line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=pod
|
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=head1 Name
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
Math::Algebra::Symbols
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 Synopsis
|
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
Symbolic Algebra in Pure Perl
|
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
use Math::Algebra::Symbols hyper=>1;
|
12
|
|
|
|
|
|
|
use Test::Simple tests=>5;
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
($n, $x, $y) = symbols(qw(n x y));
|
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
$a += ($x**8 - 1)/($x-1);
|
17
|
|
|
|
|
|
|
$b += sin($x)**2 + cos($x)**2;
|
18
|
|
|
|
|
|
|
$c += (sin($n*$x) + cos($n*$x))->d->d->d->d / (sin($n*$x)+cos($n*$x));
|
19
|
|
|
|
|
|
|
$d = tanh($x+$y) == (tanh($x)+tanh($y))/(1+tanh($x)*tanh($y));
|
20
|
|
|
|
|
|
|
($e,$f) = @{($x**2 eq 5*$x-6) > $x};
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
print "$a\n$b\n$c\n$d\n$e,$f\n";
|
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
ok("$a" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1');
|
25
|
|
|
|
|
|
|
ok("$b" eq '1');
|
26
|
|
|
|
|
|
|
ok("$c" eq '$n**4');
|
27
|
|
|
|
|
|
|
ok("$d" eq '1');
|
28
|
|
|
|
|
|
|
ok("$e,$f" eq '2,3');
|
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
Floating point calculations on a triangle with angles of 22.5, 45, 112.5
|
31
|
|
|
|
|
|
|
degrees to determine whether two of the diameters of the nine point circle
|
32
|
|
|
|
|
|
|
are at right angles yield (on my computer) the following inconclusive result
|
33
|
|
|
|
|
|
|
when the dot product between the diameters is formed numerically:
|
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
my $o = 1;
|
36
|
|
|
|
|
|
|
my $a = sqrt($o/2); # X position of apex
|
37
|
|
|
|
|
|
|
my $b = $o - $a; # Y position of apex
|
38
|
|
|
|
|
|
|
my $s = ($a*$a+$b*$b-$a)/2/$b;
|
39
|
|
|
|
|
|
|
my ($nx, $ny) = ($o/4 + $a/2, $b/2 - $s/2); # Nine point centre
|
40
|
|
|
|
|
|
|
my ($px, $py) = ($o/2, 0); # Diameter from mid point
|
41
|
|
|
|
|
|
|
my ($qx, $qy) = ($o/2 + $a/2, $b/2); # Diameter from mid point
|
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
my $d = ($px-$nx)*($qx-$nx)+($py-$ny)*($qy-$ny); # Dot product should be zero
|
44
|
|
|
|
|
|
|
print +($d == 0)||0, "\n$d\n"; # Definitively zero if 1
|
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# 0 # Not exactly zero
|
47
|
|
|
|
|
|
|
# -6.93889390390723e-18 # Is this significant or not?
|
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
By contrast with Math::Algebra::Symbols I get the much more convincing:
|
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
my ($o, $i) = symbols(qw(1 i)); # Units in x,y
|
52
|
|
|
|
|
|
|
my $a = sqrt($o/2); # X position of apex
|
53
|
|
|
|
|
|
|
my $b = $o - $a; # Y position of apex
|
54
|
|
|
|
|
|
|
my $s = ($a*$a+$b*$b-$a)/2/$b;
|
55
|
|
|
|
|
|
|
my $n = $o/4 + $a/2 +$i*($b/2 - $s/2); # Nine point centre
|
56
|
|
|
|
|
|
|
my $p = $o/2; # Diameter from mid point
|
57
|
|
|
|
|
|
|
my $q = $o/2 + $a/2 +$i* $b/2; # Diameter from mid point
|
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
my $d = (($p-$n) ^ ($q-$n)); # Dot product should be zero
|
60
|
|
|
|
|
|
|
print +($d == 0)||0, "\n$d\n"; # Definitively zero if 1
|
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# 1
|
63
|
|
|
|
|
|
|
# 17/32/(-2*sqrt(1/2)+3/2)-3/4/(-2*sqrt(1/2)+3/2)*sqrt(1/2)-7/16/(-sqrt(1/2)+1)
|
64
|
|
|
|
|
|
|
# +5/8/(-sqrt(1/2)+1)*sqrt(1/2)-1/8*sqrt(1/2)+1/16
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=head1 Description
|
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
This package supplies a set of functions and operators to manipulate
|
69
|
|
|
|
|
|
|
operator expressions algebraically using the familiar Perl syntax.
|
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
These expressions are constructed from L, L, and
|
72
|
|
|
|
|
|
|
L, and processed via L. For examples, see:
|
73
|
|
|
|
|
|
|
L.
|
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
=head2 Symbols
|
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
Symbols are created with the exported B constructor routine:
|
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
80
|
|
|
|
|
|
|
use Test::Simple tests=>1;
|
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
my ($x, $y, $i, $o, $pi) = symbols(qw(x y i 1 pi));
|
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
ok( "$x $y $i $o $pi" eq '$x $y i 1 $pi' );
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
The B routine constructs references to symbolic variables and
|
87
|
|
|
|
|
|
|
symbolic constants from a list of names and integer constants.
|
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
The special symbol B is recognized as the square root of B<-1>.
|
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
The special symbol B is recognized as the smallest positive real
|
92
|
|
|
|
|
|
|
that satisfies:
|
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
95
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
my ($i, $pi) = symbols(qw(i pi));
|
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
ok( exp($i*$pi) == -1 );
|
100
|
|
|
|
|
|
|
ok( exp($i*$pi) <=> '-1' );
|
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=head3 Constructor Routine Name
|
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
If you wish to use a different name for the constructor routine, say
|
105
|
|
|
|
|
|
|
B:
|
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
use Math::Algebra::Symbols symbols=>'S';
|
108
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
my ($i, $pi) = S(qw(i pi));
|
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
ok( exp($i*$pi) == -1 );
|
113
|
|
|
|
|
|
|
ok( exp($i*$pi) <=//> '-1' );
|
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
=head3 Big Integers
|
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
Symbols automatically uses big integers if needed.
|
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
121
|
|
|
|
|
|
|
use Test::Simple tests=>1;
|
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
my $z = symbols('1234567890987654321/1234567890987654321');
|
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
ok( eval $z eq '1');
|
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
=head2 Operators
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
L can be combined with L to create symbolic
|
130
|
|
|
|
|
|
|
expressions:
|
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
=head3 Arithmetic operators
|
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=head4 Arithmetic Operators: B<+> B<-> B<*> B> B<**>
|
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
138
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
my ($x, $y) = symbols(qw(x y));
|
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) == $x+$y );
|
143
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) != $x-$y );
|
144
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
|
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
The operators: B<+=> B<-=> B<*=> B=> are overloaded to work symbolically
|
147
|
|
|
|
|
|
|
rather than numerically. If you need numeric results, you can always
|
148
|
|
|
|
|
|
|
B the resulting symbolic expression.
|
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
=head4 Square root Operator: B
|
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
153
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
my ($x, $i) = symbols(qw(x i));
|
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
ok( sqrt(-$x**2) == $i*$x );
|
158
|
|
|
|
|
|
|
ok( sqrt(-$x**2) <=> 'i*$x' );
|
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
The square root is represented by the symbol B, which allows complex
|
161
|
|
|
|
|
|
|
expressions to be processed by Math::Complex.
|
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=head4 Exponential Operator: B
|
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
166
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
my ($x, $i) = symbols(qw(x i));
|
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
ok( exp($x)->d($x) == exp($x) );
|
171
|
|
|
|
|
|
|
ok( exp($x)->d($x) <=> 'exp($x)' );
|
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
The exponential operator.
|
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
=head4 Logarithm Operator: B
|
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
178
|
|
|
|
|
|
|
use Test::Simple tests=>1;
|
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
my ($x) = symbols(qw(x));
|
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
ok( log($x) <=> 'log($x)' );
|
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
Logarithm to base B.
|
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
Note: the above result is only true for x > 0. B does not include
|
187
|
|
|
|
|
|
|
domain and range specifications of the functions it uses.
|
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
=head4 Sine and Cosine Operators: B and B
|
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
192
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
my ($x) = symbols(qw(x));
|
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
ok( sin($x)**2 + cos($x)**2 == 1 );
|
197
|
|
|
|
|
|
|
ok( sin($x)**2 + cos($x)**2 != 0 );
|
198
|
|
|
|
|
|
|
ok( sin($x)**2 + cos($x)**2 <=> '1' );
|
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
This famous trigonometric identity is not preprogrammed into B as it
|
201
|
|
|
|
|
|
|
is in commercial products.
|
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
Instead: an expression for B is constructed using the complex
|
204
|
|
|
|
|
|
|
exponential: L, said expression is algebraically multiplied out to
|
205
|
|
|
|
|
|
|
prove the identity. The proof steps involve large intermediate expressions in
|
206
|
|
|
|
|
|
|
each step, as yet I have not provided a means to neatly lay out these
|
207
|
|
|
|
|
|
|
intermediate steps and thus provide a more compelling demonstration of the
|
208
|
|
|
|
|
|
|
ability of B to verify such statements from first principles.
|
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=head3 Relational operators
|
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=head4 Relational operators: B<==>, B
|
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
215
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
my ($x, $y) = symbols(qw(x y));
|
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) == $x+$y );
|
220
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) != $x-$y );
|
221
|
|
|
|
|
|
|
ok( ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
|
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
The relational equality operator B<==> compares two symbolic expressions
|
224
|
|
|
|
|
|
|
and returns TRUE(1) or FALSE(0) accordingly. B produces the opposite
|
225
|
|
|
|
|
|
|
result.
|
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
=head4 Relational operator: B
|
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
my ($x, $v, $t) = symbols(qw(x v t));
|
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) == $v*$t );
|
232
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) != $v+$t );
|
233
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );
|
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
The relational operator B is a synonym for the minus B<-> operator, with
|
236
|
|
|
|
|
|
|
the expectation that later on the L function will
|
237
|
|
|
|
|
|
|
be used to simplify and rearrange the equation. You may prefer to use B
|
238
|
|
|
|
|
|
|
instead of B<-> to enhance readability, there is no functional difference.
|
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
=head3 Complex operators
|
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
=head4 Complex operators: the B operator: B<^>
|
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
245
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
my ($a, $b, $i) = symbols(qw(a b i));
|
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
ok( (($a+$i*$b)^($a-$i*$b)) == $a**2-$b**2 );
|
250
|
|
|
|
|
|
|
ok( (($a+$i*$b)^($a-$i*$b)) != $a**2+$b**2 );
|
251
|
|
|
|
|
|
|
ok( (($a+$i*$b)^($a-$i*$b)) <=> '$a**2-$b**2' );
|
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
Please note the use of brackets: The B<^> operator has low priority.
|
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
The B<^> operator treats its left hand and right hand arguments as
|
258
|
|
|
|
|
|
|
complex numbers, which in turn are regarded as two dimensional vectors
|
259
|
|
|
|
|
|
|
to which the vector dot product is applied.
|
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=head4 Complex operators: the B operator: B
|
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
264
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
my ($x, $i) = symbols(qw(x i));
|
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
ok( $i*$x x $x == $x**2 );
|
269
|
|
|
|
|
|
|
ok( $i*$x x $x != $x**3 );
|
270
|
|
|
|
|
|
|
ok( $i*$x x $x <=> '$x**2' );
|
271
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
The B operator treats its left hand and right hand arguments as complex
|
273
|
|
|
|
|
|
|
numbers, which in turn are regarded as two dimensional vectors defining the
|
274
|
|
|
|
|
|
|
sides of a parallelogram. The B operator returns the area of this
|
275
|
|
|
|
|
|
|
parallelogram.
|
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
Note the space before the B, otherwise Perl is unable to disambiguate the
|
278
|
|
|
|
|
|
|
expression correctly.
|
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
=head4 Complex operators: the B operator: B<~>
|
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
283
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
my ($x, $y, $i) = symbols(qw(x y i));
|
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
ok( ~($x+$i*$y) == $x-$i*$y );
|
288
|
|
|
|
|
|
|
ok( ~($x-$i*$y) == $x+$i*$y );
|
289
|
|
|
|
|
|
|
ok( (($x+$i*$y)^($x-$i*$y)) <=> '$x**2-$y**2' );
|
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
The B<~> operator returns the complex conjugate of its right hand side.
|
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
=head4 Complex operators: the B operator: B
|
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
296
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
my ($x, $i) = symbols(qw(x i));
|
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
ok( abs($x+$i*$x) == sqrt(2*$x**2) );
|
301
|
|
|
|
|
|
|
ok( abs($x+$i*$x) != sqrt(2*$x**3) );
|
302
|
|
|
|
|
|
|
ok( abs($x+$i*$x) <=> 'sqrt(2*$x**2)' );
|
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
The B operator returns the modulus (length) of its right hand side.
|
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
=head4 Complex operators: the B operator: B
|
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
309
|
|
|
|
|
|
|
use Test::Simple tests=>4;
|
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
my ($i) = symbols(qw(i));
|
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
ok( !$i == $i );
|
314
|
|
|
|
|
|
|
ok( !$i <=> 'i' );
|
315
|
|
|
|
|
|
|
ok( !($i+1) <=> '1/(sqrt(2))+i/(sqrt(2))' );
|
316
|
|
|
|
|
|
|
ok( !($i-1) <=> '-1/(sqrt(2))+i/(sqrt(2))' );
|
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
The B operator returns a complex number of unit length pointing in the
|
319
|
|
|
|
|
|
|
same direction as its right hand side.
|
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
=head3 Equation Manipulation Operators
|
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
=head4 Equation Manipulation Operators: B operator: B<+=>
|
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
326
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
my ($x) = symbols(qw(x));
|
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
ok( ($x**8 - 1)/($x-1) == $x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1 );
|
331
|
|
|
|
|
|
|
ok( ($x**8 - 1)/($x-1) <=> '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
|
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
The simplify operator B<+=> is a synonym for the
|
334
|
|
|
|
|
|
|
L method, if and only if,
|
335
|
|
|
|
|
|
|
the target on the left hand side initially has a value of undef.
|
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
Admittedly this is very strange behaviour: it arises due to the shortage of
|
338
|
|
|
|
|
|
|
over-ride-able operators in Perl: in particular it arises due to the shortage
|
339
|
|
|
|
|
|
|
of over-ride-able unary operators in Perl. Never-the-less: this operator is
|
340
|
|
|
|
|
|
|
useful as can be seen in the L, and the desired
|
341
|
|
|
|
|
|
|
pre-condition can always achieved by using B.
|
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
=head4 Equation Manipulation Operators: B operator: B>
|
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
346
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
my ($t) = symbols(qw(t));
|
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
my $rabbit = 10 + 5 * $t;
|
351
|
|
|
|
|
|
|
my $fox = 7 * $t * $t;
|
352
|
|
|
|
|
|
|
my ($a, $b) = @{($rabbit eq $fox) > $t};
|
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
ok( "$a" eq '1/14*sqrt(305)+5/14' );
|
355
|
|
|
|
|
|
|
ok( "$b" eq '-1/14*sqrt(305)+5/14' );
|
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
The solve operator B> is a synonym for the
|
358
|
|
|
|
|
|
|
L method.
|
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
The priority of B> is higher than that of B, so the brackets around
|
361
|
|
|
|
|
|
|
the equation to be solved are necessary until Perl provides a mechanism for
|
362
|
|
|
|
|
|
|
adjusting operator priority (cf. Algol 68).
|
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
If the equation is in a single variable, the single variable may be named
|
365
|
|
|
|
|
|
|
after the B> operator without the use of [...]:
|
366
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
my $rabbit = 10 + 5 * $t;
|
370
|
|
|
|
|
|
|
my $fox = 7 * $t * $t;
|
371
|
|
|
|
|
|
|
my ($a, $b) = @{($rabbit eq $fox) > $t};
|
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
print "$a\n";
|
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
# 1/14*sqrt(305)+5/14
|
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
If there are multiple solutions, (as in the case of polynomials), B>
|
378
|
|
|
|
|
|
|
returns an array of symbolic expressions containing the solutions.
|
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
This example was provided by Mike Schilli m@perlmeister.com.
|
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
=head2 Functions
|
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
Perl operator overloading is very useful for producing compact
|
385
|
|
|
|
|
|
|
representations of algebraic expressions. Unfortunately there are only a
|
386
|
|
|
|
|
|
|
small number of operators that Perl allows to be overloaded. The following
|
387
|
|
|
|
|
|
|
functions are used to provide capabilities not easily expressed via Perl
|
388
|
|
|
|
|
|
|
operator overloading.
|
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
These functions may either be called as methods from symbols constructed by
|
391
|
|
|
|
|
|
|
the L construction routine, or they may be exported into the user's
|
392
|
|
|
|
|
|
|
name space as described in L.
|
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
=head3 Trigonometric and Hyperbolic functions
|
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
=head4 Trigonometric functions
|
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
399
|
|
|
|
|
|
|
use Test::Simple tests=>1;
|
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
my ($x, $y) = symbols(qw(x y));
|
402
|
|
|
|
|
|
|
|
403
|
|
|
|
|
|
|
ok( (sin($x)**2 == (1-cos(2*$x))/2) );
|
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
The trigonometric functions B, B, B, B, B, B
|
406
|
|
|
|
|
|
|
are available, either as exports to the caller's name space, or as methods.
|
407
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
=head4 Hyperbolic functions
|
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
use Math::Algebra::Symbols hyper=>1;
|
411
|
|
|
|
|
|
|
use Test::Simple tests=>1;
|
412
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
my ($x, $y) = symbols(qw(x y));
|
414
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
ok( tanh($x+$y)==(tanh($x)+tanh($y))/(1+tanh($x)*tanh($y)));
|
416
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
The hyperbolic functions B, B, B, B, B,
|
418
|
|
|
|
|
|
|
B are available, either as exports to the caller's name space, or
|
419
|
|
|
|
|
|
|
as methods.
|
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
=head3 Complex functions
|
422
|
|
|
|
|
|
|
|
423
|
|
|
|
|
|
|
=head4 Complex functions: B and B
|
424
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
426
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
427
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
my ($x, $i) = symbols(qw(x i));
|
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
ok( ($i*$x)->re <=> 0 );
|
431
|
|
|
|
|
|
|
ok( ($i*$x)->im <=> '$x' );
|
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
The B and B functions return an expression which represents the real
|
434
|
|
|
|
|
|
|
and imaginary parts of the expression, assuming that symbolic variables
|
435
|
|
|
|
|
|
|
represent real numbers.
|
436
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
=head4 Complex functions: B and B
|
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
440
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
441
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
my $i = symbols(qw(i));
|
443
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
ok( ($i+1)->cross($i-1) <=> 2 );
|
445
|
|
|
|
|
|
|
ok( ($i+1)->dot ($i-1) <=> 0 );
|
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
The B and B operators are available as functions, either as
|
448
|
|
|
|
|
|
|
exports to the caller's name space, or as methods.
|
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
=head4 Complex functions: B, B and B
|
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
453
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
my $i = symbols(qw(i));
|
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
ok( ($i+1)->unit <=> '1/(sqrt(2))+i/(sqrt(2))' );
|
458
|
|
|
|
|
|
|
ok( ($i+1)->modulus <=> 'sqrt(2)' );
|
459
|
|
|
|
|
|
|
ok( ($i+1)->conjugate <=> '1-i' );
|
460
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
The B, B and B operators are available as functions:
|
462
|
|
|
|
|
|
|
B, B and B, either as exports to the caller's name
|
463
|
|
|
|
|
|
|
space, or as methods. The confusion over the naming of: the B operator
|
464
|
|
|
|
|
|
|
being the same as the B complex function; arises over the limited
|
465
|
|
|
|
|
|
|
set of Perl operator names available for overloading.
|
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
=head2 Methods
|
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
=head3 Methods for manipulating Equations
|
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
=head4 Simplifying equations: B
|
472
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
Example t/simplify2.t
|
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
476
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
477
|
|
|
|
|
|
|
|
478
|
|
|
|
|
|
|
my ($x) = symbols(qw(x));
|
479
|
|
|
|
|
|
|
|
480
|
|
|
|
|
|
|
my $y = (($x**8 - 1)/($x-1))->simplify(); # Simplify method
|
481
|
|
|
|
|
|
|
my $z += ($x**8 - 1)/($x-1); # Simplify via +=
|
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
ok( "$y" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
|
484
|
|
|
|
|
|
|
ok( "$z" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
|
485
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
B attempts to simplify an expression. There is no general
|
487
|
|
|
|
|
|
|
simplification algorithm: consequently simplifications are carried out on
|
488
|
|
|
|
|
|
|
ad-hoc basis. You may not even agree that the proposed simplification for a
|
489
|
|
|
|
|
|
|
given expressions is indeed any simpler than the original. It is for these
|
490
|
|
|
|
|
|
|
reasons that simplification has to be explicitly requested rather than being
|
491
|
|
|
|
|
|
|
performed auto-magically.
|
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
At the moment, simplifications consist of polynomial division: when the
|
494
|
|
|
|
|
|
|
expression consists, in essence, of one polynomial divided by another, an
|
495
|
|
|
|
|
|
|
attempt is made to perform polynomial division, the result is returned if
|
496
|
|
|
|
|
|
|
there is no remainder.
|
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
The B<+=> operator may be used to simplify and assign an expression to a Perl
|
499
|
|
|
|
|
|
|
variable. Perl operator overloading precludes the use of B<=> in this manner.
|
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
=head4 Substituting into equations: B
|
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
504
|
|
|
|
|
|
|
use Test::Simple tests=>2;
|
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
my ($x, $y) = symbols(qw(x y));
|
507
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
my $e = 1+$x+$x**2/2+$x**3/6+$x**4/24+$x**5/120;
|
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
ok( $e->sub(x=>$y**2, z=>2) <=> '$y**2+1/2*$y**4+1/6*$y**6+1/24*$y**8+1/120*$y**10+1' );
|
511
|
|
|
|
|
|
|
ok( $e->sub(x=>1) <=> '163/60');
|
512
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
The B function example on line B<#1> demonstrates replacing variables
|
514
|
|
|
|
|
|
|
with expressions. The replacement specified for B has no effect as B is
|
515
|
|
|
|
|
|
|
not present in this equation.
|
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
Line B<#2> demonstrates the resulting rational fraction that arises when all
|
518
|
|
|
|
|
|
|
the variables have been replaced by constants. This package does not convert
|
519
|
|
|
|
|
|
|
fractions to decimal expressions in case there is a loss of accuracy,
|
520
|
|
|
|
|
|
|
however:
|
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
my $e2 = $e->sub(x=>1);
|
523
|
|
|
|
|
|
|
$result = eval "$e2";
|
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
or similar will produce approximate results.
|
526
|
|
|
|
|
|
|
|
527
|
|
|
|
|
|
|
At the moment only variables can be replaced by expressions. Mike Schilli,
|
528
|
|
|
|
|
|
|
m@perlmeister.com, has proposed that substitutions for expressions should
|
529
|
|
|
|
|
|
|
also be allowed, as in:
|
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
$x/$y => $z
|
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
=head4 Solving equations: B
|
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
537
|
|
|
|
|
|
|
use Test::Simple tests=>3;
|
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
my ($x, $v, $t) = symbols(qw(x v t));
|
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) == $v*$t );
|
542
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) != $v/$t );
|
543
|
|
|
|
|
|
|
ok( ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );
|
544
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
B assumes that the equation on the left hand side is equal to zero,
|
546
|
|
|
|
|
|
|
applies various simplifications, then attempts to rearrange the equation to
|
547
|
|
|
|
|
|
|
obtain an equation for the first variable in the parameter list assuming that
|
548
|
|
|
|
|
|
|
the other terms mentioned in the parameter list are known constants. There
|
549
|
|
|
|
|
|
|
may of course be other unknown free variables in the equation to be solved:
|
550
|
|
|
|
|
|
|
the proposed solution is automatically tested against the original equation
|
551
|
|
|
|
|
|
|
to check that the proposed solution removes these variables, an error is
|
552
|
|
|
|
|
|
|
reported via B if it does not.
|
553
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
555
|
|
|
|
|
|
|
use Test::Simple tests => 2;
|
556
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
my ($x) = symbols(qw(x));
|
558
|
|
|
|
|
|
|
|
559
|
|
|
|
|
|
|
my $p = $x**2-5*$x+6; # Quadratic polynomial
|
560
|
|
|
|
|
|
|
my ($a, $b) = @{($p > $x )}; # Solve for x
|
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
print "x=$a,$b\n"; # Roots
|
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
ok($a == 2);
|
565
|
|
|
|
|
|
|
ok($b == 3);
|
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
If there are multiple solutions, (as in the case of polynomials), B
|
568
|
|
|
|
|
|
|
returns an array of symbolic expressions containing the solutions.
|
569
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
=head3 Methods for performing Calculus
|
571
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
=head4 Differentiation: B
|
573
|
|
|
|
|
|
|
|
574
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
575
|
|
|
|
|
|
|
use Test::More tests => 5;
|
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
$x = symbols(qw(x));
|
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
ok( sin($x) == sin($x)->d->d->d->d);
|
580
|
|
|
|
|
|
|
ok( cos($x) == cos($x)->d->d->d->d);
|
581
|
|
|
|
|
|
|
ok( exp($x) == exp($x)->d($x)->d('x')->d->d);
|
582
|
|
|
|
|
|
|
ok( (1/$x)->d == -1/$x**2);
|
583
|
|
|
|
|
|
|
ok( exp($x)->d->d->d->d <=> 'exp($x)' );
|
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
B differentiates the equation on the left hand side by the named
|
586
|
|
|
|
|
|
|
variable.
|
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
The variable to be differentiated by may be explicitly specified, either as a
|
589
|
|
|
|
|
|
|
string or as single symbol; or it may be heuristically guessed as follows:
|
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
If the equation to be differentiated refers to only one symbol, then that
|
592
|
|
|
|
|
|
|
symbol is used. If several symbols are present in the equation, but only one
|
593
|
|
|
|
|
|
|
of B, B, B, B is present, then that variable is used in honour of
|
594
|
|
|
|
|
|
|
Newton, Leibnitz, Cauchy.
|
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
=head2 Example of Equation Solving: the focii of a hyperbola:
|
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
use Math::Algebra::Symbols;
|
599
|
|
|
|
|
|
|
|
600
|
|
|
|
|
|
|
my ($a, $b, $x, $y, $i, $o) = symbols(qw(a b x y i 1));
|
601
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
print
|
603
|
|
|
|
|
|
|
"Hyperbola: Constant difference between distances from focii to locus of y=1/x",
|
604
|
|
|
|
|
|
|
"\n Assume by symmetry the focii are on ",
|
605
|
|
|
|
|
|
|
"\n the line y=x: ", $f1 = $x + $i * $x,
|
606
|
|
|
|
|
|
|
"\n and equidistant from the origin: ", $f2 = -$f1,
|
607
|
|
|
|
|
|
|
"\n Choose a convenient point on y=1/x: ", $a = $o+$i,
|
608
|
|
|
|
|
|
|
"\n and a general point on y=1/x: ", $b = $y+$i/$y,
|
609
|
|
|
|
|
|
|
"\n Difference in distances from focii",
|
610
|
|
|
|
|
|
|
"\n From convenient point: ", $A = abs($a - $f2) - abs($a - $f1),
|
611
|
|
|
|
|
|
|
"\n From general point: ", $B = abs($b - $f2) + abs($b - $f1),
|
612
|
|
|
|
|
|
|
"\n\n Solving for x we get: x=", ($A - $B) > $x,
|
613
|
|
|
|
|
|
|
"\n (should be: sqrt(2))",
|
614
|
|
|
|
|
|
|
"\n Which is indeed constant, as was to be demonstrated\n";
|
615
|
|
|
|
|
|
|
|
616
|
|
|
|
|
|
|
This example demonstrates the power of symbolic processing by finding the
|
617
|
|
|
|
|
|
|
focii of the curve B, and incidentally, demonstrating that this curve
|
618
|
|
|
|
|
|
|
is a hyperbola.
|
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
=head1 Exports
|
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
use Math::Algebra::Symbols
|
623
|
|
|
|
|
|
|
symbols=>'s',
|
624
|
|
|
|
|
|
|
trig => 1,
|
625
|
|
|
|
|
|
|
hyper => 1,
|
626
|
|
|
|
|
|
|
complex=> 1;
|
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
=over
|
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
=item symbols=>'s'
|
631
|
|
|
|
|
|
|
|
632
|
|
|
|
|
|
|
Create a function with name B in the callers name space to create new
|
633
|
|
|
|
|
|
|
symbols. The default is B.
|
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
=item trig=>0
|
636
|
|
|
|
|
|
|
|
637
|
|
|
|
|
|
|
The default, do not export trigonometric functions.
|
638
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
=item trig=>1
|
640
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
Export trigonometric functions: B, B, B, B to the
|
642
|
|
|
|
|
|
|
caller's name space. B, B are created by default by overloading the
|
643
|
|
|
|
|
|
|
existing Perl B and B operators.
|
644
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
=item B
|
646
|
|
|
|
|
|
|
|
647
|
|
|
|
|
|
|
Alias of B
|
648
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
=item hyperbolic=>0
|
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
The default, do not export hyperbolic functions.
|
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
=item hyper=>1
|
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
Export hyperbolic functions: B, B, B, B,
|
656
|
|
|
|
|
|
|
B, B to the caller's name space.
|
657
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
=item B
|
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
Alias of B
|
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
=item complex=>0
|
663
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
The default, do not export complex functions
|
665
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
=item complex=>1
|
667
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
Export complex functions: B, B, B, B, B,
|
669
|
|
|
|
|
|
|
B, B to the caller's name space.
|
670
|
|
|
|
|
|
|
|
671
|
|
|
|
|
|
|
=back
|
672
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
=cut
|
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
package Math::Algebra::Symbols;
|
676
|
|
|
|
|
|
|
$VERSION=1.26;
|
677
|
45
|
|
|
45
|
|
95517
|
use Math::Algebra::Symbols::Sum;
|
|
45
|
|
|
|
|
140
|
|
|
45
|
|
|
|
|
201
|
|
678
|
45
|
|
|
45
|
|
222
|
use Carp;
|
|
45
|
|
|
|
|
78
|
|
|
45
|
|
|
|
|
21740
|
|
679
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
sub import
|
681
|
45
|
|
|
45
|
|
413
|
{my %P = (program=>@_);
|
682
|
45
|
|
|
|
|
81
|
my %p; $p{lc()} = $P{$_} for(keys(%P));
|
|
45
|
|
|
|
|
278
|
|
683
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
685
|
|
|
|
|
|
|
# New symbols term constructor - export to calling package.
|
686
|
|
|
|
|
|
|
#_______________________________________________________________________
|
687
|
|
|
|
|
|
|
|
688
|
45
|
|
|
|
|
131
|
my $s = "package XXXX;\n". <<'END';
|
689
|
|
|
|
|
|
|
no warnings 'redefine';
|
690
|
|
|
|
|
|
|
sub NNNN
|
691
|
|
|
|
|
|
|
{return SSSSsum(@_);
|
692
|
|
|
|
|
|
|
}
|
693
|
|
|
|
|
|
|
END
|
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
696
|
|
|
|
|
|
|
# Complex functions: re, im, dot, cross, conjugate, modulus
|
697
|
|
|
|
|
|
|
#_______________________________________________________________________
|
698
|
|
|
|
|
|
|
|
699
|
45
|
50
|
|
|
|
210
|
if (exists($p{complex}))
|
700
|
0
|
|
|
|
|
0
|
{$s .= <<'END';
|
701
|
|
|
|
|
|
|
sub conjugate($) {$_[0]->conjugate()}
|
702
|
|
|
|
|
|
|
sub cross ($$) {$_[0]->cross ($_[1])}
|
703
|
|
|
|
|
|
|
sub dot ($$) {$_[0]->dot ($_[1])}
|
704
|
|
|
|
|
|
|
sub im ($) {$_[0]->im ()}
|
705
|
|
|
|
|
|
|
sub modulus ($) {$_[0]->modulus ()}
|
706
|
|
|
|
|
|
|
sub re ($) {$_[0]->re ()}
|
707
|
|
|
|
|
|
|
sub unit ($) {$_[0]->unit ()}
|
708
|
|
|
|
|
|
|
END
|
709
|
|
|
|
|
|
|
}
|
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
712
|
|
|
|
|
|
|
# Trigonometric functions: tan, sec, csc, cot
|
713
|
|
|
|
|
|
|
#_______________________________________________________________________
|
714
|
|
|
|
|
|
|
|
715
|
45
|
100
|
66
|
|
|
331
|
if (exists($p{trig}) or exists($p{trigonometric}))
|
716
|
2
|
|
|
|
|
6
|
{$s .= <<'END';
|
717
|
|
|
|
|
|
|
sub tan($) {$_[0]->tan()}
|
718
|
|
|
|
|
|
|
sub sec($) {$_[0]->sec()}
|
719
|
|
|
|
|
|
|
sub csc($) {$_[0]->csc()}
|
720
|
|
|
|
|
|
|
sub cot($) {$_[0]->cot()}
|
721
|
|
|
|
|
|
|
END
|
722
|
|
|
|
|
|
|
}
|
723
|
45
|
50
|
66
|
|
|
187
|
if (exists($p{trig}) and exists($p{trigonometric}))
|
724
|
0
|
|
|
|
|
0
|
{croak 'Please use specify just one of trig or trigonometric';
|
725
|
|
|
|
|
|
|
}
|
726
|
|
|
|
|
|
|
|
727
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
728
|
|
|
|
|
|
|
# Hyperbolic functions: sinh, cosh, tanh, sech, csch, coth
|
729
|
|
|
|
|
|
|
#_______________________________________________________________________
|
730
|
|
|
|
|
|
|
|
731
|
45
|
100
|
66
|
|
|
475
|
if (exists($p{hyper}) or exists($p{hyperbolic}))
|
732
|
3
|
|
|
|
|
8
|
{$s .= <<'END';
|
733
|
|
|
|
|
|
|
sub sinh($) {$_[0]->sinh()}
|
734
|
|
|
|
|
|
|
sub cosh($) {$_[0]->cosh()}
|
735
|
|
|
|
|
|
|
sub tanh($) {$_[0]->tanh()}
|
736
|
|
|
|
|
|
|
sub sech($) {$_[0]->sech()}
|
737
|
|
|
|
|
|
|
sub csch($) {$_[0]->csch()}
|
738
|
|
|
|
|
|
|
sub coth($) {$_[0]->coth()}
|
739
|
|
|
|
|
|
|
END
|
740
|
|
|
|
|
|
|
}
|
741
|
45
|
50
|
66
|
|
|
156
|
if (exists($p{hyper}) and exists($p{hyperbolic}))
|
742
|
0
|
|
|
|
|
0
|
{croak 'Please specify just one of hyper or hyperbolic';
|
743
|
|
|
|
|
|
|
}
|
744
|
|
|
|
|
|
|
|
745
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
746
|
|
|
|
|
|
|
# Export to calling package.
|
747
|
|
|
|
|
|
|
#_______________________________________________________________________
|
748
|
|
|
|
|
|
|
|
749
|
45
|
|
|
|
|
122
|
$s .= <<'END';
|
750
|
|
|
|
|
|
|
use warnings 'redefine';
|
751
|
|
|
|
|
|
|
END
|
752
|
|
|
|
|
|
|
|
753
|
45
|
|
|
|
|
101
|
my $name = 'symbols';
|
754
|
45
|
100
|
|
|
|
147
|
$name = $p{symbols} if exists($p{symbols});
|
755
|
45
|
|
|
|
|
142
|
my ($main) = caller();
|
756
|
45
|
|
|
|
|
102
|
my $pack = __PACKAGE__. '::';
|
757
|
|
|
|
|
|
|
|
758
|
45
|
|
|
|
|
266
|
$s=~ s/XXXX/$main/g;
|
759
|
45
|
|
|
|
|
181
|
$s=~ s/NNNN/$name/g;
|
760
|
45
|
|
|
|
|
201
|
$s=~ s/SSSS/$pack/g;
|
761
|
45
|
|
|
45
|
|
256
|
eval($s);
|
|
45
|
|
|
45
|
|
76
|
|
|
45
|
|
|
65
|
|
3141
|
|
|
45
|
|
|
40
|
|
223
|
|
|
45
|
|
|
25
|
|
74
|
|
|
45
|
|
|
4
|
|
1057
|
|
|
45
|
|
|
11
|
|
3089
|
|
|
65
|
|
|
4
|
|
7307
|
|
|
40
|
|
|
11
|
|
256
|
|
|
25
|
|
|
4
|
|
101
|
|
|
4
|
|
|
12
|
|
17
|
|
|
11
|
|
|
|
|
53
|
|
|
4
|
|
|
|
|
20
|
|
|
11
|
|
|
|
|
55
|
|
|
4
|
|
|
|
|
18
|
|
|
12
|
|
|
|
|
42
|
|
762
|
|
|
|
|
|
|
|
763
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
764
|
|
|
|
|
|
|
# Check options supplied by user
|
765
|
|
|
|
|
|
|
#_______________________________________________________________________
|
766
|
|
|
|
|
|
|
|
767
|
45
|
|
|
|
|
181
|
delete @p{qw(
|
768
|
|
|
|
|
|
|
symbols program trig trigonometric hyper hyperbolic complex
|
769
|
|
|
|
|
|
|
)};
|
770
|
|
|
|
|
|
|
|
771
|
45
|
50
|
|
|
|
2948
|
croak "Unknown option(s): ". join(' ', keys(%p))."\n\n". <<'END' if keys(%p);
|
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
Valid options are:
|
774
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
symbols=>'symbols' Create a routine with this name in the callers
|
776
|
|
|
|
|
|
|
name space to create new symbols. The default is
|
777
|
|
|
|
|
|
|
'symbols'.
|
778
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
trig =>0 The default, no trigonometric functions
|
781
|
|
|
|
|
|
|
trig =>1 Export trigonometric functions: tan, sec, csc, cot.
|
782
|
|
|
|
|
|
|
sin, cos are created by default by overloading
|
783
|
|
|
|
|
|
|
the existing Perl sin and cos operators.
|
784
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
trigonometric can be used instead of trig.
|
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
|
788
|
|
|
|
|
|
|
hyper =>0 The default, no hyperbolic functions
|
789
|
|
|
|
|
|
|
hyper =>1 Export hyperbolic functions:
|
790
|
|
|
|
|
|
|
sinh, cosh, tanh, sech, csch, coth.
|
791
|
|
|
|
|
|
|
|
792
|
|
|
|
|
|
|
hyperbolic can be used instead of hyper.
|
793
|
|
|
|
|
|
|
|
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
complex=>0 The default, no complex functions
|
796
|
|
|
|
|
|
|
complex=>1 Export complex functions:
|
797
|
|
|
|
|
|
|
conjugate, cross, dot, im, modulus, re, unit
|
798
|
|
|
|
|
|
|
|
799
|
|
|
|
|
|
|
END
|
800
|
|
|
|
|
|
|
}
|
801
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
#_ Symbols _____________________________________________________________
|
803
|
|
|
|
|
|
|
# Package installed successfully
|
804
|
|
|
|
|
|
|
#_______________________________________________________________________
|
805
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
1;
|
807
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
=pod
|
809
|
|
|
|
|
|
|
|
810
|
|
|
|
|
|
|
=head1 Packages
|
811
|
|
|
|
|
|
|
|
812
|
|
|
|
|
|
|
The B packages manipulate a sum of products representation of an
|
813
|
|
|
|
|
|
|
algebraic equation. The B package is the user interface to the
|
814
|
|
|
|
|
|
|
functionality supplied by the B and B packages.
|
815
|
|
|
|
|
|
|
|
816
|
|
|
|
|
|
|
=head2 Math::Algebra::Symbols::Term
|
817
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
B represents a product term. A product term consists of the
|
819
|
|
|
|
|
|
|
number B<1>, optionally multiplied by:
|
820
|
|
|
|
|
|
|
|
821
|
|
|
|
|
|
|
=over
|
822
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
=item Variables
|
824
|
|
|
|
|
|
|
|
825
|
|
|
|
|
|
|
any number of variables raised to integer powers,
|
826
|
|
|
|
|
|
|
|
827
|
|
|
|
|
|
|
=item Coefficient
|
828
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
An integer coefficient optionally divided by a positive integer divisor, both
|
830
|
|
|
|
|
|
|
represented as BigInts if necessary.
|
831
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
=item Sqrt
|
833
|
|
|
|
|
|
|
|
834
|
|
|
|
|
|
|
The sqrt of of any symbolic expression representable by the B
|
835
|
|
|
|
|
|
|
package, including minus one: represented as B.
|
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
=item Reciprocal
|
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
The multiplicative inverse of any symbolic expression representable by the
|
840
|
|
|
|
|
|
|
B package: i.e. a B may be divided by any symbolic
|
841
|
|
|
|
|
|
|
expression representable by the B package.
|
842
|
|
|
|
|
|
|
|
843
|
|
|
|
|
|
|
=item Exp
|
844
|
|
|
|
|
|
|
|
845
|
|
|
|
|
|
|
The number B raised to the power of any symbolic expression representable
|
846
|
|
|
|
|
|
|
by the B package.
|
847
|
|
|
|
|
|
|
|
848
|
|
|
|
|
|
|
=item Log
|
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
The logarithm to base B of any symbolic expression representable by the
|
851
|
|
|
|
|
|
|
B package.
|
852
|
|
|
|
|
|
|
|
853
|
|
|
|
|
|
|
=back
|
854
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
Thus B can represent expressions like:
|
856
|
|
|
|
|
|
|
|
857
|
|
|
|
|
|
|
2/3*$x**2*$y**-3*exp($i*$pi)*sqrt($z**3) / $x
|
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
but not:
|
860
|
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
$x + $y
|
862
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
for which package B is required.
|
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
=head2 Math::Algebra::Symbols::Sum
|
867
|
|
|
|
|
|
|
|
868
|
|
|
|
|
|
|
B represents a sum of product terms supplied by
|
869
|
|
|
|
|
|
|
B and thus behaves as a polynomial. Operations such as
|
870
|
|
|
|
|
|
|
equation solving and differentiation are applied at this level.
|
871
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
=head1 Installation
|
873
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
Standard Module::Build process for building and installing modules:
|
875
|
|
|
|
|
|
|
|
876
|
|
|
|
|
|
|
perl Build.PL
|
877
|
|
|
|
|
|
|
./Build
|
878
|
|
|
|
|
|
|
./Build test
|
879
|
|
|
|
|
|
|
./Build install
|
880
|
|
|
|
|
|
|
|
881
|
|
|
|
|
|
|
=head1 Copyright
|
882
|
|
|
|
|
|
|
|
883
|
|
|
|
|
|
|
Philip R Brenan at B 2004-2016
|
884
|
|
|
|
|
|
|
|
885
|
|
|
|
|
|
|
=head1 License
|
886
|
|
|
|
|
|
|
|
887
|
|
|
|
|
|
|
Perl License.
|
888
|
|
|
|
|
|
|
|
889
|
|
|
|
|
|
|
=cut
|