line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Geo::Horizon; |
2
|
1
|
|
|
1
|
|
134792
|
use Math::Trig qw{acos}; |
|
1
|
|
|
|
|
22990
|
|
|
1
|
|
|
|
|
80
|
|
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Geo::Horizon - Calculate distance to the visual horizon |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 SYNOPSIS |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Geo::Horizon; |
11
|
|
|
|
|
|
|
my $gh = Geo::Horizon->new("WGS84"); |
12
|
|
|
|
|
|
|
my $lat=39; |
13
|
|
|
|
|
|
|
my $alt=1.7; |
14
|
|
|
|
|
|
|
my $distance_to_horizon=$gh->distance($alt,$lat); |
15
|
|
|
|
|
|
|
print "Input Lat: $lat1\n"; |
16
|
|
|
|
|
|
|
print "Output Distance: $dist\n"; |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 DESCRIPTION |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
A perl object for calculating the distance to the visual horizon on an ellipsoid. |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=cut |
23
|
|
|
|
|
|
|
|
24
|
1
|
|
|
1
|
|
9
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
33
|
|
25
|
1
|
|
|
1
|
|
4
|
use vars qw($VERSION); |
|
1
|
|
|
|
|
6
|
|
|
1
|
|
|
|
|
193
|
|
26
|
|
|
|
|
|
|
$VERSION = sprintf("%d.%02d", q{Revision: 0.02} =~ /(\d+)\.(\d+)/); |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=head1 CONSTRUCTOR |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head2 new |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
my $gh = Geo::Horizon->new(); #default WGS84 |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=cut |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
sub new { |
37
|
3
|
|
|
3
|
1
|
883
|
my $this = shift(); |
38
|
3
|
|
33
|
|
|
22
|
my $class = ref($this) || $this; |
39
|
3
|
|
|
|
|
6
|
my $self = {}; |
40
|
3
|
|
|
|
|
9
|
bless $self, $class; |
41
|
3
|
|
|
|
|
12
|
$self->initialize(@_); |
42
|
3
|
|
|
|
|
8
|
return $self; |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=head1 METHODS |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=cut |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
sub initialize { |
50
|
3
|
|
|
3
|
0
|
6
|
my $self = shift(); |
51
|
3
|
|
|
|
|
6
|
$self->ellipsoid(shift); |
52
|
|
|
|
|
|
|
} |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=head2 ellipsoid |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
Method to set or retrieve the current ellipsoid object. The ellipsoid is a L object. |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
my $ellipsoid=$gh->ellipsoid; #Default is WGS84 |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
$gh->ellipsoid('Clarke 1866'); #Built in ellipsoids from Geo::Ellipsoids |
61
|
|
|
|
|
|
|
$gh->ellipsoid({a=>1}); #Custom Sphere 1 unit radius |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
=cut |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub ellipsoid { |
66
|
719
|
|
|
719
|
1
|
68882
|
my $self = shift(); |
67
|
719
|
100
|
|
|
|
1463
|
if (@_) { |
68
|
3
|
|
|
|
|
4
|
my $param=shift(); |
69
|
1
|
|
|
1
|
|
1310
|
use Geo::Ellipsoids; |
|
1
|
|
|
|
|
7624
|
|
|
1
|
|
|
|
|
196
|
|
70
|
3
|
|
|
|
|
15
|
my $obj=Geo::Ellipsoids->new($param); |
71
|
3
|
|
|
|
|
464
|
$self->{'ellipsoid'}=$obj; |
72
|
|
|
|
|
|
|
} |
73
|
719
|
|
|
|
|
2510
|
return $self->{'ellipsoid'}; |
74
|
|
|
|
|
|
|
} |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=head2 distance |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
The straight-line of sight distance to the horizon: This formula does not take in account radio or optical refraction which will be further the longer the wavelength. |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
my $dist=$obj->distance($alt, $lat); #alt in meters (ellipsoid units) |
81
|
|
|
|
|
|
|
#lat in signed decimal degrees |
82
|
|
|
|
|
|
|
my $dist=$obj->distance($alt); #default lat => 0 (equator) |
83
|
|
|
|
|
|
|
my $dist=$obj->distance; #default alt => 1.7 |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
Formula from http://newton.ex.ac.uk/research/qsystems/people/sque/physics/horizon/ |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
Ds = sqrt(h(2R + h)) |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
=cut |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
sub distance { |
92
|
202
|
|
|
202
|
1
|
41167
|
my $self=shift(); |
93
|
202
|
|
|
|
|
258
|
my $alt=shift(); #usually meters but actaully ellipsoid units |
94
|
202
|
50
|
|
|
|
497
|
$alt=1.7 unless defined $alt; |
95
|
202
|
|
100
|
|
|
571
|
my $lat=shift() || 0; #degrees |
96
|
|
|
|
|
|
|
#Geometric Mean (http://mentorsoftwareinc.com/CC/gistips/TIPS0899.HTM) |
97
|
202
|
|
|
|
|
397
|
my $R=sqrt($self->ellipsoid->n($lat) * $self->ellipsoid->rho($lat)); |
98
|
202
|
|
|
|
|
8114
|
return sqrt($alt * (2 * $R + $alt)); |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
=head2 distance_great_circle |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
The curved distance along the ellipsoid to the horizon: This is the great circle distance from the track point snapped to the ellipsoid to the visual horizon of the observer. |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
my $dist=$obj->distance_great_circle($alt, $lat); |
106
|
|
|
|
|
|
|
my $dist=$obj->distance_great_circle($alt); #default lat => 0 |
107
|
|
|
|
|
|
|
my $dist=$obj->distance_great_circle(); #default alt => 1.7 |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
Formula from http://newton.ex.ac.uk/research/qsystems/people/sque/physics/horizon/ |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
Dc = R acos(R / (R + h)) |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
=cut |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
sub distance_great_circle { |
116
|
102
|
|
|
102
|
1
|
3850
|
my $self=shift(); |
117
|
102
|
|
|
|
|
112
|
my $alt=shift(); #usually meters but actaully ellipsoid units |
118
|
102
|
50
|
|
|
|
304
|
$alt=1.7 unless defined $alt; |
119
|
102
|
|
100
|
|
|
234
|
my $lat=shift() || 0; #degrees |
120
|
102
|
|
|
|
|
206
|
my $R=sqrt($self->ellipsoid->n($lat) * $self->ellipsoid->rho($lat)); |
121
|
102
|
|
|
|
|
2802
|
return $R * acos($R / ($R + $alt)); |
122
|
|
|
|
|
|
|
} |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
1; |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
__END__ |