line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
6
|
|
|
6
|
|
199180
|
use strict; |
|
6
|
|
|
|
|
14
|
|
|
6
|
|
|
|
|
258
|
|
2
|
6
|
|
|
6
|
|
34
|
use warnings; |
|
6
|
|
|
|
|
16
|
|
|
6
|
|
|
|
|
619
|
|
3
|
|
|
|
|
|
|
package Graph::Implicit; |
4
|
|
|
|
|
|
|
our $VERSION = '0.03'; |
5
|
|
|
|
|
|
|
|
6
|
6
|
|
|
6
|
|
7013
|
use Heap::Fibonacci::Fast; |
|
6
|
|
|
|
|
14171
|
|
|
6
|
|
|
|
|
279
|
|
7
|
6
|
|
|
6
|
|
37266
|
use List::MoreUtils qw/apply/; |
|
6
|
|
|
|
|
27312
|
|
|
6
|
|
|
|
|
7518
|
|
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 NAME |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
Graph::Implicit - graph algorithms for implicitly specified graphs |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=head1 VERSION |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
version 0.03 |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=head1 SYNOPSIS |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
my $graph = Graph::Implicit->new(sub { |
20
|
|
|
|
|
|
|
my $tile = shift; |
21
|
|
|
|
|
|
|
map { [$_, $_->intrinsic_cost] } |
22
|
|
|
|
|
|
|
$tile->grep_adjacent(sub { $_[0]->is_walkable }) |
23
|
|
|
|
|
|
|
}); |
24
|
|
|
|
|
|
|
my @reachable_vertices = $graph->vertices(current_tile()); |
25
|
|
|
|
|
|
|
my @reachable_edges = $graph->edges(current_tile()); |
26
|
|
|
|
|
|
|
my ($sssp_predecessors, $dest_vertex) = $graph->dijkstra( |
27
|
|
|
|
|
|
|
current_tile(), |
28
|
|
|
|
|
|
|
sub { is_target($_[0]) ? 'q' : 0 }, |
29
|
|
|
|
|
|
|
); |
30
|
|
|
|
|
|
|
my @sssp_path = $graph->make_path($sssp_predecessors, $dest_vertex); |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
=head1 DESCRIPTION |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
This module implements several graph algorithms (for directed, weighted graphs) |
35
|
|
|
|
|
|
|
that can run without having to specify the actual graph. This module models a |
36
|
|
|
|
|
|
|
graph as an arbitrary coderef that maps vertices onto a list of adjacent |
37
|
|
|
|
|
|
|
vertices and weights for the edges to those vertices. Vertices can be |
38
|
|
|
|
|
|
|
represented by any string (or stringifyable piece of data), and don't need to |
39
|
|
|
|
|
|
|
be specified ahead of time; the algorithms will just figure it out. This allows |
40
|
|
|
|
|
|
|
objects to generally just work (they get stringified to |
41
|
|
|
|
|
|
|
C<"Class=HASH(0xdeadbeef)">). |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
Some caveats: working with complicated data structures which need deep |
44
|
|
|
|
|
|
|
comparisons generally need additional help: C<[0, 1, 2] ne [0, 1, 2]>, since |
45
|
|
|
|
|
|
|
those become different references. Also, since the graph isn't specified at |
46
|
|
|
|
|
|
|
all, each method that is called on one needs a vertex to start traversing the |
47
|
|
|
|
|
|
|
graph from, and any vertices not reachable from that vertex won't be found. A |
48
|
|
|
|
|
|
|
few algorithms are also not able to be implemented as efficiently as possible, |
49
|
|
|
|
|
|
|
since the entire graph isn't known ahead of time; for instance, finding all the |
50
|
|
|
|
|
|
|
edges of the graph requires actually doing a graph traversal, rather than just |
51
|
|
|
|
|
|
|
reading them out of the data structure, like you would do in an explicit graph |
52
|
|
|
|
|
|
|
representation. |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=cut |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
=head1 CONSTRUCTOR |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=head2 new(CODEREF) |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
The constructor takes a single argument, a coderef. This coderef should take |
61
|
|
|
|
|
|
|
something representing a vertex, and return a list of arrayrefs, one for each |
62
|
|
|
|
|
|
|
adjacent vertex, which have the vertex as the first element and the weight of |
63
|
|
|
|
|
|
|
the edge to that vertex as the second element. For example, if the graph has |
64
|
|
|
|
|
|
|
three elements A, B, and C, and there is an edge of weight 1 from B to A and an |
65
|
|
|
|
|
|
|
edge of weight 2 from B to C, then the coderef should return C<["A", 1], ["C", |
66
|
|
|
|
|
|
|
2]> when called with C<"B"> as its argument. |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=cut |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub new { |
71
|
6
|
|
|
6
|
1
|
3841
|
my $class = shift; |
72
|
6
|
|
|
|
|
13
|
my $edge_calculator = shift; |
73
|
6
|
|
|
|
|
25
|
return bless $edge_calculator, $class; |
74
|
|
|
|
|
|
|
} |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=head1 METHODS |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
=cut |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
# generic information |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=head2 vertices(VERTEX) |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
Returns a list of all vertices reachable from the given vertex. |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
=cut |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub vertices { |
89
|
16
|
|
|
16
|
1
|
38034
|
my $self = shift; |
90
|
16
|
|
|
|
|
31
|
my ($start) = @_; |
91
|
16
|
|
|
|
|
26
|
my @vertices; |
92
|
16
|
|
|
90
|
|
115
|
$self->dfs($start, sub { push @vertices, $_[1] }); |
|
90
|
|
|
|
|
152
|
|
93
|
16
|
|
|
|
|
190
|
return @vertices; |
94
|
|
|
|
|
|
|
} |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
=head2 edges(VERTEX) |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
Returns a list of all edges reachable from the given vertex. |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
=cut |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
# XXX: probably pretty inefficient... can we do better? |
103
|
|
|
|
|
|
|
sub edges { |
104
|
8
|
|
|
8
|
1
|
1607144
|
my $self = shift; |
105
|
8
|
|
|
|
|
18
|
my ($start) = @_; |
106
|
8
|
|
|
|
|
32
|
map { my $v = $_; map { [$v, $_] } $self->neighbors($v) } |
|
45
|
|
|
|
|
95
|
|
|
45
|
|
|
|
|
82
|
|
|
109
|
|
|
|
|
694
|
|
107
|
|
|
|
|
|
|
$self->vertices($start); |
108
|
|
|
|
|
|
|
} |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
=head2 neighbors(VERTEX) |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
Returns a list of neighbors (without weights) of the given vertex. |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=cut |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
sub neighbors { |
117
|
53
|
|
|
53
|
1
|
63653
|
my $self = shift; |
118
|
53
|
|
|
|
|
66
|
my ($from) = @_; |
119
|
53
|
|
|
|
|
148
|
return map { $$_[0] } $self->($from); |
|
130
|
|
|
|
|
593
|
|
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
# traversal |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub _traversal { |
125
|
32
|
|
|
32
|
|
56
|
my $self = shift; |
126
|
32
|
|
|
|
|
503
|
my ($start, $code, $create, $notempty, $insert, $remove) = @_; |
127
|
32
|
|
|
|
|
81
|
my $bag = $create->(); |
128
|
32
|
|
|
|
|
52
|
my %marked; |
129
|
|
|
|
|
|
|
my %pred; |
130
|
32
|
|
|
|
|
73
|
$pred{$start} = undef; |
131
|
32
|
|
|
|
|
108
|
$insert->($bag, [undef, $start], 0); |
132
|
32
|
|
|
|
|
81
|
while ($notempty->($bag)) { |
133
|
468
|
|
|
|
|
1643
|
my ($pred, $vertex) = @{ $remove->($bag) }; |
|
468
|
|
|
|
|
678
|
|
134
|
468
|
100
|
|
|
|
1837
|
if (not exists $marked{$vertex}) { |
135
|
180
|
50
|
|
|
|
648
|
$code->($pred, $vertex) if $code; |
136
|
180
|
100
|
|
|
|
603
|
$pred{$vertex} = $pred if defined wantarray; |
137
|
180
|
|
|
|
|
282
|
$marked{$vertex} = 1; |
138
|
180
|
|
|
|
|
404
|
$insert->($bag, [$vertex, $$_[0]], $$_[1]) for $self->($vertex); |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
} |
141
|
32
|
|
|
|
|
149
|
return \%pred; |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
=head2 bfs(VERTEX[, CODEREF]) |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
Does a breadth-first search of the graph, starting at the given vertex. It runs |
147
|
|
|
|
|
|
|
the given coderef (if it exists) on each vertex, as they are encountered. |
148
|
|
|
|
|
|
|
Returns a hashref, whose keys are the encountered vertices, and whose values |
149
|
|
|
|
|
|
|
are the predecessor in the breadth-first search tree. |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=cut |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
sub bfs { |
154
|
8
|
|
|
8
|
1
|
74285
|
my $self = shift; |
155
|
8
|
|
|
|
|
20
|
my ($start, $code) = @_; |
156
|
|
|
|
|
|
|
return $self->_traversal($start, $code, |
157
|
8
|
|
|
8
|
|
19
|
sub { [] }, |
158
|
125
|
|
|
125
|
|
219
|
sub { @{ $_[0] } }, |
|
125
|
|
|
|
|
321
|
|
159
|
117
|
|
|
117
|
|
1030
|
sub { push @{ $_[0] }, $_[1] }, |
|
117
|
|
|
|
|
645
|
|
160
|
8
|
|
|
117
|
|
110
|
sub { shift @{ $_[0] } }); |
|
117
|
|
|
|
|
106
|
|
|
117
|
|
|
|
|
252
|
|
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=head2 dfs(VERTEX[, CODEREF]) |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
Does a depth-first search of the graph, starting at the given vertex. It runs |
166
|
|
|
|
|
|
|
the given coderef (if it exists) on each vertex, as they are encountered. |
167
|
|
|
|
|
|
|
Returns a hashref, whose keys are the encountered vertices, and whose values |
168
|
|
|
|
|
|
|
are the predecessor in the depth-first search tree. |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
=cut |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub dfs { |
173
|
24
|
|
|
24
|
1
|
48008
|
my $self = shift; |
174
|
24
|
|
|
|
|
48
|
my ($start, $code) = @_; |
175
|
|
|
|
|
|
|
return $self->_traversal($start, $code, |
176
|
24
|
|
|
24
|
|
54
|
sub { [] }, |
177
|
375
|
|
|
375
|
|
488
|
sub { @{ $_[0] } }, |
|
375
|
|
|
|
|
974
|
|
178
|
351
|
|
|
351
|
|
1481
|
sub { push @{ $_[0] }, $_[1] }, |
|
351
|
|
|
|
|
2155
|
|
179
|
24
|
|
|
351
|
|
235
|
sub { pop @{ $_[0] } }); |
|
351
|
|
|
|
|
300
|
|
|
351
|
|
|
|
|
678
|
|
180
|
|
|
|
|
|
|
} |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
#sub iddfs { |
183
|
|
|
|
|
|
|
#} |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# minimum spanning tree |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
#sub boruvka { |
188
|
|
|
|
|
|
|
#} |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
# XXX: this algo only works in its current form for undirected graphs with |
191
|
|
|
|
|
|
|
# unique edge weights |
192
|
|
|
|
|
|
|
#sub prim { |
193
|
|
|
|
|
|
|
#my $self = shift; |
194
|
|
|
|
|
|
|
#my ($start, $code) = @_; |
195
|
|
|
|
|
|
|
#return $self->_traversal($start, $code, |
196
|
|
|
|
|
|
|
#sub { Heap::Fibonacci::Fast->new }, |
197
|
|
|
|
|
|
|
#sub { $_[0]->count }, |
198
|
|
|
|
|
|
|
#sub { $_[0]->key_insert($_[2], $_[1]) }, |
199
|
|
|
|
|
|
|
#sub { $_[0]->extract_top }); |
200
|
|
|
|
|
|
|
#} |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
#sub kruskal { |
203
|
|
|
|
|
|
|
#} |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
# single source shortest path |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=head2 dijkstra(VERTEX[, CODEREF]) |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
Runs the Dijkstra single source shortest path algorithm, starting from the |
210
|
|
|
|
|
|
|
given vertex. It also takes a single coderef as an argument, which is called on |
211
|
|
|
|
|
|
|
each vertex as it is encountered - this coderef is expected to return a score |
212
|
|
|
|
|
|
|
for the vertex. If the returned score is C<'q'>, then the search terminates |
213
|
|
|
|
|
|
|
immediately, otherwise it keeps track of the vertex with the highest score. |
214
|
|
|
|
|
|
|
This returns two items: a predicate hashref like the return value of L |
215
|
|
|
|
|
|
|
and L, and the vertex which was scored highest by the scorer coderef |
216
|
|
|
|
|
|
|
(or the vertex that returned C<'q'>). |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
=cut |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
sub dijkstra { |
221
|
3
|
|
|
3
|
1
|
33424
|
my $self = shift; |
222
|
3
|
|
|
|
|
8
|
my ($from, $scorer) = @_; |
223
|
3
|
|
|
9944
|
|
22
|
return $self->astar($from, sub { 0 }, $scorer); |
|
9944
|
|
|
|
|
13659
|
|
224
|
|
|
|
|
|
|
} |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=head2 astar(VERTEX, CODEREF[, CODEREF]) |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
Runs the A* single source shortest path algorithm. Similar to L, but |
229
|
|
|
|
|
|
|
takes an additional coderef parameter (before the scorer coderef), for the |
230
|
|
|
|
|
|
|
heuristic function that the A* algorithm requires. |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
=cut |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub astar { |
235
|
3
|
|
|
3
|
1
|
9
|
my $self = shift; |
236
|
3
|
|
|
|
|
6
|
my ($from, $heuristic, $scorer) = @_; |
237
|
|
|
|
|
|
|
|
238
|
3
|
|
|
|
|
41
|
my $pq = Heap::Fibonacci::Fast->new; |
239
|
3
|
|
|
|
|
50
|
my %neighbors; |
240
|
3
|
|
|
|
|
9
|
my ($max_vert, $max_score) = (undef, 0); |
241
|
3
|
|
|
|
|
10
|
my %dist = ($from => 0); |
242
|
3
|
|
|
|
|
7
|
my %pred = ($from => undef); |
243
|
3
|
|
|
|
|
45
|
$pq->key_insert(0, $from); |
244
|
3
|
|
|
|
|
20
|
while ($pq->count) { |
245
|
5069
|
|
|
|
|
9938
|
my $cost = $pq->top_key; |
246
|
5069
|
|
|
|
|
15673
|
my $vertex = $pq->extract_top; |
247
|
5069
|
50
|
|
|
|
9896
|
if ($scorer) { |
248
|
0
|
|
|
|
|
0
|
my $score = $scorer->($vertex); |
249
|
0
|
0
|
|
|
|
0
|
return (\%pred, $vertex) if $score eq 'q'; |
250
|
0
|
0
|
|
|
|
0
|
($max_vert, $max_score) = ($vertex, $score) |
251
|
|
|
|
|
|
|
if ($score > $max_score); |
252
|
|
|
|
|
|
|
} |
253
|
5069
|
100
|
|
|
|
26716
|
$neighbors{$vertex} = [$self->($vertex)] |
254
|
|
|
|
|
|
|
unless exists $neighbors{$vertex}; |
255
|
5069
|
|
|
|
|
60361
|
for my $neighbor (@{ $neighbors{$vertex} }) { |
|
5069
|
|
|
|
|
10227
|
|
256
|
9944
|
|
|
|
|
10230
|
my ($vert_n, $weight_n) = @{ $neighbor }; |
|
9944
|
|
|
|
|
16582
|
|
257
|
9944
|
|
|
|
|
28169
|
my $dist = $cost + $weight_n + $heuristic->($vertex, $vert_n); |
258
|
9944
|
100
|
100
|
|
|
45640
|
if (!defined $dist{$vert_n} || $dist < $dist{$vert_n}) { |
259
|
5066
|
|
|
|
|
12167
|
$dist{$vert_n} = $dist; |
260
|
5066
|
|
|
|
|
9353
|
$pred{$vert_n} = $vertex; |
261
|
5066
|
|
|
|
|
22528
|
$pq->key_insert($dist, $vert_n); |
262
|
|
|
|
|
|
|
} |
263
|
|
|
|
|
|
|
} |
264
|
|
|
|
|
|
|
} |
265
|
3
|
|
|
|
|
7587
|
return \%pred, $max_vert; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
#sub bellman_ford { |
269
|
|
|
|
|
|
|
#} |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
# all pairs shortest path |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
#sub johnson { |
274
|
|
|
|
|
|
|
#} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
#sub floyd_warshall { |
277
|
|
|
|
|
|
|
#} |
278
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
# non-trivial graph properties |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
=head2 is_bipartite(VERTEX) |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
Returns whether or not the reachable part of the graph from the given vertex is |
284
|
|
|
|
|
|
|
bipartite. |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
=cut |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
sub is_bipartite { |
289
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
290
|
0
|
|
|
|
|
0
|
my ($from) = @_; |
291
|
0
|
|
|
|
|
0
|
my $ret = 1; |
292
|
0
|
|
|
|
|
0
|
BIPARTITE: { |
293
|
0
|
|
|
|
|
0
|
my %colors = ($from => 0); |
294
|
6
|
|
|
6
|
|
70
|
no warnings 'exiting'; |
|
6
|
|
|
|
|
12
|
|
|
6
|
|
|
|
|
1604
|
|
295
|
|
|
|
|
|
|
$self->bfs($from, sub { |
296
|
0
|
|
|
0
|
|
0
|
my $vertex = $_[1]; |
297
|
|
|
|
|
|
|
apply { |
298
|
0
|
0
|
|
|
|
0
|
last BIPARTITE if $colors{$vertex} == $colors{$_}; |
299
|
0
|
|
|
|
|
0
|
$colors{$_} = not $colors{$vertex}; |
300
|
0
|
|
|
|
|
0
|
} $self->neighbors($vertex) |
301
|
0
|
|
|
|
|
0
|
}); |
302
|
0
|
|
|
|
|
0
|
return 1; |
303
|
|
|
|
|
|
|
} |
304
|
0
|
|
|
|
|
0
|
return 0; |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
# sorting |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
#sub topological_sort { |
310
|
|
|
|
|
|
|
#} |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
# misc utility functions |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
=head2 make_path(HASHREF, VERTEX) |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
Takes a predecessor hashref and an ending vertex, and returns the list of |
317
|
|
|
|
|
|
|
vertices traversed to get from the start vertex to the given ending vertex. |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
=cut |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
sub make_path { |
322
|
100
|
|
|
100
|
1
|
458
|
my $self = shift; |
323
|
100
|
|
|
|
|
134
|
my ($pred, $end) = @_; |
324
|
100
|
|
|
|
|
93
|
my @path; |
325
|
100
|
|
|
|
|
181
|
while (defined $end) { |
326
|
10000
|
|
|
|
|
9974
|
push @path, $end; |
327
|
10000
|
|
|
|
|
18021
|
$end = $pred->{$end}; |
328
|
|
|
|
|
|
|
} |
329
|
100
|
|
|
|
|
7374
|
return reverse @path; |
330
|
|
|
|
|
|
|
} |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
=head1 BUGS |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
No known bugs. |
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
Please report any bugs through RT: email |
337
|
|
|
|
|
|
|
C, or browse to |
338
|
|
|
|
|
|
|
L. |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
=head1 TODO |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=over |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
=item dijkstra/astar and bfs/dfs should have more similar interfaces - right now bfs/dfs just call a coderef and do nothing with it, while dijkstra/astar use the coderef to search for a vertex |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
=item Several more graph algorithms need implementations |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
=item Returning two values from dijkstra and astar is kind of ugly, need to make this better |
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
=back |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
=head1 SEE ALSO |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
L |
355
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
=head1 SUPPORT |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
You can find this documentation for this module with the perldoc command. |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
perldoc Graph::Implicit |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
You can also look for information at: |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
=over 4 |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
L |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
=item * CPAN Ratings |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
L |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker |
375
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
L |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
=item * Search CPAN |
379
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
L |
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
=back |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
=head1 AUTHOR |
385
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
Jesse Luehrs |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
This software is copyright (c) 2009 by Jesse Luehrs. |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
This is free software; you can redistribute it and/or modify it under |
393
|
|
|
|
|
|
|
the same terms as perl itself. |
394
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
=cut |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
1; |