line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
############################################################################# |
2
|
|
|
|
|
|
|
# Math/Big.pm -- usefull routines with Big numbers (BigInt/BigFloat) |
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
package Math::Big; |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
require 5.006002; # anything lower is simple untested |
7
|
|
|
|
|
|
|
|
8
|
2
|
|
|
2
|
|
16522
|
use strict; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
68
|
|
9
|
2
|
|
|
2
|
|
8
|
use warnings; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
106
|
|
10
|
|
|
|
|
|
|
|
11
|
2
|
|
|
2
|
|
1144
|
use Math::BigInt '1.97'; |
|
2
|
|
|
|
|
21561
|
|
|
2
|
|
|
|
|
12
|
|
12
|
2
|
|
|
2
|
|
15252
|
use Math::BigFloat; |
|
2
|
|
|
|
|
18259
|
|
|
2
|
|
|
|
|
14
|
|
13
|
2
|
|
|
2
|
|
1373
|
use Exporter; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
1535
|
|
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
our $VERSION = '1.14'; |
16
|
|
|
|
|
|
|
our @ISA = qw( Exporter ); |
17
|
|
|
|
|
|
|
our @EXPORT_OK = qw( primes fibonacci base hailstone factorial |
18
|
|
|
|
|
|
|
euler bernoulli pi log |
19
|
|
|
|
|
|
|
tan cos sin cosh sinh arctan arctanh arcsin arcsinh |
20
|
|
|
|
|
|
|
); |
21
|
|
|
|
|
|
|
our @F; # for fibonacci() |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
# some often used constants: |
24
|
|
|
|
|
|
|
my $four = Math::BigFloat->new(4); |
25
|
|
|
|
|
|
|
my $sixteen = Math::BigFloat->new(16); |
26
|
|
|
|
|
|
|
my $fone = Math::BigFloat->bone(); # pi |
27
|
|
|
|
|
|
|
my $one = Math::BigInt->bone(); # hailstone, sin, cos etc |
28
|
|
|
|
|
|
|
my $two = Math::BigInt->new(2); # hailstone, sin, cos etc |
29
|
|
|
|
|
|
|
my $three = Math::BigInt->new(3); # hailstone |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
my $five = Math::BigFloat->new(5); # for pi |
32
|
|
|
|
|
|
|
my $twothreenine = Math::BigFloat->new(239); # for pi |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# In scalar context this returns the prime count (# of primes <= N). |
35
|
|
|
|
|
|
|
# In array context it returns a list of primes from 2 to N. |
36
|
|
|
|
|
|
|
sub primes { |
37
|
16
|
|
|
16
|
1
|
3776
|
my $end = shift; |
38
|
16
|
50
|
|
|
|
45
|
return unless defined $end; |
39
|
16
|
50
|
|
|
|
38
|
$end = $end->numify() if ref($end) =~ /^Math::Big/; |
40
|
16
|
0
|
|
|
|
39
|
if ($end < 2) { return !wantarray ? Math::BigInt->bzero() : (); } |
|
0
|
50
|
|
|
|
0
|
|
41
|
16
|
0
|
|
|
|
33
|
if ($end < 3) { return !wantarray ? $one->copy : ($two->copy); } |
|
0
|
50
|
|
|
|
0
|
|
42
|
16
|
100
|
|
|
|
33
|
if ($end < 5) { return !wantarray ? $two->copy : ($two->copy, $three->copy); } |
|
3
|
100
|
|
|
|
16
|
|
43
|
|
|
|
|
|
|
|
44
|
13
|
100
|
|
|
|
34
|
$end-- unless ($end & 1); |
45
|
13
|
|
|
|
|
16
|
my $s_end = $end >> 1; |
46
|
13
|
|
|
|
|
31
|
my $whole = int( ($end>>1) / 15); |
47
|
|
|
|
|
|
|
# Be conservative. This would result in terabytes of array output. |
48
|
13
|
50
|
|
|
|
27
|
die "Cannot return $end primes!" if $whole > 1_145_324_612; # ~32 GB string |
49
|
13
|
|
|
|
|
31
|
my $sieve = "100010010010110" . "011010010010110" x $whole; |
50
|
13
|
|
|
|
|
35
|
substr($sieve, $s_end+1) = ''; # Clip to the right number of entries |
51
|
13
|
|
|
|
|
27
|
my ($n, $limit) = ( 7, int(sqrt($end)) ); |
52
|
13
|
|
|
|
|
36
|
while ( $n <= $limit ) { |
53
|
0
|
|
|
|
|
0
|
for (my $s = ($n*$n) >> 1; $s <= $s_end; $s += $n) { |
54
|
0
|
|
|
|
|
0
|
substr($sieve, $s, 1) = '1'; |
55
|
|
|
|
|
|
|
} |
56
|
0
|
|
|
|
|
0
|
do { $n += 2 } while substr($sieve, $n>>1, 1); |
|
0
|
|
|
|
|
0
|
|
57
|
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
|
59
|
13
|
100
|
|
|
|
32
|
return Math::BigInt->new(1 + $sieve =~ tr/0//) if !wantarray; |
60
|
|
|
|
|
|
|
|
61
|
12
|
|
|
|
|
28
|
my @primes = (2, 3, 5); |
62
|
12
|
|
|
|
|
28
|
$n = 7-2; |
63
|
12
|
|
|
|
|
45
|
foreach my $s (split("0", substr($sieve, 3), -1)) { |
64
|
44
|
|
|
|
|
45
|
$n += 2 + 2 * length($s); |
65
|
44
|
100
|
|
|
|
86
|
push @primes, $n if $n <= $end; |
66
|
|
|
|
|
|
|
} |
67
|
12
|
|
|
|
|
33
|
return map { Math::BigInt->new($_) } @primes; |
|
69
|
|
|
|
|
1267
|
|
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub fibonacci |
71
|
|
|
|
|
|
|
{ |
72
|
22
|
50
|
|
22
|
1
|
12698
|
my $n = shift; return unless defined $n; |
|
22
|
|
|
|
|
64
|
|
73
|
|
|
|
|
|
|
|
74
|
22
|
50
|
|
|
|
41
|
if (ref($n)) |
75
|
|
|
|
|
|
|
{ |
76
|
0
|
0
|
|
|
|
0
|
return if $n->sign() ne '+'; # < 0, NaN, inf |
77
|
|
|
|
|
|
|
} |
78
|
|
|
|
|
|
|
else |
79
|
|
|
|
|
|
|
{ |
80
|
22
|
50
|
|
|
|
61
|
return if $n < 0; |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
##################### |
84
|
|
|
|
|
|
|
# list context |
85
|
22
|
100
|
|
|
|
67
|
if (wantarray) |
86
|
|
|
|
|
|
|
{ |
87
|
|
|
|
|
|
|
# make a scalar (if $n doesn't fit into a scalar, the resulting array |
88
|
|
|
|
|
|
|
# will be too big, anyway) |
89
|
6
|
50
|
|
|
|
12
|
$n = $n->numify() if ref($n); |
90
|
|
|
|
|
|
|
|
91
|
6
|
|
|
|
|
18
|
my @fib = (Math::BigInt -> bzero(),Math::BigInt -> bone(),Math::BigInt -> bone); |
92
|
6
|
|
|
|
|
297
|
my $i = 3; # no BigInt |
93
|
6
|
|
|
|
|
13
|
while ($i <= $n) |
94
|
|
|
|
|
|
|
{ |
95
|
21
|
|
|
|
|
45
|
$fib[$i] = $fib[$i-1]+$fib[$i-2]; $i++; |
|
21
|
|
|
|
|
994
|
|
96
|
|
|
|
|
|
|
} |
97
|
6
|
|
|
|
|
55
|
return @fib; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
##################### |
100
|
|
|
|
|
|
|
# scalar context |
101
|
|
|
|
|
|
|
|
102
|
16
|
|
|
|
|
29
|
_fibonacci_fast($n); |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
my $F; |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
BEGIN |
108
|
|
|
|
|
|
|
{ |
109
|
|
|
|
|
|
|
# Sequence of the first few fibonacci numbers: |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
# 0,1,2,3,4,5,6,7, 8, 9, 10,11,12, 13, 14, 15, 16, 17, 18, 19, 20, |
112
|
2
|
|
|
2
|
|
12
|
@F = (0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765, |
113
|
|
|
|
|
|
|
# 21, |
114
|
|
|
|
|
|
|
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, |
115
|
|
|
|
|
|
|
# 30, |
116
|
|
|
|
|
|
|
832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, |
117
|
|
|
|
|
|
|
# 37, 42, |
118
|
|
|
|
|
|
|
24157817, 39088169, 63245986, 102334155, 165580141, 267914296, |
119
|
|
|
|
|
|
|
); |
120
|
|
|
|
|
|
|
#433494437 |
121
|
|
|
|
|
|
|
#701408733 |
122
|
|
|
|
|
|
|
#1134903170 |
123
|
|
|
|
|
|
|
#1836311903 |
124
|
|
|
|
|
|
|
#2971215073 |
125
|
|
|
|
|
|
|
#4807526976 |
126
|
|
|
|
|
|
|
#7778742049 |
127
|
|
|
|
|
|
|
#12586269025 |
128
|
2
|
|
|
|
|
13
|
for (my $i = 0; $i < @F; $i++) |
129
|
|
|
|
|
|
|
{ |
130
|
86
|
|
|
|
|
2255
|
$F[$i] = Math::BigInt->new($F[$i]); |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub _fibonacci_fast |
135
|
|
|
|
|
|
|
{ |
136
|
16
|
50
|
|
16
|
|
16
|
my $x = shift; $x = $x->numify() if ref($x); |
|
16
|
|
|
|
|
32
|
|
137
|
16
|
100
|
|
|
|
140
|
return $F[$x] if $x < @F; |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
# Knuth, TAOCR Vol 1, Third Edition, p. 81 |
140
|
|
|
|
|
|
|
# F(n+m) = Fm * Fn+1 + Fm-1 * Fn |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
# if m is set to n+1, we get: |
143
|
|
|
|
|
|
|
# F(n+n+1) = F(n+1) * Fn+1 + Fn * Fn |
144
|
|
|
|
|
|
|
# F(n*2+1) = F(n+1) ^ 2 + Fn ^ 2 |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
# so to know Fx, we must know F((x-1)/2), which only works for odd x |
147
|
|
|
|
|
|
|
# Fortunately: |
148
|
|
|
|
|
|
|
# Fx+1 = F(x) + F(x-1) |
149
|
|
|
|
|
|
|
# when x is even, then are x+1 and x-1 odd and can be calculated by the |
150
|
|
|
|
|
|
|
# same means, and from this we get Fx. |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
# starting with level 0 at Fn we fill a hash with the different n we need |
153
|
|
|
|
|
|
|
# to calculate all Fn of the previous level. Here is an example for F1000: |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
# To calculate F1000, we need F999 and F1001 (since 1000 is even) |
156
|
|
|
|
|
|
|
# To calculate F999, we need F((999-1)/2) and F((999+1)/2), this are 499 |
157
|
|
|
|
|
|
|
# and 500. Sine for F1001 we need 500 and 501, we need F(500), F(501) and |
158
|
|
|
|
|
|
|
# F(499) to calculate F(1001) and F(999), and from these we can get F(1000). |
159
|
|
|
|
|
|
|
# For 500, we need 499 and 501, both are already needed. |
160
|
|
|
|
|
|
|
# For 501, we need 250 and 251. An so on and on until all values at a level |
161
|
|
|
|
|
|
|
# are under 17. |
162
|
|
|
|
|
|
|
# For the deepest level we use a table-lookup. The other levels are then |
163
|
|
|
|
|
|
|
# calulated backwards, until we arive at the top and the result is then in |
164
|
|
|
|
|
|
|
# level 0. |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
# level |
167
|
|
|
|
|
|
|
# 0 1 2 3 and so on |
168
|
|
|
|
|
|
|
# 1000 -> 999 -> 499 <- -> 249 |
169
|
|
|
|
|
|
|
# | |----> 500 | |
170
|
|
|
|
|
|
|
# |--> 1001 -> 501 <- -> 250 |
171
|
|
|
|
|
|
|
# |------> 251 |
172
|
|
|
|
|
|
|
|
173
|
2
|
|
|
|
|
3
|
my @fibo; |
174
|
2
|
|
|
|
|
6
|
$fibo[0]->{$x} = undef; # mark our final result as needed |
175
|
|
|
|
|
|
|
# if $x is even we need these two, too |
176
|
2
|
50
|
|
|
|
7
|
if ($x % 1 == 0) |
177
|
|
|
|
|
|
|
{ |
178
|
2
|
|
|
|
|
5
|
$fibo[0]->{$x-1} = undef; $fibo[0]->{$x+1} = undef; |
|
2
|
|
|
|
|
5
|
|
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
# XXX |
181
|
|
|
|
|
|
|
# for statistics |
182
|
2
|
|
|
|
|
3
|
my $steps = 0; my $sum = 0; my $add = 0; my $mul = 0; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
17
|
|
|
2
|
|
|
|
|
2
|
|
183
|
2
|
|
|
|
|
3
|
my $level = 0; |
184
|
2
|
|
|
|
|
1
|
my $high = 1; # keep going? |
185
|
2
|
|
|
|
|
3
|
my ($t,$t1,$f); # helper variables |
186
|
2
|
|
|
|
|
5
|
while ($high > 0) |
187
|
|
|
|
|
|
|
{ |
188
|
6
|
|
|
|
|
2
|
$level++; # next level |
189
|
6
|
|
|
|
|
6
|
$high = 0; # count of results > @F |
190
|
|
|
|
|
|
|
# print "at level $level (high=$high)\n"; |
191
|
6
|
|
|
|
|
6
|
foreach $f (keys %{$fibo[$level-1]}) |
|
6
|
|
|
|
|
15
|
|
192
|
|
|
|
|
|
|
{ |
193
|
19
|
|
|
|
|
16
|
$steps ++; |
194
|
19
|
100
|
|
|
|
27
|
if (($f & 1) == 0) # odd/even? |
195
|
|
|
|
|
|
|
{ |
196
|
|
|
|
|
|
|
# if it is even, add $f-1 and $f+1 to last level |
197
|
|
|
|
|
|
|
# if not existing in last level, we must add |
198
|
|
|
|
|
|
|
# ($f-1-1)/2 & ($f-1-1/2)+1 to the next level, too |
199
|
8
|
|
|
|
|
7
|
$t = $f-1; |
200
|
8
|
100
|
|
|
|
18
|
if (!exists $fibo[$level-1]->{$t}) |
201
|
|
|
|
|
|
|
{ |
202
|
1
|
|
|
|
|
3
|
$fibo[$level-1]->{$t} = undef; $t--; $t /= 2; # $t is odd |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
2
|
|
203
|
1
|
|
|
|
|
4
|
$fibo[$level]->{$t} = undef; $fibo[$level]->{$t+1} = undef; |
|
1
|
|
|
|
|
3
|
|
204
|
1
|
50
|
|
|
|
4
|
$high = 1 if $t+1 >= @F; # any value not in table? |
205
|
|
|
|
|
|
|
} |
206
|
8
|
|
|
|
|
5
|
$t = $f+1; |
207
|
8
|
100
|
|
|
|
29
|
if (!exists $fibo[$level-1]->{$t}) |
208
|
|
|
|
|
|
|
{ |
209
|
2
|
|
|
|
|
3
|
$fibo[$level-1]->{$t} = undef; $t--; $t /= 2; # $t is odd |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
2
|
|
210
|
2
|
|
|
|
|
4
|
$fibo[$level]->{$t} = undef; $fibo[$level]->{$t+1} = undef; |
|
2
|
|
|
|
|
3
|
|
211
|
2
|
100
|
|
|
|
9
|
$high = 1 if $t+1 >= @F; # any value not in table? |
212
|
|
|
|
|
|
|
} |
213
|
|
|
|
|
|
|
# print "$f even: ",$f-1," ",$f+1," in level ",$level-1,"\n"; |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
else |
216
|
|
|
|
|
|
|
{ |
217
|
|
|
|
|
|
|
# else add ($_-1)/2and ($_-1)/2 + 1 to this level |
218
|
11
|
|
|
|
|
9
|
$t = $f-1; $t /= 2; |
|
11
|
|
|
|
|
8
|
|
219
|
11
|
|
|
|
|
49
|
$fibo[$level]->{$t} = undef; $fibo[$level]->{$t+1} = undef; |
|
11
|
|
|
|
|
17
|
|
220
|
11
|
100
|
|
|
|
30
|
$high = 1 if $t+1 >= @F; # any value not in table? |
221
|
|
|
|
|
|
|
# print "$_ odd: $t ",$t+1," in level $level (high = $high)\n"; |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
} |
224
|
|
|
|
|
|
|
} |
225
|
|
|
|
|
|
|
# now we must fill our structure backwards with the results, combining them. |
226
|
|
|
|
|
|
|
# numbers in the last level can be looked up: |
227
|
2
|
|
|
|
|
2
|
foreach $f (keys %{$fibo[$level]}) |
|
2
|
|
|
|
|
5
|
|
228
|
|
|
|
|
|
|
{ |
229
|
|
|
|
|
|
|
# this inserts Math::BigInt objects, making the math below work: |
230
|
7
|
|
|
|
|
10
|
$fibo[$level]->{$f} = $F[$f]; |
231
|
|
|
|
|
|
|
} |
232
|
|
|
|
|
|
|
# use Data::Dumper; print Dumper(\@fibo); |
233
|
2
|
|
|
|
|
3
|
my $l = $level; # for statistics |
234
|
2
|
|
|
|
|
5
|
while ($level > 0) |
235
|
|
|
|
|
|
|
{ |
236
|
6
|
|
|
|
|
110
|
$level--; |
237
|
|
|
|
|
|
|
#$sum += scalar keys %{$fibo[$level]}; # for statistics |
238
|
|
|
|
|
|
|
# first do the odd ones |
239
|
6
|
|
|
|
|
8
|
my $fibo_level = $fibo[$level]; |
240
|
6
|
|
|
|
|
14
|
foreach $f (keys %$fibo_level) |
241
|
|
|
|
|
|
|
{ |
242
|
22
|
100
|
|
|
|
2413
|
next if ($f & 1) == 0; |
243
|
14
|
|
|
|
|
16
|
$t = $f-1; $t /= 2; my $t1 = $t+1; |
|
14
|
|
|
|
|
14
|
|
|
14
|
|
|
|
|
15
|
|
244
|
14
|
|
|
|
|
26
|
$t = $fibo[$level+1]->{$t}; |
245
|
14
|
|
|
|
|
14
|
$t1 = $fibo[$level+1]->{$t1}; |
246
|
|
|
|
|
|
|
#$fibo_level->{$f} = $t*$t+$t1*$t1; |
247
|
14
|
|
|
|
|
41
|
$fibo_level->{$f} = $t->copy->bmul($t)->badd($t1->copy()->bmul($t1)); |
248
|
|
|
|
|
|
|
#$mul += 2; $add ++; # for statistics |
249
|
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
# now the even ones |
251
|
6
|
|
|
|
|
1090
|
foreach $f (keys %{$fibo[$level]}) |
|
6
|
|
|
|
|
19
|
|
252
|
|
|
|
|
|
|
{ |
253
|
22
|
100
|
|
|
|
605
|
next if ($f & 1) != 0; |
254
|
8
|
|
|
|
|
26
|
$fibo[$level]->{$f} = $fibo[$level]->{$f+1} - $fibo[$level]->{$f-1}; |
255
|
|
|
|
|
|
|
#$add ++; # for statistics |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
} |
258
|
|
|
|
|
|
|
# print "sum $sum level $l => ",$sum/$l," steps $steps adds $add muls $mul\n"; |
259
|
2
|
|
|
|
|
166
|
$fibo[0]->{$x}; |
260
|
|
|
|
|
|
|
} |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
sub base |
263
|
|
|
|
|
|
|
{ |
264
|
7
|
|
|
7
|
1
|
3845
|
my ($number,$base) = @_; |
265
|
|
|
|
|
|
|
|
266
|
7
|
50
|
|
|
|
33
|
$number = Math::BigInt->new($number) unless ref $number; |
267
|
7
|
50
|
|
|
|
193
|
$base = Math::BigInt->new($base) unless ref $base; |
268
|
|
|
|
|
|
|
|
269
|
7
|
50
|
|
|
|
137
|
return if $number < $base; |
270
|
7
|
|
|
|
|
172
|
my $n = Math::BigInt->new(0); |
271
|
7
|
|
|
|
|
403
|
my $trial = $base; |
272
|
|
|
|
|
|
|
# 9 = 2**3 + 1 |
273
|
7
|
|
|
|
|
17
|
while ($trial < $number) |
274
|
|
|
|
|
|
|
{ |
275
|
20
|
|
|
|
|
618
|
$trial *= $base; $n++; |
|
20
|
|
|
|
|
784
|
|
276
|
|
|
|
|
|
|
} |
277
|
7
|
|
|
|
|
264
|
$trial /= $base; $a = $number - $trial; |
|
7
|
|
|
|
|
358
|
|
278
|
7
|
|
|
|
|
581
|
($n,$a); |
279
|
|
|
|
|
|
|
} |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
sub to_base |
282
|
|
|
|
|
|
|
{ |
283
|
|
|
|
|
|
|
# after an idea by Tilghman Lesher |
284
|
10
|
|
|
10
|
1
|
7886
|
my ($x, $base, $alphabet) = @_; |
285
|
|
|
|
|
|
|
|
286
|
10
|
50
|
|
|
|
72
|
$x = Math::BigInt->new($x) unless ref $x; |
287
|
|
|
|
|
|
|
|
288
|
10
|
100
|
|
|
|
629
|
return '0' if $x->is_zero(); |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
# setup defaults: |
291
|
9
|
50
|
|
|
|
152
|
$base = 2 unless defined $base; |
292
|
9
|
50
|
|
|
|
188
|
my @digits = $alphabet ? split //, $alphabet : ('0' .. '9', 'A' .. 'Z'); |
293
|
|
|
|
|
|
|
|
294
|
9
|
50
|
|
|
|
47
|
if ($base > scalar(@digits)) |
295
|
|
|
|
|
|
|
{ |
296
|
0
|
|
|
|
|
0
|
require Carp; |
297
|
0
|
|
|
|
|
0
|
Carp::carp("Base $base higher base than number of digits (" . scalar @digits . ") in alphabet"); |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
9
|
50
|
|
|
|
34
|
if (!$x->is_pos()) |
301
|
|
|
|
|
|
|
{ |
302
|
0
|
|
|
|
|
0
|
require Carp; |
303
|
0
|
|
|
|
|
0
|
Carp::carp("to_base() needs a positive number"); |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
9
|
|
|
|
|
205
|
my $o = $x->copy(); |
307
|
9
|
|
|
|
|
154
|
my $r; |
308
|
|
|
|
|
|
|
|
309
|
9
|
|
|
|
|
15
|
my $result = ''; |
310
|
9
|
|
|
|
|
25
|
while (!$o->is_zero) |
311
|
|
|
|
|
|
|
{ |
312
|
25
|
|
|
|
|
672
|
($o, $r) = $o->bdiv($base); |
313
|
25
|
|
|
|
|
5344
|
$result = $digits[$r] . $result; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
9
|
|
|
|
|
489
|
$result; |
317
|
|
|
|
|
|
|
} |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
sub hailstone |
320
|
|
|
|
|
|
|
{ |
321
|
|
|
|
|
|
|
# return in list context the hailstone sequence, in scalar context the |
322
|
|
|
|
|
|
|
# number of steps to reach 1 |
323
|
11
|
|
|
11
|
1
|
7098
|
my ($n) = @_; |
324
|
|
|
|
|
|
|
|
325
|
11
|
50
|
|
|
|
51
|
$n = Math::BigInt->new($n) unless ref $n; |
326
|
|
|
|
|
|
|
|
327
|
11
|
50
|
33
|
|
|
304
|
return if $n->is_nan() || $n->is_negative(); |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
# Use the Math::BigInt lib directly for more speed, since all numbers |
330
|
|
|
|
|
|
|
# involved are positive integers. |
331
|
|
|
|
|
|
|
|
332
|
11
|
|
|
|
|
161
|
my $lib = Math::BigInt->config()->{lib}; |
333
|
11
|
|
|
|
|
342
|
$n = $n->{value}; |
334
|
11
|
|
|
|
|
18
|
my $three_ = $three->{value}; |
335
|
11
|
|
|
|
|
15
|
my $two_ = $two->{value}; |
336
|
|
|
|
|
|
|
|
337
|
11
|
100
|
|
|
|
23
|
if (wantarray) |
338
|
|
|
|
|
|
|
{ |
339
|
4
|
|
|
|
|
4
|
my @seq; |
340
|
4
|
|
|
|
|
12
|
while (! $lib->_is_one($n)) |
341
|
|
|
|
|
|
|
{ |
342
|
|
|
|
|
|
|
# push @seq, Math::BigInt->new( $lib->_str($n) ); |
343
|
47
|
|
|
|
|
356
|
push @seq, bless { value => $lib->_copy($n), sign => '+' }, "Math::BigInt"; |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
# was: ($n->is_odd()) ? ($n = $n * 3 + 1) : ($n = $n / 2); |
346
|
47
|
100
|
|
|
|
189
|
if ($lib->_is_odd($n)) |
347
|
|
|
|
|
|
|
{ |
348
|
19
|
|
|
|
|
63
|
$n = $lib->_mul ($n, $three_); $n = $lib->_inc ($n); |
|
19
|
|
|
|
|
104
|
|
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
# We now know that $n is at least 10 ( (3 * 3) + 1 ) because $n > 1 |
351
|
|
|
|
|
|
|
# before we entered, and since $n was odd, it must have been at least |
352
|
|
|
|
|
|
|
# 3. So the next step is $n /= 2: |
353
|
19
|
|
|
|
|
83
|
push @seq, bless { value => $lib->_copy($n), sign => '+' }, "Math::BigInt"; |
354
|
|
|
|
|
|
|
# this is better, but slower: |
355
|
|
|
|
|
|
|
#push @seq, Math::BigInt->new( $lib->_str($n) ); |
356
|
|
|
|
|
|
|
# next step is $n /= 2 as usual (we save the else {} block, too) |
357
|
|
|
|
|
|
|
} |
358
|
47
|
|
|
|
|
175
|
$n = $lib->_div($n, $two_); |
359
|
|
|
|
|
|
|
} |
360
|
4
|
|
|
|
|
37
|
push @seq, Math::BigInt->bone(); |
361
|
4
|
|
|
|
|
134
|
return @seq; |
362
|
|
|
|
|
|
|
} |
363
|
|
|
|
|
|
|
|
364
|
7
|
|
|
|
|
8
|
my $i = 1; |
365
|
7
|
|
|
|
|
18
|
while (! $lib->_is_one($n)) |
366
|
|
|
|
|
|
|
{ |
367
|
47
|
|
|
|
|
307
|
$i++; |
368
|
|
|
|
|
|
|
# was: ($n->is_odd()) ? ($n = $n * 3 + 1) : ($n = $n / 2); |
369
|
47
|
100
|
|
|
|
68
|
if ($lib->_is_odd($n)) |
370
|
|
|
|
|
|
|
{ |
371
|
18
|
|
|
|
|
56
|
$n = $lib->_mul ($n, $three_); $n = $lib->_inc ($n); |
|
18
|
|
|
|
|
112
|
|
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
# We now know that $n is at least 10 ( (3 * 3) + 1 ) because $n > 1 |
374
|
|
|
|
|
|
|
# before we entered, and since $n was odd, it must have been at least 3. |
375
|
|
|
|
|
|
|
# So the next step is $n /= 2 as usual (we save the else {} block, too). |
376
|
18
|
|
|
|
|
64
|
$i++; # one more (we know that $n cannot be 1) |
377
|
|
|
|
|
|
|
} |
378
|
47
|
|
|
|
|
136
|
$n = $lib->_div($n, $two_); |
379
|
|
|
|
|
|
|
} |
380
|
7
|
|
|
|
|
65
|
Math::BigInt->new($i); |
381
|
|
|
|
|
|
|
} |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
sub factorial |
384
|
|
|
|
|
|
|
{ |
385
|
|
|
|
|
|
|
# calculate n! - use Math::BigInt bfac() for speed |
386
|
7
|
|
|
7
|
1
|
5569
|
my ($n) = shift; |
387
|
|
|
|
|
|
|
|
388
|
7
|
50
|
|
|
|
21
|
if (ref($n)) |
389
|
|
|
|
|
|
|
{ |
390
|
0
|
|
|
|
|
0
|
$n->copy()->bfac(); |
391
|
|
|
|
|
|
|
} |
392
|
|
|
|
|
|
|
else |
393
|
|
|
|
|
|
|
{ |
394
|
7
|
|
|
|
|
36
|
Math::BigInt->new($n)->bfac(); |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
} |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
sub bernoulli |
399
|
|
|
|
|
|
|
{ |
400
|
|
|
|
|
|
|
# returns the nth Bernoulli number. In scalar context as Math::BigFloat |
401
|
|
|
|
|
|
|
# fraction, in list context as two Math:BigFloats, which, if divided, give |
402
|
|
|
|
|
|
|
# the same result. The series runs this: |
403
|
|
|
|
|
|
|
# 1/6, 1/30, 1/42, 1/30, 5/66, 691/2730, etc |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
# Since I do not have yet a way to compute this, I have a table of the |
406
|
|
|
|
|
|
|
# first 40. So bernoulli(41) will fail for now. |
407
|
|
|
|
|
|
|
|
408
|
61
|
|
|
61
|
1
|
53276
|
my $n = shift; |
409
|
|
|
|
|
|
|
|
410
|
61
|
50
|
|
|
|
228
|
return if $n < 0; |
411
|
61
|
|
|
|
|
122
|
my @table_1 = ( 1,1, -1,2 ); # 0, 1 |
412
|
61
|
|
|
|
|
321
|
my @table = ( |
413
|
|
|
|
|
|
|
1,6, -1,30, 1,42, -1,30, 5,66, -691,2730, # 2, 4, |
414
|
|
|
|
|
|
|
7,6, -3617,510, 43867,798, |
415
|
|
|
|
|
|
|
-174611,330, |
416
|
|
|
|
|
|
|
854513,138, |
417
|
|
|
|
|
|
|
'-236364091',2730, |
418
|
|
|
|
|
|
|
'8553103',6, |
419
|
|
|
|
|
|
|
'-23749461029',870, |
420
|
|
|
|
|
|
|
'8615841276005',14322, |
421
|
|
|
|
|
|
|
'-7709321041217',510, |
422
|
|
|
|
|
|
|
'2577687858367',6, |
423
|
|
|
|
|
|
|
'-26315271553053477373',1919190, |
424
|
|
|
|
|
|
|
'2929993913841559',6, |
425
|
|
|
|
|
|
|
'-261082718496449122051',13530, # 40 |
426
|
|
|
|
|
|
|
); |
427
|
61
|
|
|
|
|
81
|
my ($a,$b); |
428
|
61
|
100
|
|
|
|
273
|
if ($n < 2) |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
429
|
|
|
|
|
|
|
{ |
430
|
2
|
|
|
|
|
10
|
$a = Math::BigFloat->new($table_1[$n*2]); |
431
|
2
|
|
|
|
|
138
|
$b = Math::BigFloat->new($table_1[$n*2+1]); |
432
|
|
|
|
|
|
|
} |
433
|
|
|
|
|
|
|
# n is odd: |
434
|
|
|
|
|
|
|
elsif (($n & 1) == 1) |
435
|
|
|
|
|
|
|
{ |
436
|
20
|
|
|
|
|
98
|
$a = Math::BigFloat->bzero(); |
437
|
20
|
|
|
|
|
1379
|
$b = Math::BigFloat->bone(); |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
elsif ($n <= 40) |
440
|
|
|
|
|
|
|
{ |
441
|
39
|
|
|
|
|
51
|
$n -= 2; |
442
|
39
|
|
|
|
|
170
|
$a = Math::BigFloat->new($table[$n]); |
443
|
39
|
|
|
|
|
3271
|
$b = Math::BigFloat->new($table[$n+1]); |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
else |
446
|
|
|
|
|
|
|
{ |
447
|
0
|
0
|
|
|
|
0
|
die 'Bernoulli numbers over 40 not yet implemented.' if $n > 40; |
448
|
|
|
|
|
|
|
} |
449
|
61
|
50
|
|
|
|
6634
|
wantarray ? ($a,$b): $a/$b; |
450
|
|
|
|
|
|
|
} |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
sub euler |
453
|
|
|
|
|
|
|
{ |
454
|
|
|
|
|
|
|
# Calculate Euler's number. |
455
|
|
|
|
|
|
|
# first argument is x, so that result is e ** x |
456
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
457
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
458
|
|
|
|
|
|
|
# rounds it. Default is 42. |
459
|
4
|
|
|
4
|
1
|
6318
|
my $x = $_[0]; |
460
|
4
|
50
|
33
|
|
|
44
|
$x = Math::BigFloat->new($x) if !ref($x) || (!$x->isa('Math::BigFloat')); |
461
|
|
|
|
|
|
|
|
462
|
4
|
|
|
|
|
594
|
$x->bexp($_[1]); |
463
|
|
|
|
|
|
|
} |
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
sub sin |
466
|
|
|
|
|
|
|
{ |
467
|
|
|
|
|
|
|
# calculate sinus |
468
|
|
|
|
|
|
|
# first argument is x, so that result is sin(x) |
469
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
470
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
471
|
|
|
|
|
|
|
# rounds it. Default is 42. |
472
|
8
|
50
|
|
8
|
1
|
7300
|
my $x = shift; $x = 0 if !defined $x; |
|
8
|
|
|
|
|
30
|
|
473
|
8
|
|
50
|
|
|
37
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
8
|
|
|
|
|
16
|
|
474
|
|
|
|
|
|
|
|
475
|
8
|
50
|
|
|
|
61
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
# taylor: x^3 x^5 x^7 x^9 |
478
|
|
|
|
|
|
|
# sin = x - --- + --- - --- + --- ... |
479
|
|
|
|
|
|
|
# 3! 5! 7! 9! |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 1,2 |
482
|
|
|
|
|
|
|
|
483
|
8
|
|
|
|
|
884
|
my $sin = $x->copy(); my $last = 0; |
|
8
|
|
|
|
|
124
|
|
484
|
8
|
|
|
|
|
11
|
my $sign = 1; # start with -= |
485
|
8
|
|
|
|
|
26
|
my $x2 = $x * $x; # X ^ 2, difference between terms |
486
|
8
|
|
|
|
|
670
|
my $over = $x2 * $x; # X ^ 3 |
487
|
8
|
|
|
|
|
606
|
my $below = Math::BigFloat->new(6); my $factorial = Math::BigFloat->new(4); |
|
8
|
|
|
|
|
483
|
|
488
|
8
|
|
|
|
|
465
|
while ($sin->bcmp($last) != 0) # no $x-$last > $diff because bdiv() limit on accuracy |
489
|
|
|
|
|
|
|
{ |
490
|
46
|
|
|
|
|
6710
|
$last = $sin->copy(); |
491
|
46
|
100
|
|
|
|
649
|
if ($sign == 0) |
492
|
|
|
|
|
|
|
{ |
493
|
22
|
|
|
|
|
45
|
$sin += $over->copy()->bdiv($below,$d); |
494
|
|
|
|
|
|
|
} |
495
|
|
|
|
|
|
|
else |
496
|
|
|
|
|
|
|
{ |
497
|
24
|
|
|
|
|
49
|
$sin -= $over->copy()->bdiv($below,$d); |
498
|
|
|
|
|
|
|
} |
499
|
46
|
|
|
|
|
33056
|
$sign = 1-$sign; # alternate |
500
|
46
|
|
|
|
|
97
|
$over *= $x2; # $x*$x |
501
|
46
|
|
|
|
|
3178
|
$below *= $factorial; $factorial++; # n*(n+1) |
|
46
|
|
|
|
|
2871
|
|
502
|
46
|
|
|
|
|
2496
|
$below *= $factorial; $factorial++; |
|
46
|
|
|
|
|
3250
|
|
503
|
|
|
|
|
|
|
} |
504
|
8
|
|
|
|
|
1162
|
$sin->bround($d-1); |
505
|
|
|
|
|
|
|
} |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
sub cos |
508
|
|
|
|
|
|
|
{ |
509
|
|
|
|
|
|
|
# calculate cosinus |
510
|
|
|
|
|
|
|
# first argument is x, so that result is cos(x) |
511
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
512
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
513
|
|
|
|
|
|
|
# rounds it. Default is 42. |
514
|
8
|
50
|
|
8
|
1
|
7434
|
my $x = shift; $x = 0 if !defined $x; |
|
8
|
|
|
|
|
25
|
|
515
|
8
|
|
50
|
|
|
31
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
8
|
|
|
|
|
12
|
|
516
|
|
|
|
|
|
|
|
517
|
8
|
50
|
|
|
|
56
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
518
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
# taylor: x^2 x^4 x^6 x^8 |
520
|
|
|
|
|
|
|
# cos = 1 - --- + --- - --- + --- ... |
521
|
|
|
|
|
|
|
# 2! 4! 6! 8! |
522
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 1,2 |
524
|
|
|
|
|
|
|
|
525
|
8
|
|
|
|
|
852
|
my $cos = Math::BigFloat->bone(); my $last = 0; |
|
8
|
|
|
|
|
234
|
|
526
|
8
|
|
|
|
|
26
|
my $over = $x * $x; # X ^ 2 |
527
|
8
|
|
|
|
|
665
|
my $x2 = $over->copy(); # X ^ 2; difference between terms |
528
|
8
|
|
|
|
|
95
|
my $sign = 1; # start with -= |
529
|
8
|
|
|
|
|
18
|
my $below = Math::BigFloat->new(2); my $factorial = Math::BigFloat->new(3); |
|
8
|
|
|
|
|
505
|
|
530
|
8
|
|
|
|
|
449
|
while ($cos->bcmp($last) != 0) # no $x-$last > $diff because bdiv() limit on accuracy |
531
|
|
|
|
|
|
|
{ |
532
|
52
|
|
|
|
|
7403
|
$last = $cos->copy(); |
533
|
52
|
100
|
|
|
|
765
|
if ($sign == 0) |
534
|
|
|
|
|
|
|
{ |
535
|
24
|
|
|
|
|
48
|
$cos += $over->copy()->bdiv($below,$d); |
536
|
|
|
|
|
|
|
} |
537
|
|
|
|
|
|
|
else |
538
|
|
|
|
|
|
|
{ |
539
|
28
|
|
|
|
|
51
|
$cos -= $over->copy()->bdiv($below,$d); |
540
|
|
|
|
|
|
|
} |
541
|
52
|
|
|
|
|
35013
|
$sign = 1-$sign; # alternate |
542
|
52
|
|
|
|
|
112
|
$over *= $x2; # $x*$x |
543
|
52
|
|
|
|
|
3650
|
$below *= $factorial; $factorial++; # n*(n+1) |
|
52
|
|
|
|
|
3489
|
|
544
|
52
|
|
|
|
|
2772
|
$below *= $factorial; $factorial++; |
|
52
|
|
|
|
|
3170
|
|
545
|
|
|
|
|
|
|
} |
546
|
8
|
|
|
|
|
1084
|
$cos->round($d-1); |
547
|
|
|
|
|
|
|
} |
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
sub tan |
550
|
|
|
|
|
|
|
{ |
551
|
|
|
|
|
|
|
# calculate tangens |
552
|
|
|
|
|
|
|
# first argument is x, so that result is tan(x) |
553
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
554
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
555
|
|
|
|
|
|
|
# rounds it. Default is 42. |
556
|
3
|
50
|
|
3
|
1
|
3921
|
my $x = shift; $x = 0 if !defined $x; |
|
3
|
|
|
|
|
12
|
|
557
|
3
|
|
50
|
|
|
16
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
3
|
|
|
|
|
5
|
|
558
|
|
|
|
|
|
|
|
559
|
3
|
50
|
|
|
|
23
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
# taylor: 1 2 3 4 5 |
562
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
# x^3 x^5 x^7 x^9 |
564
|
|
|
|
|
|
|
# tan = x + 1 * ----- + 2 * ----- + 17 * ----- + 62 * ----- ... |
565
|
|
|
|
|
|
|
# 3 15 315 2835 |
566
|
|
|
|
|
|
|
# |
567
|
|
|
|
|
|
|
# 2^2n * ( 2^2n - 1) * Bn * x^(2n-1) 256*255 * 1 * x^7 17 |
568
|
|
|
|
|
|
|
# ---------------------------------- : n=4: ----------------- = --- * x^7 |
569
|
|
|
|
|
|
|
# (2n)! 40320 * 30 315 |
570
|
|
|
|
|
|
|
# |
571
|
|
|
|
|
|
|
# 8! = 40320, B4 (Bernoully number 4) = 1/30 |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
# for each term we need: 2^2n, but if we have 2^2(n-1) we use n = (n-1)*2 |
574
|
|
|
|
|
|
|
# 2 copy, 7 bmul, 2 bdiv, 3 badd, 1 bernoulli |
575
|
|
|
|
|
|
|
|
576
|
3
|
|
|
|
|
316
|
my $tan = $x->copy(); my $last = 0; |
|
3
|
|
|
|
|
67
|
|
577
|
3
|
|
|
|
|
71
|
my $x2 = $x*$x; |
578
|
3
|
|
|
|
|
408
|
my $over = $x2*$x; |
579
|
3
|
|
|
|
|
398
|
my $below = Math::BigFloat->new(24); # (1*2*3*4) (2n)! |
580
|
3
|
|
|
|
|
209
|
my $factorial = Math::BigFloat->new(5); # for next (2n)! |
581
|
3
|
|
|
|
|
275
|
my $two_n = Math::BigFloat->new(16); # 2^2n |
582
|
3
|
|
|
|
|
169
|
my $two_factor = Math::BigFloat->new(4); # 2^2(n+1) = $two_n * $two_factor |
583
|
3
|
|
|
|
|
252
|
my ($b,$b1,$b2); $b = 4; |
|
3
|
|
|
|
|
5
|
|
584
|
3
|
|
|
|
|
15
|
while ($tan->bcmp($last) != 0) # no $x-$last > $diff because bdiv() limit on accuracy |
585
|
|
|
|
|
|
|
{ |
586
|
19
|
|
|
|
|
2516
|
$last = $tan->copy(); |
587
|
19
|
|
|
|
|
391
|
($b1,$b2) = bernoulli($b); |
588
|
19
|
|
|
|
|
109
|
$tan += $over->copy()->bmul($two_n)->bmul($two_n - $fone)->bmul($b1->babs())->bdiv($below,$d)->bdiv($b2,$d); |
589
|
19
|
|
|
|
|
39668
|
$over *= $x2; # x^3, x^5 etc |
590
|
19
|
|
|
|
|
1872
|
$below *= $factorial; $factorial++; # n*(n+1) |
|
19
|
|
|
|
|
2074
|
|
591
|
19
|
|
|
|
|
1606
|
$below *= $factorial; $factorial++; |
|
19
|
|
|
|
|
1905
|
|
592
|
19
|
|
|
|
|
1619
|
$two_n *= $two_factor; # 2^2(n+1) = 2^2n * 4 |
593
|
19
|
|
|
|
|
1772
|
$b += 2; # next bernoulli index |
594
|
19
|
100
|
|
|
|
104
|
last if $b > 40; # safeguard |
595
|
|
|
|
|
|
|
} |
596
|
3
|
|
|
|
|
400
|
$tan->round($d-1); |
597
|
|
|
|
|
|
|
} |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
sub sinh |
600
|
|
|
|
|
|
|
{ |
601
|
|
|
|
|
|
|
# calculate sinus hyperbolicus |
602
|
|
|
|
|
|
|
# first argument is x, so that result is sinh(x) |
603
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
604
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
605
|
|
|
|
|
|
|
# rounds it. Default is 42. |
606
|
2
|
50
|
|
2
|
1
|
1776
|
my $x = shift; $x = 0 if !defined $x; |
|
2
|
|
|
|
|
12
|
|
607
|
2
|
|
50
|
|
|
9
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
2
|
|
|
|
|
4
|
|
608
|
|
|
|
|
|
|
|
609
|
2
|
50
|
|
|
|
14
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
# taylor: x^3 x^5 x^7 |
612
|
|
|
|
|
|
|
# sinh = x + --- + --- + --- ... |
613
|
|
|
|
|
|
|
# 3! 5! 7! |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 1,2 |
616
|
|
|
|
|
|
|
|
617
|
2
|
|
|
|
|
190
|
my $sinh = $x->copy(); my $last = 0; |
|
2
|
|
|
|
|
46
|
|
618
|
2
|
|
|
|
|
10
|
my $x2 = $x*$x; |
619
|
2
|
|
|
|
|
263
|
my $over = $x2 * $x; my $below = Math::BigFloat->new(6); my $factorial = Math::BigFloat->new(4); |
|
2
|
|
|
|
|
223
|
|
|
2
|
|
|
|
|
168
|
|
620
|
2
|
|
|
|
|
161
|
while ($sinh->bcmp($last)) # no $x-$last > $diff because bdiv() limit on accuracy |
621
|
|
|
|
|
|
|
{ |
622
|
0
|
|
|
|
|
0
|
$last = $sinh->copy(); |
623
|
0
|
|
|
|
|
0
|
$sinh += $over->copy()->bdiv($below,$d); |
624
|
0
|
|
|
|
|
0
|
$over *= $x2; # $x*$x |
625
|
0
|
|
|
|
|
0
|
$below *= $factorial; $factorial++; # n*(n+1) |
|
0
|
|
|
|
|
0
|
|
626
|
0
|
|
|
|
|
0
|
$below *= $factorial; $factorial++; |
|
0
|
|
|
|
|
0
|
|
627
|
|
|
|
|
|
|
} |
628
|
2
|
|
|
|
|
382
|
$sinh->bround($d-1); |
629
|
|
|
|
|
|
|
} |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
sub cosh |
632
|
|
|
|
|
|
|
{ |
633
|
|
|
|
|
|
|
# calculate cosinus hyperbolicus |
634
|
|
|
|
|
|
|
# first argument is x, so that result is cosh(x) |
635
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
636
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
637
|
|
|
|
|
|
|
# rounds it. Default is 42. |
638
|
0
|
0
|
|
0
|
1
|
0
|
my $x = shift; $x = 0 if !defined $x; |
|
0
|
|
|
|
|
0
|
|
639
|
0
|
|
0
|
|
|
0
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
0
|
|
|
|
|
0
|
|
640
|
|
|
|
|
|
|
|
641
|
0
|
0
|
|
|
|
0
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
# taylor: x^2 x^4 x^6 |
644
|
|
|
|
|
|
|
# cosh = x + --- + --- + --- ... |
645
|
|
|
|
|
|
|
# 2! 4! 6! |
646
|
|
|
|
|
|
|
|
647
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 1,2 |
648
|
|
|
|
|
|
|
|
649
|
0
|
|
|
|
|
0
|
my $cosh = Math::BigFloat->bone(); my $last = 0; |
|
0
|
|
|
|
|
0
|
|
650
|
0
|
|
|
|
|
0
|
my $x2 = $x*$x; |
651
|
0
|
|
|
|
|
0
|
my $over = $x2; my $below = Math::BigFloat->new(); my $factorial = Math::BigFloat->new(3); |
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
652
|
0
|
|
|
|
|
0
|
while ($cosh->bcmp($last)) # no $x-$last > $diff because bdiv() limit on accuracy |
653
|
|
|
|
|
|
|
{ |
654
|
0
|
|
|
|
|
0
|
$last = $cosh->copy(); |
655
|
0
|
|
|
|
|
0
|
$cosh += $over->copy()->bdiv($below,$d); |
656
|
0
|
|
|
|
|
0
|
$over *= $x2; # $x*$x |
657
|
0
|
|
|
|
|
0
|
$below *= $factorial; $factorial++; # n*(n+1) |
|
0
|
|
|
|
|
0
|
|
658
|
0
|
|
|
|
|
0
|
$below *= $factorial; $factorial++; |
|
0
|
|
|
|
|
0
|
|
659
|
|
|
|
|
|
|
} |
660
|
0
|
|
|
|
|
0
|
$cosh->bround($d-1); |
661
|
|
|
|
|
|
|
} |
662
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
sub arctan |
664
|
|
|
|
|
|
|
{ |
665
|
|
|
|
|
|
|
# calculate arcus tangens |
666
|
|
|
|
|
|
|
# first argument is x, so that result is arctan(x) |
667
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
668
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
669
|
|
|
|
|
|
|
# rounds it. Default is 42. |
670
|
8
|
50
|
|
8
|
1
|
6075
|
my $x = shift; $x = 0 if !defined $x; |
|
8
|
|
|
|
|
34
|
|
671
|
8
|
|
50
|
|
|
32
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
8
|
|
|
|
|
17
|
|
672
|
|
|
|
|
|
|
|
673
|
8
|
100
|
|
|
|
45
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
# taylor: x^3 x^5 x^7 x^9 |
676
|
|
|
|
|
|
|
# arctan = x - --- + --- - --- + --- ... |
677
|
|
|
|
|
|
|
# 3 5 7 9 |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 2: |
680
|
|
|
|
|
|
|
# 2 copy, 1 bmul, 1 badd, 1 bdiv |
681
|
|
|
|
|
|
|
|
682
|
8
|
|
|
|
|
604
|
my $arctan = $x->copy(); my $last = 0; |
|
8
|
|
|
|
|
145
|
|
683
|
8
|
|
|
|
|
33
|
my $x2 = $x*$x; |
684
|
8
|
|
|
|
|
1546
|
my $over = $x2*$x; my $below = Math::BigFloat->new(3); my $add = Math::BigFloat->new(2); |
|
8
|
|
|
|
|
1635
|
|
|
8
|
|
|
|
|
696
|
|
685
|
8
|
|
|
|
|
547
|
my $sign = 1; |
686
|
8
|
|
|
|
|
27
|
while ($arctan->bcmp($last)) # no $x-$last > $diff because bdiv() limit on A |
687
|
|
|
|
|
|
|
{ |
688
|
85
|
|
|
|
|
19505
|
$last = $arctan->copy(); |
689
|
85
|
100
|
|
|
|
1471
|
if ($sign == 0) |
690
|
|
|
|
|
|
|
{ |
691
|
42
|
|
|
|
|
96
|
$arctan += $over->copy()->bdiv($below,$d); |
692
|
|
|
|
|
|
|
} |
693
|
|
|
|
|
|
|
else |
694
|
|
|
|
|
|
|
{ |
695
|
43
|
|
|
|
|
87
|
$arctan -= $over->copy()->bdiv($below,$d); |
696
|
|
|
|
|
|
|
} |
697
|
85
|
|
|
|
|
73236
|
$sign = 1-$sign; # alternate |
698
|
85
|
|
|
|
|
249
|
$over *= $x2; # $x*$x |
699
|
85
|
|
|
|
|
13628
|
$below += $add; |
700
|
|
|
|
|
|
|
} |
701
|
8
|
|
|
|
|
1731
|
$arctan->bround($d-1); |
702
|
|
|
|
|
|
|
} |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
sub arctanh |
705
|
|
|
|
|
|
|
{ |
706
|
|
|
|
|
|
|
# calculate arcus tangens hyperbolicus |
707
|
|
|
|
|
|
|
# first argument is x, so that result is arctanh(x) |
708
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
709
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
710
|
|
|
|
|
|
|
# rounds it. Default is 42. |
711
|
2
|
50
|
|
2
|
1
|
1827
|
my $x = shift; $x = 0 if !defined $x; |
|
2
|
|
|
|
|
7
|
|
712
|
2
|
|
50
|
|
|
8
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
2
|
|
|
|
|
4
|
|
713
|
|
|
|
|
|
|
|
714
|
2
|
50
|
|
|
|
12
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
715
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
# taylor: x^3 x^5 x^7 x^9 |
717
|
|
|
|
|
|
|
# arctanh = x + --- + --- + --- + --- + ... |
718
|
|
|
|
|
|
|
# 3 5 7 9 |
719
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
# difference for each term is thus x^2 and 2: |
721
|
|
|
|
|
|
|
# 2 copy, 1 bmul, 1 badd, 1 bdiv |
722
|
|
|
|
|
|
|
|
723
|
2
|
|
|
|
|
165
|
my $arctanh = $x->copy(); my $last = 0; |
|
2
|
|
|
|
|
27
|
|
724
|
2
|
|
|
|
|
6
|
my $x2 = $x*$x; |
725
|
2
|
|
|
|
|
161
|
my $over = $x2*$x; my $below = Math::BigFloat->new(3); my $add = Math::BigFloat->new(2); |
|
2
|
|
|
|
|
141
|
|
|
2
|
|
|
|
|
115
|
|
726
|
2
|
|
|
|
|
102
|
while ($arctanh->bcmp($last)) # no $x-$last > $diff because bdiv() limit on A |
727
|
|
|
|
|
|
|
{ |
728
|
0
|
|
|
|
|
0
|
$last = $arctanh->copy(); |
729
|
0
|
|
|
|
|
0
|
$arctanh += $over->copy()->bdiv($below,$d); |
730
|
0
|
|
|
|
|
0
|
$over *= $x2; # $x*$x |
731
|
0
|
|
|
|
|
0
|
$below += $add; |
732
|
|
|
|
|
|
|
} |
733
|
2
|
|
|
|
|
234
|
$arctanh->bround($d-1); |
734
|
|
|
|
|
|
|
} |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
sub arcsin |
737
|
|
|
|
|
|
|
{ |
738
|
|
|
|
|
|
|
# calculate arcus sinus |
739
|
|
|
|
|
|
|
# first argument is x, so that result is arcsin(x) |
740
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
741
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
742
|
|
|
|
|
|
|
# rounds it. Default is 42. |
743
|
4
|
50
|
|
4
|
1
|
3698
|
my $x = shift; $x = 0 if !defined $x; |
|
4
|
|
|
|
|
16
|
|
744
|
4
|
|
100
|
|
|
24
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
4
|
|
|
|
|
9
|
|
745
|
|
|
|
|
|
|
|
746
|
4
|
50
|
|
|
|
27
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
# taylor: 1 * x^3 1 * 3 * x^5 1 * 3 * 5 * x^7 |
749
|
|
|
|
|
|
|
# arcsin = x + ------- + ----------- + --------------- + ... |
750
|
|
|
|
|
|
|
# 2 * 3 2 * 4 * 5 2 * 4 * 6 * 7 |
751
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
# difference for each term is thus x^2 and two muls (fac1, fac2): |
753
|
|
|
|
|
|
|
# 3 copy, 3 bmul, 1 bdiv, 3 badd |
754
|
|
|
|
|
|
|
|
755
|
4
|
|
|
|
|
546
|
my $arcsin = $x->copy(); my $last = 0; |
|
4
|
|
|
|
|
85
|
|
756
|
4
|
|
|
|
|
17
|
my $x2 = $x*$x; |
757
|
4
|
|
|
|
|
868
|
my $over = $x2*$x; my $below = Math::BigFloat->new(6); |
|
4
|
|
|
|
|
625
|
|
758
|
4
|
|
|
|
|
385
|
my $fac1 = Math::BigFloat->new(1); |
759
|
4
|
|
|
|
|
498
|
my $fac2 = Math::BigFloat->new(2); |
760
|
4
|
|
|
|
|
383
|
my $two = Math::BigFloat->new(2); |
761
|
4
|
|
|
|
|
343
|
while ($arcsin->bcmp($last)) # no $x-$last > $diff because bdiv() limit on A |
762
|
|
|
|
|
|
|
{ |
763
|
30
|
|
|
|
|
11058
|
$last = $arcsin->copy(); |
764
|
30
|
|
|
|
|
777
|
$arcsin += $over->copy()->bmul($fac1)->bdiv($below->copy->bmul($fac2),$d); |
765
|
30
|
|
|
|
|
47225
|
$over *= $x2; # $x*$x |
766
|
30
|
|
|
|
|
3978
|
$below += $one; |
767
|
30
|
|
|
|
|
9777
|
$fac1 += $two; |
768
|
30
|
|
|
|
|
5020
|
$fac2 += $two; |
769
|
|
|
|
|
|
|
} |
770
|
4
|
|
|
|
|
939
|
$arcsin->bround($d-1); |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
sub arcsinh |
774
|
|
|
|
|
|
|
{ |
775
|
|
|
|
|
|
|
# calculate arcus sinus hyperbolicus |
776
|
|
|
|
|
|
|
# first argument is x, so that result is arcsinh(x) |
777
|
|
|
|
|
|
|
# Second argument is accuracy (number of significant digits), it |
778
|
|
|
|
|
|
|
# stops when at least so much plus one digits are 'stable' and then |
779
|
|
|
|
|
|
|
# rounds it. Default is 42. |
780
|
2
|
50
|
|
2
|
1
|
2489
|
my $x = shift; $x = 0 if !defined $x; |
|
2
|
|
|
|
|
9
|
|
781
|
2
|
|
50
|
|
|
11
|
my $d = abs(shift || 42); $d = abs($d)+1; |
|
2
|
|
|
|
|
5
|
|
782
|
|
|
|
|
|
|
|
783
|
2
|
50
|
|
|
|
28
|
$x = Math::BigFloat->new($x) if ref($x) ne 'Math::BigFloat'; |
784
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
# taylor: 1 * x^3 1 * 3 * x^5 1 * 3 * 5 * x^7 |
786
|
|
|
|
|
|
|
# arcsin = x - ------- + ----------- - --------------- + ... |
787
|
|
|
|
|
|
|
# 2 * 3 2 * 4 * 5 2 * 4 * 6 * 7 |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
# difference for each term is thus x^2 and two muls (fac1, fac2): |
790
|
|
|
|
|
|
|
# 3 copy, 3 bmul, 1 bdiv, 3 badd |
791
|
|
|
|
|
|
|
|
792
|
2
|
|
|
|
|
231
|
my $arcsinh = $x->copy(); my $last = 0; |
|
2
|
|
|
|
|
41
|
|
793
|
2
|
|
|
|
|
10
|
my $x2 = $x*$x; my $sign = 0; |
|
2
|
|
|
|
|
251
|
|
794
|
2
|
|
|
|
|
8
|
my $over = $x2*$x; my $below = 6; |
|
2
|
|
|
|
|
260
|
|
795
|
2
|
|
|
|
|
12
|
my $fac1 = Math::BigInt->new(1); |
796
|
2
|
|
|
|
|
87
|
my $fac2 = Math::BigInt->new(2); |
797
|
2
|
|
|
|
|
64
|
while ($arcsinh ne $last) # no $x-$last > $diff because bdiv() limit on A |
798
|
|
|
|
|
|
|
{ |
799
|
0
|
|
|
|
|
0
|
$last = $arcsinh->copy(); |
800
|
0
|
0
|
|
|
|
0
|
if ($sign == 0) |
801
|
|
|
|
|
|
|
{ |
802
|
0
|
|
|
|
|
0
|
$arcsinh += $over->copy()->bmul( |
803
|
|
|
|
|
|
|
$fac1)->bdiv($below->copy->bmul($fac2),$d); |
804
|
|
|
|
|
|
|
} |
805
|
|
|
|
|
|
|
else |
806
|
|
|
|
|
|
|
{ |
807
|
0
|
|
|
|
|
0
|
$arcsinh -= $over->copy()->bmul( |
808
|
|
|
|
|
|
|
$fac1)->bdiv($below->copy->bmul($fac2),$d); |
809
|
|
|
|
|
|
|
} |
810
|
0
|
|
|
|
|
0
|
$over *= $x2; # $x*$x |
811
|
0
|
|
|
|
|
0
|
$below += $one; |
812
|
0
|
|
|
|
|
0
|
$fac1 += $two; |
813
|
0
|
|
|
|
|
0
|
$fac2 += $two; |
814
|
|
|
|
|
|
|
} |
815
|
2
|
|
|
|
|
78
|
$arcsinh->round($d-1); |
816
|
|
|
|
|
|
|
} |
817
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
sub log |
819
|
|
|
|
|
|
|
{ |
820
|
5
|
|
|
5
|
1
|
3454
|
my ($x,$base,$d) = @_; |
821
|
|
|
|
|
|
|
|
822
|
5
|
|
|
|
|
5
|
my $y; |
823
|
5
|
50
|
33
|
|
|
20
|
if (!ref($x) || !$x->isa('Math::BigFloat')) |
824
|
|
|
|
|
|
|
{ |
825
|
5
|
|
|
|
|
28
|
$y = Math::BigFloat->new($x); |
826
|
|
|
|
|
|
|
} |
827
|
|
|
|
|
|
|
else |
828
|
|
|
|
|
|
|
{ |
829
|
0
|
|
|
|
|
0
|
$y = $x->copy(); |
830
|
|
|
|
|
|
|
} |
831
|
5
|
|
|
|
|
510
|
$y->blog($base,$d); |
832
|
5
|
|
|
|
|
1852
|
$y; |
833
|
|
|
|
|
|
|
} |
834
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
sub pi |
836
|
|
|
|
|
|
|
{ |
837
|
|
|
|
|
|
|
# calculate PI (as suggested by Robert Creager) |
838
|
2
|
|
50
|
2
|
1
|
1979
|
my $digits = abs(shift || 1024); |
839
|
|
|
|
|
|
|
|
840
|
2
|
|
|
|
|
7
|
my $d = $digits+5; |
841
|
|
|
|
|
|
|
|
842
|
2
|
|
|
|
|
13
|
my $pi = $sixteen * arctan( scalar $fone->copy()->bdiv($five,$d), $d ) |
843
|
|
|
|
|
|
|
- $four * arctan( scalar $fone->copy()->bdiv($twothreenine,$d), $d); |
844
|
2
|
|
|
|
|
1633
|
$pi->bround($digits+1); # +1 for the "3." |
845
|
|
|
|
|
|
|
} |
846
|
|
|
|
|
|
|
|
847
|
|
|
|
|
|
|
1; |
848
|
|
|
|
|
|
|
|
849
|
|
|
|
|
|
|
__END__ |