line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Graph::ModularDecomposition; |
2
|
|
|
|
|
|
|
|
3
|
18
|
|
|
18
|
|
240182
|
use 5.006; |
|
18
|
|
|
|
|
79
|
|
|
18
|
|
|
|
|
2060
|
|
4
|
18
|
|
|
18
|
|
120
|
use strict; |
|
18
|
|
|
|
|
38
|
|
|
18
|
|
|
|
|
708
|
|
5
|
18
|
|
|
18
|
|
169
|
use warnings; |
|
18
|
|
|
|
|
43
|
|
|
18
|
|
|
|
|
1350
|
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 NAME |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
Graph::ModularDecomposition - Modular decomposition of directed graphs |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=cut |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
require Exporter; |
14
|
|
|
|
|
|
|
our $VERSION = '0.13'; |
15
|
|
|
|
|
|
|
|
16
|
18
|
|
|
18
|
|
31503
|
use Graph 0.20105; |
|
18
|
|
|
|
|
7863847
|
|
|
18
|
|
|
|
|
7008
|
|
17
|
|
|
|
|
|
|
require Graph::Directed; |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# NB! Exporter must come before Graph::Directed in @ISA |
20
|
|
|
|
|
|
|
our @ISA = qw(Exporter Graph::Directed); |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
# This allows declaration use Graph::ModularDecomposition ':all'; |
23
|
|
|
|
|
|
|
# may want tree_to_string, should move into own Tree::... module some day |
24
|
|
|
|
|
|
|
# other exports are most likely for internal use only |
25
|
|
|
|
|
|
|
# all other functions should be accessed as methods |
26
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( 'all' => [ qw( |
27
|
|
|
|
|
|
|
setminus |
28
|
|
|
|
|
|
|
setunion |
29
|
|
|
|
|
|
|
pairstring_to_graph |
30
|
|
|
|
|
|
|
partition_to_string |
31
|
|
|
|
|
|
|
tree_to_string |
32
|
|
|
|
|
|
|
) ] ); |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
our @EXPORT = qw( |
37
|
|
|
|
|
|
|
); |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=head1 SYNOPSIS |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
use Graph::ModularDecomposition qw(pairstring_to_graph tree_to_string); |
42
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
my $h = $g->pairstring_to_graph( 'ab,ac,bc' ); |
45
|
|
|
|
|
|
|
print "yes\n" if check_transitive( $h ); |
46
|
|
|
|
|
|
|
print "yes\n" if $h->check_transitive; # same thing |
47
|
|
|
|
|
|
|
my $m = $h->modular_decomposition_EGMS; |
48
|
|
|
|
|
|
|
print tree_to_string( $m ); |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
=head1 DESCRIPTION |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
This module extends L by providing |
54
|
|
|
|
|
|
|
new methods related to modular decomposition. |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
The most important new method is modular_decomposition_EGMS(), which |
57
|
|
|
|
|
|
|
for a directed graph with n vertices finds the modular decomposition |
58
|
|
|
|
|
|
|
tree of the graph in O(n^2) time. Method tree_to_string() may be |
59
|
|
|
|
|
|
|
useful to represent the decomposition tree in a friendlier format; |
60
|
|
|
|
|
|
|
this needs to be explicitly imported. |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
If you need to decompose an undirected graph, represent it as a |
63
|
|
|
|
|
|
|
directed graph by adding two directed edges for each undirected edge. |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
The method classify() uses the modular decomposition tree to classify |
66
|
|
|
|
|
|
|
a directed graph as non-transitive, or for transitive digraphs, |
67
|
|
|
|
|
|
|
as series-parallel (linear or parallel modules only), decomposable |
68
|
|
|
|
|
|
|
(not series-parallel, but with at least one non-primitive module), |
69
|
|
|
|
|
|
|
indecomposable (primitive), decomposable but consisting of primitive |
70
|
|
|
|
|
|
|
or series modules only (only applies to graphs of at least 7 vertices), |
71
|
|
|
|
|
|
|
or unclassified (should never apply). |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=head2 RELATED WORK |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
Several recent graph algorithms have used the modular decomposition |
76
|
|
|
|
|
|
|
tree as a basic building block. A simple example application of |
77
|
|
|
|
|
|
|
these routines is to construct and search the modular decomposition |
78
|
|
|
|
|
|
|
tree of a directed graph to determine if it is node-series-parallel. |
79
|
|
|
|
|
|
|
Checking if a digraph is series-parallel can also be determined using |
80
|
|
|
|
|
|
|
the O(m+n) Valdes-Tarjan-Lawler algorithm published in 1982, but this |
81
|
|
|
|
|
|
|
only constructs a decomposition tree if the input is series-parallel: |
82
|
|
|
|
|
|
|
other inputs are simply classified as non-series-parallel. |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
The code here is based on algorithm 6.1 for modular decomposition of |
85
|
|
|
|
|
|
|
two-structures, from |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
A. Ehrenfeucht, H. N. Gabow, R. M. McConnell, and S. J. Sullivan, "An |
88
|
|
|
|
|
|
|
O(n^2) Divide-and-Conquer Algorithm for the Prime Tree Decomposition |
89
|
|
|
|
|
|
|
of Two-Structures and Modular Decomposition of Graphs", Journal of |
90
|
|
|
|
|
|
|
Algorithms 16 (1994), pp. 283-294. |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
I am not aware of any other publicly available implementations. |
93
|
|
|
|
|
|
|
Any errors and omissions are of course my fault. Better algorithms |
94
|
|
|
|
|
|
|
are known: O(m+n) run-time can be achieved using sophisticated data |
95
|
|
|
|
|
|
|
structures (where m is the number of edges in the graph). For a |
96
|
|
|
|
|
|
|
recent discussion of the history of modular decomposition, see |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
E. Dahlhaus, J. Gustedt and R. M. McConnell, "Partially Complemented |
99
|
|
|
|
|
|
|
Representations of Digraphs", Discrete Mathematics and Theoretical |
100
|
|
|
|
|
|
|
Computer Science 5 (2002), pp. 147-168. |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=head2 EXPORT |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
None by default. Methods tree_to_string() and partition_to_string() |
106
|
|
|
|
|
|
|
can be imported. Methods setminus() and setunion() are for internal |
107
|
|
|
|
|
|
|
use but can also be imported. |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
=head2 METHODS |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
=over 4 |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=item debug() |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
117
|
|
|
|
|
|
|
Graph::ModularDecomposition->debug(1); # turn on debugging |
118
|
|
|
|
|
|
|
Graph::ModularDecomposition->debug(2); # extra debugging |
119
|
|
|
|
|
|
|
$g->debug(2); # same thing |
120
|
|
|
|
|
|
|
$g->debug(0); # off (default) |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
Manipulates the debug level of this module. Debug output is sent |
123
|
|
|
|
|
|
|
to STDERR. Object-level debugging is not yet supported. |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=cut |
126
|
|
|
|
|
|
|
|
127
|
18
|
|
|
18
|
|
220
|
use Carp; |
|
18
|
|
|
|
|
2396
|
|
|
18
|
|
|
|
|
109674
|
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
my $VSEP = '|'; # string used to separate vertices |
130
|
|
|
|
|
|
|
my $WSEP = '\|'; # regexp used to separate vertices |
131
|
|
|
|
|
|
|
my $PSEP = '\+'; # regexp used to separate elements of partition |
132
|
|
|
|
|
|
|
my $QSEP = '+'; # string used to separate elements of partition |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
my $Debug = 0; |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
sub debug { |
137
|
25
|
|
|
25
|
1
|
9194
|
my $class = shift; |
138
|
25
|
100
|
|
|
|
112
|
if ( ref($class) ) { $class = ref($class) } |
|
13
|
|
|
|
|
35
|
|
139
|
25
|
|
|
|
|
46
|
$Debug = shift; |
140
|
25
|
100
|
|
|
|
7716
|
carp 'Turning ', ($Debug ? 'on' : 'off'), ' ', |
|
|
100
|
|
|
|
|
|
141
|
|
|
|
|
|
|
$class, ' debugging', ($Debug ? ", level $Debug" : ''); |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
=item canonical_form() |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
148
|
|
|
|
|
|
|
Graph::ModularDecomposition->canonical_form(1); # on (default) |
149
|
|
|
|
|
|
|
Graph::ModularDecomposition->canonical_form(0); # turn it off |
150
|
|
|
|
|
|
|
$g->canonical_form(1); # same thing |
151
|
|
|
|
|
|
|
$g->canonical_form(0); # off |
152
|
|
|
|
|
|
|
print "yes" if $g->canonical_form(); |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
Manipulates whether this module keeps modular decomposition trees in |
155
|
|
|
|
|
|
|
"canonical" form, where lists of vertices are kept sorted. This allows |
156
|
|
|
|
|
|
|
tree_to_string() on two isomorphic decomposition trees to produce the |
157
|
|
|
|
|
|
|
same output (well, sometimes -- a more general solution requires an |
158
|
|
|
|
|
|
|
isomorphism test). Canonical form forces sorting of vertices in several |
159
|
|
|
|
|
|
|
places, which will slow down some of the algorithms. When called with |
160
|
|
|
|
|
|
|
no arguments, returns the current state. |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=cut |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
my $Canonical_form = 0; |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
sub canonical_form { |
167
|
166
|
|
|
166
|
1
|
533
|
my $class = shift; |
168
|
166
|
50
|
|
|
|
451
|
if ( ref($class) ) { $class = ref($class) } |
|
166
|
|
|
|
|
292
|
|
169
|
166
|
|
|
|
|
235
|
my $cf = shift; |
170
|
166
|
100
|
|
|
|
702
|
return $Canonical_form unless defined $cf; |
171
|
1
|
|
|
|
|
2
|
$Canonical_form = $cf; |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
=item new() |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
178
|
|
|
|
|
|
|
$g = Graph::ModularDecomposition->new; # same thing |
179
|
|
|
|
|
|
|
my $h = $g->new; |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
Constructor. The instance method style C<$object->new> is an extension |
182
|
|
|
|
|
|
|
and was not present in L. |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=cut |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
sub new { |
187
|
388
|
|
|
388
|
1
|
219497
|
my $self = shift; |
188
|
388
|
100
|
|
|
|
1037
|
my $class = ref($self) ? ref($self) : $self; |
189
|
388
|
|
|
|
|
2315
|
return bless $class->SUPER::new(@_), $class; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
=item pairstring_to_graph |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
my $g = Graph::ModularDecomposition |
196
|
|
|
|
|
|
|
->pairstring_to_graph( 'ac, ad, bd' ); |
197
|
|
|
|
|
|
|
my $h = $g->pairstring_to_graph( 'a-c, a-d,b-d' ); # same thing |
198
|
|
|
|
|
|
|
my $h = $g->pairstring_to_graph( 'a,b,c,d,a-c,a-d,b-d' ); # same thing |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
use Graph::ModularDecomposition qw( pairstring_to_graph ); |
201
|
|
|
|
|
|
|
my $k = pairstring_to_graph( 'Graph::ModularDecomposition', |
202
|
|
|
|
|
|
|
'ac,ad,bd' ); # same thing |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
Convert string of pairs input to Graph::ModularDecomposition output. |
205
|
|
|
|
|
|
|
Allows either 'a-b,b-c,d' or 'ab,bc,d' style notation but these should |
206
|
|
|
|
|
|
|
not be mixed in one string. Vertex labels should not include the |
207
|
|
|
|
|
|
|
'-' character. Use the '-' style if multi-character vertex labels |
208
|
|
|
|
|
|
|
are in use. Single label "pairs" are interpreted as vertices to add. |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=cut |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
sub pairstring_to_graph { |
213
|
28
|
|
|
28
|
1
|
4508
|
my $class = shift; |
214
|
28
|
100
|
|
|
|
110
|
if ( ref($class) ) { $class = ref($class) } |
|
5
|
|
|
|
|
13
|
|
215
|
28
|
|
|
|
|
51
|
my $pairs = shift; |
216
|
28
|
|
|
|
|
85
|
my $g = new $class; |
217
|
28
|
|
|
|
|
5832
|
my ($p, $q); |
218
|
28
|
100
|
|
|
|
158
|
my $s = ( ( index( $pairs, '-' ) >= 0 ) ? '\-' : '' ); |
219
|
28
|
|
|
|
|
372
|
foreach my $r ( split /,\s*/, $pairs ) { |
220
|
261
|
|
|
|
|
19563
|
( $p, $q ) = split $s, $r; |
221
|
261
|
100
|
|
|
|
9821
|
print "p=$p, q=$q\n" if $Debug > 2; |
222
|
261
|
100
|
|
|
|
606
|
if ( $q ) { |
223
|
254
|
100
|
|
|
|
808
|
$g = $g->add_edge( $p, $q ) unless $g->has_edge( $p, $q ); |
224
|
|
|
|
|
|
|
} else { |
225
|
7
|
100
|
|
|
|
43
|
$g = $g->add_vertex( $p ) unless $g->has_vertex( $p ); |
226
|
|
|
|
|
|
|
} |
227
|
|
|
|
|
|
|
} |
228
|
28
|
|
|
|
|
1959
|
return bless $g, $class; |
229
|
|
|
|
|
|
|
} |
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
=item check_transitive() |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
235
|
|
|
|
|
|
|
# add some edges... |
236
|
|
|
|
|
|
|
print "transitive" if $g->check_transitive; |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
Returns 1 if input digraph is transitive, '' otherwise. May break if |
239
|
|
|
|
|
|
|
Graph::stringify lists vertices in unsorted order. |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=cut |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub check_transitive { |
244
|
39
|
|
|
39
|
1
|
63
|
my $g = shift; |
245
|
39
|
|
|
|
|
194
|
my $g2 = $g->copy; |
246
|
39
|
|
|
|
|
56189
|
my $h = $g->TransitiveClosure_Floyd_Warshall; |
247
|
|
|
|
|
|
|
# get rid of loops |
248
|
39
|
|
|
|
|
146064
|
foreach ( $h->vertices ) { $h->delete_edge( $_, $_ ) } |
|
139
|
|
|
|
|
12648
|
|
249
|
39
|
|
|
|
|
3592
|
foreach ( $g2->vertices ) { $g2->delete_edge( $_, $_ ) } |
|
139
|
|
|
|
|
5899
|
|
250
|
39
|
100
|
|
|
|
1552
|
print STDERR "gdct: ", $g, ' vs. ', $h, "\n" if $Debug; |
251
|
39
|
|
|
|
|
5726
|
return $h eq $g2; |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=item setminus() |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
my @d = setminus( ['a','b','c'], ['b','d'] ); # ('a','c') |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
Given two references to lists, returns the set difference of the two |
260
|
|
|
|
|
|
|
lists as a list. Can be imported. |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
=cut |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
sub setminus { |
265
|
1316
|
|
|
1316
|
1
|
85980
|
my $X = shift; |
266
|
1316
|
|
|
|
|
1713
|
my $Y = shift; |
267
|
1316
|
|
|
|
|
1493
|
my @X = @{$X}; |
|
1316
|
|
|
|
|
3514
|
|
268
|
1316
|
100
|
|
|
|
8163
|
print STDERR 'setminus# ', @X, ' - ', @{$Y}, ' = ' if $Debug > 1; |
|
49
|
|
|
|
|
98
|
|
269
|
1316
|
|
|
|
|
1382
|
foreach my $x ( @{$Y} ) { |
|
1316
|
|
|
|
|
2266
|
|
270
|
1513
|
|
|
|
|
8955
|
@X = grep $x ne $_, @X; |
271
|
|
|
|
|
|
|
} |
272
|
1316
|
100
|
|
|
|
3593
|
print STDERR @X, "\n" if $Debug > 1; |
273
|
1316
|
|
|
|
|
4712
|
return @X; |
274
|
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
=item setunion() |
278
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
my @u = setunion(['a','bc',42], [42,4,'a','c']); |
280
|
|
|
|
|
|
|
# ('a','bc',42,4,'c') |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
Given two references to lists, returns the set union of the two lists |
283
|
|
|
|
|
|
|
as a list. Can be imported. |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
=cut |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
sub setunion { |
288
|
585
|
|
|
585
|
1
|
2666
|
my $X = shift; |
289
|
585
|
|
|
|
|
590
|
my $Y = shift; |
290
|
585
|
|
|
|
|
655
|
my @X = @{$X}; |
|
585
|
|
|
|
|
1087
|
|
291
|
585
|
100
|
|
|
|
1201
|
print STDERR 'setunion# ', @X, ' U ', @{$Y}, ' = ' if $Debug > 1; |
|
23
|
|
|
|
|
100
|
|
292
|
585
|
|
|
|
|
1169
|
foreach my $x ( @{$Y} ) { |
|
585
|
|
|
|
|
1219
|
|
293
|
385
|
100
|
|
|
|
2230
|
push @X, $x unless grep $x eq $_, @X; |
294
|
|
|
|
|
|
|
} |
295
|
585
|
100
|
|
|
|
1268
|
print STDERR @X, "\n" if $Debug > 1; |
296
|
585
|
|
|
|
|
2147
|
return sort @X; |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
=item restriction() |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
use Graph::ModularDecomposition; |
303
|
|
|
|
|
|
|
my $G = new Graph::ModularDecomposition; |
304
|
|
|
|
|
|
|
foreach ( 'ac', 'ad', 'bd' ) { $G->add_edge( split // ) } |
305
|
|
|
|
|
|
|
restriction( $G, split(//, 'abdefgh') ); # a-d,b-d |
306
|
|
|
|
|
|
|
$G->restriction( split(//, 'abdefgh') ); # same thing |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
Compute G|X, the subgraph of G induced by X. X is represented as a |
309
|
|
|
|
|
|
|
list of vertices. |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
=cut |
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
sub restriction { |
314
|
80
|
|
|
80
|
1
|
139
|
my $G = shift; |
315
|
80
|
100
|
|
|
|
217
|
if ( $Debug > 2 ) { print STDERR 'restriction(', ref($G), ")\n" } |
|
1
|
|
|
|
|
6
|
|
316
|
80
|
|
|
|
|
296
|
my $h = ($G->copy)->delete_vertices( setminus( [$G->vertices], [@_] ) ); |
317
|
80
|
100
|
|
|
|
34377
|
if ( $Debug > 1 ) { |
318
|
1
|
|
|
|
|
10
|
print STDERR 'restriction(', $G, '|', join($QSEP, @_), ') = ', $h, "\n" |
319
|
|
|
|
|
|
|
} |
320
|
80
|
|
|
|
|
1570
|
return $h; |
321
|
|
|
|
|
|
|
} |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
=item factor() |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
$h = factor( $g, [['a','b'], ['c'], ['d','e','f']] ); |
327
|
|
|
|
|
|
|
$h = $g->factor( [[qw(a b)], ['c'], [qw(d e f)]] ); # same thing |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
Compute G/P for partition P containing modules. Will fail in odd |
330
|
|
|
|
|
|
|
ways if members of P are not modules. |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
=cut |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
sub factor { |
335
|
44
|
|
|
44
|
1
|
64
|
my $G = shift; |
336
|
44
|
|
|
|
|
84
|
my $P = shift; |
337
|
44
|
|
|
|
|
170
|
my $GP = $G->copy; |
338
|
44
|
|
|
|
|
42234
|
my $p; |
339
|
44
|
|
|
|
|
87
|
foreach my $X ( @{$P} ) { |
|
44
|
|
|
|
|
110
|
|
340
|
127
|
100
|
|
|
|
17876
|
print STDERR "factor# X = $X\n" if $Debug > 1; |
341
|
127
|
100
|
|
|
|
274
|
print STDERR "factor# \@X = @$X\n" if $Debug > 1; |
342
|
127
|
|
|
|
|
143
|
my $newnode = join $VSEP, @{$X}; # turn nodes a, b, c into new node abc |
|
127
|
|
|
|
|
269
|
|
343
|
127
|
100
|
|
|
|
279
|
print STDERR "factor# newnode = $newnode\n" if $Debug > 1; |
344
|
127
|
|
|
|
|
138
|
my $a = ${$X}[0]; |
|
127
|
|
|
|
|
227
|
|
345
|
127
|
100
|
|
|
|
272
|
print STDERR "factor# representative node $a\n" if $Debug > 1; |
346
|
127
|
100
|
|
|
|
355
|
if ( $newnode ne $a ) { # do nothing if singleton |
347
|
22
|
|
|
|
|
85
|
$GP->add_vertex( $newnode ); |
348
|
22
|
|
|
|
|
685
|
foreach $p ( $GP->predecessors( $a ) ) { |
349
|
20
|
100
|
|
|
|
910
|
print STDERR "factor# predecessor $p\n" if $Debug > 2; |
350
|
20
|
50
|
|
|
|
65
|
$GP = $GP->add_edge( $p, $newnode ) |
351
|
|
|
|
|
|
|
unless $GP->has_edge( $p, $newnode ); |
352
|
|
|
|
|
|
|
} |
353
|
22
|
|
|
|
|
1291
|
foreach $p ( $GP->successors( $a ) ) { |
354
|
40
|
100
|
|
|
|
2283
|
print STDERR "factor# successor $p\n" if $Debug > 2; |
355
|
40
|
50
|
|
|
|
119
|
$GP = $GP->add_edge( $newnode, $p ) |
356
|
|
|
|
|
|
|
unless $GP->has_edge( $newnode, $p ); |
357
|
|
|
|
|
|
|
} |
358
|
22
|
|
|
|
|
1146
|
$GP = $GP->delete_vertices( @{$X} ); |
|
22
|
|
|
|
|
104
|
|
359
|
|
|
|
|
|
|
} |
360
|
|
|
|
|
|
|
} |
361
|
44
|
|
|
|
|
930
|
return $GP; |
362
|
|
|
|
|
|
|
} |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
=item partition_subsets() |
366
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
@part = partition_subsets( $G, ['a','b','c'], $w ); |
368
|
|
|
|
|
|
|
@part = $G->partition_subsets( ['a','b','c'], $w ); # same thing |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
Partition set of vertices into maximal subsets not distinguished by w in G. |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
=cut |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
sub partition_subsets { |
375
|
477
|
|
|
477
|
1
|
2437
|
my $G = shift; |
376
|
477
|
|
|
|
|
536
|
my $S = shift; |
377
|
477
|
|
|
|
|
1739
|
my $w = shift; |
378
|
|
|
|
|
|
|
|
379
|
477
|
100
|
|
|
|
1145
|
print STDERR 'p..n_subsets# @S = ', @{$S}, ", w = $w \n" if $Debug > 1; |
|
19
|
|
|
|
|
46
|
|
380
|
477
|
|
|
|
|
1609
|
my (@A, @B, @C, @D); |
381
|
477
|
|
|
|
|
517
|
foreach my $x ( @{$S} ) { |
|
477
|
|
|
|
|
999
|
|
382
|
789
|
100
|
|
|
|
1488
|
print STDERR 'p..n_subsets# xw = ', $x, $w if $Debug > 2; |
383
|
789
|
100
|
|
|
|
3522
|
if ( $G->has_edge( $w, $x ) ) { |
384
|
183
|
100
|
|
|
|
4035
|
if ( $G->has_edge( $x, $w ) ) { # xw wx (not poset) |
385
|
2
|
|
|
|
|
43
|
push @A, $x; |
386
|
2
|
100
|
|
|
|
11
|
print STDERR ' A = ', @A, "\n" if $Debug > 2; |
387
|
|
|
|
|
|
|
} else { # ~xw wx |
388
|
181
|
|
|
|
|
4063
|
push @B, $x; |
389
|
181
|
100
|
|
|
|
5567
|
print STDERR ' B = ', @B, "\n" if $Debug > 2; |
390
|
|
|
|
|
|
|
} |
391
|
|
|
|
|
|
|
} else { |
392
|
606
|
100
|
|
|
|
25327
|
if ( $G->has_edge( $x, $w ) ) { # xw ~wx |
393
|
178
|
|
|
|
|
6438
|
push @C, $x; |
394
|
178
|
100
|
|
|
|
1749
|
print STDERR ' C = ', @C, "\n" if $Debug > 2; |
395
|
|
|
|
|
|
|
} else { # ~xw ~wx |
396
|
428
|
|
|
|
|
12772
|
push @D, $x; |
397
|
428
|
100
|
|
|
|
1346
|
print STDERR ' D = ', @D, "\n" if $Debug > 2; |
398
|
|
|
|
|
|
|
} |
399
|
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
} |
401
|
477
|
|
|
|
|
1074
|
return grep @{$_}, (\@A, \@B, \@C, \@D); |
|
1908
|
|
|
|
|
4723
|
|
402
|
|
|
|
|
|
|
} |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
=item partition() |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
my $p = partition( $g, $v ); |
408
|
|
|
|
|
|
|
$p = $g->partition( $v ); # same thing |
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
For a graph, calculate maximal modules not including a given vertex. |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
=cut |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
sub partition { |
415
|
69
|
|
|
69
|
1
|
151
|
my $G = shift; |
416
|
69
|
|
|
|
|
121
|
my $v = shift; |
417
|
|
|
|
|
|
|
|
418
|
69
|
100
|
|
|
|
238
|
print STDERR 'partition# G = ', $G, ", v = $v\n" if $Debug > 1; |
419
|
69
|
|
|
|
|
1283
|
my (%L, @done, $tempset, $S, @ZS, $w); |
420
|
69
|
|
|
|
|
244
|
$S = [ setminus( [ $G->vertices ], [ $v ] ) ]; |
421
|
69
|
100
|
|
|
|
304
|
print STDERR 'partition# @S = ', @{$S}, "\n" if $Debug > 1; |
|
2
|
|
|
|
|
6
|
|
422
|
69
|
|
|
|
|
265
|
$L{$S} = [ $v ]; |
423
|
69
|
|
|
|
|
145
|
my @todo = ( $S ); |
424
|
69
|
100
|
|
|
|
185
|
print STDERR 'partition# L{S}[0] = ', $L{$S}[0], "\n" if $Debug > 1; |
425
|
69
|
|
|
|
|
179
|
while ( @todo ) { |
426
|
470
|
|
|
|
|
725
|
$S = shift @todo; |
427
|
470
|
|
|
|
|
909
|
@ZS = @{$L{$S}}; |
|
470
|
|
|
|
|
28007
|
|
428
|
470
|
|
|
|
|
764
|
$w = $ZS[0]; |
429
|
470
|
100
|
|
|
|
2535
|
print STDERR 'partition# ZS = ', @ZS, "\n" if $Debug > 1; |
430
|
470
|
|
|
|
|
2136
|
delete $L{$S}; |
431
|
470
|
|
|
|
|
1486
|
foreach my $W ( $G->partition_subsets( $S, $w ) ) { |
432
|
583
|
100
|
|
|
|
2504
|
print STDERR 'partition# W = ', @{$W}, "\n" if $Debug > 1; |
|
23
|
|
|
|
|
43
|
|
433
|
583
|
|
|
|
|
1128
|
$tempset = [ setunion( [ setminus( $S, $W ) ], |
434
|
|
|
|
|
|
|
[ setminus( \@ZS, [ $w ] ) ] ) ]; |
435
|
583
|
100
|
|
|
|
1323
|
if ( @{$tempset} ) { |
|
583
|
|
|
|
|
1301
|
|
436
|
401
|
100
|
|
|
|
828
|
print STDERR 'partition# tempset = ', @{$tempset}, "\n" |
|
17
|
|
|
|
|
30
|
|
437
|
|
|
|
|
|
|
if $Debug > 1; |
438
|
401
|
|
|
|
|
1432
|
$L{$W} = $tempset; |
439
|
401
|
|
|
|
|
2551
|
push @todo, $W; |
440
|
|
|
|
|
|
|
} else { |
441
|
182
|
|
|
|
|
2075
|
push @done, $W; |
442
|
|
|
|
|
|
|
} |
443
|
|
|
|
|
|
|
} |
444
|
|
|
|
|
|
|
} |
445
|
69
|
|
|
|
|
391
|
return \@done; |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
=item distinguishes() |
450
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
print "yes" if distinguishes( $g, $x, $y, $z ); |
452
|
|
|
|
|
|
|
print "yes" if $g->distinguishes( $x, $y, $z ); # same thing |
453
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
True if vertex $x distinguishes vertices $y and $z in graph $g. |
455
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
=cut |
457
|
|
|
|
|
|
|
|
458
|
|
|
|
|
|
|
sub distinguishes { |
459
|
360
|
|
|
360
|
1
|
1609
|
my ($g,$x,$y,$z) = @_; |
460
|
360
|
100
|
|
|
|
733
|
print STDERR " $x$y?", $g->has_edge($x,$y) if $Debug > 1; |
461
|
360
|
100
|
|
|
|
3734
|
print STDERR " $x$z?", $g->has_edge($x,$z) if $Debug > 1; |
462
|
360
|
100
|
|
|
|
929
|
print STDERR " $y$x?", $g->has_edge($y,$x) if $Debug > 1; |
463
|
360
|
100
|
|
|
|
951
|
print STDERR " $z$x?", $g->has_edge($z,$x) if $Debug > 1; |
464
|
360
|
|
100
|
|
|
1144
|
my $ret = ( $g->has_edge($x,$y) != $g->has_edge($x,$z) ) |
465
|
|
|
|
|
|
|
|| ( $g->has_edge($y,$x) != $g->has_edge($z,$x) ); |
466
|
360
|
100
|
|
|
|
23548
|
print STDERR "=$ret\n" if $Debug > 1; |
467
|
360
|
|
|
|
|
2918
|
return $ret; |
468
|
|
|
|
|
|
|
} |
469
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
=item G() |
472
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
$G = G( $g, $v ); |
474
|
|
|
|
|
|
|
$G = $g->G( $v ); # same thing |
475
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
"Trivially" calculate G(g,v). dom(G(g,v)) = dom(g)\{v}, and (x,y) is |
477
|
|
|
|
|
|
|
an edge of G(g,v) whenever x distinguishes y and v in g. |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
=cut |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
sub G { |
482
|
52
|
|
|
52
|
1
|
89
|
my $g = shift; |
483
|
52
|
|
|
|
|
103
|
my $v = shift; |
484
|
52
|
|
|
|
|
152
|
my $G = new ref($g); |
485
|
52
|
100
|
|
|
|
11500
|
print STDERR 'G([', $g, "], $v) =...\n" if $Debug; |
486
|
52
|
|
|
|
|
1123
|
X: foreach my $x ( $g->vertices ) { |
487
|
183
|
100
|
|
|
|
5561
|
next X if ( $v eq $x ); |
488
|
131
|
100
|
|
|
|
325
|
print STDERR 'X=', $x, "\n" if $Debug > 1; |
489
|
131
|
|
|
|
|
1573
|
$G = $G->add_vertex( $x ); |
490
|
131
|
|
|
|
|
4352
|
Y: foreach my $y ( $g->vertices ) { |
491
|
612
|
100
|
100
|
|
|
34654
|
next Y if ( $v eq $y or $x eq $y ); |
492
|
350
|
100
|
|
|
|
1169
|
print STDERR 'Y=', $y, "\n" if $Debug > 1; |
493
|
350
|
100
|
|
|
|
799
|
if ( $g->distinguishes( $x, $y, $v ) ) { |
494
|
188
|
50
|
|
|
|
475
|
$G = $G->add_edge( $x, $y ) unless $G->has_edge( $x, $y ); |
495
|
|
|
|
|
|
|
} |
496
|
|
|
|
|
|
|
} |
497
|
|
|
|
|
|
|
} |
498
|
52
|
100
|
|
|
|
175
|
print STDERR '...G()=', $G, "\n" if $Debug; |
499
|
52
|
|
|
|
|
1330
|
return $G; |
500
|
|
|
|
|
|
|
} |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
=item tree_to_string() |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
print tree_to_string( $t ); |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
String representation of decomposition tree. Returns empty string for |
508
|
|
|
|
|
|
|
an empty decomposition tree. Needs to be explicitly imported. If |
509
|
|
|
|
|
|
|
Graph::vertices returns the vertices in unsorted order, then isomorphic |
510
|
|
|
|
|
|
|
trees can have different string representations. |
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
=cut |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
sub tree_to_string { |
515
|
180
|
|
|
180
|
1
|
340
|
my $t = shift; |
516
|
180
|
|
|
|
|
243
|
my $s = ''; |
517
|
180
|
100
|
|
|
|
433
|
return $s unless defined $t->{type}; |
518
|
174
|
100
|
|
|
|
523
|
$s .= $t->{type} if $t->{type} ne 'leaf'; |
519
|
174
|
100
|
|
|
|
397
|
$s .= '_' . $t->{col} if ( $t->{type} eq 'complete' ); |
520
|
174
|
|
|
|
|
991
|
$s .= '[' . $t->{value} . ']'; |
521
|
174
|
100
|
|
|
|
396
|
if ( $t->{type} ne 'leaf' ) { |
522
|
49
|
|
|
|
|
83
|
my $sep = ''; |
523
|
49
|
|
|
|
|
65
|
$s .= '('; |
524
|
49
|
|
|
|
|
78
|
foreach ( @{$t->{children}} ) { |
|
49
|
|
|
|
|
134
|
|
525
|
131
|
|
|
|
|
417
|
$s .= $sep . tree_to_string( $_ ); |
526
|
131
|
|
|
|
|
301
|
$sep = ';'; |
527
|
|
|
|
|
|
|
} |
528
|
49
|
|
|
|
|
88
|
$s .= ')'; |
529
|
|
|
|
|
|
|
} |
530
|
174
|
|
|
|
|
424
|
return $s; |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
=item partition_to_string |
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
print partition_to_string([['h'], [qw(c a b)], [qw(d e f g)]]); |
537
|
|
|
|
|
|
|
# a+b+c,d+e+f+g,h |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
String representation of partition. Returns empty string for an |
540
|
|
|
|
|
|
|
empty partition. Needs to be explicitly imported. |
541
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
=cut |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
sub partition_to_string { |
545
|
36
|
|
|
36
|
1
|
87
|
return join ',', sort (map { join $QSEP, sort @{$_} } @{+shift}); |
|
125
|
|
|
|
|
147
|
|
|
125
|
|
|
|
|
1902
|
|
|
36
|
|
|
|
|
69
|
|
546
|
|
|
|
|
|
|
} |
547
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
=item modular_decomposition_EGMS() |
550
|
|
|
|
|
|
|
|
551
|
|
|
|
|
|
|
use Graph::ModularDecomposition; |
552
|
|
|
|
|
|
|
$g = new Graph::ModularDecomposition; |
553
|
|
|
|
|
|
|
$m = $g->modular_decomposition_EGMS; |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
Compute modular decomposition tree of the input, which must be |
556
|
|
|
|
|
|
|
a Graph::ModularDecomposition object, using algorithm 6.1 of |
557
|
|
|
|
|
|
|
A. Ehrenfeucht, H. N. Gabow, R. M. McConnell, S. J. Sullivan, "An |
558
|
|
|
|
|
|
|
O(n^2) Divide-and-Conquer Algorithm for the Prime Tree Decomposition |
559
|
|
|
|
|
|
|
of Two-Structures and Modular Decomposition of Graphs", Journal of |
560
|
|
|
|
|
|
|
Algorithms 16 (1994), pp. 283-294. |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
The decomposition tree consists of nodes with attributes: 'type' is |
563
|
|
|
|
|
|
|
a string matching /^leaf|primitive|complete|linear$/, 'children' is |
564
|
|
|
|
|
|
|
a reference to a potentially empty list of pointers to other nodes, |
565
|
|
|
|
|
|
|
'value' is a string with the vertices in the decomposition defined |
566
|
|
|
|
|
|
|
by the tree, separated by '|' (VSEP), and 'col' is a string containing the |
567
|
|
|
|
|
|
|
colour of the module, matching /^0|1|01$/. A node with 'type' of |
568
|
|
|
|
|
|
|
'complete' is parallel if 'col' is '0' and series if 'col' is '1'. |
569
|
|
|
|
|
|
|
A node with 'type' of 'linear' has 'col' of '01'. Use the function |
570
|
|
|
|
|
|
|
tree_to_string() to convert the tree into a more generally usable form. |
571
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
=cut |
573
|
|
|
|
|
|
|
|
574
|
|
|
|
|
|
|
sub modular_decomposition_EGMS { |
575
|
114
|
|
|
114
|
1
|
737
|
my $g = shift; |
576
|
114
|
|
|
|
|
170
|
my $md = 0; |
577
|
114
|
|
|
|
|
173
|
$md ++; |
578
|
114
|
|
|
|
|
278
|
my $B = ' 'x$md; |
579
|
114
|
100
|
|
|
|
612
|
print STDERR $B, 'MD(', $g, ")=...\n" if $Debug; |
580
|
114
|
|
|
|
|
2516
|
my $v = ($g->vertices)[0]; |
581
|
114
|
100
|
|
|
|
4742
|
print STDERR $B, 'v=', (defined($v) ? $v : 'undef'), "\n" if $Debug; |
|
|
100
|
|
|
|
|
|
582
|
|
|
|
|
|
|
|
583
|
114
|
|
|
|
|
217
|
my $t = {}; |
584
|
114
|
100
|
|
|
|
305
|
unless ( $v ) { |
585
|
3
|
100
|
|
|
|
16
|
print STDERR $B, '...MD=', tree_to_string( $t ), "\n" if $Debug; |
586
|
3
|
|
|
|
|
7
|
$md --; |
587
|
3
|
|
|
|
|
12
|
return $t; |
588
|
|
|
|
|
|
|
} |
589
|
111
|
|
|
|
|
315
|
$t->{type} = 'leaf'; |
590
|
111
|
|
|
|
|
371
|
$t->{children} = []; |
591
|
111
|
100
|
|
|
|
503
|
if ($g->canonical_form()) { |
592
|
7
|
|
|
|
|
20
|
$t->{value} = join($VSEP, sort($g->vertices)); |
593
|
|
|
|
|
|
|
} else { |
594
|
104
|
|
|
|
|
308
|
$t->{value} = join($VSEP, $g->vertices); |
595
|
|
|
|
|
|
|
} |
596
|
111
|
|
|
|
|
4396
|
$t->{col} = '0'; |
597
|
|
|
|
|
|
|
|
598
|
111
|
100
|
|
|
|
291
|
if ( scalar $g->vertices == 1 ) { |
599
|
70
|
100
|
|
|
|
2478
|
print STDERR $B, '...MD=', tree_to_string( $t ), "\n" if $Debug; |
600
|
70
|
|
|
|
|
87
|
$md --; |
601
|
70
|
|
|
|
|
166
|
return $t; |
602
|
|
|
|
|
|
|
} |
603
|
|
|
|
|
|
|
|
604
|
41
|
|
|
|
|
2208
|
my $p = partition( $g, $v ); |
605
|
41
|
|
|
|
|
74
|
push @{$p}, [ $v ]; |
|
41
|
|
|
|
|
96
|
|
606
|
41
|
|
|
|
|
148
|
my $gd = $g->factor( $p ); |
607
|
41
|
100
|
|
|
|
149
|
print STDERR $B, 'gd = ', $gd, "\n" if $Debug; |
608
|
41
|
|
|
|
|
1154
|
my $Gdd = $gd->G($v)->strongly_connected_graph; |
609
|
41
|
100
|
|
|
|
135317
|
print STDERR $B, 'Gdd = [', $Gdd, '], ', scalar $Gdd->vertices, "\n" if $Debug; |
610
|
|
|
|
|
|
|
|
611
|
41
|
|
|
|
|
688
|
my $u = $t; |
612
|
41
|
|
|
|
|
65
|
my @f; |
613
|
41
|
|
|
|
|
200
|
while ( @f = grep( $Gdd->out_degree($_) == 0 , $Gdd->vertices ) ) { |
614
|
53
|
100
|
|
|
|
20829
|
print STDERR $B, "\@f=[@f]\n" if $Debug; |
615
|
53
|
|
|
|
|
85
|
my @s; |
616
|
53
|
|
|
|
|
198
|
foreach my $s ( $Gdd->vertices ) { |
617
|
75
|
|
|
|
|
2752
|
push @s, split(/$PSEP/, $s); |
618
|
|
|
|
|
|
|
} |
619
|
53
|
100
|
|
|
|
226
|
if ($g->canonical_form()) { |
620
|
3
|
|
|
|
|
21
|
$u->{value} = join('', sort($v, @s)); |
621
|
|
|
|
|
|
|
} else { |
622
|
50
|
|
|
|
|
200
|
$u->{value} = join('', ($v, @s)); |
623
|
|
|
|
|
|
|
} |
624
|
53
|
|
|
|
|
165
|
my $w = {}; |
625
|
53
|
|
|
|
|
451
|
$w->{type} = 'leaf'; |
626
|
53
|
|
|
|
|
184
|
$w->{children} = []; |
627
|
53
|
|
|
|
|
180
|
$w->{value} = $v; |
628
|
53
|
|
|
|
|
121
|
$w->{col} = '0'; |
629
|
53
|
|
|
|
|
76
|
push @{$u->{children}}, $w; |
|
53
|
|
|
|
|
430
|
|
630
|
|
|
|
|
|
|
|
631
|
53
|
|
|
|
|
216
|
$Gdd->delete_vertices( @f ); |
632
|
53
|
|
|
|
|
9118
|
my @F; |
633
|
53
|
|
|
|
|
124
|
foreach my $f ( @f ) { |
634
|
55
|
|
|
|
|
264
|
foreach my $F ( split /$PSEP/, $f ) { |
635
|
77
|
50
|
|
|
|
412
|
push @F, $F unless grep $F eq $_, @F; |
636
|
|
|
|
|
|
|
} |
637
|
|
|
|
|
|
|
} |
638
|
53
|
100
|
|
|
|
173
|
print STDERR $B, "\@F=@F\n" if $Debug; |
639
|
53
|
100
|
100
|
|
|
346
|
if ( @f == 1 and @F > 1 ) { |
640
|
11
|
|
|
|
|
36
|
$u->{type} = 'primitive'; |
641
|
11
|
|
|
|
|
27
|
$u->{col} = '0'; |
642
|
|
|
|
|
|
|
} else { |
643
|
42
|
|
|
|
|
155
|
my $x = substr $F[0], 0, 1; # single-char vertex names! |
644
|
42
|
100
|
|
|
|
174
|
if ( $g->has_edge($v, $x) == $g->has_edge($x, $v) ) { |
645
|
10
|
|
|
|
|
405
|
$u->{type} = 'complete'; # 0 parallel, 1 series |
646
|
10
|
50
|
|
|
|
38
|
$u->{col} = $g->has_edge($v, $x) ? '1' : '0'; |
647
|
|
|
|
|
|
|
} else { |
648
|
32
|
|
|
|
|
1610
|
$u->{type} = 'linear'; |
649
|
32
|
|
|
|
|
82
|
$u->{col} = '01'; |
650
|
|
|
|
|
|
|
} |
651
|
|
|
|
|
|
|
} |
652
|
53
|
100
|
|
|
|
461
|
print STDERR $B, 'u = ', tree_to_string( $u ), "\n" if $Debug; |
653
|
53
|
|
|
|
|
252
|
foreach my $X ( @F ) { |
654
|
77
|
|
|
|
|
503
|
my $m = $g->restriction( split /$WSEP/, $X ) |
655
|
|
|
|
|
|
|
->modular_decomposition_EGMS; |
656
|
77
|
100
|
66
|
|
|
1333
|
if ( defined $m->{col} |
|
|
|
33
|
|
|
|
|
|
|
|
66
|
|
|
|
|
657
|
|
|
|
|
|
|
and ( $u->{col} eq $m->{col} ) |
658
|
|
|
|
|
|
|
and ( |
659
|
|
|
|
|
|
|
( $u->{type} eq 'complete' and $m->{type} eq 'complete' ) |
660
|
|
|
|
|
|
|
or ( $u->{type} eq 'linear' and $m->{type} eq 'linear' ) |
661
|
|
|
|
|
|
|
) |
662
|
|
|
|
|
|
|
) { |
663
|
8
|
50
|
|
|
|
34
|
if ( $Debug ) { |
664
|
0
|
|
|
|
|
0
|
print STDERR $B, "u->children= @{$u->{children}}\n"; |
|
0
|
|
|
|
|
0
|
|
665
|
0
|
|
|
|
|
0
|
print STDERR $B, 'm->children= '; |
666
|
0
|
|
|
|
|
0
|
my $sep = ''; |
667
|
0
|
|
|
|
|
0
|
foreach ( @{$m->{children}} ) { |
|
0
|
|
|
|
|
0
|
|
668
|
0
|
|
|
|
|
0
|
print STDERR $sep, '[', tree_to_string( $_ ), ']'; |
669
|
0
|
|
|
|
|
0
|
$sep = ', '; |
670
|
|
|
|
|
|
|
} |
671
|
0
|
|
|
|
|
0
|
print STDERR "\n"; |
672
|
|
|
|
|
|
|
} |
673
|
8
|
|
|
|
|
15
|
push @{$u->{children}}, @{$m->{children}}; |
|
8
|
|
|
|
|
18
|
|
|
8
|
|
|
|
|
39
|
|
674
|
|
|
|
|
|
|
} else { |
675
|
69
|
|
|
|
|
92
|
push @{$u->{children}}, $m; |
|
69
|
|
|
|
|
235
|
|
676
|
|
|
|
|
|
|
} |
677
|
|
|
|
|
|
|
} |
678
|
53
|
|
|
|
|
260
|
$u = $w; |
679
|
|
|
|
|
|
|
} |
680
|
41
|
100
|
|
|
|
1508
|
print STDERR $B, '...MD=', tree_to_string( $t ), "\n" if $Debug; |
681
|
41
|
|
|
|
|
52
|
$md --; |
682
|
41
|
|
|
|
|
793
|
return $t; |
683
|
|
|
|
|
|
|
} |
684
|
|
|
|
|
|
|
|
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
=item classify() |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
use Graph::ModularDecomposition; |
689
|
|
|
|
|
|
|
my $g = new Graph::ModularDecomposition; |
690
|
|
|
|
|
|
|
my $c = classify( $g ); |
691
|
|
|
|
|
|
|
$c = $g->classify; # same thing |
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
Based on the modular decomposition tree, returns: |
694
|
|
|
|
|
|
|
n non-transitive |
695
|
|
|
|
|
|
|
i indecomposable |
696
|
|
|
|
|
|
|
d decomposable but not SP, at least one non-primitive node |
697
|
|
|
|
|
|
|
s series-parallel |
698
|
|
|
|
|
|
|
p decomposable but each module is primitive or series |
699
|
|
|
|
|
|
|
u unclassified: should not happen |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
=cut |
702
|
|
|
|
|
|
|
|
703
|
|
|
|
|
|
|
sub classify { |
704
|
36
|
|
|
36
|
1
|
39885
|
my $g = shift; |
705
|
36
|
100
|
|
|
|
126
|
return 'n' unless $g->check_transitive; |
706
|
33
|
|
|
|
|
26813
|
my $s = tree_to_string( $g->modular_decomposition_EGMS ); |
707
|
33
|
100
|
|
|
|
379
|
return 'i' if $s =~ m/^primitive\[[^\]]+\]\([^\(]*$/; |
708
|
26
|
100
|
100
|
|
|
153
|
return 'd' if $s =~ m/primitive/ and $s =~ m/complete_|linear/; |
709
|
25
|
100
|
|
|
|
378
|
return 's' if $s !~ m/primitive|complete_1/; # matches empty string |
710
|
1
|
50
|
|
|
|
14
|
return 'p' if $s =~ m/primitive|complete_1/; |
711
|
0
|
|
|
|
|
|
return 'u'; |
712
|
|
|
|
|
|
|
} |
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
|
715
|
|
|
|
|
|
|
=item to_bitvector2() |
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
$b = $g->to_bitvector2; |
718
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
Convert input graph to Bitvector2 output. |
720
|
|
|
|
|
|
|
L version 20104 permits |
721
|
|
|
|
|
|
|
multi-edges; these will be collapsed into a single edge in the |
722
|
|
|
|
|
|
|
output Bitvector2. The Bitvector2 is relative to the unique |
723
|
|
|
|
|
|
|
lexicographic ordering of the vertices. This method is only present |
724
|
|
|
|
|
|
|
if L is found. |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
=cut |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
eval {require Graph::Bitvector2; 1} and # alas, circular dependency here |
729
|
|
|
|
|
|
|
eval q{ |
730
|
|
|
|
|
|
|
sub to_bitvector2 { |
731
|
|
|
|
|
|
|
my $g = shift; |
732
|
|
|
|
|
|
|
my @v = sort $g->vertices; |
733
|
|
|
|
|
|
|
my @bits; |
734
|
|
|
|
|
|
|
while ( @v ) { |
735
|
|
|
|
|
|
|
my $x = shift @v; |
736
|
|
|
|
|
|
|
foreach my $y ( @v ) { |
737
|
|
|
|
|
|
|
push @bits, ( |
738
|
|
|
|
|
|
|
$g->has_edge( $x, $y ) |
739
|
|
|
|
|
|
|
? 1 |
740
|
|
|
|
|
|
|
: ( $g->has_edge( $y, $x ) ? 2 : 0 ) |
741
|
|
|
|
|
|
|
); |
742
|
|
|
|
|
|
|
} |
743
|
|
|
|
|
|
|
} |
744
|
|
|
|
|
|
|
return new Graph::Bitvector2 (join '', @bits); |
745
|
|
|
|
|
|
|
} |
746
|
|
|
|
|
|
|
}; |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
=back |
750
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
=cut |
752
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
1; |
754
|
|
|
|
|
|
|
__END__ |