line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Graph::Simple; |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
#ABSTRACT: simple and intuitive interface for manipulating graph |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
|
6
|
1
|
|
|
1
|
|
25054
|
use Moo; |
|
1
|
|
|
|
|
20751
|
|
|
1
|
|
|
|
|
7
|
|
7
|
1
|
|
|
1
|
|
1993
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
2324
|
|
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
# graphs are represented with adjency lists |
10
|
|
|
|
|
|
|
has _adjencies => ( |
11
|
|
|
|
|
|
|
is => 'rw', |
12
|
|
|
|
|
|
|
default => sub { {} }, |
13
|
|
|
|
|
|
|
); |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
# if weights are provided, stored for each edge(u,v) |
16
|
|
|
|
|
|
|
has _weights => ( |
17
|
|
|
|
|
|
|
is => 'rw', |
18
|
|
|
|
|
|
|
default => sub { {} }, |
19
|
|
|
|
|
|
|
); |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
has is_weighted => ( |
23
|
|
|
|
|
|
|
is => 'ro', |
24
|
|
|
|
|
|
|
default => sub {0}, |
25
|
|
|
|
|
|
|
); |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
has is_directed => ( |
29
|
|
|
|
|
|
|
is => 'ro', |
30
|
|
|
|
|
|
|
default => sub {0}, |
31
|
|
|
|
|
|
|
); |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
sub vertices { |
35
|
122
|
|
|
122
|
1
|
139
|
my $self = shift; |
36
|
122
|
|
|
|
|
110
|
return keys %{ $self->_adjencies }; |
|
122
|
|
|
|
|
471
|
|
37
|
|
|
|
|
|
|
} |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
sub add_edge { |
41
|
77
|
|
|
77
|
1
|
362
|
my ( $self, $u, $v, $weight ) = @_; |
42
|
|
|
|
|
|
|
|
43
|
77
|
|
|
|
|
138
|
$self->_add_edge( $u, $v, $weight ); |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
# if the graph is not directed, adding u,v adds v,u |
46
|
77
|
100
|
|
|
|
236
|
$self->_add_edge( $v, $u, $weight ) if !$self->is_directed; |
47
|
|
|
|
|
|
|
|
48
|
77
|
|
|
|
|
172
|
return "$u,$v"; |
49
|
|
|
|
|
|
|
} |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
sub _add_edge { |
52
|
146
|
|
|
146
|
|
210
|
my ( $self, $u, $v, $weight ) = @_; |
53
|
146
|
|
100
|
|
|
353
|
$weight ||= 0; |
54
|
|
|
|
|
|
|
|
55
|
146
|
|
100
|
|
|
529
|
$self->_adjencies->{$u} ||= []; |
56
|
146
|
|
|
|
|
153
|
push @{ $self->_adjencies->{$u} }, $v; |
|
146
|
|
|
|
|
321
|
|
57
|
|
|
|
|
|
|
|
58
|
146
|
100
|
|
|
|
566
|
$self->_weights->{$u}->{$v} = $weight |
59
|
|
|
|
|
|
|
if $self->is_weighted; |
60
|
|
|
|
|
|
|
} |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub delete_edge { |
64
|
2
|
|
|
2
|
1
|
6
|
my ( $self, $u, $v ) = @_; |
65
|
|
|
|
|
|
|
|
66
|
2
|
|
|
|
|
8
|
$self->_delete_edge( $u, $v ); |
67
|
2
|
100
|
|
|
|
19
|
$self->_delete_edge( $v, $u ) if !$self->is_directed; |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub _delete_edge { |
71
|
3
|
|
|
3
|
|
6
|
my ( $self, $u, $v ) = @_; |
72
|
|
|
|
|
|
|
|
73
|
3
|
|
|
|
|
9
|
my @neighbors = $self->neighbors($u); |
74
|
3
|
|
|
|
|
7
|
my @new; |
75
|
3
|
|
|
|
|
6
|
foreach my $e (@neighbors) { |
76
|
4
|
100
|
|
|
|
18
|
push @new, $e if $e ne $v; |
77
|
|
|
|
|
|
|
} |
78
|
3
|
|
|
|
|
28
|
$self->_adjencies->{$u} = \@new; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub neighbors { |
83
|
116
|
|
|
116
|
1
|
175
|
my ( $self, $v ) = @_; |
84
|
|
|
|
|
|
|
|
85
|
804
|
|
|
|
|
3400
|
croak "Unknown vertex '$v'" |
86
|
116
|
100
|
|
|
|
210
|
if !grep {/^$v$/} $self->vertices; |
87
|
|
|
|
|
|
|
|
88
|
115
|
|
|
|
|
186
|
return @{ $self->_adjencies->{$v} }; |
|
115
|
|
|
|
|
479
|
|
89
|
|
|
|
|
|
|
} |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sub weight { |
93
|
70
|
|
|
70
|
1
|
3926
|
my ( $self, $u, $v, $w ) = @_; |
94
|
70
|
100
|
|
|
|
132
|
if ( @_ == 3 ) { |
95
|
69
|
|
|
|
|
244
|
return $self->_weights->{$u}->{$v}; |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
else { |
98
|
1
|
|
|
|
|
7
|
$self->_weights->{$u}->{$v} = $w; |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
sub is_adjacent { |
104
|
2
|
|
|
2
|
1
|
4108
|
my ( $self, $u, $v ) = @_; |
105
|
2
|
|
|
|
|
7
|
return grep {/^$v$/} @{ $self->_adjencies->{$u} }; |
|
6
|
|
|
|
|
79
|
|
|
2
|
|
|
|
|
16
|
|
106
|
|
|
|
|
|
|
} |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
sub breadth_first_search { |
110
|
1
|
|
|
1
|
1
|
9
|
my ( $self, $v, %options ) = @_; |
111
|
|
|
|
|
|
|
|
112
|
1
|
|
|
|
|
3
|
my @queue = ($v); |
113
|
1
|
|
|
|
|
2
|
my $parents = {}; |
114
|
1
|
|
|
|
|
3
|
my $states = { $v => 'grey' }; |
115
|
|
|
|
|
|
|
|
116
|
8
|
|
|
8
|
|
11
|
my $cb_vertex_discovered = $options{cb_vertex_discovered} || sub { |
117
|
1
|
|
50
|
|
|
13
|
}; |
118
|
|
|
|
|
|
|
|
119
|
8
|
|
|
8
|
|
23
|
my $cb_vertex_processed = $options{cb_vertex_processed} || sub { |
120
|
1
|
|
50
|
|
|
9
|
}; |
121
|
|
|
|
|
|
|
|
122
|
4
|
|
|
4
|
|
6
|
my $cb_edge_discovered = $options{cb_edge_discovered} || sub { |
123
|
1
|
|
50
|
|
|
8
|
}; |
124
|
|
|
|
|
|
|
|
125
|
1
|
|
|
|
|
5
|
while ( my $vertex = shift(@queue) ) { |
126
|
8
|
|
|
|
|
18
|
$cb_vertex_discovered->($vertex); |
127
|
|
|
|
|
|
|
|
128
|
8
|
|
|
|
|
17
|
foreach my $n ( $self->neighbors($vertex) ) { |
129
|
22
|
|
100
|
|
|
75
|
my $state = $states->{$n} || 'white'; |
130
|
22
|
100
|
|
|
|
53
|
next if $state eq 'black'; |
131
|
|
|
|
|
|
|
|
132
|
11
|
100
|
|
|
|
19
|
if ( $state eq 'grey' ) { |
133
|
4
|
|
|
|
|
16
|
$cb_edge_discovered->( $vertex, $n ); |
134
|
4
|
|
|
|
|
6
|
next; |
135
|
|
|
|
|
|
|
} |
136
|
|
|
|
|
|
|
|
137
|
7
|
|
|
|
|
11
|
push @queue, $n; |
138
|
7
|
|
|
|
|
14
|
$states->{$n} = 'grey'; |
139
|
7
|
|
|
|
|
15
|
$parents->{$n} = $vertex; |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
8
|
|
|
|
|
21
|
$states->{$vertex} = 'black'; |
143
|
8
|
|
|
|
|
14
|
$cb_vertex_processed->($vertex); |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
1
|
|
|
|
|
18
|
return $parents; |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
sub depth_first_search { |
151
|
3
|
|
|
3
|
1
|
1634
|
my ( $self, $start, %options ) = @_; |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
# init phase of the DFS traversal |
154
|
3
|
|
50
|
|
|
17
|
my $states ||= {}; |
155
|
3
|
|
100
|
7
|
|
17
|
my $cb_vd = $options{cb_vertex_discovered} || sub { }; |
|
7
|
|
|
|
|
9
|
|
156
|
3
|
|
100
|
13
|
|
18
|
my $cb_vp = $options{cb_vertex_processed} || sub { }; |
|
13
|
|
|
|
|
18
|
|
157
|
3
|
|
50
|
38
|
|
23
|
my $cb_ed = $options{cb_edge_discovered} || sub { }; |
|
38
|
|
|
|
|
42
|
|
158
|
3
|
|
|
|
|
11
|
foreach my $v ( $self->vertices ) { |
159
|
20
|
|
|
|
|
39
|
$states->{$v} = 'unknown'; |
160
|
|
|
|
|
|
|
} |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# DFS traversal is recursively done on each new vertex |
163
|
|
|
|
|
|
|
$self->_dfs_visit( |
164
|
3
|
|
|
|
|
22
|
$start, $states, |
165
|
|
|
|
|
|
|
{ cb_vertex_discovered => $cb_vd, |
166
|
|
|
|
|
|
|
cb_vertex_processed => $cb_vp, |
167
|
|
|
|
|
|
|
cb_edge_discovered => $cb_ed, |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
); |
170
|
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub _dfs_visit { |
173
|
20
|
|
|
20
|
|
36
|
my ( $self, $vertex, $states, $callbacks ) = @_; |
174
|
|
|
|
|
|
|
|
175
|
20
|
|
|
|
|
34
|
$states->{$vertex} = 'discovered'; |
176
|
20
|
|
|
|
|
49
|
$callbacks->{cb_vertex_discovered}->($vertex); |
177
|
|
|
|
|
|
|
|
178
|
20
|
|
|
|
|
70
|
foreach my $n ( $self->neighbors($vertex) ) { |
179
|
|
|
|
|
|
|
|
180
|
38
|
|
|
|
|
80
|
$callbacks->{cb_edge_discovered}->( $vertex, $n ); |
181
|
38
|
|
|
|
|
54
|
my $state = $states->{$n}; |
182
|
|
|
|
|
|
|
|
183
|
38
|
100
|
|
|
|
106
|
if ( $state eq 'unknown' ) { |
184
|
17
|
|
|
|
|
44
|
$self->_dfs_visit( $n, $states, $callbacks ); |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
|
188
|
20
|
|
|
|
|
52
|
$callbacks->{cb_vertex_processed}->($vertex); |
189
|
20
|
|
|
|
|
83
|
$states->{$vertex} = 'processed'; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
sub prim { |
194
|
1
|
|
|
1
|
1
|
8
|
my ( $self, $start ) = @_; |
195
|
1
|
|
|
|
|
30
|
my $spanning_tree = |
196
|
|
|
|
|
|
|
Graph::Simple->new( is_weighted => 0, is_directed => 0 ); |
197
|
|
|
|
|
|
|
|
198
|
1
|
|
|
|
|
11
|
my %non_tree_vertices = map { $_ => 1 } $self->vertices; |
|
6
|
|
|
|
|
13
|
|
199
|
1
|
|
|
|
|
4
|
my %tree_vertices = ( $start => 1 ); |
200
|
|
|
|
|
|
|
|
201
|
1
|
|
|
|
|
23
|
my $current = $start; |
202
|
1
|
|
|
|
|
5
|
while ( keys %non_tree_vertices ) { |
203
|
5
|
|
|
|
|
8
|
delete $non_tree_vertices{$current}; |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
# select the edge of minimum weight between a tree and a nontree vertex |
206
|
5
|
|
|
|
|
6
|
my $min_weight; |
207
|
|
|
|
|
|
|
my $new_edge; |
208
|
5
|
|
|
|
|
11
|
foreach my $u ( keys %tree_vertices ) { |
209
|
|
|
|
|
|
|
|
210
|
15
|
|
|
|
|
34
|
foreach my $v ( $self->neighbors($u) ) { |
211
|
42
|
100
|
|
|
|
97
|
next if exists $tree_vertices{$v}; |
212
|
|
|
|
|
|
|
|
213
|
18
|
|
|
|
|
35
|
my $w = $self->weight( $u, $v ); |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
# print " - $u, $v weights $w\n"; |
216
|
|
|
|
|
|
|
|
217
|
18
|
100
|
|
|
|
38
|
$min_weight = $w if !defined $min_weight; |
218
|
18
|
100
|
|
|
|
52
|
if ( $w <= $min_weight ) { |
219
|
11
|
|
|
|
|
35
|
$new_edge = [ $u, $v ]; |
220
|
11
|
|
|
|
|
27
|
$min_weight = $w; |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
} |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
# Adding $v to the spanning tree |
226
|
5
|
|
|
|
|
8
|
my ( $u, $v ) = @$new_edge; |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# print "Minimum vertex is $u -> $v\n"; |
229
|
5
|
|
|
|
|
12
|
$spanning_tree->add_edge( $u, $v ); |
230
|
5
|
|
|
|
|
8
|
delete $non_tree_vertices{$v}; |
231
|
5
|
|
|
|
|
19
|
$tree_vertices{$v} = 1; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
1
|
|
|
|
|
6
|
return $spanning_tree; |
235
|
|
|
|
|
|
|
} |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
sub dijkstra { |
239
|
2
|
|
|
2
|
1
|
9
|
my ( $self, $vertex ) = @_; |
240
|
2
|
|
|
|
|
56
|
my $spanning_tree = Graph::Simple->new; |
241
|
|
|
|
|
|
|
|
242
|
2
|
|
|
|
|
13
|
my %distances = ( $vertex => 0 ); |
243
|
2
|
|
|
|
|
6
|
my %non_tree_vertices = map { $_ => 1 } $self->vertices; |
|
16
|
|
|
|
|
30
|
|
244
|
2
|
|
|
|
|
8
|
my %tree_vertices = ( $vertex => 1 ); |
245
|
|
|
|
|
|
|
|
246
|
2
|
|
|
|
|
4
|
my $current = $vertex; |
247
|
2
|
|
|
|
|
9
|
while ( keys %non_tree_vertices ) { |
248
|
14
|
|
|
|
|
18
|
delete $non_tree_vertices{$current}; |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
# select the edge of minimum weight between a tree and a nontree vertex |
251
|
14
|
|
|
|
|
15
|
my $min_dist; |
252
|
|
|
|
|
|
|
my $new_edge; |
253
|
14
|
|
|
|
|
29
|
foreach my $u ( keys %tree_vertices ) { |
254
|
|
|
|
|
|
|
|
255
|
56
|
|
|
|
|
111
|
foreach my $v ( $self->neighbors($u) ) { |
256
|
158
|
100
|
|
|
|
964
|
next if exists $tree_vertices{$v}; |
257
|
|
|
|
|
|
|
|
258
|
42
|
|
|
|
|
72
|
my $w = $self->weight( $u, $v ); |
259
|
42
|
|
|
|
|
59
|
my $distance = $distances{$u} + $w; |
260
|
|
|
|
|
|
|
|
261
|
42
|
100
|
|
|
|
70
|
$min_dist = $distance if !defined $min_dist; |
262
|
42
|
100
|
|
|
|
85
|
if ( $distance <= $min_dist ) { |
263
|
29
|
|
|
|
|
52
|
$new_edge = [ $u, $v ]; |
264
|
29
|
|
|
|
|
34
|
$min_dist = $distance; |
265
|
29
|
|
|
|
|
62
|
$distances{$v} = $distance; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
} |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
# Adding $v to the spanning tree |
271
|
14
|
|
|
|
|
27
|
my ( $u, $v ) = @$new_edge; |
272
|
14
|
|
|
|
|
24
|
$spanning_tree->add_edge( $u, $v ); |
273
|
14
|
|
|
|
|
22
|
delete $non_tree_vertices{$v}; |
274
|
14
|
|
|
|
|
45
|
$tree_vertices{$v} = 1; |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
|
277
|
2
|
|
|
|
|
14
|
return { spanning_tree => $spanning_tree, distances => \%distances }; |
278
|
|
|
|
|
|
|
} |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
sub shortest_path { |
282
|
1
|
|
|
1
|
1
|
3315
|
my ( $self, $source, $destination ) = @_; |
283
|
1
|
|
|
|
|
6
|
my $dijkstra = $self->dijkstra($source); |
284
|
|
|
|
|
|
|
|
285
|
1
|
|
|
|
|
3
|
my $mst = $dijkstra->{spanning_tree}; |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
# we build a reverse path, starting from the destination, and backtracking the |
288
|
|
|
|
|
|
|
# source each step with the neighbors of the vertex in the spanning tree |
289
|
1
|
|
|
|
|
2
|
my @reverse_path; |
290
|
1
|
|
|
|
|
2
|
my $current = $destination; |
291
|
|
|
|
|
|
|
|
292
|
1
|
|
|
|
|
4
|
while ( $current ne $source ) { |
293
|
2
|
|
|
|
|
4
|
push @reverse_path, $current; |
294
|
|
|
|
|
|
|
|
295
|
2
|
|
|
|
|
6
|
foreach my $n ( $mst->neighbors($current) ) { |
296
|
2
|
100
|
|
|
|
6
|
if ( $n eq $source ) { |
297
|
1
|
|
|
|
|
3
|
push @reverse_path, $n; |
298
|
1
|
|
|
|
|
16
|
return reverse @reverse_path; |
299
|
|
|
|
|
|
|
} |
300
|
|
|
|
|
|
|
else { |
301
|
1
|
|
|
|
|
4
|
$current = $n; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
0
|
|
|
|
|
|
return reverse @reverse_path; |
307
|
|
|
|
|
|
|
} |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
1; |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
=pod |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
=head1 NAME |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
Graph::Simple - simple and intuitive interface for manipulating graph |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
=head1 VERSION |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
version 0.04 |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=head1 DESCRIPTION |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
In computer science, a graph is an abstract data type that is meant to implement |
325
|
|
|
|
|
|
|
the graph and hypergraph concepts from mathematics. |
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
A graph data structure consists of a finite (and possibly mutable) set of |
328
|
|
|
|
|
|
|
ordered pairs, called I, of certain entities called I. |
329
|
|
|
|
|
|
|
As in mathematics, an edge (x,y) is said to point or go from x to y. |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
A graph data structure may also associate to each edge some edge value, such as |
332
|
|
|
|
|
|
|
a symbolic label or a numeric attribute (cost, capacity, length, etc.) most |
333
|
|
|
|
|
|
|
oftenly refered to as the I of the edge. |
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
See L for |
336
|
|
|
|
|
|
|
more details about the theory. |
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
This class provides an easy to use and intuitive API for manipulating graphs in |
339
|
|
|
|
|
|
|
Perl. It's a native Perl implementation based on L. |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
=head1 ATTRIBUTES |
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
=head2 is_weighted |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
Boolean flag to tell if the graph is weighted |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
=head2 is_directed |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
Boolean flag to tell if the graph is directed |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
=head1 METHODS |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
=head2 vertices |
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
Return the array of vertices |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
my @vertices = $g->vertices; |
358
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
=head2 add_edge |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
Adds a new edge to the graph, and add the corresponding vertices. |
362
|
|
|
|
|
|
|
Note that on undirected graphs, adding u,v also adds v,u. |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
$g->add_edge("Foo", "Bar"); |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
On weighted graph, it's possible to pass the weight of the edge as a third |
367
|
|
|
|
|
|
|
argument |
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
$g->add_edge("Foo", "Bar", 3); |
370
|
|
|
|
|
|
|
|
371
|
|
|
|
|
|
|
=head2 delete_edge |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
$g->delete_edge(x, y) |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
Removes the edge from x to y, if it is there. |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
=head2 neighbors |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
my @neighbors = $g->neighbors('u'); |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
Lists all vertices y such that there is an edge from x to y. |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
=head2 weight |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
Accessor to the weight of the edge. If called with two arguments, return the |
386
|
|
|
|
|
|
|
value previously set, with three arguments, set the weight: |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
# reader |
389
|
|
|
|
|
|
|
my $w = $g->weight('u', 'v'); |
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
# setter |
392
|
|
|
|
|
|
|
$g->weight('u', 'v', 42); |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
=head2 is_adjacent |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
$g->is_adjacent(x, y) |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
Tests whether there is an edge from node x to node y. |
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
=head2 breadth_first_search |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
Performs a BFS traversal on the graph, returns the parents hash produced. |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
Callbacks can be given to trigger code when edges or vertices are |
405
|
|
|
|
|
|
|
discovered/processed. |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
$g->breadth_first_search($vertex, |
408
|
|
|
|
|
|
|
cb_vertex_discovered => sub { print "discovered vertex @_" }, |
409
|
|
|
|
|
|
|
cb_vertex_processed => sub { print "processed vertex @_" }, |
410
|
|
|
|
|
|
|
cb_edge_discovered => sub { print "new edge: @_" }); |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
=head2 depth_first_search |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
Performs a DFS traversal on the graph, returns the parents hash produced. |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
Callbacks can be given to trigger code when edges or vertices are |
417
|
|
|
|
|
|
|
discovered/processed. |
418
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
$g->breadth_first_search('Foo', |
420
|
|
|
|
|
|
|
cb_vertex_discovered => sub { print "discovered vertex @_" }, |
421
|
|
|
|
|
|
|
cb_vertex_processed => sub { print "processed vertex @_" }, |
422
|
|
|
|
|
|
|
cb_edge_discovered => sub { print "new edge: @_" }, |
423
|
|
|
|
|
|
|
); |
424
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
=head2 prim |
426
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
Implementation of the Prim algorithm to grow a Minimum Spanning Tree of the |
428
|
|
|
|
|
|
|
graph. |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
Return the tree produced (as a C object). |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
my $mst = $g->prim('Foo'); |
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
=head2 dijkstra |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
Implementation of the Dijkstra algorithm to find all possible shortest paths from |
437
|
|
|
|
|
|
|
a vertex C<$s> to all other vertices of the graph. |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
The return value of this method is a hashref containing the following entries: |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
=over 4 |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
=item spanning_tree |
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
A L object representing the minimum spanning tree produced by the |
446
|
|
|
|
|
|
|
Dijkstra traversal. |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
=item distances |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
An hashref containing for each vertices the distance between that vertex and the |
451
|
|
|
|
|
|
|
source vertex. |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
=back |
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
my $dijkstra = $g->dijkstra('E'); |
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
=head2 shortest_path |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
Return the shortest path between two vertices as a list of vertices. |
460
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
my @path = $g->shortest_path('A', 'E'); |
462
|
|
|
|
|
|
|
# eg: ( 'A', 'D', 'F', 'E' ) |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
Note that internally, this method uses the spanning tree produced by the |
465
|
|
|
|
|
|
|
Dijkstra algorithm to compute the shortest path. |
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
=head1 SYNOPSYS |
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
my $g = Graph::Simple->new ( is_directed => 1, is_weighted => 1); |
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
$g->add_edge( 'Al', 'Bob', 2 ); |
472
|
|
|
|
|
|
|
$g->add_edge( 'Al', 'Jim', 3 ); |
473
|
|
|
|
|
|
|
$g->add_edge( 'Joe', 'Jim', 3 ); |
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
$g->neighbors('Al'); |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
=head1 SEE ALSO |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
This distribution has been written because when I looked on CPAN for an easy to |
480
|
|
|
|
|
|
|
use and lightweight interface for manipulating graphs in Perl, I dind't find |
481
|
|
|
|
|
|
|
something that fitted my expectations. |
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
Other distributions exist though: |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
=over 4 |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
=item L |
488
|
|
|
|
|
|
|
|
489
|
|
|
|
|
|
|
A rather feature-rich implementation but with a complex API. |
490
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
=item L |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
Less features than Graph but presumably faster. Appears to |
494
|
|
|
|
|
|
|
be unmaintained since 2010 though. |
495
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
=item L |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
Perl bindings to the C++ graph library Boost. Certainly the fastest |
499
|
|
|
|
|
|
|
implementation but depends on C++, obviously. |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
=back |
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
=head1 AUTHOR |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
Alexis Sukrieh |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
508
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
This software is copyright (c) 2013 by Alexis Sukrieh. |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
This is free software; you can redistribute it and/or modify it under |
512
|
|
|
|
|
|
|
the same terms as the Perl 5 programming language system itself. |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
=cut |
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
__END__ |