*\z}) { |
466
|
|
|
|
|
|
|
$obj = Math::GMPq::Rmpq_init(); |
467
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_str($obj, $str, $base); |
468
|
|
|
|
|
|
|
Math::GMPq::Rmpq_canonicalize($obj) if index($str, '/') != -1; |
469
|
|
|
|
|
|
|
} |
470
|
|
|
|
|
|
|
else { |
471
|
|
|
|
|
|
|
$obj = _sym($str); |
472
|
|
|
|
|
|
|
} |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
bless \$obj, $class; |
475
|
|
|
|
|
|
|
} |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
sub _new_int { |
478
|
|
|
|
|
|
|
my ($int, $base) = @_; |
479
|
|
|
|
|
|
|
|
480
|
|
|
|
|
|
|
my $r = Math::GMPq::Rmpq_init(); |
481
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_str($r, "$int/1" =~ tr/_//rd, $base // 10); |
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
bless \$r, __PACKAGE__; |
484
|
|
|
|
|
|
|
} |
485
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
sub _new_float { |
487
|
|
|
|
|
|
|
my ($float) = @_; |
488
|
|
|
|
|
|
|
bless \_str2mpq($float), __PACKAGE__; |
489
|
|
|
|
|
|
|
} |
490
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
# |
492
|
|
|
|
|
|
|
## Conversions |
493
|
|
|
|
|
|
|
# |
494
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
=head2 stringify |
496
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
$x->stringify # => Scalar |
498
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
Returns a string representing the value of C<$x>. |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
=cut |
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
sub stringify { |
504
|
|
|
|
|
|
|
${$_[0]}; |
505
|
|
|
|
|
|
|
} |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
=head2 numify |
508
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
$x->numify # => Scalar |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
If C<$x> is a rational number, it returns a Perl numerical scalar with |
512
|
|
|
|
|
|
|
the value of C<$x>, truncated if needed. Otherwise, it just returns the |
513
|
|
|
|
|
|
|
symbolic value stored inside C<$x>. |
514
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
=cut |
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
sub numify { |
518
|
|
|
|
|
|
|
my $x = ${$_[0]}; |
519
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? Math::GMPq::Rmpq_get_d($x) : $x; |
520
|
|
|
|
|
|
|
} |
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
=head2 boolify |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
$x->boolify # => Bool |
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
Returns a true value when the number is not zero. False otherwise. |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
=cut |
529
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
sub boolify { |
531
|
|
|
|
|
|
|
my $x = ${$_[0]}; |
532
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? !!Math::GMPq::Rmpq_sgn($x) : $x; |
533
|
|
|
|
|
|
|
} |
534
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
# |
536
|
|
|
|
|
|
|
## Arithmetic operations |
537
|
|
|
|
|
|
|
# |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
=head2 neg |
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
$x->neg # => BigSym |
542
|
|
|
|
|
|
|
-$x # => BigSym |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
Returns the negated value of C<$x>. |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
=cut |
547
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
sub neg { |
549
|
|
|
|
|
|
|
my ($x) = _either(@_); |
550
|
|
|
|
|
|
|
_new(-$x); |
551
|
|
|
|
|
|
|
} |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
=head2 abs |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
$x->abs # => BigSym |
556
|
|
|
|
|
|
|
abs($x) # => BigSym |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
Absolute value of C<$x>. |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
=cut |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
sub abs { |
563
|
|
|
|
|
|
|
my ($x) = _either(@_); |
564
|
|
|
|
|
|
|
_new(CORE::abs($x)); |
565
|
|
|
|
|
|
|
} |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
=head2 add |
568
|
|
|
|
|
|
|
|
569
|
|
|
|
|
|
|
$x->add(BigSym) # => BigSym |
570
|
|
|
|
|
|
|
$x->add(Scalar) # => BigSym |
571
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
BigSym + BigSym # => BigSym |
573
|
|
|
|
|
|
|
BigSym + Scalar # => BigSym |
574
|
|
|
|
|
|
|
Scalar + BigSym # => BigSym |
575
|
|
|
|
|
|
|
|
576
|
|
|
|
|
|
|
Adds C<$y> to C<$x> and returns the result. |
577
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
=cut |
579
|
|
|
|
|
|
|
|
580
|
|
|
|
|
|
|
sub add { |
581
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
582
|
|
|
|
|
|
|
_new($x + $y); |
583
|
|
|
|
|
|
|
} |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
=head2 sub |
586
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
$x->sub(BigSym) # => BigSym |
588
|
|
|
|
|
|
|
$x->sub(Scalar) # => BigSym |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
BigSym - BigSym # => BigSym |
591
|
|
|
|
|
|
|
BigSym - Scalar # => BigSym |
592
|
|
|
|
|
|
|
Scalar - BigSym # => BigSym |
593
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
Subtracts C<$y> from C<$x> and returns the result. |
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
=cut |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
sub sub { |
599
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
600
|
|
|
|
|
|
|
_new($x - $y); |
601
|
|
|
|
|
|
|
} |
602
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
=head2 mul |
604
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
$x->mul(BigSym) # => BigSym |
606
|
|
|
|
|
|
|
$x->mul(Scalar) # => BigSym |
607
|
|
|
|
|
|
|
|
608
|
|
|
|
|
|
|
BigSym * BigSym # => BigSym |
609
|
|
|
|
|
|
|
BigSym * Scalar # => BigSym |
610
|
|
|
|
|
|
|
Scalar * BigSym # => BigSym |
611
|
|
|
|
|
|
|
|
612
|
|
|
|
|
|
|
Multiplies C<$x> by C<$y> and returns the result. |
613
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
=cut |
615
|
|
|
|
|
|
|
|
616
|
|
|
|
|
|
|
sub mul { |
617
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
618
|
|
|
|
|
|
|
_new($x * $y); |
619
|
|
|
|
|
|
|
} |
620
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
=head2 div |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
$x->div(BigSym) # => BigSym |
624
|
|
|
|
|
|
|
$x->div(Scalar) # => BigSym |
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
BigSym / BigSym # => BigSym |
627
|
|
|
|
|
|
|
BigSym / Scalar # => BigSym |
628
|
|
|
|
|
|
|
Scalar / BigSym # => BigSym |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
Divides C<$x> by C<$y> and returns the result. |
631
|
|
|
|
|
|
|
Returns C when C<$y> is zero. |
632
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
=cut |
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
sub div { |
636
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
637
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
# Handle division by zero |
639
|
|
|
|
|
|
|
if (ref($y) eq 'Math::GMPq' and !Math::GMPq::Rmpq_sgn($y)) { |
640
|
|
|
|
|
|
|
return $INF * Math::GMPq::Rmpq_sgn($x); |
641
|
|
|
|
|
|
|
} |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
_new($x / $y); |
644
|
|
|
|
|
|
|
} |
645
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
=head2 pow |
647
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
$x->pow(BigSym) # => BigSym |
649
|
|
|
|
|
|
|
$x->pow(Scalar) # => BigSym |
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
BigSym ** BigSym # => BigSym |
652
|
|
|
|
|
|
|
BigSym ** Scalar # => BigSym |
653
|
|
|
|
|
|
|
Scalar ** BigSym # => BigSym |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
Raises C<$x> to power C<$y> symbolically, based on the relation: |
656
|
|
|
|
|
|
|
C. When C<$x> and C<$y> are both integers, |
657
|
|
|
|
|
|
|
or when C<$x> is a rational and C<$y> is an integer smaller than 2^12, |
658
|
|
|
|
|
|
|
it will perform the actual calculation. |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
=cut |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
sub pow { |
663
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
664
|
|
|
|
|
|
|
|
665
|
|
|
|
|
|
|
# Do integer exponentiation when both are integers |
666
|
|
|
|
|
|
|
if (ref($x) eq 'Math::GMPq' and ref($y) eq 'Math::GMPq') { |
667
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
my $ysgn = Math::GMPq::Rmpq_sgn($y); |
669
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
if (!$ysgn) { |
671
|
|
|
|
|
|
|
return $ONE; |
672
|
|
|
|
|
|
|
} |
673
|
|
|
|
|
|
|
elsif ($ysgn > 0 and !Math::GMPq::Rmpq_sgn($x)) { |
674
|
|
|
|
|
|
|
return $ZERO; |
675
|
|
|
|
|
|
|
} |
676
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
my $xint = Math::GMPq::Rmpq_integer_p($x); |
678
|
|
|
|
|
|
|
my $yint = Math::GMPq::Rmpq_integer_p($y); |
679
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
if ($xint and $yint) { |
681
|
|
|
|
|
|
|
my $pow = Math::GMPq::Rmpq_get_d($y); |
682
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
my $z = _int2mpz($x); |
684
|
|
|
|
|
|
|
Math::GMPz::Rmpz_pow_ui($z, $z, CORE::abs($pow)); |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
my $q = Math::GMPq::Rmpq_init(); |
687
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_z($q, $z); |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
if ($pow < 0) { |
690
|
|
|
|
|
|
|
if (!Math::GMPq::Rmpq_sgn($q)) { |
691
|
|
|
|
|
|
|
return $INF; |
692
|
|
|
|
|
|
|
} |
693
|
|
|
|
|
|
|
Math::GMPq::Rmpq_inv($q, $q); |
694
|
|
|
|
|
|
|
} |
695
|
|
|
|
|
|
|
|
696
|
|
|
|
|
|
|
return _new($q); |
697
|
|
|
|
|
|
|
} |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
# When $y is an integer, multiply $x by itself $y times |
700
|
|
|
|
|
|
|
elsif ($yint) { |
701
|
|
|
|
|
|
|
my $pow = Math::GMPq::Rmpq_get_d($y); |
702
|
|
|
|
|
|
|
$pow = -$pow if $ysgn < 0; |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
if ($pow <= 0xFFF) { |
705
|
|
|
|
|
|
|
my $r = Math::GMPq::Rmpq_init(); |
706
|
|
|
|
|
|
|
Math::GMPq::Rmpq_set_ui($r, 1, 1); |
707
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
for (1 .. $pow) { |
709
|
|
|
|
|
|
|
Math::GMPq::Rmpq_mul($r, $r, $x); |
710
|
|
|
|
|
|
|
} |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
Math::GMPq::Rmpq_inv($r, $r) if $ysgn < 0; |
713
|
|
|
|
|
|
|
return _new($r); |
714
|
|
|
|
|
|
|
} |
715
|
|
|
|
|
|
|
} |
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
$x = _sym($x); |
718
|
|
|
|
|
|
|
$y = _sym($y); |
719
|
|
|
|
|
|
|
} |
720
|
|
|
|
|
|
|
|
721
|
|
|
|
|
|
|
_new($x->Log->multiply($y)->Exp); |
722
|
|
|
|
|
|
|
} |
723
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
=head2 root |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
$x->root(BigSym) # => BigSym |
727
|
|
|
|
|
|
|
$x->root(Scalar) # => BigSym |
728
|
|
|
|
|
|
|
|
729
|
|
|
|
|
|
|
Returns a symbolic representation for the Ith root of C<$x>, |
730
|
|
|
|
|
|
|
based on the relation: C. |
731
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
=cut |
733
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
sub root { |
735
|
|
|
|
|
|
|
my ($x, $y) = _symbols(@_); |
736
|
|
|
|
|
|
|
_new($x->Log->divide($y)->Exp); |
737
|
|
|
|
|
|
|
} |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
=head2 sqrt |
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
$x->sqrt # => BigSym |
742
|
|
|
|
|
|
|
sqrt($x) # => BigSym |
743
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
Returns a symbolic representation for the square root of C<$x>. |
745
|
|
|
|
|
|
|
When C<$x> is an integer that is a perfect square, it will perform |
746
|
|
|
|
|
|
|
the actual calculation. |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
=cut |
749
|
|
|
|
|
|
|
|
750
|
|
|
|
|
|
|
sub sqrt { |
751
|
|
|
|
|
|
|
my ($x) = _either(@_); |
752
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
if (ref($x) eq 'Math::GMPq') { |
754
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
# Check for perfect squares |
756
|
|
|
|
|
|
|
if (Math::GMPq::Rmpq_integer_p($x)) { |
757
|
|
|
|
|
|
|
my $nz = _int2mpz($x); |
758
|
|
|
|
|
|
|
if (Math::GMPz::Rmpz_perfect_square_p($nz)) { |
759
|
|
|
|
|
|
|
Math::GMPz::Rmpz_sqrt($nz, $nz); |
760
|
|
|
|
|
|
|
return _new(_mpz2mpq($nz)); |
761
|
|
|
|
|
|
|
} |
762
|
|
|
|
|
|
|
} |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
$x = _sym($x); |
765
|
|
|
|
|
|
|
} |
766
|
|
|
|
|
|
|
|
767
|
|
|
|
|
|
|
_new($x->Sqrt); |
768
|
|
|
|
|
|
|
} |
769
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
=head2 ln |
771
|
|
|
|
|
|
|
|
772
|
|
|
|
|
|
|
$x->ln # => BigSym |
773
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
Returns a symbolic representation for the logarithm of C<$x> in base I. |
775
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
=cut |
777
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
sub ln { |
779
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
780
|
|
|
|
|
|
|
_new($x->Log); |
781
|
|
|
|
|
|
|
} |
782
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
=head2 log |
784
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
$x->log # => BigSym |
786
|
|
|
|
|
|
|
$x->log(BigSym) # => BigSym |
787
|
|
|
|
|
|
|
$x->log(Scalar) # => BigSym |
788
|
|
|
|
|
|
|
log(BigSym) # => BigSym |
789
|
|
|
|
|
|
|
|
790
|
|
|
|
|
|
|
Returns a symbolic representation for the logarithm of C<$x> in base C<$y>. |
791
|
|
|
|
|
|
|
When C<$y> is not specified, it defaults to base I. |
792
|
|
|
|
|
|
|
|
793
|
|
|
|
|
|
|
=cut |
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
sub log { |
796
|
|
|
|
|
|
|
my ($x, $y) = _symbols(@_); |
797
|
|
|
|
|
|
|
_new(defined($y) ? $x->Log / $y->Log : $x->Log); |
798
|
|
|
|
|
|
|
} |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
=head2 exp |
801
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
$x->exp # => BigSym |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
Returns a symbolic representation for the exponential of C<$x> in base e. (C) |
805
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
=cut |
807
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
sub exp { |
809
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
810
|
|
|
|
|
|
|
_new($x->Exp); |
811
|
|
|
|
|
|
|
} |
812
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
#<<< |
814
|
|
|
|
|
|
|
#~ sub mod { |
815
|
|
|
|
|
|
|
#~ my ($x, $y) = _either(@_); |
816
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
#~ if (ref($x) eq 'Math::GMPq') { |
818
|
|
|
|
|
|
|
#~ if (Math::GMPq::Rmpq_integer_p($x) and Math::GMPq::Rmpq_integer_p($y)) { |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
#~ my $yz = _int2mpz($y); |
821
|
|
|
|
|
|
|
#~ my $sign_y = Math::GMPz::Rmpz_sgn($yz); |
822
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
#~ # Probably, this should be an exception. |
824
|
|
|
|
|
|
|
#~ return $ZERO if !$sign_y; |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
#~ my $r = _int2mpz($x); |
827
|
|
|
|
|
|
|
#~ Math::GMPz::Rmpz_mod($r, $r, $yz); |
828
|
|
|
|
|
|
|
#~ if (!Math::GMPz::Rmpz_sgn($r)) { |
829
|
|
|
|
|
|
|
#~ return $ZERO; # return faster |
830
|
|
|
|
|
|
|
#~ } |
831
|
|
|
|
|
|
|
#~ elsif ($sign_y < 0) { |
832
|
|
|
|
|
|
|
#~ Math::GMPz::Rmpz_add($r, $r, $yz); |
833
|
|
|
|
|
|
|
#~ } |
834
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
#~ return _new(_mpz2mpq($r)); |
836
|
|
|
|
|
|
|
#~ } |
837
|
|
|
|
|
|
|
|
838
|
|
|
|
|
|
|
#~ $x = _sym($x); |
839
|
|
|
|
|
|
|
#~ $y = _sym($y); |
840
|
|
|
|
|
|
|
#~ } |
841
|
|
|
|
|
|
|
|
842
|
|
|
|
|
|
|
#~ _new($x % $y); |
843
|
|
|
|
|
|
|
#~ } |
844
|
|
|
|
|
|
|
#>>> |
845
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
# |
847
|
|
|
|
|
|
|
## Trigonometry |
848
|
|
|
|
|
|
|
# |
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
=head2 tan |
851
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
$x->tan # => BigSym |
853
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
Returns a symbolic representation for the tangent of C<$x>. |
855
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
=cut |
857
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
sub tan { |
859
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
860
|
|
|
|
|
|
|
_new($x->tan); |
861
|
|
|
|
|
|
|
} |
862
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
=head2 sec |
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
$x->sec # => BigSym |
866
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
Returns a symbolic representation for the secant of C<$x>. |
868
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
=cut |
870
|
|
|
|
|
|
|
|
871
|
|
|
|
|
|
|
sub sec { |
872
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
873
|
|
|
|
|
|
|
_new($x->sec); |
874
|
|
|
|
|
|
|
} |
875
|
|
|
|
|
|
|
|
876
|
|
|
|
|
|
|
=head2 csc |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
$x->csc # => BigSym |
879
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
Returns a symbolic representation for the cosecant of C<$x>. |
881
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
=cut |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
sub csc { |
885
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
886
|
|
|
|
|
|
|
_new($x->csc); |
887
|
|
|
|
|
|
|
} |
888
|
|
|
|
|
|
|
|
889
|
|
|
|
|
|
|
=head2 cot |
890
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
$x->cot # => BigSym |
892
|
|
|
|
|
|
|
|
893
|
|
|
|
|
|
|
Returns a symbolic representation for the cotangent of C<$x>. |
894
|
|
|
|
|
|
|
|
895
|
|
|
|
|
|
|
=cut |
896
|
|
|
|
|
|
|
|
897
|
|
|
|
|
|
|
sub cot { |
898
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
899
|
|
|
|
|
|
|
_new($x->cot); |
900
|
|
|
|
|
|
|
} |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
=head2 sin |
903
|
|
|
|
|
|
|
|
904
|
|
|
|
|
|
|
$x->sin # => BigSym |
905
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
Returns a symbolic representation for the sine of C<$x>. |
907
|
|
|
|
|
|
|
|
908
|
|
|
|
|
|
|
=cut |
909
|
|
|
|
|
|
|
|
910
|
|
|
|
|
|
|
sub sin { |
911
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
912
|
|
|
|
|
|
|
_new($x->Sin); |
913
|
|
|
|
|
|
|
} |
914
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
=head2 cos |
916
|
|
|
|
|
|
|
|
917
|
|
|
|
|
|
|
$x->cos # => BigSym |
918
|
|
|
|
|
|
|
|
919
|
|
|
|
|
|
|
Returns a symbolic representation for the cosine of C<$x>. |
920
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
=cut |
922
|
|
|
|
|
|
|
|
923
|
|
|
|
|
|
|
sub cos { |
924
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
925
|
|
|
|
|
|
|
_new($x->Cos); |
926
|
|
|
|
|
|
|
} |
927
|
|
|
|
|
|
|
|
928
|
|
|
|
|
|
|
# |
929
|
|
|
|
|
|
|
## Hyperbolic operations |
930
|
|
|
|
|
|
|
# |
931
|
|
|
|
|
|
|
|
932
|
|
|
|
|
|
|
=head2 sinh |
933
|
|
|
|
|
|
|
|
934
|
|
|
|
|
|
|
$x->sinh # => BigSym |
935
|
|
|
|
|
|
|
|
936
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic sine of C<$x>. |
937
|
|
|
|
|
|
|
|
938
|
|
|
|
|
|
|
=cut |
939
|
|
|
|
|
|
|
|
940
|
|
|
|
|
|
|
sub sinh { |
941
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
942
|
|
|
|
|
|
|
_new($x->sinh); |
943
|
|
|
|
|
|
|
} |
944
|
|
|
|
|
|
|
|
945
|
|
|
|
|
|
|
=head2 cosh |
946
|
|
|
|
|
|
|
|
947
|
|
|
|
|
|
|
$x->cosh # => BigSym |
948
|
|
|
|
|
|
|
|
949
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic cosine of C<$x>. |
950
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
=cut |
952
|
|
|
|
|
|
|
|
953
|
|
|
|
|
|
|
sub cosh { |
954
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
955
|
|
|
|
|
|
|
_new($x->cosh); |
956
|
|
|
|
|
|
|
} |
957
|
|
|
|
|
|
|
|
958
|
|
|
|
|
|
|
=head2 tanh |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
$x->tanh # => BigSym |
961
|
|
|
|
|
|
|
|
962
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic tangent of C<$x>. |
963
|
|
|
|
|
|
|
|
964
|
|
|
|
|
|
|
=cut |
965
|
|
|
|
|
|
|
|
966
|
|
|
|
|
|
|
sub tanh { |
967
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
968
|
|
|
|
|
|
|
_new($x->tanh); |
969
|
|
|
|
|
|
|
} |
970
|
|
|
|
|
|
|
|
971
|
|
|
|
|
|
|
=head2 sech |
972
|
|
|
|
|
|
|
|
973
|
|
|
|
|
|
|
$x->sech # => BigSym |
974
|
|
|
|
|
|
|
|
975
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic secant of C<$x>. |
976
|
|
|
|
|
|
|
|
977
|
|
|
|
|
|
|
=cut |
978
|
|
|
|
|
|
|
|
979
|
|
|
|
|
|
|
sub sech { |
980
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
981
|
|
|
|
|
|
|
_new($x->sech); |
982
|
|
|
|
|
|
|
} |
983
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
=head2 csch |
985
|
|
|
|
|
|
|
|
986
|
|
|
|
|
|
|
$x->csch # => BigSym |
987
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic cosecant of C<$x>. |
989
|
|
|
|
|
|
|
|
990
|
|
|
|
|
|
|
=cut |
991
|
|
|
|
|
|
|
|
992
|
|
|
|
|
|
|
sub csch { |
993
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
994
|
|
|
|
|
|
|
_new($x->csch); |
995
|
|
|
|
|
|
|
} |
996
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
=head2 coth |
998
|
|
|
|
|
|
|
|
999
|
|
|
|
|
|
|
$x->coth # => BigSym |
1000
|
|
|
|
|
|
|
|
1001
|
|
|
|
|
|
|
Returns a symbolic representation for the hyperbolic cotangent of C<$x>. |
1002
|
|
|
|
|
|
|
|
1003
|
|
|
|
|
|
|
=cut |
1004
|
|
|
|
|
|
|
|
1005
|
|
|
|
|
|
|
sub coth { |
1006
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
1007
|
|
|
|
|
|
|
_new($x->coth); |
1008
|
|
|
|
|
|
|
} |
1009
|
|
|
|
|
|
|
|
1010
|
|
|
|
|
|
|
# |
1011
|
|
|
|
|
|
|
## Complex operations |
1012
|
|
|
|
|
|
|
# |
1013
|
|
|
|
|
|
|
|
1014
|
|
|
|
|
|
|
=head2 conjugate |
1015
|
|
|
|
|
|
|
|
1016
|
|
|
|
|
|
|
~$x # => BigSym |
1017
|
|
|
|
|
|
|
$x->conjugate # => BigSym |
1018
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
Returns the complex conjugate of C<$x>. |
1020
|
|
|
|
|
|
|
|
1021
|
|
|
|
|
|
|
=cut |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
sub conjugate { |
1024
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
1025
|
|
|
|
|
|
|
_new($x->conjugate); |
1026
|
|
|
|
|
|
|
} |
1027
|
|
|
|
|
|
|
|
1028
|
|
|
|
|
|
|
=head2 cross |
1029
|
|
|
|
|
|
|
|
1030
|
|
|
|
|
|
|
$x->cross(BigSym) # => BigSym |
1031
|
|
|
|
|
|
|
|
1032
|
|
|
|
|
|
|
Returns the complex cross product of C<$x> and C<$y>. |
1033
|
|
|
|
|
|
|
|
1034
|
|
|
|
|
|
|
=cut |
1035
|
|
|
|
|
|
|
|
1036
|
|
|
|
|
|
|
sub cross { |
1037
|
|
|
|
|
|
|
my ($x, $y) = _symbols(@_); |
1038
|
|
|
|
|
|
|
_new($x->cross($y)); |
1039
|
|
|
|
|
|
|
} |
1040
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
=head2 dot |
1042
|
|
|
|
|
|
|
|
1043
|
|
|
|
|
|
|
$x->dot(BigSym) # => BigSym |
1044
|
|
|
|
|
|
|
|
1045
|
|
|
|
|
|
|
Returns the complex dot product of C<$x> and C<$y>. |
1046
|
|
|
|
|
|
|
|
1047
|
|
|
|
|
|
|
=cut |
1048
|
|
|
|
|
|
|
|
1049
|
|
|
|
|
|
|
sub dot { |
1050
|
|
|
|
|
|
|
my ($x, $y) = _symbols(@_); |
1051
|
|
|
|
|
|
|
_new($x->dot($y)); |
1052
|
|
|
|
|
|
|
} |
1053
|
|
|
|
|
|
|
|
1054
|
|
|
|
|
|
|
=head2 unit |
1055
|
|
|
|
|
|
|
|
1056
|
|
|
|
|
|
|
$x->unit # => BigSym |
1057
|
|
|
|
|
|
|
|
1058
|
|
|
|
|
|
|
Returns a complex number of unit length pointing in the same direction as C<$x>. |
1059
|
|
|
|
|
|
|
|
1060
|
|
|
|
|
|
|
=cut |
1061
|
|
|
|
|
|
|
|
1062
|
|
|
|
|
|
|
sub unit { |
1063
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
1064
|
|
|
|
|
|
|
_new($x->unit); |
1065
|
|
|
|
|
|
|
} |
1066
|
|
|
|
|
|
|
|
1067
|
|
|
|
|
|
|
=head2 re |
1068
|
|
|
|
|
|
|
|
1069
|
|
|
|
|
|
|
$x->re # => BigSym |
1070
|
|
|
|
|
|
|
|
1071
|
|
|
|
|
|
|
Returns the real part of the complex number C<$x>. |
1072
|
|
|
|
|
|
|
|
1073
|
|
|
|
|
|
|
=cut |
1074
|
|
|
|
|
|
|
|
1075
|
|
|
|
|
|
|
sub re { |
1076
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
1077
|
|
|
|
|
|
|
_new($x->re); |
1078
|
|
|
|
|
|
|
} |
1079
|
|
|
|
|
|
|
|
1080
|
|
|
|
|
|
|
=head2 im |
1081
|
|
|
|
|
|
|
|
1082
|
|
|
|
|
|
|
$x->im # => BigSym |
1083
|
|
|
|
|
|
|
|
1084
|
|
|
|
|
|
|
Returns the imaginary part of the complex number C<$x>. |
1085
|
|
|
|
|
|
|
|
1086
|
|
|
|
|
|
|
=cut |
1087
|
|
|
|
|
|
|
|
1088
|
|
|
|
|
|
|
sub im { |
1089
|
|
|
|
|
|
|
my ($x) = _symbols(@_); |
1090
|
|
|
|
|
|
|
_new($x->im); |
1091
|
|
|
|
|
|
|
} |
1092
|
|
|
|
|
|
|
|
1093
|
|
|
|
|
|
|
# |
1094
|
|
|
|
|
|
|
## Comparisons |
1095
|
|
|
|
|
|
|
# |
1096
|
|
|
|
|
|
|
|
1097
|
|
|
|
|
|
|
=head2 eq |
1098
|
|
|
|
|
|
|
|
1099
|
|
|
|
|
|
|
$x->eq(BigSym) # => Bool |
1100
|
|
|
|
|
|
|
$x->eq(Scalar) # => Bool |
1101
|
|
|
|
|
|
|
|
1102
|
|
|
|
|
|
|
$x == $y # => Bool |
1103
|
|
|
|
|
|
|
|
1104
|
|
|
|
|
|
|
Equality check: returns a true value when C<$x> and C<$y> are equal. |
1105
|
|
|
|
|
|
|
|
1106
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1107
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1108
|
|
|
|
|
|
|
|
1109
|
|
|
|
|
|
|
=cut |
1110
|
|
|
|
|
|
|
|
1111
|
|
|
|
|
|
|
sub eq { |
1112
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1113
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x == $y : "$x" eq "$y"; |
1114
|
|
|
|
|
|
|
} |
1115
|
|
|
|
|
|
|
|
1116
|
|
|
|
|
|
|
=head2 ne |
1117
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
$x->ne(BigSym) # => Bool |
1119
|
|
|
|
|
|
|
$x->ne(Scalar) # => Bool |
1120
|
|
|
|
|
|
|
|
1121
|
|
|
|
|
|
|
$x != $y # => Bool |
1122
|
|
|
|
|
|
|
|
1123
|
|
|
|
|
|
|
Inequality check: returns a true value when C<$x> and C<$y> are not equal. |
1124
|
|
|
|
|
|
|
|
1125
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1126
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1127
|
|
|
|
|
|
|
|
1128
|
|
|
|
|
|
|
=cut |
1129
|
|
|
|
|
|
|
|
1130
|
|
|
|
|
|
|
sub ne { |
1131
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1132
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x != $y : "$x" ne "$y"; |
1133
|
|
|
|
|
|
|
} |
1134
|
|
|
|
|
|
|
|
1135
|
|
|
|
|
|
|
=head2 gt |
1136
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
$x->gt(BigSym) # => Bool |
1138
|
|
|
|
|
|
|
$x->gt(Scalar) # => Bool |
1139
|
|
|
|
|
|
|
|
1140
|
|
|
|
|
|
|
BigSym > BigSym # => Bool |
1141
|
|
|
|
|
|
|
BigSym > Scalar # => Bool |
1142
|
|
|
|
|
|
|
Scalar > BigSym # => Bool |
1143
|
|
|
|
|
|
|
|
1144
|
|
|
|
|
|
|
Returns a true value when C<$x> is greater than C<$y>. |
1145
|
|
|
|
|
|
|
|
1146
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1147
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1148
|
|
|
|
|
|
|
|
1149
|
|
|
|
|
|
|
=cut |
1150
|
|
|
|
|
|
|
|
1151
|
|
|
|
|
|
|
sub gt { |
1152
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1153
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x > $y : "$x" gt "$y"; |
1154
|
|
|
|
|
|
|
} |
1155
|
|
|
|
|
|
|
|
1156
|
|
|
|
|
|
|
=head2 ge |
1157
|
|
|
|
|
|
|
|
1158
|
|
|
|
|
|
|
$x->ge(BigSym) # => Bool |
1159
|
|
|
|
|
|
|
$x->ge(Scalar) # => Bool |
1160
|
|
|
|
|
|
|
|
1161
|
|
|
|
|
|
|
BigSym >= BigSym # => Bool |
1162
|
|
|
|
|
|
|
BigSym >= Scalar # => Bool |
1163
|
|
|
|
|
|
|
Scalar >= BigSym # => Bool |
1164
|
|
|
|
|
|
|
|
1165
|
|
|
|
|
|
|
Returns a true value when C<$x> is equal or greater than C<$y>. |
1166
|
|
|
|
|
|
|
|
1167
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1168
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1169
|
|
|
|
|
|
|
|
1170
|
|
|
|
|
|
|
=cut |
1171
|
|
|
|
|
|
|
|
1172
|
|
|
|
|
|
|
sub ge { |
1173
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1174
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x >= $y : "$x" ge "$y"; |
1175
|
|
|
|
|
|
|
} |
1176
|
|
|
|
|
|
|
|
1177
|
|
|
|
|
|
|
=head2 lt |
1178
|
|
|
|
|
|
|
|
1179
|
|
|
|
|
|
|
$x->lt(BigSym) # => Bool |
1180
|
|
|
|
|
|
|
$x->lt(Scalar) # => Bool |
1181
|
|
|
|
|
|
|
|
1182
|
|
|
|
|
|
|
BigSym < BigSym # => Bool |
1183
|
|
|
|
|
|
|
BigSym < Scalar # => Bool |
1184
|
|
|
|
|
|
|
Scalar < BigSym # => Bool |
1185
|
|
|
|
|
|
|
|
1186
|
|
|
|
|
|
|
Returns a true value when C<$x> is less than C<$y>. |
1187
|
|
|
|
|
|
|
|
1188
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1189
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1190
|
|
|
|
|
|
|
|
1191
|
|
|
|
|
|
|
=cut |
1192
|
|
|
|
|
|
|
|
1193
|
|
|
|
|
|
|
sub lt { |
1194
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1195
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x < $y : "$x" lt "$y"; |
1196
|
|
|
|
|
|
|
} |
1197
|
|
|
|
|
|
|
|
1198
|
|
|
|
|
|
|
=head2 le |
1199
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
$x->le(BigSym) # => Bool |
1201
|
|
|
|
|
|
|
$x->le(Scalar) # => Bool |
1202
|
|
|
|
|
|
|
|
1203
|
|
|
|
|
|
|
BigSym <= BigSym # => Bool |
1204
|
|
|
|
|
|
|
BigSym <= Scalar # => Bool |
1205
|
|
|
|
|
|
|
Scalar <= BigSym # => Bool |
1206
|
|
|
|
|
|
|
|
1207
|
|
|
|
|
|
|
Returns a true value when C<$x> is equal or less than C<$y>. |
1208
|
|
|
|
|
|
|
|
1209
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1210
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1211
|
|
|
|
|
|
|
|
1212
|
|
|
|
|
|
|
=cut |
1213
|
|
|
|
|
|
|
|
1214
|
|
|
|
|
|
|
sub le { |
1215
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1216
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x <= $y : "$x" le "$y"; |
1217
|
|
|
|
|
|
|
} |
1218
|
|
|
|
|
|
|
|
1219
|
|
|
|
|
|
|
=head2 cmp |
1220
|
|
|
|
|
|
|
|
1221
|
|
|
|
|
|
|
$x->cmp(BigSym) # => Scalar |
1222
|
|
|
|
|
|
|
$x->cmp(Scalar) # => Scalar |
1223
|
|
|
|
|
|
|
|
1224
|
|
|
|
|
|
|
BigSym <=> BigSym # => Scalar |
1225
|
|
|
|
|
|
|
BigSym <=> Scalar # => Scalar |
1226
|
|
|
|
|
|
|
Scalar <=> BigSym # => Scalar |
1227
|
|
|
|
|
|
|
|
1228
|
|
|
|
|
|
|
Compares C<$x> to C<$y> and returns a negative value when C<$x> is less than C<$y>, |
1229
|
|
|
|
|
|
|
0 when C<$x> and C<$y> are equal, and a positive value when C<$x> is greater than C<$y>. |
1230
|
|
|
|
|
|
|
|
1231
|
|
|
|
|
|
|
B expects C<$x> and C<$y> to have rational values. |
1232
|
|
|
|
|
|
|
Symbolic representations, such as C, are treated literally. |
1233
|
|
|
|
|
|
|
|
1234
|
|
|
|
|
|
|
=cut |
1235
|
|
|
|
|
|
|
|
1236
|
|
|
|
|
|
|
sub cmp { |
1237
|
|
|
|
|
|
|
my ($x, $y) = _either(@_); |
1238
|
|
|
|
|
|
|
ref($x) eq 'Math::GMPq' ? $x <=> $y : "$x" cmp "$y"; |
1239
|
|
|
|
|
|
|
} |
1240
|
|
|
|
|
|
|
|
1241
|
|
|
|
|
|
|
=head1 AUTHOR |
1242
|
|
|
|
|
|
|
|
1243
|
|
|
|
|
|
|
Daniel Șuteu, C<< >> |
1244
|
|
|
|
|
|
|
|
1245
|
|
|
|
|
|
|
=head1 BUGS and LIMITATIONS |
1246
|
|
|
|
|
|
|
|
1247
|
|
|
|
|
|
|
Please report any bugs or feature requests to C, or through |
1248
|
|
|
|
|
|
|
the web interface at L. I will be notified, and then you'll |
1249
|
|
|
|
|
|
|
automatically be notified of progress on your bug as I make changes. |
1250
|
|
|
|
|
|
|
|
1251
|
|
|
|
|
|
|
The currently known issues are: |
1252
|
|
|
|
|
|
|
|
1253
|
|
|
|
|
|
|
=over 4 |
1254
|
|
|
|
|
|
|
|
1255
|
|
|
|
|
|
|
=item * multiplication of logarithms is not currently supported by L. |
1256
|
|
|
|
|
|
|
|
1257
|
|
|
|
|
|
|
=item * there are some "division by zero" exceptions raised by L in some trigonometric functions. |
1258
|
|
|
|
|
|
|
|
1259
|
|
|
|
|
|
|
=item * integer operations, such as C<|>, C<&>, C<^>, C<<E>>>, C<<E>>>, are not supported. |
1260
|
|
|
|
|
|
|
|
1261
|
|
|
|
|
|
|
=item * the modulo operator (C<%>) is also not supported. |
1262
|
|
|
|
|
|
|
|
1263
|
|
|
|
|
|
|
=back |
1264
|
|
|
|
|
|
|
|
1265
|
|
|
|
|
|
|
=head1 SUPPORT |
1266
|
|
|
|
|
|
|
|
1267
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
1268
|
|
|
|
|
|
|
|
1269
|
|
|
|
|
|
|
perldoc Math::BigSym |
1270
|
|
|
|
|
|
|
|
1271
|
|
|
|
|
|
|
|
1272
|
|
|
|
|
|
|
You can also look for information at: |
1273
|
|
|
|
|
|
|
|
1274
|
|
|
|
|
|
|
=over 4 |
1275
|
|
|
|
|
|
|
|
1276
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker (report bugs here) |
1277
|
|
|
|
|
|
|
|
1278
|
|
|
|
|
|
|
L |
1279
|
|
|
|
|
|
|
|
1280
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
1281
|
|
|
|
|
|
|
|
1282
|
|
|
|
|
|
|
L |
1283
|
|
|
|
|
|
|
|
1284
|
|
|
|
|
|
|
=item * CPAN Ratings |
1285
|
|
|
|
|
|
|
|
1286
|
|
|
|
|
|
|
L |
1287
|
|
|
|
|
|
|
|
1288
|
|
|
|
|
|
|
=item * Search CPAN |
1289
|
|
|
|
|
|
|
|
1290
|
|
|
|
|
|
|
L |
1291
|
|
|
|
|
|
|
|
1292
|
|
|
|
|
|
|
=item * GitHub |
1293
|
|
|
|
|
|
|
|
1294
|
|
|
|
|
|
|
L |
1295
|
|
|
|
|
|
|
|
1296
|
|
|
|
|
|
|
=back |
1297
|
|
|
|
|
|
|
|
1298
|
|
|
|
|
|
|
|
1299
|
|
|
|
|
|
|
=head1 SEE ALSO |
1300
|
|
|
|
|
|
|
|
1301
|
|
|
|
|
|
|
L, L. |
1302
|
|
|
|
|
|
|
|
1303
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
1304
|
|
|
|
|
|
|
|
1305
|
|
|
|
|
|
|
Copyright 2016 Daniel Șuteu. |
1306
|
|
|
|
|
|
|
|
1307
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
1308
|
|
|
|
|
|
|
under the terms of the the Artistic License (2.0). You may obtain a |
1309
|
|
|
|
|
|
|
copy of the full license at: |
1310
|
|
|
|
|
|
|
|
1311
|
|
|
|
|
|
|
L |
1312
|
|
|
|
|
|
|
|
1313
|
|
|
|
|
|
|
Any use, modification, and distribution of the Standard or Modified |
1314
|
|
|
|
|
|
|
Versions is governed by this Artistic License. By using, modifying or |
1315
|
|
|
|
|
|
|
distributing the Package, you accept this license. Do not use, modify, |
1316
|
|
|
|
|
|
|
or distribute the Package, if you do not accept this license. |
1317
|
|
|
|
|
|
|
|
1318
|
|
|
|
|
|
|
If your Modified Version has been derived from a Modified Version made |
1319
|
|
|
|
|
|
|
by someone other than you, you are nevertheless required to ensure that |
1320
|
|
|
|
|
|
|
your Modified Version complies with the requirements of this license. |
1321
|
|
|
|
|
|
|
|
1322
|
|
|
|
|
|
|
This license does not grant you the right to use any trademark, service |
1323
|
|
|
|
|
|
|
mark, tradename, or logo of the Copyright Holder. |
1324
|
|
|
|
|
|
|
|
1325
|
|
|
|
|
|
|
This license includes the non-exclusive, worldwide, free-of-charge |
1326
|
|
|
|
|
|
|
patent license to make, have made, use, offer to sell, sell, import and |
1327
|
|
|
|
|
|
|
otherwise transfer the Package with respect to any patent claims |
1328
|
|
|
|
|
|
|
licensable by the Copyright Holder that are necessarily infringed by the |
1329
|
|
|
|
|
|
|
Package. If you institute patent litigation (including a cross-claim or |
1330
|
|
|
|
|
|
|
counterclaim) against any party alleging that the Package constitutes |
1331
|
|
|
|
|
|
|
direct or contributory patent infringement, then this Artistic License |
1332
|
|
|
|
|
|
|
to you shall terminate on the date that such litigation is filed. |
1333
|
|
|
|
|
|
|
|
1334
|
|
|
|
|
|
|
Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT HOLDER |
1335
|
|
|
|
|
|
|
AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES. |
1336
|
|
|
|
|
|
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR |
1337
|
|
|
|
|
|
|
PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT PERMITTED BY |
1338
|
|
|
|
|
|
|
YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT HOLDER OR |
1339
|
|
|
|
|
|
|
CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, OR |
1340
|
|
|
|
|
|
|
CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE OF THE PACKAGE, |
1341
|
|
|
|
|
|
|
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
1342
|
|
|
|
|
|
|
|
1343
|
|
|
|
|
|
|
|
1344
|
|
|
|
|
|
|
=cut |
1345
|
|
|
|
|
|
|
|
1346
|
|
|
|
|
|
|
1; # End of Math::BigSym |