| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Graph::ChuLiuEdmonds; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
25396
|
use warnings; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
34
|
|
|
4
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Graph::ChuLiuEdmonds - Find minimum spanning trees in a directed graph. |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 VERSION |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
Version 0.05 |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=cut |
|
15
|
|
|
|
|
|
|
|
|
16
|
1
|
|
|
1
|
|
6
|
use Carp; |
|
|
1
|
|
|
|
|
6
|
|
|
|
1
|
|
|
|
|
1902
|
|
|
17
|
|
|
|
|
|
|
our $VERSION = '0.06'; |
|
18
|
|
|
|
|
|
|
our $DEBUG=0; |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
This module implements Chu-Liu-Edmonds L<[1]>,L<[2]> algorithm for finding a minimum |
|
23
|
|
|
|
|
|
|
spanning tree (MST) in a directed graph. |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
use Graph; |
|
26
|
|
|
|
|
|
|
use Graph::Directed; |
|
27
|
|
|
|
|
|
|
use Graph::ChuLiuEdmonds; |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
my $graph = Graph::Directed->new(vertices=>[qw(a b c d)]); |
|
30
|
|
|
|
|
|
|
$graph->add_weighted_edges(qw(a b 3 c d 7 d a 2 d b 1 c a 2)); |
|
31
|
|
|
|
|
|
|
my $msts = $graph->MST_ChuLiuEdmonds($graph); |
|
32
|
|
|
|
|
|
|
... |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head1 EXPORT |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
None. |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
=head2 MST_ChuLiuEdmonds |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
my $msts = $graph->MST_ChuLiuEdmonds(); |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
Returns a Graph object that is a forest consisting of MSTs for a given |
|
45
|
|
|
|
|
|
|
directed graph. |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Minimum Spanning Trees or MSTs are directed tree subgraphs derived |
|
48
|
|
|
|
|
|
|
from a directed graph that "span the graph" (covering all the |
|
49
|
|
|
|
|
|
|
vertices) using as lightly weighted (hence the "minimum") edges as |
|
50
|
|
|
|
|
|
|
possible. |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
=cut |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
sub Graph::MST_ChuLiuEdmonds_no_copy { |
|
55
|
0
|
|
|
0
|
0
|
|
my ($graph)=@_; |
|
56
|
0
|
0
|
|
|
|
|
carp("graph not directed") unless $graph->is_directed; |
|
57
|
0
|
|
|
|
|
|
return _MST($graph); |
|
58
|
|
|
|
|
|
|
} |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
=head2 MST_ChuLiuEdmonds_no_copy |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
my $msts = $graph->MST_ChuLiuEdmonds(); |
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
Like the method above, only avoiding deep-copying the graph; the |
|
65
|
|
|
|
|
|
|
method prunes $graph so as only the MSTs remain of it. |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
=cut |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
sub Graph::MST_ChuLiuEdmonds { |
|
70
|
0
|
|
|
0
|
0
|
|
my ($graph)=@_; |
|
71
|
0
|
0
|
|
|
|
|
carp("graph not directed") unless $graph->is_directed; |
|
72
|
0
|
|
|
|
|
|
return _MST($graph->deep_copy); |
|
73
|
|
|
|
|
|
|
} |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub _MST { |
|
76
|
0
|
|
|
0
|
|
|
my ($g)=@_; |
|
77
|
|
|
|
|
|
|
|
|
78
|
0
|
|
|
|
|
|
my %in; # in the resulting (or partial) MST, this will map a vertex Y to the vertex X |
|
79
|
|
|
|
|
|
|
# in which the unique edge incoming to Y starts |
|
80
|
|
|
|
|
|
|
# i.e maps Y => X if X->Y is an edge of the resulting MST |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# phase 1: add best edges and contract cycles |
|
83
|
0
|
|
|
|
|
|
my $cycle_no=0; |
|
84
|
0
|
|
|
|
|
|
my @V = $g->vertices; |
|
85
|
0
|
0
|
|
|
|
|
print "Vertices: @V\n" if $DEBUG; |
|
86
|
0
|
|
|
|
|
|
my $_no_vertices=@V; |
|
87
|
0
|
|
|
|
|
|
my @C; |
|
88
|
0
|
|
|
|
|
|
my ($x,$y,$w,$e); |
|
89
|
0
|
|
|
|
|
|
while (@V) { |
|
90
|
0
|
0
|
|
|
|
|
print "Graph: $g\n" if $DEBUG; |
|
91
|
0
|
|
|
|
|
|
$y = shift @V; |
|
92
|
0
|
|
|
|
|
|
my $best_w; |
|
93
|
0
|
0
|
|
|
|
|
print STDERR "selecting incoming edges for vertex $y\n" if $DEBUG; |
|
94
|
0
|
|
|
|
|
|
for my $e ($g->edges_to($y)) { |
|
95
|
0
|
|
|
|
|
|
$w = $g->get_edge_weight( $e->[0], $y ); |
|
96
|
0
|
0
|
0
|
|
|
|
if (!defined($best_w) or $w<$best_w) { |
|
97
|
0
|
|
|
|
|
|
$best_w=$w; |
|
98
|
0
|
|
|
|
|
|
$x=$e->[0]; |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
} |
|
101
|
0
|
0
|
|
|
|
|
next unless defined $best_w; |
|
102
|
0
|
0
|
|
|
|
|
print STDERR "best $x-$y: $best_w\n" if $DEBUG; |
|
103
|
|
|
|
|
|
|
# we add the best incoming edge edge to $y |
|
104
|
0
|
|
|
|
|
|
$in{$y}=$x; |
|
105
|
|
|
|
|
|
|
# now we check it does not add a cycle to the MST: |
|
106
|
0
|
|
|
|
|
|
my @cycle_nodes=($y); |
|
107
|
0
|
|
|
|
|
|
my $i=0; |
|
108
|
0
|
|
0
|
|
|
|
do { |
|
109
|
0
|
|
|
|
|
|
unshift @cycle_nodes, $x; |
|
110
|
0
|
|
|
|
|
|
$x=$in{$x}; |
|
111
|
0
|
0
|
|
|
|
|
die "BUG: looking for a cycle caused an infinite loop" if $i++ > $_no_vertices; # just for sure: should never happen. |
|
112
|
|
|
|
|
|
|
} while (defined($x) and $x ne $y); |
|
113
|
0
|
0
|
|
|
|
|
if (defined $x) { |
|
114
|
|
|
|
|
|
|
# the new edge made a cycle: |
|
115
|
|
|
|
|
|
|
# contract |
|
116
|
0
|
|
|
|
|
|
my $cycle = 'CYCLE:'.($cycle_no++); |
|
117
|
0
|
0
|
|
|
|
|
print STDERR "$cycle: @cycle_nodes\n" if $DEBUG; |
|
118
|
0
|
0
|
|
|
|
|
my @cycle_weights = map { |
|
119
|
0
|
|
|
|
|
|
print STDERR " $_: $cycle_nodes[$_-1],$cycle_nodes[$_]\n" if $DEBUG; |
|
120
|
0
|
|
|
|
|
|
$g->get_edge_weight($cycle_nodes[$_-1],$cycle_nodes[$_]) } 0..$#cycle_nodes; |
|
121
|
0
|
0
|
|
|
|
|
print STDERR "cycle weights: @cycle_weights\n" if $DEBUG; |
|
122
|
0
|
|
|
|
|
|
push @V,$cycle; |
|
123
|
|
|
|
|
|
|
|
|
124
|
0
|
|
|
|
|
|
$g->add_vertex($cycle); # will represent the contracted @cycle_nodes |
|
125
|
|
|
|
|
|
|
|
|
126
|
0
|
|
|
|
|
|
my %in_cycle; @in_cycle{@cycle_nodes}=(); |
|
|
0
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
# for each vertex in which ends an edge starting on the cycle, |
|
129
|
|
|
|
|
|
|
# find the lightest edge to be preserved |
|
130
|
0
|
|
|
|
|
|
my %from=(); my %fromW=(); |
|
|
0
|
|
|
|
|
|
|
|
131
|
0
|
|
|
|
|
|
for $x (@cycle_nodes) { |
|
132
|
0
|
|
|
|
|
|
for my $e ($g->edges_from($x)) { |
|
133
|
0
|
|
|
|
|
|
$y=$e->[1]; |
|
134
|
0
|
0
|
|
|
|
|
next if exists $in_cycle{$y}; |
|
135
|
0
|
0
|
0
|
|
|
|
if (exists $in{$y} and exists $in_cycle{$in{$y}}) { |
|
136
|
0
|
|
|
|
|
|
$in{$y}=$cycle; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
0
|
|
|
|
|
|
$w=$g->get_edge_weight($x,$y); |
|
139
|
0
|
0
|
0
|
|
|
|
if (!exists($fromW{$y}) or $w < $fromW{$y}) { |
|
140
|
0
|
|
|
|
|
|
$from{$y}=$x; |
|
141
|
0
|
|
|
|
|
|
$fromW{$y}=$w; |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
} |
|
145
|
0
|
|
|
|
|
|
for $y (keys %from) { |
|
146
|
0
|
0
|
|
|
|
|
print STDERR "adding edge $cycle -> $y weight $fromW{$y}\n" if $DEBUG; |
|
147
|
0
|
|
|
|
|
|
$g->add_weighted_edge($cycle, $y, $fromW{$y}); |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# Similarly for edges that end on the cycle. |
|
151
|
|
|
|
|
|
|
# For each such edge X->Y with Y on the cycle |
|
152
|
|
|
|
|
|
|
# we compute a weight as w(X->Y)+the weight of the arc |
|
153
|
|
|
|
|
|
|
# of the cycle starting at Y and ending on a node preceding Y |
|
154
|
|
|
|
|
|
|
# in the cycle. For a fixed X we find Y on the cycle |
|
155
|
|
|
|
|
|
|
# for which this computed weight is minimal. |
|
156
|
0
|
|
|
|
|
|
my %to; |
|
157
|
0
|
|
|
|
|
|
my %toW=(); my $i=0; |
|
|
0
|
|
|
|
|
|
|
|
158
|
0
|
|
|
|
|
|
my $C=0; $C+=$_ for @cycle_weights; # weight of the whole cycle |
|
|
0
|
|
|
|
|
|
|
|
159
|
0
|
|
|
|
|
|
for $y (@cycle_nodes) { |
|
160
|
0
|
|
|
|
|
|
for $e ($g->edges_to($y)) { |
|
161
|
0
|
|
|
|
|
|
$x=$e->[0]; |
|
162
|
0
|
0
|
|
|
|
|
next if exists $in_cycle{$x}; |
|
163
|
0
|
|
|
|
|
|
$w=$g->get_edge_weight($x,$y)+$C-$cycle_weights[$i]; |
|
164
|
0
|
0
|
0
|
|
|
|
if (!exists($toW{$x}) or $w < $toW{$x}) { |
|
165
|
0
|
|
|
|
|
|
$to{$x}=$y; |
|
166
|
0
|
|
|
|
|
|
$toW{$x}=$w; |
|
167
|
|
|
|
|
|
|
} |
|
168
|
|
|
|
|
|
|
} |
|
169
|
0
|
|
|
|
|
|
$i++; |
|
170
|
|
|
|
|
|
|
} |
|
171
|
0
|
|
|
|
|
|
for my $x (keys %to) { |
|
172
|
0
|
0
|
|
|
|
|
print STDERR "adding edge $x -> $cycle weight $toW{$x}\n" if $DEBUG; |
|
173
|
0
|
|
|
|
|
|
$g->add_weighted_edge($x, $cycle, $toW{$x}); |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# delete the nodes of the @cycle_nodes |
|
177
|
0
|
|
|
|
|
|
$g->delete_vertices(@cycle_nodes); |
|
178
|
0
|
|
|
|
|
|
delete @in{@cycle_nodes}; |
|
179
|
0
|
|
|
|
|
|
push @C,[$cycle,\@cycle_nodes,\@cycle_weights,\%to,\%from,\%toW,\%fromW]; |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
} |
|
182
|
|
|
|
|
|
|
# ok, now we have processed all nodes, including the nodes |
|
183
|
|
|
|
|
|
|
# representing the contracted cycles. |
|
184
|
|
|
|
|
|
|
# there is at most one incoming edge to |
|
185
|
|
|
|
|
|
|
# each node (and exactly one if there was |
|
186
|
|
|
|
|
|
|
# at least one in the original graph). |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
# prune all edges that are not in the resulting (contracted) MST |
|
189
|
0
|
0
|
|
|
|
|
print STDERR "before phase2: $g\n" if $DEBUG; |
|
190
|
0
|
|
|
|
|
|
for $y ($g->vertices) { |
|
191
|
0
|
|
|
|
|
|
$x=$in{$y}; |
|
192
|
0
|
0
|
|
|
|
|
$g->delete_edges(map { @$_[0,1] } grep { !defined($x) or ($_->[0] ne $x) } $g->edges_to($y)); |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
# phase 2: expand all cycles |
|
195
|
0
|
0
|
|
|
|
|
print STDERR "phase2: $g\n" if $DEBUG; |
|
196
|
0
|
|
|
|
|
|
while (@C) { |
|
197
|
0
|
|
|
|
|
|
my $C = pop @C; |
|
198
|
0
|
|
|
|
|
|
my ($cycle,$cycle_nodes,$cycle_weights,$to,$from,$toW,$fromW)=@$C; |
|
199
|
|
|
|
|
|
|
|
|
200
|
0
|
0
|
|
|
|
|
print STDERR "expanding: $cycle\n" if $DEBUG; |
|
201
|
0
|
|
|
|
|
|
$g->add_vertices(@$cycle_nodes); |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
# fix incoming edge |
|
204
|
0
|
|
|
|
|
|
($e) = $g->edges_to($cycle); # should now be at most one |
|
205
|
0
|
0
|
|
|
|
|
if ($e) { |
|
206
|
0
|
|
|
|
|
|
$x=$e->[0]; |
|
207
|
|
|
|
|
|
|
#print STDERR "incoming edge from: $x\n" if $DEBUG; |
|
208
|
0
|
|
|
|
|
|
$y = $to->{$x}; |
|
209
|
0
|
|
|
|
|
|
$g->add_weighted_edge($x,$y,$toW->{$x}); |
|
210
|
0
|
|
|
|
|
|
for my $i (0..$#$cycle_nodes) { |
|
211
|
0
|
0
|
|
|
|
|
$g->add_weighted_edge($cycle_nodes->[$i-1],$cycle_nodes->[$i],$cycle_weights->[$i]) unless $cycle_nodes->[$i] eq $y; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
|
|
|
|
|
|
} else { |
|
214
|
|
|
|
|
|
|
# the whole graph starts at this cycle |
|
215
|
|
|
|
|
|
|
# find the edge with the lowest weight and disconnect there |
|
216
|
|
|
|
|
|
|
#print STDERR "the cycle is a root\n" if $DEBUG; |
|
217
|
0
|
|
|
|
|
|
my $max; |
|
218
|
|
|
|
|
|
|
my $max_i; # the worst edge on the cycle |
|
219
|
0
|
|
|
|
|
|
my $i = 0; |
|
220
|
0
|
|
|
|
|
|
for my $w (@$cycle_weights) { |
|
221
|
0
|
0
|
0
|
|
|
|
if (!defined($max) or $w>$max) { |
|
222
|
0
|
|
|
|
|
|
$max = $w; |
|
223
|
0
|
|
|
|
|
|
$max_i=$i; |
|
224
|
|
|
|
|
|
|
} |
|
225
|
0
|
|
|
|
|
|
$i++ |
|
226
|
|
|
|
|
|
|
} |
|
227
|
0
|
|
|
|
|
|
for $i (0..$#$cycle_nodes) { |
|
228
|
|
|
|
|
|
|
#print "adding edge $cycle_nodes->[$i-1],$cycle_nodes->[$i] $cycle_weights->[$i] unless $i==$max_i\n" if $DEBUG; |
|
229
|
0
|
0
|
|
|
|
|
$g->add_weighted_edge($cycle_nodes->[$i-1],$cycle_nodes->[$i],$cycle_weights->[$i]) unless $i==$max_i; |
|
230
|
|
|
|
|
|
|
} |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
# fix outgoing edge |
|
233
|
0
|
|
|
|
|
|
for $e ($g->edges_from($cycle)) { |
|
234
|
0
|
|
|
|
|
|
$y = $e->[1]; |
|
235
|
0
|
|
|
|
|
|
$x = $from->{$y}; |
|
236
|
0
|
0
|
|
|
|
|
print STDERR "restoring edge $x -> $e->[1]\n" if $DEBUG; |
|
237
|
0
|
|
|
|
|
|
$g->add_weighted_edge($x,$y,$fromW->{$y}); |
|
238
|
|
|
|
|
|
|
} |
|
239
|
0
|
|
|
|
|
|
$g->delete_vertex($cycle); |
|
240
|
0
|
0
|
|
|
|
|
print STDERR "expanded: $g\n" if $DEBUG; |
|
241
|
|
|
|
|
|
|
} |
|
242
|
|
|
|
|
|
|
# all cycles expanded, we are done! |
|
243
|
0
|
0
|
|
|
|
|
print STDERR "MST: $g\n" if $DEBUG; |
|
244
|
0
|
|
|
|
|
|
return $g; |
|
245
|
|
|
|
|
|
|
} |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
=head1 AUTHOR |
|
249
|
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
Petr Pajas, C<< >> |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
=head1 CAVEATS |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
=over 5 |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
=item o |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
The implementation was not tested on complex examples. |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
=item o |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
Vertices cannot be perl objects (or references). |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
=item o |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
Vertex and edge attributes are not copied from the source graph to the |
|
267
|
|
|
|
|
|
|
resulting graph (except for edge weights). |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=item o |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
The author did not attempt to compute the actual algorithmic |
|
272
|
|
|
|
|
|
|
complexity of this particular implementation. |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=item o |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
The algorithm implemented in this module returns the optimal MSTs. To |
|
277
|
|
|
|
|
|
|
obtain k-best MSTs, one could implement Camerini's algorithm L<[4]> |
|
278
|
|
|
|
|
|
|
(also described in [5]). |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
=back |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head1 BUGS |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
Please report any bugs or feature requests to |
|
285
|
|
|
|
|
|
|
C, or through the web interface at |
|
286
|
|
|
|
|
|
|
L. |
|
287
|
|
|
|
|
|
|
I will be notified, and then you'll automatically be notified of progress on |
|
288
|
|
|
|
|
|
|
your bug as I make changes. |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
=head1 SUPPORT |
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
perldoc Graph::ChuLiuEdmonds |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
You can also look for information at: |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
=over 4 |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
L |
|
303
|
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
=item * CPAN Ratings |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
L |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
=item * RT: CPAN's request tracker |
|
309
|
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
L |
|
311
|
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
=item * Search CPAN |
|
313
|
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
L |
|
315
|
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
=back |
|
317
|
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
=head1 SEE ALSO |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
The implementation follows the algorithm published by Edmonds L<[1]> |
|
321
|
|
|
|
|
|
|
and independently Chu and Liu L<[2]>, as scatched in the 3rd section |
|
322
|
|
|
|
|
|
|
of L<[3]>. Note that possibly more efficient implementation is |
|
323
|
|
|
|
|
|
|
suggested in L<[3]>. |
|
324
|
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
=over 4 |
|
326
|
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
=item [1] |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
J. Edmonds. 1967. Optimum branchings. Journal of Research of the |
|
330
|
|
|
|
|
|
|
National Bureau of Standards, 71B:233-240. |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
=item [2] |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a |
|
335
|
|
|
|
|
|
|
directed graph. Science Sinica, 14:1396-1400. |
|
336
|
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
=item [3] |
|
338
|
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
H. N. Gabow, Z. Galil, T. Spencer and R. E. Tarjan. 1986 |
|
340
|
|
|
|
|
|
|
Efficient algorithms for finding minimum spanning trees in undirected |
|
341
|
|
|
|
|
|
|
and directed graphs. Combinatorica 6 (2) 109-122 |
|
342
|
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
=item [4] |
|
344
|
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
Paolo M. Camerini, Luigi Fratta, and Francesco Maffioli. 1980. |
|
346
|
|
|
|
|
|
|
The k best spanning arborescences of a network. Networks, |
|
347
|
|
|
|
|
|
|
10:91-110. |
|
348
|
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
=item [5] |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
Keith Hall. 2007. k-best spanning tree parsing. In (To Appear) |
|
352
|
|
|
|
|
|
|
Proceedings of the 45th Annual Meeting of the Association for |
|
353
|
|
|
|
|
|
|
Computational Linguistics. |
|
354
|
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
=back |
|
356
|
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
|
358
|
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
The development of this module was supported by grant GA AV CR 1ET101120503. |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
=head1 COPYRIGHT & LICENSE |
|
362
|
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
Copyright 2008 Petr Pajas, all rights reserved. |
|
364
|
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it |
|
366
|
|
|
|
|
|
|
under the same terms as Perl itself. |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
=cut |
|
369
|
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
1; # End of Graph::ChuLiuEdmonds |