|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
  
 
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =pod
  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Name
  | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Math::Algebra::Symbols
  | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Synopsis
  | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Symbolic Algebra in Pure Perl
  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols hyper=>1;
  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>5;
  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ($n, $x, $y) = symbols(qw(n x y));
  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $a     += ($x**8 - 1)/($x-1);
  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $b     +=  sin($x)**2 + cos($x)**2;
  | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $c     += (sin($n*$x) + cos($n*$x))->d->d->d->d / (sin($n*$x)+cos($n*$x));
  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $d      =  tanh($x+$y) == (tanh($x)+tanh($y))/(1+tanh($x)*tanh($y));
  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ($e,$f) =  @{($x**2 eq 5*$x-6) > $x};
  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print "$a\n$b\n$c\n$d\n$e,$f\n";
  | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok("$a"    eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1');
  | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok("$b"    eq '1');
  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok("$c"    eq '$n**4');
  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok("$d"    eq '1');
  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok("$e,$f" eq '2,3');
  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Floating point calculations on a triangle with angles of 22.5, 45, 112.5
  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   degrees to determine whether two of the diameters of the nine point circle
  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   are at right angles yield (on my computer) the following inconclusive result
  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   when the dot product between the diameters is formed numerically:
  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $o = 1;
  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $a = sqrt($o/2);                              # X position of apex
  | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $b = $o - $a;                                 # Y position of apex
  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $s = ($a*$a+$b*$b-$a)/2/$b;
  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($nx, $ny) = ($o/4 + $a/2, $b/2 - $s/2);      # Nine point centre
  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($px, $py) = ($o/2, 0);                       # Diameter from mid point
  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($qx, $qy) = ($o/2 + $a/2, $b/2);             # Diameter from mid point
  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $d = ($px-$nx)*($qx-$nx)+($py-$ny)*($qy-$ny); # Dot product should be zero
  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print +($d == 0)||0, "\n$d\n";                   # Definitively zero if 1
  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # 0                                              # Not exactly zero
  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # -6.93889390390723e-18                          # Is this significant or not?
  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   By contrast with Math::Algebra::Symbols I get the much more convincing:
  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($o, $i) = symbols(qw(1 i));                  # Units in x,y
  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $a = sqrt($o/2);                              # X position of apex
  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $b = $o - $a;                                 # Y position of apex
  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $s = ($a*$a+$b*$b-$a)/2/$b;
  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $n = $o/4 + $a/2 +$i*($b/2 - $s/2);           # Nine point centre
  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $p = $o/2;                                    # Diameter from mid point
  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $q = $o/2 + $a/2 +$i* $b/2;                   # Diameter from mid point
  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $d = (($p-$n) ^ ($q-$n));                     # Dot product should be zero
  | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print +($d == 0)||0, "\n$d\n";                   # Definitively zero if 1
  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # 1
  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # 17/32/(-2*sqrt(1/2)+3/2)-3/4/(-2*sqrt(1/2)+3/2)*sqrt(1/2)-7/16/(-sqrt(1/2)+1)
  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # +5/8/(-sqrt(1/2)+1)*sqrt(1/2)-1/8*sqrt(1/2)+1/16
  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Description
  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   This package supplies a set of functions and operators to manipulate
  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   operator expressions algebraically using the familiar Perl syntax.
  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   These expressions are constructed from L, L, and
  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   L, and processed via L.  For examples, see:
  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   L.
  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Symbols
  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Symbols are created with the exported B constructor routine:
  | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>1;
  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y, $i, $o, $pi) = symbols(qw(x y i 1 pi));
  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( "$x $y $i $o $pi"   eq   '$x $y i 1 $pi'  );
  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B routine constructs references to symbolic variables and
  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   symbolic constants from a list of names and integer constants.
  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The special symbol B is recognized as the square root of B<-1>.
  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The special symbol B is recognized as the smallest positive real
  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   that satisfies:
  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($i, $pi) = symbols(qw(i pi));
  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($i*$pi)  ==   -1  );
  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($i*$pi) <=>  '-1' );
  | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Constructor Routine Name
  | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   If you wish to use a different name for the constructor routine, say
  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B:
  | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols symbols=>'S';
  | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($i, $pi) = S(qw(i pi));
  | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($i*$pi)  ==   -1  );
  | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($i*$pi) <=//>  '-1' );
  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Big Integers
  | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Symbols automatically uses big integers if needed.
  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>1;
  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $z = symbols('1234567890987654321/1234567890987654321');
  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( eval $z eq '1');
  | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Operators
  | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   L can be combined with L to create symbolic
  | 
| 
130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   expressions:
  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Arithmetic operators
  | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Arithmetic Operators: B<+> B<-> B<*> B> B<**>
  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y) = symbols(qw(x y));
  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
  | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The operators: B<+=> B<-=> B<*=> B=> are overloaded to work symbolically
  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   rather than numerically. If you need numeric results, you can always
  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B the resulting symbolic expression.
  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Square root Operator: B
  | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $i) = symbols(qw(x i));
  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sqrt(-$x**2)  ==  $i*$x  );
  | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sqrt(-$x**2)  <=> 'i*$x' );
  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The square root is represented by the symbol B, which allows complex
  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   expressions to be processed by Math::Complex.
  | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Exponential Operator: B
  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $i) = symbols(qw(x i));
  | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(   exp($x)->d($x)  ==   exp($x)  );
  | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(   exp($x)->d($x) <=>  'exp($x)' );
  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The exponential operator.
  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Logarithm Operator: B
  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>1;
  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x) = symbols(qw(x));
  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(   log($x) <=>  'log($x)' );
  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Logarithm to base B.
  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Note: the above result is only true for x > 0.  B does not include
  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   domain and range specifications of the functions it uses.
  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Sine and Cosine Operators: B and B
  | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x) = symbols(qw(x));
  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sin($x)**2 + cos($x)**2  ==  1  );
  | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sin($x)**2 + cos($x)**2  !=  0  );
  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sin($x)**2 + cos($x)**2 <=> '1' );
  | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   This famous trigonometric identity is not preprogrammed into B as it
  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   is in commercial products.
  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Instead: an expression for B is constructed using the complex
  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   exponential: L, said expression is algebraically multiplied out to
  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   prove the identity. The proof steps involve large intermediate expressions in
  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   each step, as yet I have not provided a means to neatly lay out these
  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   intermediate steps and thus provide a more compelling demonstration of the
  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ability of B to verify such statements from first principles.
  | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Relational operators
  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Relational operators: B<==>, B
  | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y) = symbols(qw(x y));
  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
  | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
  | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The relational equality operator B<==> compares two symbolic expressions
  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   and returns TRUE(1) or FALSE(0) accordingly. B produces the opposite
  | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   result.
  | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Relational operator: B
  | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $v, $t) = symbols(qw(x v t));
  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );
  | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v+$t  );
  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );
  | 
| 
234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The relational operator B is a synonym for the minus B<-> operator, with
  | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the expectation that later on the L function will
  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   be used to simplify and rearrange the equation. You may prefer to use B
  | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   instead of B<-> to enhance readability, there is no functional difference.
  | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Complex operators
  | 
| 
241
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex operators: the B operator: B<^>
  | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($a, $b, $i) = symbols(qw(a b i));
  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  (($a+$i*$b)^($a-$i*$b))  ==  $a**2-$b**2  );
  | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  (($a+$i*$b)^($a-$i*$b))  !=  $a**2+$b**2  );
  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  (($a+$i*$b)^($a-$i*$b)) <=> '$a**2-$b**2' );
  | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Please note the use of brackets:  The B<^> operator has low priority.
  | 
| 
256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B<^> operator treats its left hand and right hand arguments as
  | 
| 
258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   complex numbers, which in turn are regarded as two dimensional vectors
  | 
| 
259
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   to which the vector dot product is applied.
  | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex operators: the B operator: B
  | 
| 
262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $i) = symbols(qw(x i));
  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  $i*$x x $x  ==  $x**2  );
  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  $i*$x x $x  !=  $x**3  );
  | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  $i*$x x $x <=> '$x**2' );
  | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B operator treats its left hand and right hand arguments as complex
  | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   numbers, which in turn are regarded as two dimensional vectors defining the
  | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   sides of a parallelogram. The B operator returns the area of this
  | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   parallelogram.
  | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Note the space before the B, otherwise Perl is unable to disambiguate the
  | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   expression correctly.
  | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex operators: the B operator: B<~>
  | 
| 
281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y, $i) = symbols(qw(x y i));
  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ~($x+$i*$y)  ==  $x-$i*$y  );
  | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ~($x-$i*$y)  ==  $x+$i*$y  );
  | 
| 
289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  (($x+$i*$y)^($x-$i*$y)) <=> '$x**2-$y**2' );
  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B<~> operator returns the complex conjugate of its right hand side.
  | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex operators: the B operator: B
  | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $i) = symbols(qw(x i));
  | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  abs($x+$i*$x)  ==  sqrt(2*$x**2)  );
  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  abs($x+$i*$x)  !=  sqrt(2*$x**3)  );
  | 
| 
302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  abs($x+$i*$x) <=> 'sqrt(2*$x**2)' );
  | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B operator returns the modulus (length) of its right hand side.
  | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex operators: the B operator: B
  | 
| 
307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
308
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>4;
  | 
| 
310
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($i) = symbols(qw(i));
  | 
| 
312
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  !$i      == $i                         );
  | 
| 
314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  !$i     <=> 'i'                        );
  | 
| 
315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  !($i+1) <=>  '1/(sqrt(2))+i/(sqrt(2))' );
  | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  !($i-1) <=> '-1/(sqrt(2))+i/(sqrt(2))' );
  | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B operator returns a complex number of unit length pointing in the
  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   same direction as its right hand side.
  | 
| 
320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Equation Manipulation Operators
  | 
| 
322
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
323
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Equation Manipulation Operators: B operator: B<+=>
  | 
| 
324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x) = symbols(qw(x));
  | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**8 - 1)/($x-1)  ==  $x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1  );
  | 
| 
331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  ($x**8 - 1)/($x-1) <=> '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
  | 
| 
332
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The simplify operator B<+=> is a synonym for the
  | 
| 
334
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   L method, if and only if,
  | 
| 
335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the target on the left hand side initially has a value of undef.
  | 
| 
336
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
337
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Admittedly this is very strange behaviour: it arises due to the shortage of
  | 
| 
338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   over-ride-able operators in Perl: in particular it arises due to the shortage
  | 
| 
339
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   of over-ride-able unary operators in Perl. Never-the-less: this operator is
  | 
| 
340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   useful as can be seen in the L, and the desired
  | 
| 
341
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   pre-condition can always achieved by using B.
  | 
| 
342
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
343
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Equation Manipulation Operators: B operator: B>
  | 
| 
344
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
345
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
347
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($t) = symbols(qw(t));
  | 
| 
349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $rabbit  = 10 + 5 * $t;
  | 
| 
351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $fox     = 7 * $t * $t;
  | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($a, $b) = @{($rabbit eq $fox) > $t};
  | 
| 
353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( "$a" eq  '1/14*sqrt(305)+5/14'  );
  | 
| 
355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( "$b" eq '-1/14*sqrt(305)+5/14'  );
  | 
| 
356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The solve operator B> is a synonym for the
  | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   L method.
  | 
| 
359
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
360
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The priority of B> is higher than that of B, so the brackets around
  | 
| 
361
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the equation to be solved are necessary until Perl provides a mechanism for
  | 
| 
362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   adjusting operator priority (cf. Algol 68).
  | 
| 
363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   If the equation is in a single variable, the single variable may be named
  | 
| 
365
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   after the B> operator without the use of [...]:
  | 
| 
366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
368
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $rabbit  = 10 + 5 * $t;
  | 
| 
370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $fox     = 7 * $t * $t;
  | 
| 
371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($a, $b) = @{($rabbit eq $fox) > $t};
  | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print "$a\n";
  | 
| 
374
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # 1/14*sqrt(305)+5/14
  | 
| 
376
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
377
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   If there are multiple solutions, (as in the case of polynomials), B>
  | 
| 
378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   returns an array of symbolic expressions containing the solutions.
  | 
| 
379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
380
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   This example was provided by Mike Schilli m@perlmeister.com.
  | 
| 
381
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Functions
  | 
| 
383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Perl operator overloading is very useful for producing compact
  | 
| 
385
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   representations of algebraic expressions. Unfortunately there are only a
  | 
| 
386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   small number of operators that Perl allows to be overloaded. The following
  | 
| 
387
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   functions are used to provide capabilities not easily expressed via Perl
  | 
| 
388
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   operator overloading.
  | 
| 
389
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   These functions may either be called as methods from symbols constructed by
  | 
| 
391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the L construction routine, or they may be exported into the user's
  | 
| 
392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   name space as described in L.
  | 
| 
393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
394
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Trigonometric and Hyperbolic functions
  | 
| 
395
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
396
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Trigonometric functions
  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>1;
  | 
| 
400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
401
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y) = symbols(qw(x y));
  | 
| 
402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
403
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( (sin($x)**2 == (1-cos(2*$x))/2) );
  | 
| 
404
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
405
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The trigonometric functions B, B, B, B, B, B
  | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   are available, either as exports to the caller's name space, or as methods.
  | 
| 
407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Hyperbolic functions
  | 
| 
409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols hyper=>1;
  | 
| 
411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>1;
  | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
413
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y) = symbols(qw(x y));
  | 
| 
414
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( tanh($x+$y)==(tanh($x)+tanh($y))/(1+tanh($x)*tanh($y)));
  | 
| 
416
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The hyperbolic functions B, B, B, B, B,
  | 
| 
418
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B are available, either as exports to the caller's name space, or
  | 
| 
419
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   as methods.
  | 
| 
420
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
421
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Complex functions
  | 
| 
422
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
423
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex functions: B and B
  | 
| 
424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
425
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
426
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
427
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
428
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $i) = symbols(qw(x i));
  | 
| 
429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
430
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i*$x)->re   <=>  0    );
  | 
| 
431
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i*$x)->im   <=>  '$x' );
  | 
| 
432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
433
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B and B functions return an expression which represents the real
  | 
| 
434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   and imaginary parts of the expression, assuming that symbolic variables
  | 
| 
435
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   represent real numbers.
  | 
| 
436
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
437
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex functions: B and B
  | 
| 
438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $i = symbols(qw(i));
  | 
| 
443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i+1)->cross($i-1)   <=>  2 );
  | 
| 
445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i+1)->dot  ($i-1)   <=>  0 );
  | 
| 
446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
447
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B and B operators are available as functions, either as
  | 
| 
448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   exports to the caller's name space, or as methods.
  | 
| 
449
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Complex functions: B, B and B
  | 
| 
451
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
452
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
453
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>3;
  | 
| 
454
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
455
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $i = symbols(qw(i));
  | 
| 
456
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
457
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i+1)->unit      <=>  '1/(sqrt(2))+i/(sqrt(2))' );
  | 
| 
458
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i+1)->modulus   <=>  'sqrt(2)'                 );
  | 
| 
459
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( ($i+1)->conjugate <=>  '1-i'                     );
  | 
| 
460
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
461
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B, B and B operators are available as functions:
  | 
| 
462
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B, B and B, either as exports to the caller's name
  | 
| 
463
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   space, or as methods. The confusion over the naming of: the B operator
  | 
| 
464
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   being the same as the B complex function; arises over the limited
  | 
| 
465
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   set of Perl operator names available for overloading.
  | 
| 
466
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Methods
  | 
| 
468
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
469
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Methods for manipulating Equations
  | 
| 
470
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
471
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Simplifying equations: B
  | 
| 
472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
473
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Example t/simplify2.t
  | 
| 
474
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
475
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
476
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
477
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
478
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x) = symbols(qw(x));
  | 
| 
479
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
480
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $y  = (($x**8 - 1)/($x-1))->simplify();  # Simplify method
  | 
| 
481
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $z +=  ($x**8 - 1)/($x-1);               # Simplify via +=
  | 
| 
482
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
483
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( "$y" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
  | 
| 
484
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( "$z" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
  | 
| 
485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B attempts to simplify an expression. There is no general
  | 
| 
487
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   simplification algorithm: consequently simplifications are carried out on
  | 
| 
488
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ad-hoc basis. You may not even agree that the proposed simplification for a
  | 
| 
489
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   given expressions is indeed any simpler than the original. It is for these
  | 
| 
490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   reasons that simplification has to be explicitly requested rather than being
  | 
| 
491
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   performed auto-magically.
  | 
| 
492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
493
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   At the moment, simplifications consist of polynomial division: when the
  | 
| 
494
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   expression consists, in essence, of one polynomial divided by another, an
  | 
| 
495
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   attempt is made to perform polynomial division, the result is returned if
  | 
| 
496
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   there is no remainder.
  | 
| 
497
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
498
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B<+=> operator may be used to simplify and assign an expression to a Perl
  | 
| 
499
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   variable. Perl operator overloading precludes the use of B<=> in this manner.
  | 
| 
500
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
501
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Substituting into equations: B
  | 
| 
502
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
503
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
504
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests=>2;
  | 
| 
505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
506
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x, $y) = symbols(qw(x y));
  | 
| 
507
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
508
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $e  = 1+$x+$x**2/2+$x**3/6+$x**4/24+$x**5/120;
  | 
| 
509
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
510
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  $e->sub(x=>$y**2, z=>2)  <=> '$y**2+1/2*$y**4+1/6*$y**6+1/24*$y**8+1/120*$y**10+1'  );
  | 
| 
511
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  $e->sub(x=>1)            <=>  '163/60');
  | 
| 
512
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
513
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B function example on line B<#1> demonstrates replacing variables
  | 
| 
514
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   with expressions. The replacement specified for B has no effect as B is
  | 
| 
515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   not present in this equation.
  | 
| 
516
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
517
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Line B<#2> demonstrates the resulting rational fraction that arises when all
  | 
| 
518
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the variables have been replaced by constants. This package does not convert
  | 
| 
519
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   fractions to decimal expressions in case there is a loss of accuracy,
  | 
| 
520
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   however:
  | 
| 
521
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
522
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $e2 = $e->sub(x=>1);
  | 
| 
523
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $result = eval "$e2";
  | 
| 
524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   or similar will produce approximate results.
  | 
| 
526
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
527
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   At the moment only variables can be replaced by expressions. Mike Schilli,
  | 
| 
528
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   m@perlmeister.com, has proposed that substitutions for expressions should
  | 
| 
529
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   also be allowed, as in:
  | 
| 
530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
531
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $x/$y => $z
  | 
| 
532
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
533
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
534
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Solving equations: B
  | 
| 
535
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
536
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    use Math::Algebra::Symbols;
  | 
| 
537
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    use Test::Simple tests=>3;
  | 
| 
538
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
539
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    my ($x, $v, $t) = symbols(qw(x v t));
  | 
| 
540
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
541
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );
  | 
| 
542
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v/$t  );
  | 
| 
543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ok(   ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$t*$v' );
  | 
| 
544
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
545
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B assumes that the equation on the left hand side is equal to zero,
  | 
| 
546
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   applies various simplifications, then attempts to rearrange the equation to
  | 
| 
547
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   obtain an equation for the first variable in the parameter list assuming that
  | 
| 
548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the other terms mentioned in the parameter list are known constants. There
  | 
| 
549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   may of course be other unknown free variables in the equation to be solved:
  | 
| 
550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   the proposed solution is automatically tested against the original equation
  | 
| 
551
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   to check that the proposed solution removes these variables, an error is
  | 
| 
552
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   reported via B if it does not.
  | 
| 
553
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
554
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
555
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::Simple tests => 2;
  | 
| 
556
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
557
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($x) = symbols(qw(x));
  | 
| 
558
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
559
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my  $p = $x**2-5*$x+6;        # Quadratic polynomial
  | 
| 
560
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($a, $b) = @{($p > $x )};  # Solve for x
  | 
| 
561
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
562
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print "x=$a,$b\n";            # Roots
  | 
| 
563
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
564
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok($a == 2);
  | 
| 
565
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok($b == 3);
  | 
| 
566
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
567
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   If there are multiple solutions, (as in the case of polynomials), B
  | 
| 
568
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   returns an array of symbolic expressions containing the solutions.
  | 
| 
569
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
570
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Methods for performing Calculus
  | 
| 
571
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
572
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head4 Differentiation: B
  | 
| 
573
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
574
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
575
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Test::More tests => 5;
  | 
| 
576
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
577
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $x = symbols(qw(x));
  | 
| 
578
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
579
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  sin($x)    ==  sin($x)->d->d->d->d);
  | 
| 
580
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  cos($x)    ==  cos($x)->d->d->d->d);
  | 
| 
581
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($x)    ==  exp($x)->d($x)->d('x')->d->d);
  | 
| 
582
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok( (1/$x)->d   == -1/$x**2);
  | 
| 
583
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ok(  exp($x)->d->d->d->d <=> 'exp($x)' );
  | 
| 
584
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
585
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B differentiates the equation on the left hand side by the named
  | 
| 
586
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   variable.
  | 
| 
587
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
588
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The variable to be differentiated by may be explicitly specified, either as a
  | 
| 
589
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   string or as single symbol; or it may be heuristically guessed as follows:
  | 
| 
590
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
591
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   If the equation to be differentiated refers to only one symbol, then that
  | 
| 
592
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   symbol is used. If several symbols are present in the equation, but only one
  | 
| 
593
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   of B, B, B, B is present, then that variable is used in honour of
  | 
| 
594
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Newton, Leibnitz, Cauchy.
  | 
| 
595
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
596
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Example of Equation Solving: the focii of a hyperbola:
  | 
| 
597
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
598
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::Algebra::Symbols;
  | 
| 
599
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
600
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($a, $b, $x, $y, $i, $o) = symbols(qw(a b x y i 1));
  | 
| 
601
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
602
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   print
  | 
| 
603
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "Hyperbola: Constant difference between distances from focii to locus of y=1/x",
  | 
| 
604
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n  Assume by symmetry the focii are on ",
  | 
| 
605
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n    the line y=x:                     ",  $f1 = $x + $i * $x,
  | 
| 
606
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n  and equidistant from the origin:    ",  $f2 = -$f1,
  | 
| 
607
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n  Choose a convenient point on y=1/x: ",  $a = $o+$i,
  | 
| 
608
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n        and a general point on y=1/x: ",  $b = $y+$i/$y,
  | 
| 
609
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n  Difference in distances from focii",
  | 
| 
610
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n    From convenient point:            ",  $A = abs($a - $f2) - abs($a - $f1),
  | 
| 
611
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n    From general point:               ",  $B = abs($b - $f2) + abs($b - $f1),
  | 
| 
612
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n\n  Solving for x we get:            x=", ($A - $B) > $x,
  | 
| 
613
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n                         (should be: sqrt(2))",
  | 
| 
614
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   "\n  Which is indeed constant, as was to be demonstrated\n";
  | 
| 
615
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
616
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   This example demonstrates the power of symbolic processing by finding the
  | 
| 
617
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   focii of the curve B, and incidentally, demonstrating that this curve
  | 
| 
618
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   is a hyperbola.
  | 
| 
619
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
620
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Exports
  | 
| 
621
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
622
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  use Math::Algebra::Symbols
  | 
| 
623
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    symbols=>'s',
  | 
| 
624
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    trig   => 1,
  | 
| 
625
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    hyper  => 1,
  | 
| 
626
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    complex=> 1;
  | 
| 
627
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
628
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over
  | 
| 
629
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
630
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item symbols=>'s'
  | 
| 
631
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
632
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Create a function with name B in the callers name space to create new
  | 
| 
633
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   symbols. The default is B.
  | 
| 
634
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
635
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item trig=>0
  | 
| 
636
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
637
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The default, do not export trigonometric functions.
  | 
| 
638
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
639
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item trig=>1
  | 
| 
640
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
641
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Export trigonometric functions: B, B, B, B to the
  | 
| 
642
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   caller's name space. B, B are created by default by overloading the
  | 
| 
643
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   existing Perl B and B operators.
  | 
| 
644
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
645
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item B
  | 
| 
646
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
647
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Alias of B
  | 
| 
648
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
649
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item hyperbolic=>0
  | 
| 
650
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
651
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The default, do not export hyperbolic functions.
  | 
| 
652
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
653
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item hyper=>1
  | 
| 
654
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
655
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Export hyperbolic functions: B, B, B, B,
  | 
| 
656
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B, B to the caller's name space.
  | 
| 
657
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
658
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item B
  | 
| 
659
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
660
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Alias of B
  | 
| 
661
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
662
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item complex=>0
  | 
| 
663
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
664
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The default, do not export complex functions
  | 
| 
665
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
666
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item complex=>1
  | 
| 
667
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
668
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Export complex functions: B, B, B, B, B,
  | 
| 
669
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B, B to the caller's name space.
  | 
| 
670
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
671
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back
  | 
| 
672
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
673
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut
  | 
| 
674
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
675
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Math::Algebra::Symbols;
  | 
| 
676
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 $VERSION=1.26;
  | 
| 
677
 | 
45
 | 
 
 | 
 
 | 
  
45
  
 | 
 
 | 
95517
 | 
 use Math::Algebra::Symbols::Sum;
  | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
140
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
201
 | 
    | 
| 
678
 | 
45
 | 
 
 | 
 
 | 
  
45
  
 | 
 
 | 
222
 | 
 use Carp;
  | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
78
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
21740
 | 
    | 
| 
679
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
680
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub import
  | 
| 
681
 | 
45
 | 
 
 | 
 
 | 
  
45
  
 | 
 
 | 
413
 | 
  {my %P = (program=>@_);
  | 
| 
682
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
81
 | 
   my %p; $p{lc()} = $P{$_} for(keys(%P));
  | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
278
 | 
    | 
| 
683
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
684
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
685
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # New symbols term constructor - export to calling package.
  | 
| 
686
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
687
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
688
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
131
 | 
   my $s = "package XXXX;\n". <<'END';
  | 
| 
689
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 no warnings 'redefine';
  | 
| 
690
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub NNNN
  | 
| 
691
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  {return SSSSsum(@_);
  | 
| 
692
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  }
  | 
| 
693
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
694
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
695
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
696
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Complex functions: re, im, dot, cross, conjugate, modulus
  | 
| 
697
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
698
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
699
 | 
45
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
210
 | 
   if (exists($p{complex}))
  | 
| 
700
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    {$s .= <<'END';
  | 
| 
701
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub conjugate($)  {$_[0]->conjugate()}
  | 
| 
702
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub cross    ($$) {$_[0]->cross    ($_[1])}
  | 
| 
703
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub dot      ($$) {$_[0]->dot      ($_[1])}
  | 
| 
704
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub im       ($)  {$_[0]->im       ()}
  | 
| 
705
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub modulus  ($)  {$_[0]->modulus  ()}
  | 
| 
706
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub re       ($)  {$_[0]->re       ()}
  | 
| 
707
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub unit     ($)  {$_[0]->unit     ()}
  | 
| 
708
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
709
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    }
  | 
| 
710
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
711
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
712
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Trigonometric functions: tan, sec, csc, cot
  | 
| 
713
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
714
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
715
 | 
45
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
331
 | 
   if (exists($p{trig}) or exists($p{trigonometric}))
  | 
| 
716
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
    {$s .= <<'END';
  | 
| 
717
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub tan($) {$_[0]->tan()}
  | 
| 
718
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub sec($) {$_[0]->sec()}
  | 
| 
719
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub csc($) {$_[0]->csc()}
  | 
| 
720
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub cot($) {$_[0]->cot()}
  | 
| 
721
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
722
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    }
  | 
| 
723
 | 
45
 | 
  
 50
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
187
 | 
   if (exists($p{trig}) and exists($p{trigonometric}))
  | 
| 
724
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    {croak 'Please use specify just one of trig or trigonometric';
  | 
| 
725
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    }
  | 
| 
726
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
727
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
728
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Hyperbolic functions: sinh, cosh, tanh, sech, csch, coth
  | 
| 
729
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
730
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
731
 | 
45
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
475
 | 
  if (exists($p{hyper}) or exists($p{hyperbolic}))
  | 
| 
732
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
   {$s .= <<'END';
  | 
| 
733
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub sinh($) {$_[0]->sinh()}
  | 
| 
734
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub cosh($) {$_[0]->cosh()}
  | 
| 
735
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub tanh($) {$_[0]->tanh()}
  | 
| 
736
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub sech($) {$_[0]->sech()}
  | 
| 
737
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub csch($) {$_[0]->csch()}
  | 
| 
738
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub coth($) {$_[0]->coth()}
  | 
| 
739
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
740
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }
  | 
| 
741
 | 
45
 | 
  
 50
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
156
 | 
  if (exists($p{hyper}) and exists($p{hyperbolic}))
  | 
| 
742
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   {croak 'Please specify just one of hyper or hyperbolic';
  | 
| 
743
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }
  | 
| 
744
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
745
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
746
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Export to calling package.
  | 
| 
747
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
748
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
749
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
122
 | 
     $s .= <<'END';
  | 
| 
750
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use warnings 'redefine';
  | 
| 
751
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
752
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
753
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
101
 | 
   my $name   = 'symbols';
  | 
| 
754
 | 
45
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
147
 | 
      $name   = $p{symbols} if exists($p{symbols});
  | 
| 
755
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
142
 | 
   my ($main) = caller();
  | 
| 
756
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
102
 | 
   my $pack   = __PACKAGE__. '::';
  | 
| 
757
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
758
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
266
 | 
   $s=~ s/XXXX/$main/g;
  | 
| 
759
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
181
 | 
   $s=~ s/NNNN/$name/g;
  | 
| 
760
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
201
 | 
   $s=~ s/SSSS/$pack/g;
  | 
| 
761
 | 
45
 | 
 
 | 
 
 | 
  
45
  
 | 
 
 | 
256
 | 
   eval($s);
  | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
45
  
 | 
 
 | 
76
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
65
  
 | 
 
 | 
3141
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
40
  
 | 
 
 | 
223
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
25
  
 | 
 
 | 
74
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
1057
 | 
    | 
| 
 
 | 
45
 | 
 
 | 
 
 | 
  
11
  
 | 
 
 | 
3089
 | 
    | 
| 
 
 | 
65
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
7307
 | 
    | 
| 
 
 | 
40
 | 
 
 | 
 
 | 
  
11
  
 | 
 
 | 
256
 | 
    | 
| 
 
 | 
25
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
101
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
  
12
  
 | 
 
 | 
17
 | 
    | 
| 
 
 | 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
53
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
    | 
| 
 
 | 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
55
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
18
 | 
    | 
| 
 
 | 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
42
 | 
    | 
| 
762
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
763
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
764
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Check options supplied by user
  | 
| 
765
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
766
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
767
 | 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
181
 | 
   delete @p{qw(
  | 
| 
768
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 symbols program trig trigonometric hyper hyperbolic complex
  | 
| 
769
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 )};
  | 
| 
770
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
771
 | 
45
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
2948
 | 
   croak "Unknown option(s): ". join(' ', keys(%p))."\n\n". <<'END' if keys(%p);
  | 
| 
772
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
773
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Valid options are:
  | 
| 
774
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
775
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   symbols=>'symbols' Create a routine with this name in the callers
  | 
| 
776
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                   name space to create new symbols. The default is
  | 
| 
777
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                   'symbols'.
  | 
| 
778
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
779
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
780
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   trig   =>0      The default, no trigonometric functions
  | 
| 
781
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   trig   =>1      Export trigonometric functions: tan, sec, csc, cot.
  | 
| 
782
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                   sin, cos are created by default by overloading
  | 
| 
783
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                   the existing Perl sin and cos operators.
  | 
| 
784
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
785
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   trigonometric can be used instead of trig.
  | 
| 
786
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
787
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
788
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   hyper  =>0      The default, no hyperbolic functions
  | 
| 
789
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   hyper  =>1      Export hyperbolic functions:
  | 
| 
790
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     sinh, cosh, tanh, sech, csch, coth.
  | 
| 
791
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
792
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   hyperbolic can be used instead of hyper.
  | 
| 
793
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
794
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
795
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   complex=>0      The default, no complex functions
  | 
| 
796
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   complex=>1      Export complex functions:
  | 
| 
797
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                     conjugate, cross, dot, im, modulus, re,  unit
  | 
| 
798
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
799
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 END
  | 
| 
800
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  }
  | 
| 
801
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
802
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_ Symbols _____________________________________________________________
  | 
| 
803
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Package installed successfully
  | 
| 
804
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #_______________________________________________________________________
  | 
| 
805
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
806
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;
  | 
| 
807
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
808
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =pod
  | 
| 
809
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
810
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Packages
  | 
| 
811
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
812
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The B packages manipulate a sum of products representation of an
  | 
| 
813
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   algebraic equation. The B package is the user interface to the
  | 
| 
814
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   functionality supplied by the B and B packages.
  | 
| 
815
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
816
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Math::Algebra::Symbols::Term
  | 
| 
817
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
818
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B represents a product term. A product term consists of the
  | 
| 
819
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   number B<1>, optionally multiplied by:
  | 
| 
820
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
821
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over
  | 
| 
822
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
823
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Variables
  | 
| 
824
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
825
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   any number of variables raised to integer powers,
  | 
| 
826
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
827
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Coefficient
  | 
| 
828
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
829
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   An integer coefficient optionally divided by a positive integer divisor, both
  | 
| 
830
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   represented as BigInts if necessary.
  | 
| 
831
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
832
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Sqrt
  | 
| 
833
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
834
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The sqrt of of any symbolic expression representable by the B
  | 
| 
835
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   package, including minus one: represented as B.
  | 
| 
836
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
837
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Reciprocal
  | 
| 
838
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
839
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The multiplicative inverse of any symbolic expression representable by the
  | 
| 
840
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B package: i.e. a B may be divided by any symbolic
  | 
| 
841
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   expression representable by the B package.
  | 
| 
842
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
843
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Exp
  | 
| 
844
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
845
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The number B raised to the power of any symbolic expression representable
  | 
| 
846
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   by the B package.
  | 
| 
847
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
848
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item Log
  | 
| 
849
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
850
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   The logarithm to base B of any symbolic expression representable by the
  | 
| 
851
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B package.
  | 
| 
852
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
853
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back
  | 
| 
854
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
855
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Thus B can represent expressions like:
  | 
| 
856
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
857
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     2/3*$x**2*$y**-3*exp($i*$pi)*sqrt($z**3) / $x
  | 
| 
858
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
859
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   but not:
  | 
| 
860
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
861
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $x + $y
  | 
| 
862
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
863
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   for which package B is required.
  | 
| 
864
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
865
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
866
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 Math::Algebra::Symbols::Sum
  | 
| 
867
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
868
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B represents a sum of product terms supplied by
  | 
| 
869
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   B and thus behaves as a polynomial. Operations such as
  | 
| 
870
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   equation solving and differentiation are applied at this level.
  | 
| 
871
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
872
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Installation
  | 
| 
873
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
874
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  Standard Module::Build process for building and installing modules:
  | 
| 
875
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
876
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    perl Build.PL
  | 
| 
877
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ./Build
  | 
| 
878
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ./Build test
  | 
| 
879
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    ./Build install
  | 
| 
880
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
881
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Copyright
  | 
| 
882
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
883
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Philip R Brenan at B 2004-2016
  | 
| 
884
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
885
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 License
  | 
| 
886
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
887
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   Perl License.
  | 
| 
888
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
  | 
| 
889
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut
  |