line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package MDK::Common::Math; |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=head1 NAME |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
MDK::Common::Math - miscellaneous math functions |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 SYNOPSIS |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
use MDK::Common::Math qw(:all); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=head1 EXPORTS |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=over |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=item $PI |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
the well-known constant |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=item even(INT) |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=item odd(INT) |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
is the number even or odd? |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=item sqr(FLOAT) |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
C gives C<9> |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=item sign(FLOAT) |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
returns a value in { -1, 0, 1 } |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
=item round(FLOAT) |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
C gives C<1>, C gives C<2> |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
=item round_up(FLOAT, INT) |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
returns the number rounded up to the modulo: |
40
|
|
|
|
|
|
|
C gives C<20> |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
=item round_down(FLOAT, INT) |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
returns the number rounded down to the modulo: |
45
|
|
|
|
|
|
|
C gives C<10> |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=item divide(INT, INT) |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
integer division (which is lacking in perl). In array context, also returns the remainder: |
50
|
|
|
|
|
|
|
C<($a, $b) = divide(10,3)> gives C<$a is 3> and C<$b is 1> |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
=item min(LIST) |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=item max(LIST) |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
returns the minimum/maximum number in the list |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=item or_(LIST) |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
is there a true value in the list? |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
=item and_(LIST) |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
are all values true in the list? |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
=item sum(LIST) |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=item product(LIST) |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
returns the sum/product of all the element in the list |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
=item factorial(INT) |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
C gives C<24> (4*3*2) |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=back |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
=head1 OTHER |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
the following functions are provided, but not exported: |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=over |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=item factorize(INT) |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
C gives C<([2,3], [5,1])> as S<40 = 2^3 + 5^1> |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
=item decimal2fraction(FLOAT) |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
C gives C<(4, 3)> |
91
|
|
|
|
|
|
|
($PRECISION is used to decide which precision to use) |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
=item poly2(a,b,c) |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
Solves the a*x2+b*x+c=0 polynomial: |
96
|
|
|
|
|
|
|
C gives C<(1, -1)> |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
=item permutations(n,p) |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
A(n,p) |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=item combinaisons(n,p) |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
C(n,p) |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=back |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=head1 SEE ALSO |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
L |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
=cut |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
|
115
|
1
|
|
|
1
|
|
6
|
use Exporter; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
707
|
|
116
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
117
|
|
|
|
|
|
|
our @EXPORT_OK = qw($PI even odd sqr sign round round_up round_down divide min max or_ and_ sum product factorial); |
118
|
|
|
|
|
|
|
our %EXPORT_TAGS = (all => [ @EXPORT_OK ]); |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
our $PRECISION = 10; |
122
|
|
|
|
|
|
|
our $PI = 3.1415926535897932384626433832795028841972; |
123
|
|
|
|
|
|
|
|
124
|
0
|
|
|
0
|
1
|
|
sub even { $_[0] % 2 == 0 } |
125
|
0
|
|
|
0
|
1
|
|
sub odd { $_[0] % 2 == 1 } |
126
|
0
|
|
|
0
|
1
|
|
sub sqr { $_[0] * $_[0] } |
127
|
0
|
|
|
0
|
1
|
|
sub sign { $_[0] <=> 0 } |
128
|
0
|
|
|
0
|
1
|
|
sub round { int($_[0] + 0.5) } |
129
|
0
|
|
0
|
0
|
1
|
|
sub round_up { my ($i, $r) = @_; $r ||= 1; $i = int $i; $i += $r - ($i + $r - 1) % $r - 1 } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
130
|
0
|
|
0
|
0
|
1
|
|
sub round_down { my ($i, $r) = @_; $r ||= 1; $i = int $i; $i -= $i % $r } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
131
|
0
|
0
|
|
0
|
1
|
|
sub divide { my $d = int $_[0] / $_[1]; wantarray() ? ($d, $_[0] % $_[1]) : $d } |
|
0
|
|
|
|
|
|
|
132
|
0
|
|
0
|
0
|
1
|
|
sub min { my $n = shift; $_ < $n and $n = $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
133
|
0
|
|
0
|
0
|
1
|
|
sub max { my $n = shift; $_ > $n and $n = $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
134
|
0
|
|
0
|
0
|
1
|
|
sub or_ { my $n = 0; $n ||= $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
135
|
0
|
|
0
|
0
|
1
|
|
sub and_ { my $n = 1; $n &&= $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
136
|
0
|
|
|
0
|
1
|
|
sub sum { my $n = 0; $n += $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
137
|
0
|
|
|
0
|
1
|
|
sub product { my $n = 1; $n *= $_ foreach @_; $n } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
sub factorize { |
141
|
0
|
|
|
0
|
1
|
|
my ($n) = @_; |
142
|
0
|
|
|
|
|
|
my @r; |
143
|
|
|
|
|
|
|
|
144
|
0
|
0
|
|
|
|
|
$n == 1 and return [ 1, 1 ]; |
145
|
0
|
|
|
|
|
|
for (my $k = 2; sqr($k) <= $n; $k++) { |
146
|
0
|
|
|
|
|
|
my $i = 0; |
147
|
0
|
|
|
|
|
|
for ($i = 0; $n % $k == 0; $i++) { $n /= $k } |
|
0
|
|
|
|
|
|
|
148
|
0
|
0
|
|
|
|
|
$i and push @r, [ $k, $i ]; |
149
|
|
|
|
|
|
|
} |
150
|
0
|
0
|
|
|
|
|
$n > 1 and push @r, [ $n, 1 ]; |
151
|
0
|
|
|
|
|
|
@r; |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
sub decimal2fraction { # ex: 1.33333333 -> (4, 3) |
155
|
0
|
|
|
0
|
1
|
|
my $n0 = shift; |
156
|
0
|
|
0
|
|
|
|
my $precision = 10 ** -(shift || $PRECISION); |
157
|
0
|
|
|
|
|
|
my ($a, $b) = (int $n0, 1); |
158
|
0
|
|
|
|
|
|
my ($c, $d) = (1, 0); |
159
|
0
|
|
|
|
|
|
my $n = $n0 - int $n0; |
160
|
0
|
|
|
|
|
|
my $k; |
161
|
0
|
|
|
|
|
|
until (abs($n0 - $a / $c) < $precision) { |
162
|
0
|
|
|
|
|
|
$n = 1 / $n; |
163
|
0
|
|
|
|
|
|
$k = int $n; |
164
|
0
|
|
|
|
|
|
($a, $b) = ($a * $k + $b, $a); |
165
|
0
|
|
|
|
|
|
($c, $d) = ($c * $k + $d, $c); |
166
|
0
|
|
|
|
|
|
$n -= $k; |
167
|
|
|
|
|
|
|
} |
168
|
0
|
|
|
|
|
|
($a, $c); |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
sub poly2 { |
172
|
0
|
|
|
0
|
1
|
|
my ($a, $b, $c) = @_; |
173
|
0
|
|
|
|
|
|
my $d = ($b**2 - 4 * $a * $c) ** 0.5; |
174
|
0
|
|
|
|
|
|
(-$b + $d) / 2 / $a, (-$b - $d) / 2 / $a; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
# A(n,p) |
178
|
|
|
|
|
|
|
sub permutations { |
179
|
0
|
|
|
0
|
1
|
|
my ($n, $p) = @_; |
180
|
0
|
|
|
|
|
|
my ($r, $i); |
181
|
0
|
|
|
|
|
|
for ($r = 1, $i = 0; $i < $p; $i++) { |
182
|
0
|
|
|
|
|
|
$r *= $n - $i; |
183
|
|
|
|
|
|
|
} |
184
|
0
|
|
|
|
|
|
$r; |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# C(n,p) |
188
|
|
|
|
|
|
|
sub combinaisons { |
189
|
0
|
|
|
0
|
1
|
|
my ($n, $p) = @_; |
190
|
|
|
|
|
|
|
|
191
|
0
|
|
|
|
|
|
permutations($n, $p) / factorial($p); |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
0
|
|
|
0
|
1
|
|
sub factorial { permutations($_[0], $_[0]) } |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
1; |