line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* Generic 64-bit integer implementation of Curve25519 ECDH |
2
|
|
|
|
|
|
|
* Written by Matthijs van Duin, 200608242056 |
3
|
|
|
|
|
|
|
* Public domain. |
4
|
|
|
|
|
|
|
* |
5
|
|
|
|
|
|
|
* Based on work by Daniel J Bernstein, http://cr.yp.to/ecdh.html |
6
|
|
|
|
|
|
|
*/ |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
#include |
9
|
|
|
|
|
|
|
#include |
10
|
|
|
|
|
|
|
#include "curve25519_i64.h" |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
typedef int32_t i25519[10]; |
14
|
|
|
|
|
|
|
typedef const int32_t *i25519ptr; |
15
|
|
|
|
|
|
|
typedef const uint8_t *srcptr; |
16
|
|
|
|
|
|
|
typedef uint8_t *dstptr; |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
typedef struct expstep expstep; |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
struct expstep { |
21
|
|
|
|
|
|
|
unsigned nsqr; |
22
|
|
|
|
|
|
|
unsigned muli; |
23
|
|
|
|
|
|
|
}; |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
/********************* constants *********************/ |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
const k25519 |
29
|
|
|
|
|
|
|
zero25519 = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
30
|
|
|
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
31
|
|
|
|
|
|
|
prime25519 = { 237, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
32
|
|
|
|
|
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
33
|
|
|
|
|
|
|
255, 255, 255, 255, 255, 255, 255, 127 }, |
34
|
|
|
|
|
|
|
order25519 = { 237, 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, |
35
|
|
|
|
|
|
|
222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16 }; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
/* smallest multiple of the order that's >= 2^255 */ |
38
|
|
|
|
|
|
|
static const k25519 |
39
|
|
|
|
|
|
|
order_times_8 = { 104, 159, 174, 231, 210, 24, 147, 192, 178, 230, 188, 23, |
40
|
|
|
|
|
|
|
245, 206, 247, 166, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 }; |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/* constants 2Gy and 1/(2Gy) */ |
43
|
|
|
|
|
|
|
static const i25519 |
44
|
|
|
|
|
|
|
base_2y = { 39999547, 18689728, 59995525, 1648697, 57546132, |
45
|
|
|
|
|
|
|
24010086, 19059592, 5425144, 63499247, 16420658 }, |
46
|
|
|
|
|
|
|
base_r2y = { 5744, 8160848, 4790893, 13779497, 35730846, |
47
|
|
|
|
|
|
|
12541209, 49101323, 30047407, 40071253, 6226132 }; |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
/********************* radix 2^8 math *********************/ |
51
|
|
|
|
|
|
|
|
52
|
17
|
|
|
|
|
|
static void cpy32(k25519 d, const k25519 s) { |
53
|
|
|
|
|
|
|
int i; |
54
|
561
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) |
55
|
544
|
|
|
|
|
|
d[i] = s[i]; |
56
|
17
|
|
|
|
|
|
} |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
/* p[m..n+m-1] = q[m..n+m-1] + z * x */ |
59
|
|
|
|
|
|
|
/* n is the size of x */ |
60
|
|
|
|
|
|
|
/* n+m is the size of p and q */ |
61
|
|
|
|
|
|
|
static inline |
62
|
3313
|
|
|
|
|
|
int mula_small(dstptr p, srcptr q, unsigned m, srcptr x, unsigned n, int z) { |
63
|
3313
|
|
|
|
|
|
int v = 0; |
64
|
|
|
|
|
|
|
unsigned i; |
65
|
74294
|
100
|
|
|
|
|
for (i = 0; i < n; i++) { |
66
|
70981
|
|
|
|
|
|
p[i+m] = v += q[i+m] + z * x[i]; |
67
|
70981
|
|
|
|
|
|
v >>= 8; |
68
|
|
|
|
|
|
|
} |
69
|
3313
|
|
|
|
|
|
return v; |
70
|
|
|
|
|
|
|
} |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
/* p += x * y * z where z is a small integer |
73
|
|
|
|
|
|
|
* x is size 32, y is size t, p is size 32+t |
74
|
|
|
|
|
|
|
* y is allowed to overlap with p+32 if you don't care about the upper half */ |
75
|
880
|
|
|
|
|
|
static int mula32(dstptr p, srcptr x, srcptr y, unsigned t, int z) { |
76
|
880
|
|
|
|
|
|
const unsigned n = 31; |
77
|
880
|
|
|
|
|
|
int w = 0; |
78
|
|
|
|
|
|
|
unsigned i; |
79
|
1977
|
100
|
|
|
|
|
for (i = 0; i < t; i++) { |
80
|
1097
|
|
|
|
|
|
int zy = z * y[i]; |
81
|
1097
|
|
|
|
|
|
p[i+n] = w += mula_small(p,p, i, x, n, zy) + p[i+n] + zy * x[n]; |
82
|
1097
|
|
|
|
|
|
w >>= 8; |
83
|
|
|
|
|
|
|
} |
84
|
880
|
|
|
|
|
|
p[i+n] += w; |
85
|
880
|
|
|
|
|
|
return w >> 8; |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
/* divide r (size n) by d (size t), returning quotient q and remainder r |
89
|
|
|
|
|
|
|
* quotient is size n-t+1, remainder is size t |
90
|
|
|
|
|
|
|
* requires t > 0 && d[t-1] != 0 |
91
|
|
|
|
|
|
|
* requires that r[-1] and d[-1] are valid memory locations |
92
|
|
|
|
|
|
|
* q may overlap with r+t */ |
93
|
888
|
|
|
|
|
|
static void divmod(dstptr q, dstptr r, int n, srcptr d, int t) { |
94
|
888
|
|
|
|
|
|
int rn = 0; |
95
|
888
|
|
|
|
|
|
int dt = d[t-1] << 8 | (d[t-2] & -(t > 1)); |
96
|
|
|
|
|
|
|
|
97
|
1994
|
100
|
|
|
|
|
while (n-- >= t) { |
98
|
1106
|
|
|
|
|
|
int z = (rn << 16 | r[n] << 8 | (r[n-1] & -(n > 0))) / dt; |
99
|
1106
|
|
|
|
|
|
rn += mula_small(r,r, n-t+1, d, t, -z); |
100
|
1106
|
|
|
|
|
|
q[n-t+1] = z + rn; /* rn is 0 or -1 (underflow) */ |
101
|
1106
|
|
|
|
|
|
mula_small(r,r, n-t+1, d, t, -rn); |
102
|
1106
|
|
|
|
|
|
rn = r[n]; |
103
|
1106
|
|
|
|
|
|
r[n] = 0; |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
|
106
|
888
|
|
|
|
|
|
r[t-1] = rn; |
107
|
888
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
|
109
|
891
|
|
|
|
|
|
static inline unsigned numsize(srcptr x, unsigned n) { |
110
|
1269
|
100
|
|
|
|
|
while (n-- && !x[n]) |
|
|
100
|
|
|
|
|
|
111
|
|
|
|
|
|
|
; |
112
|
891
|
|
|
|
|
|
return n+1; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
/* Returns x if a contains the gcd, y if b. Also, the returned buffer contains |
116
|
|
|
|
|
|
|
* the inverse of a mod b, as 32-byte signed. |
117
|
|
|
|
|
|
|
* x and y must have 64 bytes space for temporary use. |
118
|
|
|
|
|
|
|
* requires that a[-1] and b[-1] are valid memory locations */ |
119
|
6
|
|
|
|
|
|
static dstptr egcd32(dstptr x, dstptr y, dstptr a, dstptr b) { |
120
|
6
|
|
|
|
|
|
unsigned an, bn = 32, qn, i; |
121
|
198
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) |
122
|
192
|
|
|
|
|
|
x[i] = y[i] = 0; |
123
|
6
|
|
|
|
|
|
x[0] = 1; |
124
|
6
|
50
|
|
|
|
|
if (!(an = numsize(a, 32))) |
125
|
0
|
|
|
|
|
|
return y; /* division by zero */ |
126
|
|
|
|
|
|
|
while (42) { |
127
|
445
|
|
|
|
|
|
qn = bn - an + 1; |
128
|
445
|
|
|
|
|
|
divmod(y+32, b, bn, a, an); |
129
|
445
|
100
|
|
|
|
|
if (!(bn = numsize(b, bn))) |
130
|
5
|
|
|
|
|
|
return x; |
131
|
440
|
|
|
|
|
|
mula32(y, x, y+32, qn, -1); |
132
|
|
|
|
|
|
|
|
133
|
440
|
|
|
|
|
|
qn = an - bn + 1; |
134
|
440
|
|
|
|
|
|
divmod(x+32, a, an, b, bn); |
135
|
440
|
100
|
|
|
|
|
if (!(an = numsize(a, an))) |
136
|
1
|
|
|
|
|
|
return y; |
137
|
439
|
|
|
|
|
|
mula32(x, y, x+32, qn, -1); |
138
|
439
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
/********************* radix 2^25.5 GF(2^255-19) math *********************/ |
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
#define P25 33554431 /* (1 << 25) - 1 */ |
145
|
|
|
|
|
|
|
#define P26 67108863 /* (1 << 26) - 1 */ |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
/* debugging code */ |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
#if 0 |
151
|
|
|
|
|
|
|
#include |
152
|
|
|
|
|
|
|
#include |
153
|
|
|
|
|
|
|
static void check_range(const char *where, int32_t x, int32_t lb, int32_t ub) { |
154
|
|
|
|
|
|
|
if (x < lb || x > ub) { |
155
|
|
|
|
|
|
|
fprintf(stderr, "%s check failed: %08x (%d)\n", where, x, x); |
156
|
|
|
|
|
|
|
abort(); |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
} |
159
|
|
|
|
|
|
|
static void check_nonred(const char *where, const i25519 x) { |
160
|
|
|
|
|
|
|
int i; |
161
|
|
|
|
|
|
|
for (i = 0; i < 10; i++) |
162
|
|
|
|
|
|
|
check_range(where, x[i], -185861411, 185861411); |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
static void check_reduced(const char *where, const i25519 x) { |
165
|
|
|
|
|
|
|
int i; |
166
|
|
|
|
|
|
|
for (i = 0; i < 9; i++) |
167
|
|
|
|
|
|
|
check_range(where, x[i], 0, P26 >> (i & 1)); |
168
|
|
|
|
|
|
|
check_range(where, x[9], -675, P25+675); |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
#else |
171
|
|
|
|
|
|
|
#define check_range(w, x, l, u) |
172
|
|
|
|
|
|
|
#define check_nonred(w, x) |
173
|
|
|
|
|
|
|
#define check_reduced(w, x) |
174
|
|
|
|
|
|
|
#endif |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
/* convenience macros */ |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
#define M(i) ((uint32_t) m[i]) |
180
|
|
|
|
|
|
|
#define X(i) ((int64_t) x[i]) |
181
|
|
|
|
|
|
|
#define m64(arg1,arg2) ((int64_t) (arg1) * (arg2)) |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
/* Convert to internal format from little-endian byte format */ |
185
|
5
|
|
|
|
|
|
static void unpack25519(i25519 x, const k25519 m) { |
186
|
5
|
|
|
|
|
|
x[0] = M( 0) | M( 1)<<8 | M( 2)<<16 | (M( 3)& 3)<<24; |
187
|
5
|
|
|
|
|
|
x[1] = (M( 3)&~ 3)>>2 | M( 4)<<6 | M( 5)<<14 | (M( 6)& 7)<<22; |
188
|
5
|
|
|
|
|
|
x[2] = (M( 6)&~ 7)>>3 | M( 7)<<5 | M( 8)<<13 | (M( 9)&31)<<21; |
189
|
5
|
|
|
|
|
|
x[3] = (M( 9)&~31)>>5 | M(10)<<3 | M(11)<<11 | (M(12)&63)<<19; |
190
|
5
|
|
|
|
|
|
x[4] = (M(12)&~63)>>6 | M(13)<<2 | M(14)<<10 | M(15) <<18; |
191
|
5
|
|
|
|
|
|
x[5] = M(16) | M(17)<<8 | M(18)<<16 | (M(19)& 1)<<24; |
192
|
5
|
|
|
|
|
|
x[6] = (M(19)&~ 1)>>1 | M(20)<<7 | M(21)<<15 | (M(22)& 7)<<23; |
193
|
5
|
|
|
|
|
|
x[7] = (M(22)&~ 7)>>3 | M(23)<<5 | M(24)<<13 | (M(25)&15)<<21; |
194
|
5
|
|
|
|
|
|
x[8] = (M(25)&~15)>>4 | M(26)<<4 | M(27)<<12 | (M(28)&63)<<20; |
195
|
5
|
|
|
|
|
|
x[9] = (M(28)&~63)>>6 | M(29)<<2 | M(30)<<10 | M(31) <<18; |
196
|
|
|
|
|
|
|
check_reduced("unpack output", x); |
197
|
5
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
/* Check if reduced-form input >= 2^255-19 */ |
201
|
18
|
|
|
|
|
|
static inline int is_overflow(const i25519 x) { |
202
|
18
|
|
|
|
|
|
return ((x[0] > P26-19) & ((x[1] & x[3] & x[5] & x[7] & x[9]) == P25) & |
203
|
18
|
|
|
|
|
|
((x[2] & x[4] & x[6] & x[8]) == P26) |
204
|
18
|
|
|
|
|
|
) | (x[9] > P25); |
205
|
|
|
|
|
|
|
} |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
/* Convert from internal format to little-endian byte format. The |
209
|
|
|
|
|
|
|
* number must be in a reduced form which is output by the following ops: |
210
|
|
|
|
|
|
|
* unpack, mul, sqr |
211
|
|
|
|
|
|
|
* set -- if input in range 0 .. P25 |
212
|
|
|
|
|
|
|
* If you're unsure if the number is reduced, first multiply it by 1. */ |
213
|
11
|
|
|
|
|
|
static void pack25519(const i25519 x, k25519 m) { |
214
|
11
|
|
|
|
|
|
int32_t ld = 0, ud = 0; |
215
|
|
|
|
|
|
|
int64_t t; |
216
|
|
|
|
|
|
|
check_reduced("pack input", x); |
217
|
11
|
|
|
|
|
|
ld = is_overflow(x) - (x[9] < 0); |
218
|
11
|
|
|
|
|
|
ud = ld * -(P25+1); |
219
|
11
|
|
|
|
|
|
ld *= 19; |
220
|
11
|
|
|
|
|
|
t = ld + X(0) + (X(1) << 26); |
221
|
11
|
|
|
|
|
|
m[ 0] = t; m[ 1] = t >> 8; m[ 2] = t >> 16; m[ 3] = t >> 24; |
222
|
11
|
|
|
|
|
|
t = (t >> 32) + (X(2) << 19); |
223
|
11
|
|
|
|
|
|
m[ 4] = t; m[ 5] = t >> 8; m[ 6] = t >> 16; m[ 7] = t >> 24; |
224
|
11
|
|
|
|
|
|
t = (t >> 32) + (X(3) << 13); |
225
|
11
|
|
|
|
|
|
m[ 8] = t; m[ 9] = t >> 8; m[10] = t >> 16; m[11] = t >> 24; |
226
|
11
|
|
|
|
|
|
t = (t >> 32) + (X(4) << 6); |
227
|
11
|
|
|
|
|
|
m[12] = t; m[13] = t >> 8; m[14] = t >> 16; m[15] = t >> 24; |
228
|
11
|
|
|
|
|
|
t = (t >> 32) + X(5) + (X(6) << 25); |
229
|
11
|
|
|
|
|
|
m[16] = t; m[17] = t >> 8; m[18] = t >> 16; m[19] = t >> 24; |
230
|
11
|
|
|
|
|
|
t = (t >> 32) + (X(7) << 19); |
231
|
11
|
|
|
|
|
|
m[20] = t; m[21] = t >> 8; m[22] = t >> 16; m[23] = t >> 24; |
232
|
11
|
|
|
|
|
|
t = (t >> 32) + (X(8) << 12); |
233
|
11
|
|
|
|
|
|
m[24] = t; m[25] = t >> 8; m[26] = t >> 16; m[27] = t >> 24; |
234
|
11
|
|
|
|
|
|
t = (t >> 32) + ((X(9) + ud) << 6); |
235
|
11
|
|
|
|
|
|
m[28] = t; m[29] = t >> 8; m[30] = t >> 16; m[31] = t >> 24; |
236
|
11
|
|
|
|
|
|
} |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
/* Copy a number */ |
239
|
13
|
|
|
|
|
|
static void cpy25519(i25519 out, const i25519 in) { |
240
|
|
|
|
|
|
|
int i; |
241
|
143
|
100
|
|
|
|
|
for (i = 0; i < 10; i++) |
242
|
130
|
|
|
|
|
|
out[i] = in[i]; |
243
|
13
|
|
|
|
|
|
} |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
/* Set a number to value, which must be in range -185861411 .. 185861411 */ |
246
|
41
|
|
|
|
|
|
static void set25519(i25519 out, const int32_t in) { |
247
|
|
|
|
|
|
|
int i; |
248
|
41
|
|
|
|
|
|
out[0] = in; |
249
|
410
|
100
|
|
|
|
|
for (i = 1; i < 10; i++) |
250
|
369
|
|
|
|
|
|
out[i] = 0; |
251
|
41
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
/* Add/subtract two numbers. The inputs must be in reduced form, and the |
254
|
|
|
|
|
|
|
* output isn't, so to do another addition or subtraction on the output, |
255
|
|
|
|
|
|
|
* first multiply it by one to reduce it. */ |
256
|
11791
|
|
|
|
|
|
static void add25519(i25519 xy, const i25519 x, const i25519 y) { |
257
|
11791
|
|
|
|
|
|
xy[0] = x[0] + y[0]; xy[1] = x[1] + y[1]; |
258
|
11791
|
|
|
|
|
|
xy[2] = x[2] + y[2]; xy[3] = x[3] + y[3]; |
259
|
11791
|
|
|
|
|
|
xy[4] = x[4] + y[4]; xy[5] = x[5] + y[5]; |
260
|
11791
|
|
|
|
|
|
xy[6] = x[6] + y[6]; xy[7] = x[7] + y[7]; |
261
|
11791
|
|
|
|
|
|
xy[8] = x[8] + y[8]; xy[9] = x[9] + y[9]; |
262
|
11791
|
|
|
|
|
|
} |
263
|
11785
|
|
|
|
|
|
static void sub25519(i25519 xy, const i25519 x, const i25519 y) { |
264
|
11785
|
|
|
|
|
|
xy[0] = x[0] - y[0]; xy[1] = x[1] - y[1]; |
265
|
11785
|
|
|
|
|
|
xy[2] = x[2] - y[2]; xy[3] = x[3] - y[3]; |
266
|
11785
|
|
|
|
|
|
xy[4] = x[4] - y[4]; xy[5] = x[5] - y[5]; |
267
|
11785
|
|
|
|
|
|
xy[6] = x[6] - y[6]; xy[7] = x[7] - y[7]; |
268
|
11785
|
|
|
|
|
|
xy[8] = x[8] - y[8]; xy[9] = x[9] - y[9]; |
269
|
11785
|
|
|
|
|
|
} |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
/* Multiply a number by a small integer in range -185861411 .. 185861411. |
272
|
|
|
|
|
|
|
* The output is in reduced form, the input x need not be. x and xy may point |
273
|
|
|
|
|
|
|
* to the same buffer. */ |
274
|
2825
|
|
|
|
|
|
static i25519ptr mul25519small(i25519 xy, const i25519 x, const int32_t y) { |
275
|
|
|
|
|
|
|
register int64_t t; |
276
|
|
|
|
|
|
|
check_nonred("mul small x input", x); |
277
|
|
|
|
|
|
|
check_range("mul small y input", y, -185861411, 185861411); |
278
|
2825
|
|
|
|
|
|
t = m64(x[8],y); |
279
|
2825
|
|
|
|
|
|
xy[8] = t & ((1 << 26) - 1); |
280
|
2825
|
|
|
|
|
|
t = (t >> 26) + m64(x[9],y); |
281
|
2825
|
|
|
|
|
|
xy[9] = t & ((1 << 25) - 1); |
282
|
2825
|
|
|
|
|
|
t = 19 * (t >> 25) + m64(x[0],y); |
283
|
2825
|
|
|
|
|
|
xy[0] = t & ((1 << 26) - 1); |
284
|
2825
|
|
|
|
|
|
t = (t >> 26) + m64(x[1],y); |
285
|
2825
|
|
|
|
|
|
xy[1] = t & ((1 << 25) - 1); |
286
|
2825
|
|
|
|
|
|
t = (t >> 25) + m64(x[2],y); |
287
|
2825
|
|
|
|
|
|
xy[2] = t & ((1 << 26) - 1); |
288
|
2825
|
|
|
|
|
|
t = (t >> 26) + m64(x[3],y); |
289
|
2825
|
|
|
|
|
|
xy[3] = t & ((1 << 25) - 1); |
290
|
2825
|
|
|
|
|
|
t = (t >> 25) + m64(x[4],y); |
291
|
2825
|
|
|
|
|
|
xy[4] = t & ((1 << 26) - 1); |
292
|
2825
|
|
|
|
|
|
t = (t >> 26) + m64(x[5],y); |
293
|
2825
|
|
|
|
|
|
xy[5] = t & ((1 << 25) - 1); |
294
|
2825
|
|
|
|
|
|
t = (t >> 25) + m64(x[6],y); |
295
|
2825
|
|
|
|
|
|
xy[6] = t & ((1 << 26) - 1); |
296
|
2825
|
|
|
|
|
|
t = (t >> 26) + m64(x[7],y); |
297
|
2825
|
|
|
|
|
|
xy[7] = t & ((1 << 25) - 1); |
298
|
2825
|
|
|
|
|
|
t = (t >> 25) + xy[8]; |
299
|
2825
|
|
|
|
|
|
xy[8] = t & ((1 << 26) - 1); |
300
|
2825
|
|
|
|
|
|
xy[9] += (int32_t)(t >> 26); |
301
|
|
|
|
|
|
|
check_reduced("mul small output", xy); |
302
|
2825
|
|
|
|
|
|
return xy; |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
/* Multiply two numbers. The output is in reduced form, the inputs need not |
306
|
|
|
|
|
|
|
* be. */ |
307
|
15099
|
|
|
|
|
|
static i25519ptr mul25519(i25519 xy, const i25519 x, const i25519 y) { |
308
|
|
|
|
|
|
|
register int64_t t; |
309
|
|
|
|
|
|
|
check_nonred("mul input x", x); |
310
|
|
|
|
|
|
|
check_nonred("mul input y", y); |
311
|
30198
|
|
|
|
|
|
t = m64(x[0],y[8]) + m64(x[2],y[6]) + m64(x[4],y[4]) + m64(x[6],y[2]) + |
312
|
30198
|
|
|
|
|
|
m64(x[8],y[0]) + 2 * (m64(x[1],y[7]) + m64(x[3],y[5]) + |
313
|
30198
|
|
|
|
|
|
m64(x[5],y[3]) + m64(x[7],y[1])) + 38 * |
314
|
15099
|
|
|
|
|
|
m64(x[9],y[9]); |
315
|
15099
|
|
|
|
|
|
xy[8] = t & ((1 << 26) - 1); |
316
|
45297
|
|
|
|
|
|
t = (t >> 26) + m64(x[0],y[9]) + m64(x[1],y[8]) + m64(x[2],y[7]) + |
317
|
30198
|
|
|
|
|
|
m64(x[3],y[6]) + m64(x[4],y[5]) + m64(x[5],y[4]) + |
318
|
30198
|
|
|
|
|
|
m64(x[6],y[3]) + m64(x[7],y[2]) + m64(x[8],y[1]) + |
319
|
15099
|
|
|
|
|
|
m64(x[9],y[0]); |
320
|
15099
|
|
|
|
|
|
xy[9] = t & ((1 << 25) - 1); |
321
|
45297
|
|
|
|
|
|
t = m64(x[0],y[0]) + 19 * ((t >> 25) + m64(x[2],y[8]) + m64(x[4],y[6]) |
322
|
30198
|
|
|
|
|
|
+ m64(x[6],y[4]) + m64(x[8],y[2])) + 38 * |
323
|
30198
|
|
|
|
|
|
(m64(x[1],y[9]) + m64(x[3],y[7]) + m64(x[5],y[5]) + |
324
|
30198
|
|
|
|
|
|
m64(x[7],y[3]) + m64(x[9],y[1])); |
325
|
15099
|
|
|
|
|
|
xy[0] = t & ((1 << 26) - 1); |
326
|
30198
|
|
|
|
|
|
t = (t >> 26) + m64(x[0],y[1]) + m64(x[1],y[0]) + 19 * (m64(x[2],y[9]) |
327
|
15099
|
|
|
|
|
|
+ m64(x[3],y[8]) + m64(x[4],y[7]) + m64(x[5],y[6]) + |
328
|
30198
|
|
|
|
|
|
m64(x[6],y[5]) + m64(x[7],y[4]) + m64(x[8],y[3]) + |
329
|
15099
|
|
|
|
|
|
m64(x[9],y[2])); |
330
|
15099
|
|
|
|
|
|
xy[1] = t & ((1 << 25) - 1); |
331
|
60396
|
|
|
|
|
|
t = (t >> 25) + m64(x[0],y[2]) + m64(x[2],y[0]) + 19 * (m64(x[4],y[8]) |
332
|
45297
|
|
|
|
|
|
+ m64(x[6],y[6]) + m64(x[8],y[4])) + 2 * m64(x[1],y[1]) |
333
|
30198
|
|
|
|
|
|
+ 38 * (m64(x[3],y[9]) + m64(x[5],y[7]) + |
334
|
15099
|
|
|
|
|
|
m64(x[7],y[5]) + m64(x[9],y[3])); |
335
|
15099
|
|
|
|
|
|
xy[2] = t & ((1 << 26) - 1); |
336
|
45297
|
|
|
|
|
|
t = (t >> 26) + m64(x[0],y[3]) + m64(x[1],y[2]) + m64(x[2],y[1]) + |
337
|
45297
|
|
|
|
|
|
m64(x[3],y[0]) + 19 * (m64(x[4],y[9]) + m64(x[5],y[8]) + |
338
|
15099
|
|
|
|
|
|
m64(x[6],y[7]) + m64(x[7],y[6]) + |
339
|
15099
|
|
|
|
|
|
m64(x[8],y[5]) + m64(x[9],y[4])); |
340
|
15099
|
|
|
|
|
|
xy[3] = t & ((1 << 25) - 1); |
341
|
45297
|
|
|
|
|
|
t = (t >> 25) + m64(x[0],y[4]) + m64(x[2],y[2]) + m64(x[4],y[0]) + 19 * |
342
|
45297
|
|
|
|
|
|
(m64(x[6],y[8]) + m64(x[8],y[6])) + 2 * (m64(x[1],y[3]) + |
343
|
45297
|
|
|
|
|
|
m64(x[3],y[1])) + 38 * |
344
|
15099
|
|
|
|
|
|
(m64(x[5],y[9]) + m64(x[7],y[7]) + m64(x[9],y[5])); |
345
|
15099
|
|
|
|
|
|
xy[4] = t & ((1 << 26) - 1); |
346
|
45297
|
|
|
|
|
|
t = (t >> 26) + m64(x[0],y[5]) + m64(x[1],y[4]) + m64(x[2],y[3]) + |
347
|
45297
|
|
|
|
|
|
m64(x[3],y[2]) + m64(x[4],y[1]) + m64(x[5],y[0]) + 19 * |
348
|
30198
|
|
|
|
|
|
(m64(x[6],y[9]) + m64(x[7],y[8]) + m64(x[8],y[7]) + |
349
|
15099
|
|
|
|
|
|
m64(x[9],y[6])); |
350
|
15099
|
|
|
|
|
|
xy[5] = t & ((1 << 25) - 1); |
351
|
45297
|
|
|
|
|
|
t = (t >> 25) + m64(x[0],y[6]) + m64(x[2],y[4]) + m64(x[4],y[2]) + |
352
|
60396
|
|
|
|
|
|
m64(x[6],y[0]) + 19 * m64(x[8],y[8]) + 2 * (m64(x[1],y[5]) + |
353
|
45297
|
|
|
|
|
|
m64(x[3],y[3]) + m64(x[5],y[1])) + 38 * |
354
|
15099
|
|
|
|
|
|
(m64(x[7],y[9]) + m64(x[9],y[7])); |
355
|
15099
|
|
|
|
|
|
xy[6] = t & ((1 << 26) - 1); |
356
|
45297
|
|
|
|
|
|
t = (t >> 26) + m64(x[0],y[7]) + m64(x[1],y[6]) + m64(x[2],y[5]) + |
357
|
30198
|
|
|
|
|
|
m64(x[3],y[4]) + m64(x[4],y[3]) + m64(x[5],y[2]) + |
358
|
30198
|
|
|
|
|
|
m64(x[6],y[1]) + m64(x[7],y[0]) + 19 * (m64(x[8],y[9]) + |
359
|
15099
|
|
|
|
|
|
m64(x[9],y[8])); |
360
|
15099
|
|
|
|
|
|
xy[7] = t & ((1 << 25) - 1); |
361
|
15099
|
|
|
|
|
|
t = (t >> 25) + xy[8]; |
362
|
15099
|
|
|
|
|
|
xy[8] = t & ((1 << 26) - 1); |
363
|
15099
|
|
|
|
|
|
xy[9] += (int32_t)(t >> 26); |
364
|
|
|
|
|
|
|
check_reduced("mul output", xy); |
365
|
15099
|
|
|
|
|
|
return xy; |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
/* Square a number. Optimization of mul25519(x2, x, x) */ |
369
|
16614
|
|
|
|
|
|
static i25519ptr sqr25519(i25519 x2, const i25519 x) { |
370
|
|
|
|
|
|
|
register int64_t t; |
371
|
|
|
|
|
|
|
check_nonred("sqr input", x); |
372
|
49842
|
|
|
|
|
|
t = m64(x[4],x[4]) + 2 * (m64(x[0],x[8]) + m64(x[2],x[6])) + 38 * |
373
|
33228
|
|
|
|
|
|
m64(x[9],x[9]) + 4 * (m64(x[1],x[7]) + m64(x[3],x[5])); |
374
|
16614
|
|
|
|
|
|
x2[8] = t & ((1 << 26) - 1); |
375
|
49842
|
|
|
|
|
|
t = (t >> 26) + 2 * (m64(x[0],x[9]) + m64(x[1],x[8]) + m64(x[2],x[7]) + |
376
|
33228
|
|
|
|
|
|
m64(x[3],x[6]) + m64(x[4],x[5])); |
377
|
16614
|
|
|
|
|
|
x2[9] = t & ((1 << 25) - 1); |
378
|
83070
|
|
|
|
|
|
t = 19 * (t >> 25) + m64(x[0],x[0]) + 38 * (m64(x[2],x[8]) + |
379
|
83070
|
|
|
|
|
|
m64(x[4],x[6]) + m64(x[5],x[5])) + 76 * (m64(x[1],x[9]) |
380
|
16614
|
|
|
|
|
|
+ m64(x[3],x[7])); |
381
|
16614
|
|
|
|
|
|
x2[0] = t & ((1 << 26) - 1); |
382
|
49842
|
|
|
|
|
|
t = (t >> 26) + 2 * m64(x[0],x[1]) + 38 * (m64(x[2],x[9]) + |
383
|
33228
|
|
|
|
|
|
m64(x[3],x[8]) + m64(x[4],x[7]) + m64(x[5],x[6])); |
384
|
16614
|
|
|
|
|
|
x2[1] = t & ((1 << 25) - 1); |
385
|
49842
|
|
|
|
|
|
t = (t >> 25) + 19 * m64(x[6],x[6]) + 2 * (m64(x[0],x[2]) + |
386
|
33228
|
|
|
|
|
|
m64(x[1],x[1])) + 38 * m64(x[4],x[8]) + 76 * |
387
|
16614
|
|
|
|
|
|
(m64(x[3],x[9]) + m64(x[5],x[7])); |
388
|
16614
|
|
|
|
|
|
x2[2] = t & ((1 << 26) - 1); |
389
|
33228
|
|
|
|
|
|
t = (t >> 26) + 2 * (m64(x[0],x[3]) + m64(x[1],x[2])) + 38 * |
390
|
16614
|
|
|
|
|
|
(m64(x[4],x[9]) + m64(x[5],x[8]) + m64(x[6],x[7])); |
391
|
16614
|
|
|
|
|
|
x2[3] = t & ((1 << 25) - 1); |
392
|
49842
|
|
|
|
|
|
t = (t >> 25) + m64(x[2],x[2]) + 2 * m64(x[0],x[4]) + 38 * |
393
|
49842
|
|
|
|
|
|
(m64(x[6],x[8]) + m64(x[7],x[7])) + 4 * m64(x[1],x[3]) + 76 * |
394
|
16614
|
|
|
|
|
|
m64(x[5],x[9]); |
395
|
16614
|
|
|
|
|
|
x2[4] = t & ((1 << 26) - 1); |
396
|
49842
|
|
|
|
|
|
t = (t >> 26) + 2 * (m64(x[0],x[5]) + m64(x[1],x[4]) + m64(x[2],x[3])) |
397
|
33228
|
|
|
|
|
|
+ 38 * (m64(x[6],x[9]) + m64(x[7],x[8])); |
398
|
16614
|
|
|
|
|
|
x2[5] = t & ((1 << 25) - 1); |
399
|
66456
|
|
|
|
|
|
t = (t >> 25) + 19 * m64(x[8],x[8]) + 2 * (m64(x[0],x[6]) + |
400
|
49842
|
|
|
|
|
|
m64(x[2],x[4]) + m64(x[3],x[3])) + 4 * m64(x[1],x[5]) + |
401
|
16614
|
|
|
|
|
|
76 * m64(x[7],x[9]); |
402
|
16614
|
|
|
|
|
|
x2[6] = t & ((1 << 26) - 1); |
403
|
66456
|
|
|
|
|
|
t = (t >> 26) + 2 * (m64(x[0],x[7]) + m64(x[1],x[6]) + m64(x[2],x[5]) + |
404
|
49842
|
|
|
|
|
|
m64(x[3],x[4])) + 38 * m64(x[8],x[9]); |
405
|
16614
|
|
|
|
|
|
x2[7] = t & ((1 << 25) - 1); |
406
|
16614
|
|
|
|
|
|
t = (t >> 25) + x2[8]; |
407
|
16614
|
|
|
|
|
|
x2[8] = t & ((1 << 26) - 1); |
408
|
16614
|
|
|
|
|
|
x2[9] += (t >> 26); |
409
|
|
|
|
|
|
|
check_reduced("sqr output", x2); |
410
|
16614
|
|
|
|
|
|
return x2; |
411
|
|
|
|
|
|
|
} |
412
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
/* Calculates a reciprocal. The output is in reduced form, the inputs need not |
414
|
|
|
|
|
|
|
* be. Simply calculates y = x^(p-2) so it's not too fast. */ |
415
|
|
|
|
|
|
|
/* When sqrtassist is true, it instead calculates y = x^((p-5)/8) */ |
416
|
19
|
|
|
|
|
|
static void recip25519(i25519 y, const i25519 x, int sqrtassist) { |
417
|
|
|
|
|
|
|
i25519 t0, t1, t2, t3, t4; |
418
|
|
|
|
|
|
|
int i; |
419
|
|
|
|
|
|
|
/* the chain for x^(2^255-21) is straight from djb's implementation */ |
420
|
19
|
|
|
|
|
|
sqr25519(t1, x); /* 2 == 2 * 1 */ |
421
|
19
|
|
|
|
|
|
sqr25519(t2, t1); /* 4 == 2 * 2 */ |
422
|
19
|
|
|
|
|
|
sqr25519(t0, t2); /* 8 == 2 * 4 */ |
423
|
19
|
|
|
|
|
|
mul25519(t2, t0, x); /* 9 == 8 + 1 */ |
424
|
19
|
|
|
|
|
|
mul25519(t0, t2, t1); /* 11 == 9 + 2 */ |
425
|
19
|
|
|
|
|
|
sqr25519(t1, t0); /* 22 == 2 * 11 */ |
426
|
19
|
|
|
|
|
|
mul25519(t3, t1, t2); /* 31 == 22 + 9 |
427
|
|
|
|
|
|
|
== 2^5 - 2^0 */ |
428
|
19
|
|
|
|
|
|
sqr25519(t1, t3); /* 2^6 - 2^1 */ |
429
|
19
|
|
|
|
|
|
sqr25519(t2, t1); /* 2^7 - 2^2 */ |
430
|
19
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^8 - 2^3 */ |
431
|
19
|
|
|
|
|
|
sqr25519(t2, t1); /* 2^9 - 2^4 */ |
432
|
19
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^10 - 2^5 */ |
433
|
19
|
|
|
|
|
|
mul25519(t2, t1, t3); /* 2^10 - 2^0 */ |
434
|
19
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^11 - 2^1 */ |
435
|
19
|
|
|
|
|
|
sqr25519(t3, t1); /* 2^12 - 2^2 */ |
436
|
95
|
100
|
|
|
|
|
for (i = 1; i < 5; i++) { |
437
|
76
|
|
|
|
|
|
sqr25519(t1, t3); |
438
|
76
|
|
|
|
|
|
sqr25519(t3, t1); |
439
|
|
|
|
|
|
|
} /* t3 */ /* 2^20 - 2^10 */ |
440
|
19
|
|
|
|
|
|
mul25519(t1, t3, t2); /* 2^20 - 2^0 */ |
441
|
19
|
|
|
|
|
|
sqr25519(t3, t1); /* 2^21 - 2^1 */ |
442
|
19
|
|
|
|
|
|
sqr25519(t4, t3); /* 2^22 - 2^2 */ |
443
|
190
|
100
|
|
|
|
|
for (i = 1; i < 10; i++) { |
444
|
171
|
|
|
|
|
|
sqr25519(t3, t4); |
445
|
171
|
|
|
|
|
|
sqr25519(t4, t3); |
446
|
|
|
|
|
|
|
} /* t4 */ /* 2^40 - 2^20 */ |
447
|
19
|
|
|
|
|
|
mul25519(t3, t4, t1); /* 2^40 - 2^0 */ |
448
|
114
|
100
|
|
|
|
|
for (i = 0; i < 5; i++) { |
449
|
95
|
|
|
|
|
|
sqr25519(t1, t3); |
450
|
95
|
|
|
|
|
|
sqr25519(t3, t1); |
451
|
|
|
|
|
|
|
} /* t3 */ /* 2^50 - 2^10 */ |
452
|
19
|
|
|
|
|
|
mul25519(t1, t3, t2); /* 2^50 - 2^0 */ |
453
|
19
|
|
|
|
|
|
sqr25519(t2, t1); /* 2^51 - 2^1 */ |
454
|
19
|
|
|
|
|
|
sqr25519(t3, t2); /* 2^52 - 2^2 */ |
455
|
475
|
100
|
|
|
|
|
for (i = 1; i < 25; i++) { |
456
|
456
|
|
|
|
|
|
sqr25519(t2, t3); |
457
|
456
|
|
|
|
|
|
sqr25519(t3, t2); |
458
|
|
|
|
|
|
|
} /* t3 */ /* 2^100 - 2^50 */ |
459
|
19
|
|
|
|
|
|
mul25519(t2, t3, t1); /* 2^100 - 2^0 */ |
460
|
19
|
|
|
|
|
|
sqr25519(t3, t2); /* 2^101 - 2^1 */ |
461
|
19
|
|
|
|
|
|
sqr25519(t4, t3); /* 2^102 - 2^2 */ |
462
|
950
|
100
|
|
|
|
|
for (i = 1; i < 50; i++) { |
463
|
931
|
|
|
|
|
|
sqr25519(t3, t4); |
464
|
931
|
|
|
|
|
|
sqr25519(t4, t3); |
465
|
|
|
|
|
|
|
} /* t4 */ /* 2^200 - 2^100 */ |
466
|
19
|
|
|
|
|
|
mul25519(t3, t4, t2); /* 2^200 - 2^0 */ |
467
|
494
|
100
|
|
|
|
|
for (i = 0; i < 25; i++) { |
468
|
475
|
|
|
|
|
|
sqr25519(t4, t3); |
469
|
475
|
|
|
|
|
|
sqr25519(t3, t4); |
470
|
|
|
|
|
|
|
} /* t3 */ /* 2^250 - 2^50 */ |
471
|
19
|
|
|
|
|
|
mul25519(t2, t3, t1); /* 2^250 - 2^0 */ |
472
|
19
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^251 - 2^1 */ |
473
|
19
|
|
|
|
|
|
sqr25519(t2, t1); /* 2^252 - 2^2 */ |
474
|
19
|
100
|
|
|
|
|
if (sqrtassist) { |
475
|
1
|
|
|
|
|
|
mul25519(y, x, t2); /* 2^252 - 3 */ |
476
|
|
|
|
|
|
|
} else { |
477
|
18
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^253 - 2^3 */ |
478
|
18
|
|
|
|
|
|
sqr25519(t2, t1); /* 2^254 - 2^4 */ |
479
|
18
|
|
|
|
|
|
sqr25519(t1, t2); /* 2^255 - 2^5 */ |
480
|
18
|
|
|
|
|
|
mul25519(y, t1, t0); /* 2^255 - 21 */ |
481
|
|
|
|
|
|
|
} |
482
|
19
|
|
|
|
|
|
} |
483
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
/* checks if x is "negative", requires reduced input */ |
485
|
7
|
|
|
|
|
|
static inline int is_negative(i25519 x) { |
486
|
7
|
|
|
|
|
|
return (is_overflow(x) | (x[9] < 0)) ^ (x[0] & 1); |
487
|
|
|
|
|
|
|
} |
488
|
|
|
|
|
|
|
|
489
|
|
|
|
|
|
|
/* a square root */ |
490
|
1
|
|
|
|
|
|
static void sqrt25519(i25519 x, const i25519 u) { |
491
|
|
|
|
|
|
|
i25519 v, t1, t2; |
492
|
1
|
|
|
|
|
|
add25519(t1, u, u); /* t1 = 2u */ |
493
|
1
|
|
|
|
|
|
recip25519(v, t1, 1); /* v = (2u)^((p-5)/8) */ |
494
|
1
|
|
|
|
|
|
sqr25519(x, v); /* x = v^2 */ |
495
|
1
|
|
|
|
|
|
mul25519(t2, t1, x); /* t2 = 2uv^2 */ |
496
|
1
|
|
|
|
|
|
t2[0]--; /* t2 = 2uv^2-1 */ |
497
|
1
|
|
|
|
|
|
mul25519(t1, v, t2); /* t1 = v(2uv^2-1) */ |
498
|
1
|
|
|
|
|
|
mul25519(x, u, t1); /* x = uv(2uv^2-1) */ |
499
|
1
|
|
|
|
|
|
} |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
/********************* Elliptic curve *********************/ |
503
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
/* y^2 = x^3 + 486662 x^2 + x over GF(2^255-19) */ |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
/* t1 = ax + az |
508
|
|
|
|
|
|
|
* t2 = ax - az */ |
509
|
5888
|
|
|
|
|
|
static inline void mont_prep(i25519 t1, i25519 t2, i25519 ax, i25519 az) { |
510
|
5888
|
|
|
|
|
|
add25519(t1, ax, az); |
511
|
5888
|
|
|
|
|
|
sub25519(t2, ax, az); |
512
|
5888
|
|
|
|
|
|
} |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
/* A = P + Q where |
515
|
|
|
|
|
|
|
* X(A) = ax/az |
516
|
|
|
|
|
|
|
* X(P) = (t1+t2)/(t1-t2) |
517
|
|
|
|
|
|
|
* X(Q) = (t3+t4)/(t3-t4) |
518
|
|
|
|
|
|
|
* X(P-Q) = dx |
519
|
|
|
|
|
|
|
* clobbers t1 and t2, preserves t3 and t4 */ |
520
|
3072
|
|
|
|
|
|
static inline void mont_add(i25519 t1, i25519 t2, i25519 t3, i25519 t4, |
521
|
|
|
|
|
|
|
i25519 ax, i25519 az, const i25519 dx) { |
522
|
3072
|
|
|
|
|
|
mul25519(ax, t2, t3); |
523
|
3072
|
|
|
|
|
|
mul25519(az, t1, t4); |
524
|
3072
|
|
|
|
|
|
add25519(t1, ax, az); |
525
|
3072
|
|
|
|
|
|
sub25519(t2, ax, az); |
526
|
3072
|
|
|
|
|
|
sqr25519(ax, t1); |
527
|
3072
|
|
|
|
|
|
sqr25519(t1, t2); |
528
|
3072
|
|
|
|
|
|
mul25519(az, t1, dx); |
529
|
3072
|
|
|
|
|
|
} |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
/* B = 2 * Q where |
532
|
|
|
|
|
|
|
* X(B) = bx/bz |
533
|
|
|
|
|
|
|
* X(Q) = (t3+t4)/(t3-t4) |
534
|
|
|
|
|
|
|
* clobbers t1 and t2, preserves t3 and t4 */ |
535
|
2816
|
|
|
|
|
|
static inline void mont_dbl(i25519 t1, i25519 t2, i25519 t3, i25519 t4, |
536
|
|
|
|
|
|
|
i25519 bx, i25519 bz) { |
537
|
2816
|
|
|
|
|
|
sqr25519(t1, t3); |
538
|
2816
|
|
|
|
|
|
sqr25519(t2, t4); |
539
|
2816
|
|
|
|
|
|
mul25519(bx, t1, t2); |
540
|
2816
|
|
|
|
|
|
sub25519(t2, t1, t2); |
541
|
2816
|
|
|
|
|
|
mul25519small(bz, t2, 121665); |
542
|
2816
|
|
|
|
|
|
add25519(t1, t1, bz); |
543
|
2816
|
|
|
|
|
|
mul25519(bz, t1, t2); |
544
|
2816
|
|
|
|
|
|
} |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
/* Y^2 = X^3 + 486662 X^2 + X |
547
|
|
|
|
|
|
|
* t is a temporary */ |
548
|
7
|
|
|
|
|
|
static inline void x_to_y2(i25519 t, i25519 y2, const i25519 x) { |
549
|
7
|
|
|
|
|
|
sqr25519(t, x); |
550
|
7
|
|
|
|
|
|
mul25519small(y2, x, 486662); |
551
|
7
|
|
|
|
|
|
add25519(t, t, y2); |
552
|
7
|
|
|
|
|
|
t[0]++; |
553
|
7
|
|
|
|
|
|
mul25519(y2, t, x); |
554
|
7
|
|
|
|
|
|
} |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
/* P = kG and s = sign(P)/k */ |
557
|
10
|
|
|
|
|
|
void core25519(k25519 Px, k25519 s, const k25519 k, const k25519 Gx) { |
558
|
|
|
|
|
|
|
i25519 dx, x[2], z[2], t1, t2, t3, t4; |
559
|
|
|
|
|
|
|
unsigned i, j; |
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
/* unpack the base */ |
562
|
10
|
100
|
|
|
|
|
if (Gx) |
563
|
4
|
|
|
|
|
|
unpack25519(dx, Gx); |
564
|
|
|
|
|
|
|
else |
565
|
6
|
|
|
|
|
|
set25519(dx, 9); |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
/* 0G = point-at-infinity */ |
568
|
10
|
|
|
|
|
|
set25519(x[0], 1); |
569
|
10
|
|
|
|
|
|
set25519(z[0], 0); |
570
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
/* 1G = G */ |
572
|
10
|
|
|
|
|
|
cpy25519(x[1], dx); |
573
|
10
|
|
|
|
|
|
set25519(z[1], 1); |
574
|
|
|
|
|
|
|
|
575
|
330
|
100
|
|
|
|
|
for (i = 32; i--; ) { |
576
|
2880
|
100
|
|
|
|
|
for (j = 8; j--; ) { |
577
|
|
|
|
|
|
|
/* swap arguments depending on bit */ |
578
|
2560
|
|
|
|
|
|
const int bit1 = k[i] >> j & 1; |
579
|
2560
|
|
|
|
|
|
const int bit0 = ~k[i] >> j & 1; |
580
|
2560
|
|
|
|
|
|
int32_t *const ax = x[bit0]; |
581
|
2560
|
|
|
|
|
|
int32_t *const az = z[bit0]; |
582
|
2560
|
|
|
|
|
|
int32_t *const bx = x[bit1]; |
583
|
2560
|
|
|
|
|
|
int32_t *const bz = z[bit1]; |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
/* a' = a + b */ |
586
|
|
|
|
|
|
|
/* b' = 2 b */ |
587
|
2560
|
|
|
|
|
|
mont_prep(t1, t2, ax, az); |
588
|
2560
|
|
|
|
|
|
mont_prep(t3, t4, bx, bz); |
589
|
2560
|
|
|
|
|
|
mont_add(t1, t2, t3, t4, ax, az, dx); |
590
|
2560
|
|
|
|
|
|
mont_dbl(t1, t2, t3, t4, bx, bz); |
591
|
|
|
|
|
|
|
} |
592
|
|
|
|
|
|
|
} |
593
|
|
|
|
|
|
|
|
594
|
10
|
|
|
|
|
|
recip25519(t1, z[0], 0); |
595
|
10
|
|
|
|
|
|
mul25519(dx, x[0], t1); |
596
|
10
|
|
|
|
|
|
pack25519(dx, Px); |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
/* calculate s such that s abs(P) = G .. assumes G is std base point */ |
599
|
10
|
100
|
|
|
|
|
if (s) { |
600
|
6
|
|
|
|
|
|
x_to_y2(t2, t1, dx); /* t1 = Py^2 */ |
601
|
6
|
|
|
|
|
|
recip25519(t3, z[1], 0); /* where Q=P+G ... */ |
602
|
6
|
|
|
|
|
|
mul25519(t2, x[1], t3); /* t2 = Qx */ |
603
|
6
|
|
|
|
|
|
add25519(t2, t2, dx); /* t2 = Qx + Px */ |
604
|
6
|
|
|
|
|
|
t2[0] += 9 + 486662; /* t2 = Qx + Px + Gx + 486662 */ |
605
|
6
|
|
|
|
|
|
dx[0] -= 9; /* dx = Px - Gx */ |
606
|
6
|
|
|
|
|
|
sqr25519(t3, dx); /* t3 = (Px - Gx)^2 */ |
607
|
6
|
|
|
|
|
|
mul25519(dx, t2, t3); /* dx = t2 (Px - Gx)^2 */ |
608
|
6
|
|
|
|
|
|
sub25519(dx, dx, t1); /* dx = t2 (Px - Gx)^2 - Py^2 */ |
609
|
6
|
|
|
|
|
|
dx[0] -= 39420360; /* dx = t2 (Px - Gx)^2 - Py^2 - Gy^2 */ |
610
|
6
|
|
|
|
|
|
mul25519(t1, dx, base_r2y); /* t1 = -Py */ |
611
|
6
|
100
|
|
|
|
|
if (is_negative(t1)) /* sign is 1, so just copy */ |
612
|
5
|
|
|
|
|
|
cpy32(s, k); |
613
|
|
|
|
|
|
|
else /* sign is -1, so negate */ |
614
|
1
|
|
|
|
|
|
mula_small(s, order_times_8, 0, k, 32, -1); |
615
|
|
|
|
|
|
|
|
616
|
|
|
|
|
|
|
/* reduce s mod q |
617
|
|
|
|
|
|
|
* (is this needed? do it just in case, it's fast anyway) */ |
618
|
|
|
|
|
|
|
//divmod((dstptr) t1, s, 32, order25519, 32); |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
/* take reciprocal of s mod q */ |
621
|
6
|
|
|
|
|
|
cpy32((dstptr) t1, order25519); |
622
|
6
|
|
|
|
|
|
cpy32(s, egcd32((dstptr) x, (dstptr) z, s, (dstptr) t1)); |
623
|
6
|
100
|
|
|
|
|
if ((int8_t) s[31] < 0) |
624
|
1
|
|
|
|
|
|
mula_small(s, s, 0, order25519, 32, 1); |
625
|
|
|
|
|
|
|
} |
626
|
10
|
|
|
|
|
|
} |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
/* v = (x - h) s mod q */ |
629
|
1
|
|
|
|
|
|
int sign25519(k25519 v, const k25519 h, const priv25519 x, const spriv25519 s) { |
630
|
|
|
|
|
|
|
uint8_t tmp[65]; |
631
|
|
|
|
|
|
|
unsigned w; |
632
|
|
|
|
|
|
|
int i; |
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
k25519 h1; |
635
|
|
|
|
|
|
|
priv25519 x1; |
636
|
|
|
|
|
|
|
|
637
|
33
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) { |
638
|
32
|
|
|
|
|
|
h1[i] = h[i]; |
639
|
32
|
|
|
|
|
|
x1[i] = x[i]; |
640
|
|
|
|
|
|
|
} |
641
|
|
|
|
|
|
|
|
642
|
33
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) |
643
|
32
|
|
|
|
|
|
tmp[i] = 0; |
644
|
1
|
|
|
|
|
|
divmod(tmp, h1, 32, order25519, 32); |
645
|
|
|
|
|
|
|
|
646
|
33
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) |
647
|
32
|
|
|
|
|
|
tmp[i] = 0; |
648
|
1
|
|
|
|
|
|
divmod(tmp, x1, 32, order25519, 32); |
649
|
|
|
|
|
|
|
|
650
|
33
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) |
651
|
32
|
|
|
|
|
|
v[i] = 0; |
652
|
1
|
|
|
|
|
|
i = mula_small(v, x1, 0, h1, 32, -1); |
653
|
1
|
|
|
|
|
|
mula_small(v, v, 0, order25519, 32, (15-(int8_t) v[31])/16); |
654
|
65
|
100
|
|
|
|
|
for (i = 0; i < 64; i++) |
655
|
64
|
|
|
|
|
|
tmp[i] = 0; |
656
|
1
|
|
|
|
|
|
mula32(tmp, v, s, 32, 1); |
657
|
1
|
|
|
|
|
|
divmod(tmp+32, tmp, 64, order25519, 32); |
658
|
33
|
100
|
|
|
|
|
for (w = 0, i = 0; i < 32; i++) |
659
|
32
|
|
|
|
|
|
w |= v[i] = tmp[i]; |
660
|
1
|
|
|
|
|
|
return w != 0; |
661
|
|
|
|
|
|
|
} |
662
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
/* Y = v abs(P) + h G */ |
664
|
1
|
|
|
|
|
|
void verify25519(pub25519 Y, const k25519 v, const k25519 h, const pub25519 P) { |
665
|
|
|
|
|
|
|
k25519 d; |
666
|
|
|
|
|
|
|
i25519 p[2], s[2], yx[3], yz[3], t1[3], t2[3]; |
667
|
1
|
|
|
|
|
|
unsigned vi = 0, hi = 0, di = 0, nvh, i, j, k; |
668
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
/* set p[0] to G and p[1] to P */ |
670
|
|
|
|
|
|
|
|
671
|
1
|
|
|
|
|
|
set25519(p[0], 9); |
672
|
1
|
|
|
|
|
|
unpack25519(p[1], P); |
673
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
/* set s[0] to P+G and s[1] to P-G */ |
675
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
/* s[0] = (Py^2 + Gy^2 - 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */ |
677
|
|
|
|
|
|
|
/* s[1] = (Py^2 + Gy^2 + 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */ |
678
|
|
|
|
|
|
|
|
679
|
1
|
|
|
|
|
|
x_to_y2(t1[0], t2[0], p[1]); /* t2[0] = Py^2 */ |
680
|
1
|
|
|
|
|
|
sqrt25519(t1[0], t2[0]); /* t1[0] = Py or -Py */ |
681
|
1
|
|
|
|
|
|
j = is_negative(t1[0]); /* ... check which */ |
682
|
1
|
|
|
|
|
|
t2[0][0] += 39420360; /* t2[0] = Py^2 + Gy^2 */ |
683
|
1
|
|
|
|
|
|
mul25519(t2[1], base_2y, t1[0]);/* t2[1] = 2 Py Gy or -2 Py Gy */ |
684
|
1
|
|
|
|
|
|
sub25519(t1[j], t2[0], t2[1]); /* t1[0] = Py^2 + Gy^2 - 2 Py Gy */ |
685
|
1
|
|
|
|
|
|
add25519(t1[1-j], t2[0], t2[1]);/* t1[1] = Py^2 + Gy^2 + 2 Py Gy */ |
686
|
1
|
|
|
|
|
|
cpy25519(t2[0], p[1]); /* t2[0] = Px */ |
687
|
1
|
|
|
|
|
|
t2[0][0] -= 9; /* t2[0] = Px - Gx */ |
688
|
1
|
|
|
|
|
|
sqr25519(t2[1], t2[0]); /* t2[1] = (Px - Gx)^2 */ |
689
|
1
|
|
|
|
|
|
recip25519(t2[0], t2[1], 0); /* t2[0] = 1/(Px - Gx)^2 */ |
690
|
1
|
|
|
|
|
|
mul25519(s[0], t1[0], t2[0]); /* s[0] = t1[0]/(Px - Gx)^2 */ |
691
|
1
|
|
|
|
|
|
sub25519(s[0], s[0], p[1]); /* s[0] = t1[0]/(Px - Gx)^2 - Px */ |
692
|
1
|
|
|
|
|
|
s[0][0] -= 9 + 486662; /* s[0] = X(P+G) */ |
693
|
1
|
|
|
|
|
|
mul25519(s[1], t1[1], t2[0]); /* s[1] = t1[1]/(Px - Gx)^2 */ |
694
|
1
|
|
|
|
|
|
sub25519(s[1], s[1], p[1]); /* s[1] = t1[1]/(Px - Gx)^2 - Px */ |
695
|
1
|
|
|
|
|
|
s[1][0] -= 9 + 486662; /* s[1] = X(P-G) */ |
696
|
1
|
|
|
|
|
|
mul25519small(s[0], s[0], 1); /* reduce s[0] */ |
697
|
1
|
|
|
|
|
|
mul25519small(s[1], s[1], 1); /* reduce s[1] */ |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
/* prepare the chain */ |
701
|
33
|
100
|
|
|
|
|
for (i = 0; i < 32; i++) { |
702
|
32
|
|
|
|
|
|
vi = (vi >> 8) ^ v[i] ^ (v[i] << 1); |
703
|
32
|
|
|
|
|
|
hi = (hi >> 8) ^ h[i] ^ (h[i] << 1); |
704
|
32
|
|
|
|
|
|
nvh = ~(vi ^ hi); |
705
|
32
|
|
|
|
|
|
di = (nvh & (di & 0x80) >> 7) ^ vi; |
706
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x01) << 1; |
707
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x02) << 1; |
708
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x04) << 1; |
709
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x08) << 1; |
710
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x10) << 1; |
711
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x20) << 1; |
712
|
32
|
|
|
|
|
|
di ^= nvh & (di & 0x40) << 1; |
713
|
32
|
|
|
|
|
|
d[i] = di; |
714
|
|
|
|
|
|
|
} |
715
|
|
|
|
|
|
|
|
716
|
1
|
|
|
|
|
|
di = ((nvh & (di & 0x80) << 1) ^ vi) >> 8; |
717
|
|
|
|
|
|
|
|
718
|
|
|
|
|
|
|
/* initialize state */ |
719
|
1
|
|
|
|
|
|
set25519(yx[0], 1); |
720
|
1
|
|
|
|
|
|
cpy25519(yx[1], p[di]); |
721
|
1
|
|
|
|
|
|
cpy25519(yx[2], s[0]); |
722
|
1
|
|
|
|
|
|
set25519(yz[0], 0); |
723
|
1
|
|
|
|
|
|
set25519(yz[1], 1); |
724
|
1
|
|
|
|
|
|
set25519(yz[2], 1); |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
/* y[0] is (even)P + (even)G |
727
|
|
|
|
|
|
|
* y[1] is (even)P + (odd)G if current d-bit is 0 |
728
|
|
|
|
|
|
|
* y[1] is (odd)P + (even)G if current d-bit is 1 |
729
|
|
|
|
|
|
|
* y[2] is (odd)P + (odd)G |
730
|
|
|
|
|
|
|
*/ |
731
|
|
|
|
|
|
|
|
732
|
1
|
|
|
|
|
|
vi = 0; |
733
|
1
|
|
|
|
|
|
hi = 0; |
734
|
|
|
|
|
|
|
|
735
|
|
|
|
|
|
|
/* and go for it! */ |
736
|
33
|
100
|
|
|
|
|
for (i = 32; i--; ) { |
737
|
32
|
|
|
|
|
|
vi = (vi << 8) | v[i]; |
738
|
32
|
|
|
|
|
|
hi = (hi << 8) | h[i]; |
739
|
32
|
|
|
|
|
|
di = (di << 8) | d[i]; |
740
|
|
|
|
|
|
|
|
741
|
288
|
100
|
|
|
|
|
for (j = 8; j--; ) { |
742
|
256
|
|
|
|
|
|
mont_prep(t1[0], t2[0], yx[0], yz[0]); |
743
|
256
|
|
|
|
|
|
mont_prep(t1[1], t2[1], yx[1], yz[1]); |
744
|
256
|
|
|
|
|
|
mont_prep(t1[2], t2[2], yx[2], yz[2]); |
745
|
|
|
|
|
|
|
|
746
|
512
|
|
|
|
|
|
k = ((vi ^ vi >> 1) >> j & 1) |
747
|
256
|
|
|
|
|
|
+ ((hi ^ hi >> 1) >> j & 1); |
748
|
256
|
|
|
|
|
|
mont_dbl(yx[2], yz[2], t1[k], t2[k], yx[0], yz[0]); |
749
|
|
|
|
|
|
|
|
750
|
256
|
|
|
|
|
|
k = (di >> j & 2) ^ ((di >> j & 1) << 1); |
751
|
256
|
|
|
|
|
|
mont_add(t1[1], t2[1], t1[k], t2[k], yx[1], yz[1], |
752
|
256
|
|
|
|
|
|
p[di >> j & 1]); |
753
|
|
|
|
|
|
|
|
754
|
256
|
|
|
|
|
|
mont_add(t1[2], t2[2], t1[0], t2[0], yx[2], yz[2], |
755
|
256
|
|
|
|
|
|
s[((vi ^ hi) >> j & 2) >> 1]); |
756
|
|
|
|
|
|
|
} |
757
|
|
|
|
|
|
|
} |
758
|
|
|
|
|
|
|
|
759
|
1
|
|
|
|
|
|
k = (vi & 1) + (hi & 1); |
760
|
1
|
|
|
|
|
|
recip25519(t1[0], yz[k], 0); |
761
|
1
|
|
|
|
|
|
mul25519(t1[1], yx[k], t1[0]); |
762
|
|
|
|
|
|
|
|
763
|
1
|
|
|
|
|
|
pack25519(t1[1], Y); |
764
|
1
|
|
|
|
|
|
} |