line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
|
2
|
|
|
|
|
|
|
# Copyright (c) 1995, 1996, 1997 by Steffen Beyer. All rights reserved. |
3
|
|
|
|
|
|
|
# This package is free software; you can redistribute it and/or modify |
4
|
|
|
|
|
|
|
# it under the same terms as Perl itself. |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
package Graph::Kruskal; |
7
|
|
|
|
|
|
|
|
8
|
1
|
|
|
1
|
|
709
|
use strict; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
47
|
|
9
|
1
|
|
|
|
|
219
|
use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $VERSION |
10
|
1
|
|
|
1
|
|
6
|
$number_of_edges $number_of_vortices @V @E @T); |
|
1
|
|
|
|
|
2
|
|
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
require Exporter; |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
@EXPORT = qw(); |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
@EXPORT_OK = qw(define_vortices define_edges |
19
|
|
|
|
|
|
|
heapify makeheap heapsort |
20
|
|
|
|
|
|
|
find union kruskal example); |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
%EXPORT_TAGS = (all => [@EXPORT_OK]); |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
$VERSION = '2.0'; |
25
|
|
|
|
|
|
|
|
26
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
1420
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
$number_of_vortices = 0; |
29
|
|
|
|
|
|
|
$number_of_edges = 0; |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
sub example |
32
|
|
|
|
|
|
|
{ |
33
|
0
|
|
|
0
|
0
|
|
my($costs) = 0; |
34
|
0
|
|
|
|
|
|
my($k); |
35
|
|
|
|
|
|
|
|
36
|
0
|
|
|
|
|
|
print "\n"; |
37
|
0
|
|
|
|
|
|
print "+++ Kruskal's Algorithm for Minimal Spanning Trees in Graphs +++"; |
38
|
0
|
|
|
|
|
|
print "\n"; |
39
|
|
|
|
|
|
|
|
40
|
0
|
|
|
|
|
|
&define_vortices(2,3,5,7,11,13,17,19,23,29,31); |
41
|
|
|
|
|
|
|
|
42
|
0
|
|
|
|
|
|
print "\nVortices:\n\n"; |
43
|
|
|
|
|
|
|
|
44
|
0
|
|
|
|
|
|
for ( $k = 1; $k <= $#V; ++$k ) |
45
|
|
|
|
|
|
|
{ |
46
|
0
|
0
|
|
|
|
|
if (defined $V[$k]) { print "$k\n"; } |
|
0
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
} |
48
|
|
|
|
|
|
|
|
49
|
0
|
|
|
|
|
|
&define_edges( 2,13,3, 3,13,2, 5,13,1, 3,5,2, 3,29,21, 23,29,3, |
50
|
|
|
|
|
|
|
23,31,2, 5,31,15, 5,7,10, 2,11,2, 7,11,2, 7,19,5, 11,19,2, |
51
|
|
|
|
|
|
|
7,31,4, 3,17,3, 17,23,3, 7,17,3 ); |
52
|
|
|
|
|
|
|
|
53
|
0
|
|
|
|
|
|
print "\nEdges:\n\n"; |
54
|
|
|
|
|
|
|
|
55
|
0
|
|
|
|
|
|
for ( $k = 1; $k <= $#E; ++$k ) |
56
|
|
|
|
|
|
|
{ |
57
|
0
|
|
|
|
|
|
print ${$E[$k]}{'from'}, " <-> ", ${$E[$k]}{'to'}, " = ", |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
58
|
0
|
|
|
|
|
|
${$E[$k]}{'cost'}, "\n"; |
59
|
|
|
|
|
|
|
} |
60
|
|
|
|
|
|
|
|
61
|
0
|
|
|
|
|
|
&kruskal(); |
62
|
|
|
|
|
|
|
|
63
|
0
|
|
|
|
|
|
print "\nEdges in minimal spanning tree:\n\n"; |
64
|
|
|
|
|
|
|
|
65
|
0
|
|
|
|
|
|
for ( $k = 1; $k <= $#T; ++$k ) |
66
|
|
|
|
|
|
|
{ |
67
|
0
|
|
|
|
|
|
print ${$T[$k]}{'from'}, " <-> ", ${$T[$k]}{'to'}, " = ", |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
68
|
0
|
|
|
|
|
|
${$T[$k]}{'cost'}, "\n"; |
69
|
0
|
|
|
|
|
|
$costs += ${$T[$k]}{'cost'}; |
|
0
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
} |
71
|
|
|
|
|
|
|
|
72
|
0
|
|
|
|
|
|
print "\nTotal costs: $costs\n\n"; |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub define_vortices |
76
|
|
|
|
|
|
|
{ |
77
|
0
|
|
|
0
|
0
|
|
undef @V; |
78
|
0
|
|
|
|
|
|
$number_of_vortices = 0; |
79
|
0
|
|
|
|
|
|
foreach (@_) |
80
|
|
|
|
|
|
|
{ |
81
|
0
|
0
|
|
|
|
|
($_ > 0) || croak "Graph::Kruskal::define_vortices(): vortex number not positive\n"; |
82
|
0
|
|
|
|
|
|
$V[$_] = -1; |
83
|
0
|
|
|
|
|
|
++$number_of_vortices; |
84
|
|
|
|
|
|
|
} |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
sub define_edges |
88
|
|
|
|
|
|
|
{ |
89
|
0
|
|
|
0
|
0
|
|
my($from,$to,$cost); |
90
|
|
|
|
|
|
|
|
91
|
0
|
|
|
|
|
|
undef @E; |
92
|
0
|
|
|
|
|
|
$number_of_edges = 0; |
93
|
0
|
|
|
|
|
|
while (@_) |
94
|
|
|
|
|
|
|
{ |
95
|
0
|
|
0
|
|
|
|
$from = shift || croak "Graph::Kruskal::define_edges(): missing 'from' vortex number\n"; |
96
|
0
|
|
0
|
|
|
|
$to = shift || croak "Graph::Kruskal::define_edges(): missing 'to' vortex number\n"; |
97
|
0
|
|
0
|
|
|
|
$cost = shift || croak "Graph::Kruskal::define_edges(): missing edge 'cost' value\n"; |
98
|
0
|
0
|
|
|
|
|
defined $V[$from] || croak "Graph::Kruskal::define_edges(): vortex '$from' not previously defined\n"; |
99
|
0
|
0
|
|
|
|
|
defined $V[$to] || croak "Graph::Kruskal::define_edges(): vortex '$to' not previously defined\n"; |
100
|
0
|
0
|
|
|
|
|
($from != $to) || croak "Graph::Kruskal::define_edges(): vortices 'from' and 'to' are the same\n"; |
101
|
0
|
|
|
|
|
|
$E[++$number_of_edges] = |
102
|
|
|
|
|
|
|
{ 'from' => $from, 'to' => $to, 'cost' => $cost }; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
sub heapify # complexity: O(ld n) |
107
|
|
|
|
|
|
|
{ |
108
|
0
|
|
|
0
|
0
|
|
my($i,$n) = @_; |
109
|
0
|
|
|
|
|
|
my($i2,$i21,$j,$swap); |
110
|
|
|
|
|
|
|
|
111
|
0
|
|
|
|
|
|
while ($i < $n) |
112
|
|
|
|
|
|
|
{ |
113
|
0
|
|
|
|
|
|
$j = $i; |
114
|
0
|
|
|
|
|
|
$i2 = $i * 2; |
115
|
0
|
|
|
|
|
|
$i21 = $i2 + 1; |
116
|
0
|
0
|
|
|
|
|
if ($i2 <= $n) |
117
|
|
|
|
|
|
|
{ |
118
|
0
|
0
|
|
|
|
|
if (${$E[$i]}{'cost'} > ${$E[$i2]}{'cost'}) |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
{ |
120
|
0
|
|
|
|
|
|
$j = $i2; |
121
|
0
|
0
|
|
|
|
|
if ($i21 <= $n) |
122
|
|
|
|
|
|
|
{ |
123
|
0
|
0
|
|
|
|
|
if (${$E[$i2]}{'cost'} > ${$E[$i21]}{'cost'}) { $j = $i21; } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
} |
125
|
|
|
|
|
|
|
} |
126
|
|
|
|
|
|
|
else |
127
|
|
|
|
|
|
|
{ |
128
|
0
|
0
|
|
|
|
|
if ($i21 <= $n) |
129
|
|
|
|
|
|
|
{ |
130
|
0
|
0
|
|
|
|
|
if (${$E[$i]}{'cost'} > ${$E[$i21]}{'cost'}) { $j = $i21; } |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
} |
134
|
0
|
0
|
|
|
|
|
if ($i != $j) |
135
|
|
|
|
|
|
|
{ |
136
|
0
|
|
|
|
|
|
$swap = $E[$i]; |
137
|
0
|
|
|
|
|
|
$E[$i] = $E[$j]; |
138
|
0
|
|
|
|
|
|
$E[$j] = $swap; |
139
|
0
|
|
|
|
|
|
$i = $j; |
140
|
|
|
|
|
|
|
} |
141
|
0
|
|
|
|
|
|
else { $i = $n; } |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
} |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
sub makeheap # complexity: O(n ld n) |
146
|
|
|
|
|
|
|
{ |
147
|
0
|
|
|
0
|
0
|
|
my($n) = @_; |
148
|
0
|
|
|
|
|
|
my($k); |
149
|
|
|
|
|
|
|
|
150
|
0
|
|
|
|
|
|
for ( $k = $n - 1; $k > 0; --$k ) { &heapify($k, $n); } |
|
0
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
# The following subroutine isn't used by this algorithm, it is only included |
154
|
|
|
|
|
|
|
# here for the sake of completeness: |
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
sub heapsort # complexity: O(n ld n) |
157
|
|
|
|
|
|
|
{ |
158
|
0
|
|
|
0
|
0
|
|
my($n) = @_; |
159
|
0
|
|
|
|
|
|
my($k,$swap); |
160
|
|
|
|
|
|
|
|
161
|
0
|
|
|
|
|
|
for ( $k = $n - 1; $k > 0; --$k ) { &heapify($k, $n); } |
|
0
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
|
163
|
0
|
|
|
|
|
|
for ( $k = $n; $k > 1; --$k ) |
164
|
|
|
|
|
|
|
{ |
165
|
0
|
|
|
|
|
|
$swap = $E[1]; |
166
|
0
|
|
|
|
|
|
$E[1] = $E[$k]; |
167
|
0
|
|
|
|
|
|
$E[$k] = $swap; |
168
|
0
|
|
|
|
|
|
&heapify(1, $k - 1); |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub find |
173
|
|
|
|
|
|
|
{ |
174
|
0
|
|
|
0
|
0
|
|
my($i) = @_; |
175
|
0
|
|
|
|
|
|
my($j,$k,$t); |
176
|
|
|
|
|
|
|
|
177
|
0
|
|
|
|
|
|
$j = $i; |
178
|
0
|
|
|
|
|
|
while ($V[$j] > 0) { $j = $V[$j]; } # find root element (= set identifier) |
|
0
|
|
|
|
|
|
|
179
|
0
|
|
|
|
|
|
$k = $i; |
180
|
0
|
|
|
|
|
|
while ($k != $j) # height compression of the tree |
181
|
|
|
|
|
|
|
{ |
182
|
0
|
|
|
|
|
|
$t = $V[$k]; |
183
|
0
|
|
|
|
|
|
$V[$k] = $j; |
184
|
0
|
|
|
|
|
|
$k = $t; |
185
|
|
|
|
|
|
|
} |
186
|
0
|
|
|
|
|
|
return($j); |
187
|
|
|
|
|
|
|
} |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
sub union |
190
|
|
|
|
|
|
|
{ |
191
|
0
|
|
|
0
|
0
|
|
my($i,$j) = @_; |
192
|
0
|
|
|
|
|
|
my($x); |
193
|
|
|
|
|
|
|
|
194
|
0
|
|
|
|
|
|
$x = $V[$i] + $V[$j]; # calculate number of elements in resulting set |
195
|
0
|
0
|
|
|
|
|
if ($V[$i] > $V[$j]) # which of the two sets contains more elements? |
196
|
|
|
|
|
|
|
{ |
197
|
0
|
|
|
|
|
|
$V[$i] = $j; # merge them |
198
|
0
|
|
|
|
|
|
$V[$j] = $x; # update number of elements |
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
else |
201
|
|
|
|
|
|
|
{ |
202
|
0
|
|
|
|
|
|
$V[$j] = $i; # merge them |
203
|
0
|
|
|
|
|
|
$V[$i] = $x; # update number of elements |
204
|
|
|
|
|
|
|
} |
205
|
|
|
|
|
|
|
} |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
sub kruskal # complexity: O(n ld n) ( where n := |{ Edges }| ) |
208
|
|
|
|
|
|
|
{ |
209
|
0
|
|
|
0
|
0
|
|
my($n) = $number_of_edges; |
210
|
0
|
|
|
|
|
|
my($v) = $number_of_vortices; |
211
|
0
|
|
|
|
|
|
my($i,$j,$swap); |
212
|
0
|
|
|
|
|
|
my($t) = 0; |
213
|
|
|
|
|
|
|
|
214
|
0
|
|
|
|
|
|
undef @T; |
215
|
0
|
|
|
|
|
|
&makeheap($number_of_edges); # complexity: O(n ld n) |
216
|
0
|
|
0
|
|
|
|
while (($v > 1) && ($n > 0)) |
217
|
|
|
|
|
|
|
{ |
218
|
0
|
|
|
|
|
|
$swap = $E[1]; |
219
|
0
|
|
|
|
|
|
$E[1] = $E[$n]; |
220
|
0
|
|
|
|
|
|
$E[$n] = $swap; |
221
|
0
|
|
|
|
|
|
&heapify(1, $n - 1); # complexity: n O(ld n) = O(n ld n) |
222
|
0
|
|
|
|
|
|
$i = find(${$E[$n]}{'from'}); # complexity: n ( 2 find + 1 union ) = |
|
0
|
|
|
|
|
|
|
223
|
0
|
|
|
|
|
|
$j = find(${$E[$n]}{'to'}); # O( G(n) n ) <= O(n ld n) |
|
0
|
|
|
|
|
|
|
224
|
0
|
0
|
|
|
|
|
if ($i != $j) |
225
|
|
|
|
|
|
|
{ |
226
|
0
|
|
|
|
|
|
union($i,$j); |
227
|
0
|
|
|
|
|
|
$T[++$t] = $E[$n]; |
228
|
0
|
|
|
|
|
|
--$v; |
229
|
|
|
|
|
|
|
} |
230
|
0
|
|
|
|
|
|
--$n; |
231
|
|
|
|
|
|
|
} |
232
|
0
|
|
|
|
|
|
return(@T); |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
1; |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
__END__ |