File Coverage

deps/libgit2/deps/zlib/deflate.c
Criterion Covered Total %
statement 329 715 46.0
branch 225 646 34.8
condition n/a
subroutine n/a
pod n/a
total 554 1361 40.7


line stmt bran cond sub pod time code
1             /* deflate.c -- compress data using the deflation algorithm
2             * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3             * For conditions of distribution and use, see copyright notice in zlib.h
4             */
5              
6             /*
7             * ALGORITHM
8             *
9             * The "deflation" process depends on being able to identify portions
10             * of the input text which are identical to earlier input (within a
11             * sliding window trailing behind the input currently being processed).
12             *
13             * The most straightforward technique turns out to be the fastest for
14             * most input files: try all possible matches and select the longest.
15             * The key feature of this algorithm is that insertions into the string
16             * dictionary are very simple and thus fast, and deletions are avoided
17             * completely. Insertions are performed at each input character, whereas
18             * string matches are performed only when the previous match ends. So it
19             * is preferable to spend more time in matches to allow very fast string
20             * insertions and avoid deletions. The matching algorithm for small
21             * strings is inspired from that of Rabin & Karp. A brute force approach
22             * is used to find longer strings when a small match has been found.
23             * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24             * (by Leonid Broukhis).
25             * A previous version of this file used a more sophisticated algorithm
26             * (by Fiala and Greene) which is guaranteed to run in linear amortized
27             * time, but has a larger average cost, uses more memory and is patented.
28             * However the F&G algorithm may be faster for some highly redundant
29             * files if the parameter max_chain_length (described below) is too large.
30             *
31             * ACKNOWLEDGEMENTS
32             *
33             * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34             * I found it in 'freeze' written by Leonid Broukhis.
35             * Thanks to many people for bug reports and testing.
36             *
37             * REFERENCES
38             *
39             * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40             * Available in http://tools.ietf.org/html/rfc1951
41             *
42             * A description of the Rabin and Karp algorithm is given in the book
43             * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44             *
45             * Fiala,E.R., and Greene,D.H.
46             * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47             *
48             */
49              
50             /* @(#) $Id$ */
51              
52             #include "deflate.h"
53              
54             const char deflate_copyright[] =
55             " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56             /*
57             If you use the zlib library in a product, an acknowledgment is welcome
58             in the documentation of your product. If for some reason you cannot
59             include such an acknowledgment, I would appreciate that you keep this
60             copyright string in the executable of your product.
61             */
62              
63             /* ===========================================================================
64             * Function prototypes.
65             */
66             typedef enum {
67             need_more, /* block not completed, need more input or more output */
68             block_done, /* block flush performed */
69             finish_started, /* finish started, need only more output at next deflate */
70             finish_done /* finish done, accept no more input or output */
71             } block_state;
72              
73             typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74             /* Compression function. Returns the block state after the call. */
75              
76             local int deflateStateCheck OF((z_streamp strm));
77             local void slide_hash OF((deflate_state *s));
78             local void fill_window OF((deflate_state *s));
79             local block_state deflate_stored OF((deflate_state *s, int flush));
80             local block_state deflate_fast OF((deflate_state *s, int flush));
81             #ifndef FASTEST
82             local block_state deflate_slow OF((deflate_state *s, int flush));
83             #endif
84             local block_state deflate_rle OF((deflate_state *s, int flush));
85             local block_state deflate_huff OF((deflate_state *s, int flush));
86             local void lm_init OF((deflate_state *s));
87             local void putShortMSB OF((deflate_state *s, uInt b));
88             local void flush_pending OF((z_streamp strm));
89             local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
90             #ifdef ASMV
91             # pragma message("Assembler code may have bugs -- use at your own risk")
92             void match_init OF((void)); /* asm code initialization */
93             uInt longest_match OF((deflate_state *s, IPos cur_match));
94             #else
95             local uInt longest_match OF((deflate_state *s, IPos cur_match));
96             #endif
97              
98             #ifdef ZLIB_DEBUG
99             local void check_match OF((deflate_state *s, IPos start, IPos match,
100             int length));
101             #endif
102              
103             /* ===========================================================================
104             * Local data
105             */
106              
107             #define NIL 0
108             /* Tail of hash chains */
109              
110             #ifndef TOO_FAR
111             # define TOO_FAR 4096
112             #endif
113             /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114              
115             /* Values for max_lazy_match, good_match and max_chain_length, depending on
116             * the desired pack level (0..9). The values given below have been tuned to
117             * exclude worst case performance for pathological files. Better values may be
118             * found for specific files.
119             */
120             typedef struct config_s {
121             ush good_length; /* reduce lazy search above this match length */
122             ush max_lazy; /* do not perform lazy search above this match length */
123             ush nice_length; /* quit search above this match length */
124             ush max_chain;
125             compress_func func;
126             } config;
127              
128             #ifdef FASTEST
129             local const config configuration_table[2] = {
130             /* good lazy nice chain */
131             /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
132             /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
133             #else
134             local const config configuration_table[10] = {
135             /* good lazy nice chain */
136             /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
137             /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
138             /* 2 */ {4, 5, 16, 8, deflate_fast},
139             /* 3 */ {4, 6, 32, 32, deflate_fast},
140              
141             /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
142             /* 5 */ {8, 16, 32, 32, deflate_slow},
143             /* 6 */ {8, 16, 128, 128, deflate_slow},
144             /* 7 */ {8, 32, 128, 256, deflate_slow},
145             /* 8 */ {32, 128, 258, 1024, deflate_slow},
146             /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147             #endif
148              
149             /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150             * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151             * meaning.
152             */
153              
154             /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155             #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156              
157             /* ===========================================================================
158             * Update a hash value with the given input byte
159             * IN assertion: all calls to UPDATE_HASH are made with consecutive input
160             * characters, so that a running hash key can be computed from the previous
161             * key instead of complete recalculation each time.
162             */
163             #define UPDATE_HASH(s,h,c) (h = (((h)<hash_shift) ^ (c)) & s->hash_mask)
164              
165              
166             /* ===========================================================================
167             * Insert string str in the dictionary and set match_head to the previous head
168             * of the hash chain (the most recent string with same hash key). Return
169             * the previous length of the hash chain.
170             * If this file is compiled with -DFASTEST, the compression level is forced
171             * to 1, and no hash chains are maintained.
172             * IN assertion: all calls to INSERT_STRING are made with consecutive input
173             * characters and the first MIN_MATCH bytes of str are valid (except for
174             * the last MIN_MATCH-1 bytes of the input file).
175             */
176             #ifdef FASTEST
177             #define INSERT_STRING(s, str, match_head) \
178             (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179             match_head = s->head[s->ins_h], \
180             s->head[s->ins_h] = (Pos)(str))
181             #else
182             #define INSERT_STRING(s, str, match_head) \
183             (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184             match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185             s->head[s->ins_h] = (Pos)(str))
186             #endif
187              
188             /* ===========================================================================
189             * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190             * prev[] will be initialized on the fly.
191             */
192             #define CLEAR_HASH(s) \
193             s->head[s->hash_size-1] = NIL; \
194             zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
195              
196             /* ===========================================================================
197             * Slide the hash table when sliding the window down (could be avoided with 32
198             * bit values at the expense of memory usage). We slide even when level == 0 to
199             * keep the hash table consistent if we switch back to level > 0 later.
200             */
201 0           local void slide_hash(s)
202             deflate_state *s;
203             {
204             unsigned n, m;
205             Posf *p;
206 0           uInt wsize = s->w_size;
207              
208 0           n = s->hash_size;
209 0           p = &s->head[n];
210             do {
211 0           m = *--p;
212 0 0         *p = (Pos)(m >= wsize ? m - wsize : NIL);
213 0 0         } while (--n);
214 0           n = wsize;
215             #ifndef FASTEST
216 0           p = &s->prev[n];
217             do {
218 0           m = *--p;
219 0 0         *p = (Pos)(m >= wsize ? m - wsize : NIL);
220             /* If n is not on any hash chain, prev[n] is garbage but
221             * its value will never be used.
222             */
223 0 0         } while (--n);
224             #endif
225 0           }
226              
227             /* ========================================================================= */
228 191           int ZEXPORT deflateInit_(strm, level, version, stream_size)
229             z_streamp strm;
230             int level;
231             const char *version;
232             int stream_size;
233             {
234 191           return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
235             Z_DEFAULT_STRATEGY, version, stream_size);
236             /* To do: ignore strm->next_in if we use it as window */
237             }
238              
239             /* ========================================================================= */
240 191           int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
241             version, stream_size)
242             z_streamp strm;
243             int level;
244             int method;
245             int windowBits;
246             int memLevel;
247             int strategy;
248             const char *version;
249             int stream_size;
250             {
251             deflate_state *s;
252 191           int wrap = 1;
253             static const char my_version[] = ZLIB_VERSION;
254              
255             ushf *overlay;
256             /* We overlay pending_buf and d_buf+l_buf. This works since the average
257             * output size for (length,distance) codes is <= 24 bits.
258             */
259              
260 191 50         if (version == Z_NULL || version[0] != my_version[0] ||
    50          
    50          
261             stream_size != sizeof(z_stream)) {
262 0           return Z_VERSION_ERROR;
263             }
264 191 50         if (strm == Z_NULL) return Z_STREAM_ERROR;
265              
266 191           strm->msg = Z_NULL;
267 191 50         if (strm->zalloc == (alloc_func)0) {
268             #ifdef Z_SOLO
269             return Z_STREAM_ERROR;
270             #else
271 191           strm->zalloc = zcalloc;
272 191           strm->opaque = (voidpf)0;
273             #endif
274             }
275 191 50         if (strm->zfree == (free_func)0)
276             #ifdef Z_SOLO
277             return Z_STREAM_ERROR;
278             #else
279 191           strm->zfree = zcfree;
280             #endif
281              
282             #ifdef FASTEST
283             if (level != 0) level = 1;
284             #else
285 191 100         if (level == Z_DEFAULT_COMPRESSION) level = 6;
286             #endif
287              
288 191 50         if (windowBits < 0) { /* suppress zlib wrapper */
289 0           wrap = 0;
290 0           windowBits = -windowBits;
291             }
292             #ifdef GZIP
293             else if (windowBits > 15) {
294             wrap = 2; /* write gzip wrapper instead */
295             windowBits -= 16;
296             }
297             #endif
298 191 50         if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    50          
    50          
    50          
299 191 50         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    50          
    50          
    50          
300 191 50         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
    50          
    0          
301 0           return Z_STREAM_ERROR;
302             }
303 191 50         if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
304 191           s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
305 191 50         if (s == Z_NULL) return Z_MEM_ERROR;
306 191           strm->state = (struct internal_state FAR *)s;
307 191           s->strm = strm;
308 191           s->status = INIT_STATE; /* to pass state test in deflateReset() */
309              
310 191           s->wrap = wrap;
311 191           s->gzhead = Z_NULL;
312 191           s->w_bits = (uInt)windowBits;
313 191           s->w_size = 1 << s->w_bits;
314 191           s->w_mask = s->w_size - 1;
315              
316 191           s->hash_bits = (uInt)memLevel + 7;
317 191           s->hash_size = 1 << s->hash_bits;
318 191           s->hash_mask = s->hash_size - 1;
319 191           s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
320              
321 191           s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
322 191           s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
323 191           memset(s->prev, 0, s->w_size * sizeof(Pos));
324 191           s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
325              
326 191           s->high_water = 0; /* nothing written to s->window yet */
327              
328 191           s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
329              
330 191           overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
331 191           s->pending_buf = (uchf *) overlay;
332 191           s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
333              
334 191 50         if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    50          
    50          
    50          
335 191           s->pending_buf == Z_NULL) {
336 0           s->status = FINISH_STATE;
337 0           strm->msg = ERR_MSG(Z_MEM_ERROR);
338 0           deflateEnd (strm);
339 0           return Z_MEM_ERROR;
340             }
341 191           s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
342 191           s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
343              
344 191           s->level = level;
345 191           s->strategy = strategy;
346 191           s->method = (Byte)method;
347              
348 191           return deflateReset(strm);
349             }
350              
351             /* =========================================================================
352             * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
353             */
354 651           local int deflateStateCheck (strm)
355             z_streamp strm;
356             {
357             deflate_state *s;
358 651 50         if (strm == Z_NULL ||
    50          
359 651 50         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
360 0           return 1;
361 651           s = strm->state;
362 651 50         if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
    50          
    100          
    50          
363             #ifdef GZIP
364             s->status != GZIP_STATE &&
365             #endif
366 219 50         s->status != EXTRA_STATE &&
367 219 50         s->status != NAME_STATE &&
368 219 50         s->status != COMMENT_STATE &&
369 219 50         s->status != HCRC_STATE &&
370 219 50         s->status != BUSY_STATE &&
371 219           s->status != FINISH_STATE))
372 0           return 1;
373 651           return 0;
374             }
375              
376             /* ========================================================================= */
377 0           int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
378             z_streamp strm;
379             const Bytef *dictionary;
380             uInt dictLength;
381             {
382             deflate_state *s;
383             uInt str, n;
384             int wrap;
385             unsigned avail;
386             z_const unsigned char *next;
387              
388 0 0         if (deflateStateCheck(strm) || dictionary == Z_NULL)
    0          
389 0           return Z_STREAM_ERROR;
390 0           s = strm->state;
391 0           wrap = s->wrap;
392 0 0         if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
    0          
    0          
    0          
393 0           return Z_STREAM_ERROR;
394              
395             /* when using zlib wrappers, compute Adler-32 for provided dictionary */
396 0 0         if (wrap == 1)
397 0           strm->adler = adler32(strm->adler, dictionary, dictLength);
398 0           s->wrap = 0; /* avoid computing Adler-32 in read_buf */
399              
400             /* if dictionary would fill window, just replace the history */
401 0 0         if (dictLength >= s->w_size) {
402 0 0         if (wrap == 0) { /* already empty otherwise */
403 0           CLEAR_HASH(s);
404 0           s->strstart = 0;
405 0           s->block_start = 0L;
406 0           s->insert = 0;
407             }
408 0           dictionary += dictLength - s->w_size; /* use the tail */
409 0           dictLength = s->w_size;
410             }
411              
412             /* insert dictionary into window and hash */
413 0           avail = strm->avail_in;
414 0           next = strm->next_in;
415 0           strm->avail_in = dictLength;
416 0           strm->next_in = (z_const Bytef *)dictionary;
417 0           fill_window(s);
418 0 0         while (s->lookahead >= MIN_MATCH) {
419 0           str = s->strstart;
420 0           n = s->lookahead - (MIN_MATCH-1);
421             do {
422 0           UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
423             #ifndef FASTEST
424 0           s->prev[str & s->w_mask] = s->head[s->ins_h];
425             #endif
426 0           s->head[s->ins_h] = (Pos)str;
427 0           str++;
428 0 0         } while (--n);
429 0           s->strstart = str;
430 0           s->lookahead = MIN_MATCH-1;
431 0           fill_window(s);
432             }
433 0           s->strstart += s->lookahead;
434 0           s->block_start = (long)s->strstart;
435 0           s->insert = s->lookahead;
436 0           s->lookahead = 0;
437 0           s->match_length = s->prev_length = MIN_MATCH-1;
438 0           s->match_available = 0;
439 0           strm->next_in = next;
440 0           strm->avail_in = avail;
441 0           s->wrap = wrap;
442 0           return Z_OK;
443             }
444              
445             /* ========================================================================= */
446 0           int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
447             z_streamp strm;
448             Bytef *dictionary;
449             uInt *dictLength;
450             {
451             deflate_state *s;
452             uInt len;
453              
454 0 0         if (deflateStateCheck(strm))
455 0           return Z_STREAM_ERROR;
456 0           s = strm->state;
457 0           len = s->strstart + s->lookahead;
458 0 0         if (len > s->w_size)
459 0           len = s->w_size;
460 0 0         if (dictionary != Z_NULL && len)
    0          
461 0           zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
462 0 0         if (dictLength != Z_NULL)
463 0           *dictLength = len;
464 0           return Z_OK;
465             }
466              
467             /* ========================================================================= */
468 241           int ZEXPORT deflateResetKeep (strm)
469             z_streamp strm;
470             {
471             deflate_state *s;
472              
473 241 50         if (deflateStateCheck(strm)) {
474 0           return Z_STREAM_ERROR;
475             }
476              
477 241           strm->total_in = strm->total_out = 0;
478 241           strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
479 241           strm->data_type = Z_UNKNOWN;
480              
481 241           s = (deflate_state *)strm->state;
482 241           s->pending = 0;
483 241           s->pending_out = s->pending_buf;
484              
485 241 100         if (s->wrap < 0) {
486 44           s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
487             }
488 241           s->status =
489             #ifdef GZIP
490             s->wrap == 2 ? GZIP_STATE :
491             #endif
492 241 50         s->wrap ? INIT_STATE : BUSY_STATE;
493 241           strm->adler =
494             #ifdef GZIP
495             s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
496             #endif
497 241           adler32(0L, Z_NULL, 0);
498 241           s->last_flush = Z_NO_FLUSH;
499              
500 241           _tr_init(s);
501              
502 241           return Z_OK;
503             }
504              
505             /* ========================================================================= */
506 241           int ZEXPORT deflateReset (strm)
507             z_streamp strm;
508             {
509             int ret;
510              
511 241           ret = deflateResetKeep(strm);
512 241 50         if (ret == Z_OK)
513 241           lm_init(strm->state);
514 241           return ret;
515             }
516              
517             /* ========================================================================= */
518 0           int ZEXPORT deflateSetHeader (strm, head)
519             z_streamp strm;
520             gz_headerp head;
521             {
522 0 0         if (deflateStateCheck(strm) || strm->state->wrap != 2)
    0          
523 0           return Z_STREAM_ERROR;
524 0           strm->state->gzhead = head;
525 0           return Z_OK;
526             }
527              
528             /* ========================================================================= */
529 0           int ZEXPORT deflatePending (strm, pending, bits)
530             unsigned *pending;
531             int *bits;
532             z_streamp strm;
533             {
534 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
535 0 0         if (pending != Z_NULL)
536 0           *pending = strm->state->pending;
537 0 0         if (bits != Z_NULL)
538 0           *bits = strm->state->bi_valid;
539 0           return Z_OK;
540             }
541              
542             /* ========================================================================= */
543 0           int ZEXPORT deflatePrime (strm, bits, value)
544             z_streamp strm;
545             int bits;
546             int value;
547             {
548             deflate_state *s;
549             int put;
550              
551 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
552 0           s = strm->state;
553 0 0         if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
554 0           return Z_BUF_ERROR;
555             do {
556 0           put = Buf_size - s->bi_valid;
557 0 0         if (put > bits)
558 0           put = bits;
559 0           s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
560 0           s->bi_valid += put;
561 0           _tr_flush_bits(s);
562 0           value >>= put;
563 0           bits -= put;
564 0 0         } while (bits);
565 0           return Z_OK;
566             }
567              
568             /* ========================================================================= */
569 0           int ZEXPORT deflateParams(strm, level, strategy)
570             z_streamp strm;
571             int level;
572             int strategy;
573             {
574             deflate_state *s;
575             compress_func func;
576              
577 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
578 0           s = strm->state;
579              
580             #ifdef FASTEST
581             if (level != 0) level = 1;
582             #else
583 0 0         if (level == Z_DEFAULT_COMPRESSION) level = 6;
584             #endif
585 0 0         if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
    0          
    0          
    0          
586 0           return Z_STREAM_ERROR;
587             }
588 0           func = configuration_table[s->level].func;
589              
590 0 0         if ((strategy != s->strategy || func != configuration_table[level].func) &&
    0          
    0          
591 0           s->high_water) {
592             /* Flush the last buffer: */
593 0           int err = deflate(strm, Z_BLOCK);
594 0 0         if (err == Z_STREAM_ERROR)
595 0           return err;
596 0 0         if (strm->avail_out == 0)
597 0           return Z_BUF_ERROR;
598             }
599 0 0         if (s->level != level) {
600 0 0         if (s->level == 0 && s->matches != 0) {
    0          
601 0 0         if (s->matches == 1)
602 0           slide_hash(s);
603             else
604 0           CLEAR_HASH(s);
605 0           s->matches = 0;
606             }
607 0           s->level = level;
608 0           s->max_lazy_match = configuration_table[level].max_lazy;
609 0           s->good_match = configuration_table[level].good_length;
610 0           s->nice_match = configuration_table[level].nice_length;
611 0           s->max_chain_length = configuration_table[level].max_chain;
612             }
613 0           s->strategy = strategy;
614 0           return Z_OK;
615             }
616              
617             /* ========================================================================= */
618 0           int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
619             z_streamp strm;
620             int good_length;
621             int max_lazy;
622             int nice_length;
623             int max_chain;
624             {
625             deflate_state *s;
626              
627 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
628 0           s = strm->state;
629 0           s->good_match = (uInt)good_length;
630 0           s->max_lazy_match = (uInt)max_lazy;
631 0           s->nice_match = nice_length;
632 0           s->max_chain_length = (uInt)max_chain;
633 0           return Z_OK;
634             }
635              
636             /* =========================================================================
637             * For the default windowBits of 15 and memLevel of 8, this function returns
638             * a close to exact, as well as small, upper bound on the compressed size.
639             * They are coded as constants here for a reason--if the #define's are
640             * changed, then this function needs to be changed as well. The return
641             * value for 15 and 8 only works for those exact settings.
642             *
643             * For any setting other than those defaults for windowBits and memLevel,
644             * the value returned is a conservative worst case for the maximum expansion
645             * resulting from using fixed blocks instead of stored blocks, which deflate
646             * can emit on compressed data for some combinations of the parameters.
647             *
648             * This function could be more sophisticated to provide closer upper bounds for
649             * every combination of windowBits and memLevel. But even the conservative
650             * upper bound of about 14% expansion does not seem onerous for output buffer
651             * allocation.
652             */
653 0           uLong ZEXPORT deflateBound(strm, sourceLen)
654             z_streamp strm;
655             uLong sourceLen;
656             {
657             deflate_state *s;
658             uLong complen, wraplen;
659              
660             /* conservative upper bound for compressed data */
661 0           complen = sourceLen +
662 0           ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
663              
664             /* if can't get parameters, return conservative bound plus zlib wrapper */
665 0 0         if (deflateStateCheck(strm))
666 0           return complen + 6;
667              
668             /* compute wrapper length */
669 0           s = strm->state;
670 0           switch (s->wrap) {
671             case 0: /* raw deflate */
672 0           wraplen = 0;
673 0           break;
674             case 1: /* zlib wrapper */
675 0 0         wraplen = 6 + (s->strstart ? 4 : 0);
676 0           break;
677             #ifdef GZIP
678             case 2: /* gzip wrapper */
679             wraplen = 18;
680             if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
681             Bytef *str;
682             if (s->gzhead->extra != Z_NULL)
683             wraplen += 2 + s->gzhead->extra_len;
684             str = s->gzhead->name;
685             if (str != Z_NULL)
686             do {
687             wraplen++;
688             } while (*str++);
689             str = s->gzhead->comment;
690             if (str != Z_NULL)
691             do {
692             wraplen++;
693             } while (*str++);
694             if (s->gzhead->hcrc)
695             wraplen += 2;
696             }
697             break;
698             #endif
699             default: /* for compiler happiness */
700 0           wraplen = 6;
701             }
702              
703             /* if not default parameters, return conservative bound */
704 0 0         if (s->w_bits != 15 || s->hash_bits != 8 + 7)
    0          
705 0           return complen + wraplen;
706              
707             /* default settings: return tight bound for that case */
708 0           return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
709 0           (sourceLen >> 25) + 13 - 6 + wraplen;
710             }
711              
712             /* =========================================================================
713             * Put a short in the pending buffer. The 16-bit value is put in MSB order.
714             * IN assertion: the stream state is correct and there is enough room in
715             * pending_buf.
716             */
717 642           local void putShortMSB (s, b)
718             deflate_state *s;
719             uInt b;
720             {
721 642           put_byte(s, (Byte)(b >> 8));
722 642           put_byte(s, (Byte)(b & 0xff));
723 642           }
724              
725             /* =========================================================================
726             * Flush as much pending output as possible. All deflate() output, except for
727             * some deflate_stored() output, goes through this function so some
728             * applications may wish to modify it to avoid allocating a large
729             * strm->next_out buffer and copying into it. (See also read_buf()).
730             */
731 645           local void flush_pending(strm)
732             z_streamp strm;
733             {
734             unsigned len;
735 645           deflate_state *s = strm->state;
736              
737 645           _tr_flush_bits(s);
738 645           len = s->pending;
739 645 100         if (len > strm->avail_out) len = strm->avail_out;
740 645 50         if (len == 0) return;
741              
742 645           zmemcpy(strm->next_out, s->pending_out, len);
743 645           strm->next_out += len;
744 645           s->pending_out += len;
745 645           strm->total_out += len;
746 645           strm->avail_out -= len;
747 645           s->pending -= len;
748 645 100         if (s->pending == 0) {
749 642           s->pending_out = s->pending_buf;
750             }
751             }
752              
753             /* ===========================================================================
754             * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
755             */
756             #define HCRC_UPDATE(beg) \
757             do { \
758             if (s->gzhead->hcrc && s->pending > (beg)) \
759             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
760             s->pending - (beg)); \
761             } while (0)
762              
763             /* ========================================================================= */
764 219           int ZEXPORT deflate (strm, flush)
765             z_streamp strm;
766             int flush;
767             {
768             int old_flush; /* value of flush param for previous deflate call */
769             deflate_state *s;
770              
771 219 50         if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
    50          
    50          
772 0           return Z_STREAM_ERROR;
773             }
774 219           s = strm->state;
775              
776 219 50         if (strm->next_out == Z_NULL ||
    100          
777 219 50         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
    100          
778 5 50         (s->status == FINISH_STATE && flush != Z_FINISH)) {
779 0           ERR_RETURN(strm, Z_STREAM_ERROR);
780             }
781 219 50         if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
782              
783 219           old_flush = s->last_flush;
784 219           s->last_flush = flush;
785              
786             /* Flush as much pending output as possible */
787 219 100         if (s->pending != 0) {
788 3           flush_pending(strm);
789 3 50         if (strm->avail_out == 0) {
790             /* Since avail_out is 0, deflate will be called again with
791             * more output space, but possibly with both pending and
792             * avail_in equal to zero. There won't be anything to do,
793             * but this is not an error situation so make sure we
794             * return OK instead of BUF_ERROR at next call of deflate:
795             */
796 0           s->last_flush = -1;
797 0           return Z_OK;
798             }
799              
800             /* Make sure there is something to do and avoid duplicate consecutive
801             * flushes. For repeated and useless calls with Z_FINISH, we keep
802             * returning Z_STREAM_END instead of Z_BUF_ERROR.
803             */
804 216 100         } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
    50          
    50          
    50          
    0          
805             flush != Z_FINISH) {
806 0           ERR_RETURN(strm, Z_BUF_ERROR);
807             }
808              
809             /* User must not provide more input after the first FINISH: */
810 219 100         if (s->status == FINISH_STATE && strm->avail_in != 0) {
    50          
811 0           ERR_RETURN(strm, Z_BUF_ERROR);
812             }
813              
814             /* Write the header */
815 219 100         if (s->status == INIT_STATE) {
816             /* zlib header */
817 214           uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
818             uInt level_flags;
819              
820 214 50         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
    100          
821 157           level_flags = 0;
822 57 50         else if (s->level < 6)
823 0           level_flags = 1;
824 57 50         else if (s->level == 6)
825 57           level_flags = 2;
826             else
827 0           level_flags = 3;
828 214           header |= (level_flags << 6);
829 214 50         if (s->strstart != 0) header |= PRESET_DICT;
830 214           header += 31 - (header % 31);
831              
832 214           putShortMSB(s, header);
833              
834             /* Save the adler32 of the preset dictionary: */
835 214 50         if (s->strstart != 0) {
836 0           putShortMSB(s, (uInt)(strm->adler >> 16));
837 0           putShortMSB(s, (uInt)(strm->adler & 0xffff));
838             }
839 214           strm->adler = adler32(0L, Z_NULL, 0);
840 214           s->status = BUSY_STATE;
841              
842             /* Compression must start with an empty pending buffer */
843 214           flush_pending(strm);
844 214 50         if (s->pending != 0) {
845 0           s->last_flush = -1;
846 0           return Z_OK;
847             }
848             }
849             #ifdef GZIP
850             if (s->status == GZIP_STATE) {
851             /* gzip header */
852             strm->adler = crc32(0L, Z_NULL, 0);
853             put_byte(s, 31);
854             put_byte(s, 139);
855             put_byte(s, 8);
856             if (s->gzhead == Z_NULL) {
857             put_byte(s, 0);
858             put_byte(s, 0);
859             put_byte(s, 0);
860             put_byte(s, 0);
861             put_byte(s, 0);
862             put_byte(s, s->level == 9 ? 2 :
863             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
864             4 : 0));
865             put_byte(s, OS_CODE);
866             s->status = BUSY_STATE;
867              
868             /* Compression must start with an empty pending buffer */
869             flush_pending(strm);
870             if (s->pending != 0) {
871             s->last_flush = -1;
872             return Z_OK;
873             }
874             }
875             else {
876             put_byte(s, (s->gzhead->text ? 1 : 0) +
877             (s->gzhead->hcrc ? 2 : 0) +
878             (s->gzhead->extra == Z_NULL ? 0 : 4) +
879             (s->gzhead->name == Z_NULL ? 0 : 8) +
880             (s->gzhead->comment == Z_NULL ? 0 : 16)
881             );
882             put_byte(s, (Byte)(s->gzhead->time & 0xff));
883             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
884             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
885             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
886             put_byte(s, s->level == 9 ? 2 :
887             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
888             4 : 0));
889             put_byte(s, s->gzhead->os & 0xff);
890             if (s->gzhead->extra != Z_NULL) {
891             put_byte(s, s->gzhead->extra_len & 0xff);
892             put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
893             }
894             if (s->gzhead->hcrc)
895             strm->adler = crc32(strm->adler, s->pending_buf,
896             s->pending);
897             s->gzindex = 0;
898             s->status = EXTRA_STATE;
899             }
900             }
901             if (s->status == EXTRA_STATE) {
902             if (s->gzhead->extra != Z_NULL) {
903             ulg beg = s->pending; /* start of bytes to update crc */
904             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
905             while (s->pending + left > s->pending_buf_size) {
906             uInt copy = s->pending_buf_size - s->pending;
907             zmemcpy(s->pending_buf + s->pending,
908             s->gzhead->extra + s->gzindex, copy);
909             s->pending = s->pending_buf_size;
910             HCRC_UPDATE(beg);
911             s->gzindex += copy;
912             flush_pending(strm);
913             if (s->pending != 0) {
914             s->last_flush = -1;
915             return Z_OK;
916             }
917             beg = 0;
918             left -= copy;
919             }
920             zmemcpy(s->pending_buf + s->pending,
921             s->gzhead->extra + s->gzindex, left);
922             s->pending += left;
923             HCRC_UPDATE(beg);
924             s->gzindex = 0;
925             }
926             s->status = NAME_STATE;
927             }
928             if (s->status == NAME_STATE) {
929             if (s->gzhead->name != Z_NULL) {
930             ulg beg = s->pending; /* start of bytes to update crc */
931             int val;
932             do {
933             if (s->pending == s->pending_buf_size) {
934             HCRC_UPDATE(beg);
935             flush_pending(strm);
936             if (s->pending != 0) {
937             s->last_flush = -1;
938             return Z_OK;
939             }
940             beg = 0;
941             }
942             val = s->gzhead->name[s->gzindex++];
943             put_byte(s, val);
944             } while (val != 0);
945             HCRC_UPDATE(beg);
946             s->gzindex = 0;
947             }
948             s->status = COMMENT_STATE;
949             }
950             if (s->status == COMMENT_STATE) {
951             if (s->gzhead->comment != Z_NULL) {
952             ulg beg = s->pending; /* start of bytes to update crc */
953             int val;
954             do {
955             if (s->pending == s->pending_buf_size) {
956             HCRC_UPDATE(beg);
957             flush_pending(strm);
958             if (s->pending != 0) {
959             s->last_flush = -1;
960             return Z_OK;
961             }
962             beg = 0;
963             }
964             val = s->gzhead->comment[s->gzindex++];
965             put_byte(s, val);
966             } while (val != 0);
967             HCRC_UPDATE(beg);
968             }
969             s->status = HCRC_STATE;
970             }
971             if (s->status == HCRC_STATE) {
972             if (s->gzhead->hcrc) {
973             if (s->pending + 2 > s->pending_buf_size) {
974             flush_pending(strm);
975             if (s->pending != 0) {
976             s->last_flush = -1;
977             return Z_OK;
978             }
979             }
980             put_byte(s, (Byte)(strm->adler & 0xff));
981             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
982             strm->adler = crc32(0L, Z_NULL, 0);
983             }
984             s->status = BUSY_STATE;
985              
986             /* Compression must start with an empty pending buffer */
987             flush_pending(strm);
988             if (s->pending != 0) {
989             s->last_flush = -1;
990             return Z_OK;
991             }
992             }
993             #endif
994              
995             /* Start a new block or continue the current one.
996             */
997 219 100         if (strm->avail_in != 0 || s->lookahead != 0 ||
    50          
    50          
998 7 100         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
999             block_state bstate;
1000              
1001 214 50         bstate = s->level == 0 ? deflate_stored(s, flush) :
    50          
    50          
1002 214           s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1003 214           s->strategy == Z_RLE ? deflate_rle(s, flush) :
1004 214           (*(configuration_table[s->level].func))(s, flush);
1005              
1006 214 100         if (bstate == finish_started || bstate == finish_done) {
    50          
1007 214           s->status = FINISH_STATE;
1008             }
1009 214 50         if (bstate == need_more || bstate == finish_started) {
    100          
1010 4 50         if (strm->avail_out == 0) {
1011 4           s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1012             }
1013 4           return Z_OK;
1014             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1015             * of deflate should use the same flush parameter to make sure
1016             * that the flush is complete. So we don't have to output an
1017             * empty block here, this will be done at next call. This also
1018             * ensures that for a very small output buffer, we emit at most
1019             * one empty block.
1020             */
1021             }
1022 210 50         if (bstate == block_done) {
1023 0 0         if (flush == Z_PARTIAL_FLUSH) {
1024 0           _tr_align(s);
1025 0 0         } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1026 0           _tr_stored_block(s, (char*)0, 0L, 0);
1027             /* For a full flush, this empty block will be recognized
1028             * as a special marker by inflate_sync().
1029             */
1030 0 0         if (flush == Z_FULL_FLUSH) {
1031 0           CLEAR_HASH(s); /* forget history */
1032 0 0         if (s->lookahead == 0) {
1033 0           s->strstart = 0;
1034 0           s->block_start = 0L;
1035 0           s->insert = 0;
1036             }
1037             }
1038             }
1039 0           flush_pending(strm);
1040 0 0         if (strm->avail_out == 0) {
1041 0           s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1042 0           return Z_OK;
1043             }
1044             }
1045             }
1046              
1047 215 50         if (flush != Z_FINISH) return Z_OK;
1048 215 100         if (s->wrap <= 0) return Z_STREAM_END;
1049              
1050             /* Write the trailer */
1051             #ifdef GZIP
1052             if (s->wrap == 2) {
1053             put_byte(s, (Byte)(strm->adler & 0xff));
1054             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1055             put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1056             put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1057             put_byte(s, (Byte)(strm->total_in & 0xff));
1058             put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1059             put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1060             put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1061             }
1062             else
1063             #endif
1064             {
1065 214           putShortMSB(s, (uInt)(strm->adler >> 16));
1066 214           putShortMSB(s, (uInt)(strm->adler & 0xffff));
1067             }
1068 214           flush_pending(strm);
1069             /* If avail_out is zero, the application will call deflate again
1070             * to flush the rest.
1071             */
1072 214 50         if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1073 214           return s->pending != 0 ? Z_OK : Z_STREAM_END;
1074             }
1075              
1076             /* ========================================================================= */
1077 191           int ZEXPORT deflateEnd (strm)
1078             z_streamp strm;
1079             {
1080             int status;
1081              
1082 191 50         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1083              
1084 191           status = strm->state->status;
1085              
1086             /* Deallocate in reverse order of allocations: */
1087 191 50         TRY_FREE(strm, strm->state->pending_buf);
1088 191 50         TRY_FREE(strm, strm->state->head);
1089 191 50         TRY_FREE(strm, strm->state->prev);
1090 191 50         TRY_FREE(strm, strm->state->window);
1091              
1092 191           ZFREE(strm, strm->state);
1093 191           strm->state = Z_NULL;
1094              
1095 191 50         return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1096             }
1097              
1098             /* =========================================================================
1099             * Copy the source state to the destination state.
1100             * To simplify the source, this is not supported for 16-bit MSDOS (which
1101             * doesn't have enough memory anyway to duplicate compression states).
1102             */
1103 0           int ZEXPORT deflateCopy (dest, source)
1104             z_streamp dest;
1105             z_streamp source;
1106             {
1107             #ifdef MAXSEG_64K
1108             return Z_STREAM_ERROR;
1109             #else
1110             deflate_state *ds;
1111             deflate_state *ss;
1112             ushf *overlay;
1113              
1114              
1115 0 0         if (deflateStateCheck(source) || dest == Z_NULL) {
    0          
1116 0           return Z_STREAM_ERROR;
1117             }
1118              
1119 0           ss = source->state;
1120              
1121 0           zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1122              
1123 0           ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1124 0 0         if (ds == Z_NULL) return Z_MEM_ERROR;
1125 0           dest->state = (struct internal_state FAR *) ds;
1126 0           zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1127 0           ds->strm = dest;
1128              
1129 0           ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1130 0           ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1131 0           ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1132 0           overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1133 0           ds->pending_buf = (uchf *) overlay;
1134              
1135 0 0         if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
    0          
    0          
    0          
1136 0           ds->pending_buf == Z_NULL) {
1137 0           deflateEnd (dest);
1138 0           return Z_MEM_ERROR;
1139             }
1140             /* following zmemcpy do not work for 16-bit MSDOS */
1141 0           zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1142 0           zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1143 0           zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1144 0           zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1145              
1146 0           ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1147 0           ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1148 0           ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1149              
1150 0           ds->l_desc.dyn_tree = ds->dyn_ltree;
1151 0           ds->d_desc.dyn_tree = ds->dyn_dtree;
1152 0           ds->bl_desc.dyn_tree = ds->bl_tree;
1153              
1154 0           return Z_OK;
1155             #endif /* MAXSEG_64K */
1156             }
1157              
1158             /* ===========================================================================
1159             * Read a new buffer from the current input stream, update the adler32
1160             * and total number of bytes read. All deflate() input goes through
1161             * this function so some applications may wish to modify it to avoid
1162             * allocating a large strm->next_in buffer and copying from it.
1163             * (See also flush_pending()).
1164             */
1165 212           local unsigned read_buf(strm, buf, size)
1166             z_streamp strm;
1167             Bytef *buf;
1168             unsigned size;
1169             {
1170 212           unsigned len = strm->avail_in;
1171              
1172 212 50         if (len > size) len = size;
1173 212 50         if (len == 0) return 0;
1174              
1175 212           strm->avail_in -= len;
1176              
1177 212           zmemcpy(buf, strm->next_in, len);
1178 212 50         if (strm->state->wrap == 1) {
1179 212           strm->adler = adler32(strm->adler, buf, len);
1180             }
1181             #ifdef GZIP
1182             else if (strm->state->wrap == 2) {
1183             strm->adler = crc32(strm->adler, buf, len);
1184             }
1185             #endif
1186 212           strm->next_in += len;
1187 212           strm->total_in += len;
1188              
1189 212           return len;
1190             }
1191              
1192             /* ===========================================================================
1193             * Initialize the "longest match" routines for a new zlib stream
1194             */
1195 241           local void lm_init (s)
1196             deflate_state *s;
1197             {
1198 241           s->window_size = (ulg)2L*s->w_size;
1199              
1200 241           CLEAR_HASH(s);
1201              
1202             /* Set the default configuration parameters:
1203             */
1204 241           s->max_lazy_match = configuration_table[s->level].max_lazy;
1205 241           s->good_match = configuration_table[s->level].good_length;
1206 241           s->nice_match = configuration_table[s->level].nice_length;
1207 241           s->max_chain_length = configuration_table[s->level].max_chain;
1208              
1209 241           s->strstart = 0;
1210 241           s->block_start = 0L;
1211 241           s->lookahead = 0;
1212 241           s->insert = 0;
1213 241           s->match_length = s->prev_length = MIN_MATCH-1;
1214 241           s->match_available = 0;
1215 241           s->ins_h = 0;
1216             #ifndef FASTEST
1217             #ifdef ASMV
1218             match_init(); /* initialize the asm code */
1219             #endif
1220             #endif
1221 241           }
1222              
1223             #ifndef FASTEST
1224             /* ===========================================================================
1225             * Set match_start to the longest match starting at the given string and
1226             * return its length. Matches shorter or equal to prev_length are discarded,
1227             * in which case the result is equal to prev_length and match_start is
1228             * garbage.
1229             * IN assertions: cur_match is the head of the hash chain for the current
1230             * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1231             * OUT assertion: the match length is not greater than s->lookahead.
1232             */
1233             #ifndef ASMV
1234             /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1235             * match.S. The code will be functionally equivalent.
1236             */
1237 748           local uInt longest_match(s, cur_match)
1238             deflate_state *s;
1239             IPos cur_match; /* current match */
1240             {
1241 748           unsigned chain_length = s->max_chain_length;/* max hash chain length */
1242 748           register Bytef *scan = s->window + s->strstart; /* current string */
1243             register Bytef *match; /* matched string */
1244             register int len; /* length of current match */
1245 748           int best_len = (int)s->prev_length; /* best match length so far */
1246 748           int nice_match = s->nice_match; /* stop if match long enough */
1247 1496           IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1248 748 50         s->strstart - (IPos)MAX_DIST(s) : NIL;
1249             /* Stop when cur_match becomes <= limit. To simplify the code,
1250             * we prevent matches with the string of window index 0.
1251             */
1252 748           Posf *prev = s->prev;
1253 748           uInt wmask = s->w_mask;
1254              
1255             #ifdef UNALIGNED_OK
1256             /* Compare two bytes at a time. Note: this is not always beneficial.
1257             * Try with and without -DUNALIGNED_OK to check.
1258             */
1259             register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1260             register ush scan_start = *(ushf*)scan;
1261             register ush scan_end = *(ushf*)(scan+best_len-1);
1262             #else
1263 748           register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1264 748           register Byte scan_end1 = scan[best_len-1];
1265 748           register Byte scan_end = scan[best_len];
1266             #endif
1267              
1268             /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1269             * It is easy to get rid of this optimization if necessary.
1270             */
1271             Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1272              
1273             /* Do not waste too much time if we already have a good match: */
1274 748 100         if (s->prev_length >= s->good_match) {
1275 10           chain_length >>= 2;
1276             }
1277             /* Do not look for matches beyond the end of the input. This is necessary
1278             * to make deflate deterministic.
1279             */
1280 748 100         if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1281              
1282             Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1283              
1284             do {
1285             Assert(cur_match < s->strstart, "no future");
1286 831           match = s->window + cur_match;
1287              
1288             /* Skip to next match if the match length cannot increase
1289             * or if the match length is less than 2. Note that the checks below
1290             * for insufficient lookahead only occur occasionally for performance
1291             * reasons. Therefore uninitialized memory will be accessed, and
1292             * conditional jumps will be made that depend on those values.
1293             * However the length of the match is limited to the lookahead, so
1294             * the output of deflate is not affected by the uninitialized values.
1295             */
1296             #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1297             /* This code assumes sizeof(unsigned short) == 2. Do not use
1298             * UNALIGNED_OK if your compiler uses a different size.
1299             */
1300             if (*(ushf*)(match+best_len-1) != scan_end ||
1301             *(ushf*)match != scan_start) continue;
1302              
1303             /* It is not necessary to compare scan[2] and match[2] since they are
1304             * always equal when the other bytes match, given that the hash keys
1305             * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1306             * strstart+3, +5, ... up to strstart+257. We check for insufficient
1307             * lookahead only every 4th comparison; the 128th check will be made
1308             * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1309             * necessary to put more guard bytes at the end of the window, or
1310             * to check more often for insufficient lookahead.
1311             */
1312             Assert(scan[2] == match[2], "scan[2]?");
1313             scan++, match++;
1314             do {
1315             } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1316             *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1317             *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318             *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1319             scan < strend);
1320             /* The funny "do {}" generates better code on most compilers */
1321              
1322             /* Here, scan <= window+strstart+257 */
1323             Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1324             if (*scan == *match) scan++;
1325              
1326             len = (MAX_MATCH - 1) - (int)(strend-scan);
1327             scan = strend - (MAX_MATCH-1);
1328              
1329             #else /* UNALIGNED_OK */
1330              
1331 831 100         if (match[best_len] != scan_end ||
    100          
1332 707 100         match[best_len-1] != scan_end1 ||
1333 637 50         *match != *scan ||
1334 194           *++match != scan[1]) continue;
1335              
1336             /* The check at best_len-1 can be removed because it will be made
1337             * again later. (This heuristic is not always a win.)
1338             * It is not necessary to compare scan[2] and match[2] since they
1339             * are always equal when the other bytes match, given that
1340             * the hash keys are equal and that HASH_BITS >= 8.
1341             */
1342 637           scan += 2, match++;
1343             Assert(*scan == *match, "match[2]?");
1344              
1345             /* We check for insufficient lookahead only every 8th comparison;
1346             * the 256th check will be made at strstart+258.
1347             */
1348             do {
1349 709 100         } while (*++scan == *++match && *++scan == *++match &&
    100          
1350 654 100         *++scan == *++match && *++scan == *++match &&
    100          
1351 516 100         *++scan == *++match && *++scan == *++match &&
    100          
1352 433 100         *++scan == *++match && *++scan == *++match &&
    50          
1353 1059 100         scan < strend);
1354              
1355             Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1356              
1357 637           len = MAX_MATCH - (int)(strend - scan);
1358 637           scan = strend - MAX_MATCH;
1359              
1360             #endif /* UNALIGNED_OK */
1361              
1362 637 50         if (len > best_len) {
1363 637           s->match_start = cur_match;
1364 637           best_len = len;
1365 637 100         if (len >= nice_match) break;
1366             #ifdef UNALIGNED_OK
1367             scan_end = *(ushf*)(scan+best_len-1);
1368             #else
1369 518           scan_end1 = scan[best_len-1];
1370 518           scan_end = scan[best_len];
1371             #endif
1372             }
1373 712           } while ((cur_match = prev[cur_match & wmask]) > limit
1374 712 100         && --chain_length != 0);
    100          
1375              
1376 748 50         if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1377 0           return s->lookahead;
1378             }
1379             #endif /* ASMV */
1380              
1381             #else /* FASTEST */
1382              
1383             /* ---------------------------------------------------------------------------
1384             * Optimized version for FASTEST only
1385             */
1386             local uInt longest_match(s, cur_match)
1387             deflate_state *s;
1388             IPos cur_match; /* current match */
1389             {
1390             register Bytef *scan = s->window + s->strstart; /* current string */
1391             register Bytef *match; /* matched string */
1392             register int len; /* length of current match */
1393             register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1394              
1395             /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1396             * It is easy to get rid of this optimization if necessary.
1397             */
1398             Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1399              
1400             Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1401              
1402             Assert(cur_match < s->strstart, "no future");
1403              
1404             match = s->window + cur_match;
1405              
1406             /* Return failure if the match length is less than 2:
1407             */
1408             if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1409              
1410             /* The check at best_len-1 can be removed because it will be made
1411             * again later. (This heuristic is not always a win.)
1412             * It is not necessary to compare scan[2] and match[2] since they
1413             * are always equal when the other bytes match, given that
1414             * the hash keys are equal and that HASH_BITS >= 8.
1415             */
1416             scan += 2, match += 2;
1417             Assert(*scan == *match, "match[2]?");
1418              
1419             /* We check for insufficient lookahead only every 8th comparison;
1420             * the 256th check will be made at strstart+258.
1421             */
1422             do {
1423             } while (*++scan == *++match && *++scan == *++match &&
1424             *++scan == *++match && *++scan == *++match &&
1425             *++scan == *++match && *++scan == *++match &&
1426             *++scan == *++match && *++scan == *++match &&
1427             scan < strend);
1428              
1429             Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1430              
1431             len = MAX_MATCH - (int)(strend - scan);
1432              
1433             if (len < MIN_MATCH) return MIN_MATCH - 1;
1434              
1435             s->match_start = cur_match;
1436             return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1437             }
1438              
1439             #endif /* FASTEST */
1440              
1441             #ifdef ZLIB_DEBUG
1442              
1443             #define EQUAL 0
1444             /* result of memcmp for equal strings */
1445              
1446             /* ===========================================================================
1447             * Check that the match at match_start is indeed a match.
1448             */
1449             local void check_match(s, start, match, length)
1450             deflate_state *s;
1451             IPos start, match;
1452             int length;
1453             {
1454             /* check that the match is indeed a match */
1455             if (zmemcmp(s->window + match,
1456             s->window + start, length) != EQUAL) {
1457             fprintf(stderr, " start %u, match %u, length %d\n",
1458             start, match, length);
1459             do {
1460             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1461             } while (--length != 0);
1462             z_error("invalid match");
1463             }
1464             if (z_verbose > 1) {
1465             fprintf(stderr,"\\[%d,%d]", start-match, length);
1466             do { putc(s->window[start++], stderr); } while (--length != 0);
1467             }
1468             }
1469             #else
1470             # define check_match(s, start, match, length)
1471             #endif /* ZLIB_DEBUG */
1472              
1473             /* ===========================================================================
1474             * Fill the window when the lookahead becomes insufficient.
1475             * Updates strstart and lookahead.
1476             *
1477             * IN assertion: lookahead < MIN_LOOKAHEAD
1478             * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1479             * At least one byte has been read, or avail_in == 0; reads are
1480             * performed for at least two bytes (required for the zip translate_eol
1481             * option -- not supported here).
1482             */
1483 16690           local void fill_window(s)
1484             deflate_state *s;
1485             {
1486             unsigned n;
1487             unsigned more; /* Amount of free space at the end of the window. */
1488 16690           uInt wsize = s->w_size;
1489              
1490             Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1491              
1492             do {
1493 16690           more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1494              
1495             /* Deal with !@#$% 64K limit: */
1496             if (sizeof(int) <= 2) {
1497             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1498             more = wsize;
1499              
1500             } else if (more == (unsigned)(-1)) {
1501             /* Very unlikely, but possible on 16 bit machine if
1502             * strstart == 0 && lookahead == 1 (input done a byte at time)
1503             */
1504             more--;
1505             }
1506             }
1507              
1508             /* If the window is almost full and there is insufficient lookahead,
1509             * move the upper half to the lower one to make room in the upper half.
1510             */
1511 16690 50         if (s->strstart >= wsize+MAX_DIST(s)) {
1512              
1513 0           zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1514 0           s->match_start -= wsize;
1515 0           s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1516 0           s->block_start -= (long) wsize;
1517 0           slide_hash(s);
1518 0           more += wsize;
1519             }
1520 16690 100         if (s->strm->avail_in == 0) break;
1521              
1522             /* If there was no sliding:
1523             * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1524             * more == window_size - lookahead - strstart
1525             * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1526             * => more >= window_size - 2*WSIZE + 2
1527             * In the BIG_MEM or MMAP case (not yet supported),
1528             * window_size == input_size + MIN_LOOKAHEAD &&
1529             * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1530             * Otherwise, window_size == 2*WSIZE so more >= 2.
1531             * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1532             */
1533             Assert(more >= 2, "more < 2");
1534              
1535 212           n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1536 212           s->lookahead += n;
1537              
1538             /* Initialize the hash value now that we have some input: */
1539 212 50         if (s->lookahead + s->insert >= MIN_MATCH) {
1540 212           uInt str = s->strstart - s->insert;
1541 212           s->ins_h = s->window[str];
1542 212           UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1543             #if MIN_MATCH != 3
1544             Call UPDATE_HASH() MIN_MATCH-3 more times
1545             #endif
1546 212 50         while (s->insert) {
1547 0           UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1548             #ifndef FASTEST
1549 0           s->prev[str & s->w_mask] = s->head[s->ins_h];
1550             #endif
1551 0           s->head[s->ins_h] = (Pos)str;
1552 0           str++;
1553 0           s->insert--;
1554 0 0         if (s->lookahead + s->insert < MIN_MATCH)
1555 0           break;
1556             }
1557             }
1558             /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1559             * but this is not important since only literal bytes will be emitted.
1560             */
1561              
1562 212 100         } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
    50          
1563              
1564             /* If the WIN_INIT bytes after the end of the current data have never been
1565             * written, then zero those bytes in order to avoid memory check reports of
1566             * the use of uninitialized (or uninitialised as Julian writes) bytes by
1567             * the longest match routines. Update the high water mark for the next
1568             * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1569             * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1570             */
1571 16690 50         if (s->high_water < s->window_size) {
1572 16690           ulg curr = s->strstart + (ulg)(s->lookahead);
1573             ulg init;
1574              
1575 16690 100         if (s->high_water < curr) {
1576             /* Previous high water mark below current data -- zero WIN_INIT
1577             * bytes or up to end of window, whichever is less.
1578             */
1579 168           init = s->window_size - curr;
1580 168 50         if (init > WIN_INIT)
1581 168           init = WIN_INIT;
1582 168           zmemzero(s->window + curr, (unsigned)init);
1583 168           s->high_water = curr + init;
1584             }
1585 16522 100         else if (s->high_water < (ulg)curr + WIN_INIT) {
1586             /* High water mark at or above current data, but below current data
1587             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1588             * to end of window, whichever is less.
1589             */
1590 4           init = (ulg)curr + WIN_INIT - s->high_water;
1591 4 50         if (init > s->window_size - s->high_water)
1592 0           init = s->window_size - s->high_water;
1593 4           zmemzero(s->window + s->high_water, (unsigned)init);
1594 4           s->high_water += init;
1595             }
1596             }
1597              
1598             Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1599             "not enough room for search");
1600 16690           }
1601              
1602             /* ===========================================================================
1603             * Flush the current block, with given end-of-file flag.
1604             * IN assertion: strstart is set to the end of the current match.
1605             */
1606             #define FLUSH_BLOCK_ONLY(s, last) { \
1607             _tr_flush_block(s, (s->block_start >= 0L ? \
1608             (charf *)&s->window[(unsigned)s->block_start] : \
1609             (charf *)Z_NULL), \
1610             (ulg)((long)s->strstart - s->block_start), \
1611             (last)); \
1612             s->block_start = s->strstart; \
1613             flush_pending(s->strm); \
1614             Tracev((stderr,"[FLUSH]")); \
1615             }
1616              
1617             /* Same but force premature exit if necessary. */
1618             #define FLUSH_BLOCK(s, last) { \
1619             FLUSH_BLOCK_ONLY(s, last); \
1620             if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1621             }
1622              
1623             /* Maximum stored block length in deflate format (not including header). */
1624             #define MAX_STORED 65535
1625              
1626             /* Minimum of a and b. */
1627             #define MIN(a, b) ((a) > (b) ? (b) : (a))
1628              
1629             /* ===========================================================================
1630             * Copy without compression as much as possible from the input stream, return
1631             * the current block state.
1632             *
1633             * In case deflateParams() is used to later switch to a non-zero compression
1634             * level, s->matches (otherwise unused when storing) keeps track of the number
1635             * of hash table slides to perform. If s->matches is 1, then one hash table
1636             * slide will be done when switching. If s->matches is 2, the maximum value
1637             * allowed here, then the hash table will be cleared, since two or more slides
1638             * is the same as a clear.
1639             *
1640             * deflate_stored() is written to minimize the number of times an input byte is
1641             * copied. It is most efficient with large input and output buffers, which
1642             * maximizes the opportunites to have a single copy from next_in to next_out.
1643             */
1644 0           local block_state deflate_stored(s, flush)
1645             deflate_state *s;
1646             int flush;
1647             {
1648             /* Smallest worthy block size when not flushing or finishing. By default
1649             * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1650             * large input and output buffers, the stored block size will be larger.
1651             */
1652 0           unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1653              
1654             /* Copy as many min_block or larger stored blocks directly to next_out as
1655             * possible. If flushing, copy the remaining available input to next_out as
1656             * stored blocks, if there is enough space.
1657             */
1658 0           unsigned len, left, have, last = 0;
1659 0           unsigned used = s->strm->avail_in;
1660             do {
1661             /* Set len to the maximum size block that we can copy directly with the
1662             * available input data and output space. Set left to how much of that
1663             * would be copied from what's left in the window.
1664             */
1665 0           len = MAX_STORED; /* maximum deflate stored block length */
1666 0           have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1667 0 0         if (s->strm->avail_out < have) /* need room for header */
1668 0           break;
1669             /* maximum stored block length that will fit in avail_out: */
1670 0           have = s->strm->avail_out - have;
1671 0           left = s->strstart - s->block_start; /* bytes left in window */
1672 0 0         if (len > (ulg)left + s->strm->avail_in)
1673 0           len = left + s->strm->avail_in; /* limit len to the input */
1674 0 0         if (len > have)
1675 0           len = have; /* limit len to the output */
1676              
1677             /* If the stored block would be less than min_block in length, or if
1678             * unable to copy all of the available input when flushing, then try
1679             * copying to the window and the pending buffer instead. Also don't
1680             * write an empty block when flushing -- deflate() does that.
1681             */
1682 0 0         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
    0          
    0          
    0          
1683 0 0         flush == Z_NO_FLUSH ||
1684 0           len != left + s->strm->avail_in))
1685             break;
1686              
1687             /* Make a dummy stored block in pending to get the header bytes,
1688             * including any pending bits. This also updates the debugging counts.
1689             */
1690 0 0         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
    0          
1691 0           _tr_stored_block(s, (char *)0, 0L, last);
1692              
1693             /* Replace the lengths in the dummy stored block with len. */
1694 0           s->pending_buf[s->pending - 4] = len;
1695 0           s->pending_buf[s->pending - 3] = len >> 8;
1696 0           s->pending_buf[s->pending - 2] = ~len;
1697 0           s->pending_buf[s->pending - 1] = ~len >> 8;
1698              
1699             /* Write the stored block header bytes. */
1700 0           flush_pending(s->strm);
1701              
1702             #ifdef ZLIB_DEBUG
1703             /* Update debugging counts for the data about to be copied. */
1704             s->compressed_len += len << 3;
1705             s->bits_sent += len << 3;
1706             #endif
1707              
1708             /* Copy uncompressed bytes from the window to next_out. */
1709 0 0         if (left) {
1710 0 0         if (left > len)
1711 0           left = len;
1712 0           zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1713 0           s->strm->next_out += left;
1714 0           s->strm->avail_out -= left;
1715 0           s->strm->total_out += left;
1716 0           s->block_start += left;
1717 0           len -= left;
1718             }
1719              
1720             /* Copy uncompressed bytes directly from next_in to next_out, updating
1721             * the check value.
1722             */
1723 0 0         if (len) {
1724 0           read_buf(s->strm, s->strm->next_out, len);
1725 0           s->strm->next_out += len;
1726 0           s->strm->avail_out -= len;
1727 0           s->strm->total_out += len;
1728             }
1729 0 0         } while (last == 0);
1730              
1731             /* Update the sliding window with the last s->w_size bytes of the copied
1732             * data, or append all of the copied data to the existing window if less
1733             * than s->w_size bytes were copied. Also update the number of bytes to
1734             * insert in the hash tables, in the event that deflateParams() switches to
1735             * a non-zero compression level.
1736             */
1737 0           used -= s->strm->avail_in; /* number of input bytes directly copied */
1738 0 0         if (used) {
1739             /* If any input was used, then no unused input remains in the window,
1740             * therefore s->block_start == s->strstart.
1741             */
1742 0 0         if (used >= s->w_size) { /* supplant the previous history */
1743 0           s->matches = 2; /* clear hash */
1744 0           zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1745 0           s->strstart = s->w_size;
1746             }
1747             else {
1748 0 0         if (s->window_size - s->strstart <= used) {
1749             /* Slide the window down. */
1750 0           s->strstart -= s->w_size;
1751 0           zmemcpy(s->window, s->window + s->w_size, s->strstart);
1752 0 0         if (s->matches < 2)
1753 0           s->matches++; /* add a pending slide_hash() */
1754             }
1755 0           zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1756 0           s->strstart += used;
1757             }
1758 0           s->block_start = s->strstart;
1759 0           s->insert += MIN(used, s->w_size - s->insert);
1760             }
1761 0 0         if (s->high_water < s->strstart)
1762 0           s->high_water = s->strstart;
1763              
1764             /* If the last block was written to next_out, then done. */
1765 0 0         if (last)
1766 0           return finish_done;
1767              
1768             /* If flushing and all input has been consumed, then done. */
1769 0 0         if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
    0          
    0          
1770 0 0         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1771 0           return block_done;
1772              
1773             /* Fill the window with any remaining input. */
1774 0           have = s->window_size - s->strstart - 1;
1775 0 0         if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
    0          
1776             /* Slide the window down. */
1777 0           s->block_start -= s->w_size;
1778 0           s->strstart -= s->w_size;
1779 0           zmemcpy(s->window, s->window + s->w_size, s->strstart);
1780 0 0         if (s->matches < 2)
1781 0           s->matches++; /* add a pending slide_hash() */
1782 0           have += s->w_size; /* more space now */
1783             }
1784 0 0         if (have > s->strm->avail_in)
1785 0           have = s->strm->avail_in;
1786 0 0         if (have) {
1787 0           read_buf(s->strm, s->window + s->strstart, have);
1788 0           s->strstart += have;
1789             }
1790 0 0         if (s->high_water < s->strstart)
1791 0           s->high_water = s->strstart;
1792              
1793             /* There was not enough avail_out to write a complete worthy or flushed
1794             * stored block to next_out. Write a stored block to pending instead, if we
1795             * have enough input for a worthy block, or if flushing and there is enough
1796             * room for the remaining input as a stored block in the pending buffer.
1797             */
1798 0           have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1799             /* maximum stored block length that will fit in pending: */
1800 0           have = MIN(s->pending_buf_size - have, MAX_STORED);
1801 0           min_block = MIN(have, s->w_size);
1802 0           left = s->strstart - s->block_start;
1803 0 0         if (left >= min_block ||
    0          
1804 0 0         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
    0          
    0          
1805 0 0         s->strm->avail_in == 0 && left <= have)) {
1806 0           len = MIN(left, have);
1807 0 0         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1808 0 0         len == left ? 1 : 0;
    0          
1809 0           _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1810 0           s->block_start += len;
1811 0           flush_pending(s->strm);
1812             }
1813              
1814             /* We've done all we can with the available input and output. */
1815 0 0         return last ? finish_started : need_more;
1816             }
1817              
1818             /* ===========================================================================
1819             * Compress as much as possible from the input stream, return the current
1820             * block state.
1821             * This function does not perform lazy evaluation of matches and inserts
1822             * new strings in the dictionary only for unmatched strings or for short
1823             * matches. It is used only for the fast compression options.
1824             */
1825 157           local block_state deflate_fast(s, flush)
1826             deflate_state *s;
1827             int flush;
1828             {
1829             IPos hash_head; /* head of the hash chain */
1830             int bflush; /* set if current block must be flushed */
1831              
1832             for (;;) {
1833             /* Make sure that we always have enough lookahead, except
1834             * at the end of the input file. We need MAX_MATCH bytes
1835             * for the next match, plus MIN_MATCH bytes to insert the
1836             * string following the next match.
1837             */
1838 13967 100         if (s->lookahead < MIN_LOOKAHEAD) {
1839 13540           fill_window(s);
1840 13540 100         if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
    50          
1841 0           return need_more;
1842             }
1843 13540 100         if (s->lookahead == 0) break; /* flush the current block */
1844             }
1845              
1846             /* Insert the string window[strstart .. strstart+2] in the
1847             * dictionary, and set hash_head to the head of the hash chain:
1848             */
1849 13810           hash_head = NIL;
1850 13810 100         if (s->lookahead >= MIN_MATCH) {
1851 13548           INSERT_STRING(s, s->strstart, hash_head);
1852             }
1853              
1854             /* Find the longest match, discarding those <= prev_length.
1855             * At this point we have always match_length < MIN_MATCH
1856             */
1857 13810 100         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
    50          
1858             /* To simplify the code, we prevent matches with the string
1859             * of window index 0 (in particular we have to avoid a match
1860             * of the string with itself at the start of the input file).
1861             */
1862 597           s->match_length = longest_match (s, hash_head);
1863             /* longest_match() sets match_start */
1864             }
1865 13810 100         if (s->match_length >= MIN_MATCH) {
1866             check_match(s, s->strstart, s->match_start, s->match_length);
1867              
1868 520 100         _tr_tally_dist(s, s->strstart - s->match_start,
1869             s->match_length - MIN_MATCH, bflush);
1870              
1871 520           s->lookahead -= s->match_length;
1872              
1873             /* Insert new strings in the hash table only if the match length
1874             * is not too large. This saves time but degrades compression.
1875             */
1876             #ifndef FASTEST
1877 520 100         if (s->match_length <= s->max_insert_length &&
    100          
1878 271           s->lookahead >= MIN_MATCH) {
1879 265           s->match_length--; /* string at strstart already in table */
1880             do {
1881 547           s->strstart++;
1882 547           INSERT_STRING(s, s->strstart, hash_head);
1883             /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1884             * always MIN_MATCH bytes ahead.
1885             */
1886 547 100         } while (--s->match_length != 0);
1887 265           s->strstart++;
1888             } else
1889             #endif
1890             {
1891 255           s->strstart += s->match_length;
1892 255           s->match_length = 0;
1893 255           s->ins_h = s->window[s->strstart];
1894 520           UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1895             #if MIN_MATCH != 3
1896             Call UPDATE_HASH() MIN_MATCH-3 more times
1897             #endif
1898             /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1899             * matter since it will be recomputed at next deflate call.
1900             */
1901             }
1902             } else {
1903             /* No match, output a literal byte */
1904             Tracevv((stderr,"%c", s->window[s->strstart]));
1905 13290           _tr_tally_lit (s, s->window[s->strstart], bflush);
1906 13290           s->lookahead--;
1907 13290           s->strstart++;
1908             }
1909 13810 50         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
1910 13810           }
1911 157           s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1912 157 50         if (flush == Z_FINISH) {
1913 157 50         FLUSH_BLOCK(s, 1);
    50          
1914 157           return finish_done;
1915             }
1916 0 0         if (s->last_lit)
1917 0 0         FLUSH_BLOCK(s, 0);
    0          
1918 0           return block_done;
1919             }
1920              
1921             #ifndef FASTEST
1922             /* ===========================================================================
1923             * Same as above, but achieves better compression. We use a lazy
1924             * evaluation for matches: a match is finally adopted only if there is
1925             * no better match at the next window position.
1926             */
1927 57           local block_state deflate_slow(s, flush)
1928             deflate_state *s;
1929             int flush;
1930             {
1931             IPos hash_head; /* head of hash chain */
1932             int bflush; /* set if current block must be flushed */
1933              
1934             /* Process the input block. */
1935             for (;;) {
1936             /* Make sure that we always have enough lookahead, except
1937             * at the end of the input file. We need MAX_MATCH bytes
1938             * for the next match, plus MIN_MATCH bytes to insert the
1939             * string following the next match.
1940             */
1941 3150 50         if (s->lookahead < MIN_LOOKAHEAD) {
1942 3150           fill_window(s);
1943 3150 50         if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
    50          
1944 0           return need_more;
1945             }
1946 3150 100         if (s->lookahead == 0) break; /* flush the current block */
1947             }
1948              
1949             /* Insert the string window[strstart .. strstart+2] in the
1950             * dictionary, and set hash_head to the head of the hash chain:
1951             */
1952 3093           hash_head = NIL;
1953 3093 100         if (s->lookahead >= MIN_MATCH) {
1954 2995           INSERT_STRING(s, s->strstart, hash_head);
1955             }
1956              
1957             /* Find the longest match, discarding those <= prev_length.
1958             */
1959 3093           s->prev_length = s->match_length, s->prev_match = s->match_start;
1960 3093           s->match_length = MIN_MATCH-1;
1961              
1962 3093 100         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
    100          
    50          
1963 151           s->strstart - hash_head <= MAX_DIST(s)) {
1964             /* To simplify the code, we prevent matches with the string
1965             * of window index 0 (in particular we have to avoid a match
1966             * of the string with itself at the start of the input file).
1967             */
1968 151           s->match_length = longest_match (s, hash_head);
1969             /* longest_match() sets match_start */
1970              
1971 151 100         if (s->match_length <= 5 && (s->strategy == Z_FILTERED
    50          
1972             #if TOO_FAR <= 32767
1973 74 100         || (s->match_length == MIN_MATCH &&
    50          
1974 58           s->strstart - s->match_start > TOO_FAR)
1975             #endif
1976             )) {
1977              
1978             /* If prev_match is also MIN_MATCH, match_start is garbage
1979             * but we will ignore the current match anyway.
1980             */
1981 0           s->match_length = MIN_MATCH-1;
1982             }
1983             }
1984             /* If there was a match at the previous step and the current
1985             * match is not better, output the previous match:
1986             */
1987 3197 100         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
    50          
1988 104           uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1989             /* Do not insert strings in hash table beyond this. */
1990              
1991             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1992              
1993 104 50         _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1994             s->prev_length - MIN_MATCH, bflush);
1995              
1996             /* Insert in hash table all strings up to the end of the match.
1997             * strstart-1 and strstart are already inserted. If there is not
1998             * enough lookahead, the last two strings are not inserted in
1999             * the hash table.
2000             */
2001 104           s->lookahead -= s->prev_length-1;
2002 104           s->prev_length -= 2;
2003             do {
2004 856 100         if (++s->strstart <= max_insert) {
2005 844           INSERT_STRING(s, s->strstart, hash_head);
2006             }
2007 856 100         } while (--s->prev_length != 0);
2008 104           s->match_available = 0;
2009 104           s->match_length = MIN_MATCH-1;
2010 104           s->strstart++;
2011              
2012 104 50         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2013              
2014 2989 100         } else if (s->match_available) {
2015             /* If there was no match at the previous position, output a
2016             * single literal. If there was a match but the current match
2017             * is longer, truncate the previous match to a single literal.
2018             */
2019             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2020 2832           _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2021 2832 50         if (bflush) {
2022 0 0         FLUSH_BLOCK_ONLY(s, 0);
2023             }
2024 2832           s->strstart++;
2025 2832           s->lookahead--;
2026 2832 50         if (s->strm->avail_out == 0) return need_more;
2027             } else {
2028             /* There is no previous match to compare with, wait for
2029             * the next step to decide.
2030             */
2031 157           s->match_available = 1;
2032 157           s->strstart++;
2033 157           s->lookahead--;
2034             }
2035 3093           }
2036             Assert (flush != Z_NO_FLUSH, "no flush?");
2037 57 100         if (s->match_available) {
2038             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2039 53           _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2040 53           s->match_available = 0;
2041             }
2042 57           s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2043 57 50         if (flush == Z_FINISH) {
2044 57 50         FLUSH_BLOCK(s, 1);
    100          
2045 53           return finish_done;
2046             }
2047 0 0         if (s->last_lit)
2048 0 0         FLUSH_BLOCK(s, 0);
    0          
2049 0           return block_done;
2050             }
2051             #endif /* FASTEST */
2052              
2053             /* ===========================================================================
2054             * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2055             * one. Do not maintain a hash table. (It will be regenerated if this run of
2056             * deflate switches away from Z_RLE.)
2057             */
2058 0           local block_state deflate_rle(s, flush)
2059             deflate_state *s;
2060             int flush;
2061             {
2062             int bflush; /* set if current block must be flushed */
2063             uInt prev; /* byte at distance one to match */
2064             Bytef *scan, *strend; /* scan goes up to strend for length of run */
2065              
2066             for (;;) {
2067             /* Make sure that we always have enough lookahead, except
2068             * at the end of the input file. We need MAX_MATCH bytes
2069             * for the longest run, plus one for the unrolled loop.
2070             */
2071 0 0         if (s->lookahead <= MAX_MATCH) {
2072 0           fill_window(s);
2073 0 0         if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
    0          
2074 0           return need_more;
2075             }
2076 0 0         if (s->lookahead == 0) break; /* flush the current block */
2077             }
2078              
2079             /* See how many times the previous byte repeats */
2080 0           s->match_length = 0;
2081 0 0         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
    0          
2082 0           scan = s->window + s->strstart - 1;
2083 0           prev = *scan;
2084 0 0         if (prev == *++scan && prev == *++scan && prev == *++scan) {
    0          
    0          
2085 0           strend = s->window + s->strstart + MAX_MATCH;
2086             do {
2087 0 0         } while (prev == *++scan && prev == *++scan &&
    0          
2088 0 0         prev == *++scan && prev == *++scan &&
    0          
2089 0 0         prev == *++scan && prev == *++scan &&
    0          
2090 0 0         prev == *++scan && prev == *++scan &&
    0          
2091 0 0         scan < strend);
2092 0           s->match_length = MAX_MATCH - (uInt)(strend - scan);
2093 0 0         if (s->match_length > s->lookahead)
2094 0           s->match_length = s->lookahead;
2095             }
2096             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2097             }
2098              
2099             /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2100 0 0         if (s->match_length >= MIN_MATCH) {
2101             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2102              
2103 0 0         _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2104              
2105 0           s->lookahead -= s->match_length;
2106 0           s->strstart += s->match_length;
2107 0           s->match_length = 0;
2108             } else {
2109             /* No match, output a literal byte */
2110             Tracevv((stderr,"%c", s->window[s->strstart]));
2111 0           _tr_tally_lit (s, s->window[s->strstart], bflush);
2112 0           s->lookahead--;
2113 0           s->strstart++;
2114             }
2115 0 0         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2116 0           }
2117 0           s->insert = 0;
2118 0 0         if (flush == Z_FINISH) {
2119 0 0         FLUSH_BLOCK(s, 1);
    0          
2120 0           return finish_done;
2121             }
2122 0 0         if (s->last_lit)
2123 0 0         FLUSH_BLOCK(s, 0);
    0          
2124 0           return block_done;
2125             }
2126              
2127             /* ===========================================================================
2128             * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2129             * (It will be regenerated if this run of deflate switches away from Huffman.)
2130             */
2131 0           local block_state deflate_huff(s, flush)
2132             deflate_state *s;
2133             int flush;
2134             {
2135             int bflush; /* set if current block must be flushed */
2136              
2137             for (;;) {
2138             /* Make sure that we have a literal to write. */
2139 0 0         if (s->lookahead == 0) {
2140 0           fill_window(s);
2141 0 0         if (s->lookahead == 0) {
2142 0 0         if (flush == Z_NO_FLUSH)
2143 0           return need_more;
2144 0           break; /* flush the current block */
2145             }
2146             }
2147              
2148             /* Output a literal byte */
2149 0           s->match_length = 0;
2150             Tracevv((stderr,"%c", s->window[s->strstart]));
2151 0           _tr_tally_lit (s, s->window[s->strstart], bflush);
2152 0           s->lookahead--;
2153 0           s->strstart++;
2154 0 0         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2155 0           }
2156 0           s->insert = 0;
2157 0 0         if (flush == Z_FINISH) {
2158 0 0         FLUSH_BLOCK(s, 1);
    0          
2159 0           return finish_done;
2160             }
2161 0 0         if (s->last_lit)
2162 0 0         FLUSH_BLOCK(s, 0);
    0          
2163 0           return block_done;
2164             }