line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package DateTime::Indic::Utils; |
2
|
|
|
|
|
|
|
|
3
|
14
|
|
|
14
|
|
17295
|
use base 'Exporter'; |
|
14
|
|
|
|
|
21
|
|
|
14
|
|
|
|
|
1111
|
|
4
|
14
|
|
|
14
|
|
67
|
use warnings; |
|
14
|
|
|
|
|
23
|
|
|
14
|
|
|
|
|
464
|
|
5
|
14
|
|
|
14
|
|
54
|
use strict; |
|
14
|
|
|
|
|
23
|
|
|
14
|
|
|
|
|
311
|
|
6
|
14
|
|
|
14
|
|
67
|
use Carp qw/ carp croak /; |
|
14
|
|
|
|
|
25
|
|
|
14
|
|
|
|
|
803
|
|
7
|
14
|
|
|
14
|
|
2861829
|
use DateTime::Util::Calc qw/ mod revolution sin_deg /; |
|
14
|
|
|
|
|
26064172
|
|
|
14
|
|
|
|
|
1227
|
|
8
|
14
|
|
|
14
|
|
132
|
use POSIX qw/ ceil floor /; |
|
14
|
|
|
|
|
25
|
|
|
14
|
|
|
|
|
137
|
|
9
|
14
|
|
|
14
|
|
916
|
use Math::Trig qw( pi pi2 atan deg2rad tan ); |
|
14
|
|
|
|
|
24
|
|
|
14
|
|
|
|
|
2047
|
|
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
our @EXPORT_OK = qw/ |
12
|
|
|
|
|
|
|
epoch |
13
|
|
|
|
|
|
|
anomalistic_year |
14
|
|
|
|
|
|
|
anomalistic_month |
15
|
|
|
|
|
|
|
J0 |
16
|
|
|
|
|
|
|
J1900 |
17
|
|
|
|
|
|
|
sidereal_year |
18
|
|
|
|
|
|
|
sidereal_month |
19
|
|
|
|
|
|
|
synodic_month |
20
|
|
|
|
|
|
|
creation |
21
|
|
|
|
|
|
|
ayanamsha |
22
|
|
|
|
|
|
|
lunar_longitude |
23
|
|
|
|
|
|
|
lunar_on_or_before |
24
|
|
|
|
|
|
|
newmoon |
25
|
|
|
|
|
|
|
saura_rashi |
26
|
|
|
|
|
|
|
saura_varsha |
27
|
|
|
|
|
|
|
solar_longitude |
28
|
|
|
|
|
|
|
tithi_at_dt |
29
|
|
|
|
|
|
|
/; |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
=head1 NAME |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
DateTime::Indic::Utils - Utility functions for Indian calendar calculation |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
=head1 VERSION |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Version 0.3 |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
=cut |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
our $VERSION = '0.3'; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
=head1 SYNOPSIS |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
my $dt = DateTime->now; |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
my $ayanamsha = ayanamsha(J1900); |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
my $moon = lunar_longitude($J1900); |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
my $d1 = DateTime::Calendar::VikramaSamvata::Gujarati->new( |
52
|
|
|
|
|
|
|
varsha => 2064, |
53
|
|
|
|
|
|
|
masa => 7, |
54
|
|
|
|
|
|
|
paksha => 1, |
55
|
|
|
|
|
|
|
tithi => 30, |
56
|
|
|
|
|
|
|
); |
57
|
|
|
|
|
|
|
my $d2 = DateTime::Calendar::VikramaSamvata::Gujarati->new( |
58
|
|
|
|
|
|
|
varsha => 2065, |
59
|
|
|
|
|
|
|
masa => 1, |
60
|
|
|
|
|
|
|
paksha => 0, |
61
|
|
|
|
|
|
|
tithi => 15, |
62
|
|
|
|
|
|
|
); |
63
|
|
|
|
|
|
|
my $bool = lunar_on_or_before($d1, $d2); |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
my $previous_newmoon = newmoon(J1900, 0); |
66
|
|
|
|
|
|
|
my $next_newmoon = newmoon(J1900, 1); |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
my $sun = solar_longitude(J1900); |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
my $rashi = saura_rashi(J1900); |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
my $year = saura_varsha($dt); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
my $lunar_day = tithi_at_dt($dt); |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
=head1 ABSTRACT |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
A collection of utility functions and constants helpful in creating Indian |
80
|
|
|
|
|
|
|
calendars. |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=head1 DESCRIPTION |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
Note: In this document, Sanskrit words are transliterated using the ITRANS |
85
|
|
|
|
|
|
|
scheme. |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
These functions and constants were not included directly in |
88
|
|
|
|
|
|
|
L as they are more useful stand-alone. None of |
89
|
|
|
|
|
|
|
them are exported by default. |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
=head1 CONSTANTS |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
=head2 epoch |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
Fixed date of the beginning of the Kali Yuga. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
=cut |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
## no critic 'ProhibitConstantPragma' |
100
|
|
|
|
|
|
|
|
101
|
14
|
|
|
14
|
|
75
|
use constant epoch => -1_132_959; |
|
14
|
|
|
|
|
19
|
|
|
14
|
|
|
|
|
884
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=head2 anomalistic_year |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
Mean time from aphelion to aphelion. |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
=cut |
108
|
|
|
|
|
|
|
|
109
|
14
|
|
|
14
|
|
62
|
use constant anomalistic_year => 1_577_917_828_000 / ( 4_320_000_000 - 387 ); |
|
14
|
|
|
|
|
22
|
|
|
14
|
|
|
|
|
879
|
|
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
=head2 anomalistic_month |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
Mean time from apogee to apogee with bija correction. |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
=cut |
116
|
|
|
|
|
|
|
|
117
|
14
|
|
|
14
|
|
78
|
use constant anomalistic_month => 1_577_917_828 / ( 57_753_336 - 488_199 ); |
|
14
|
|
|
|
|
29
|
|
|
14
|
|
|
|
|
795
|
|
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
=head2 J0 |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
The fixed (RD) date of Julian date 0 |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=cut |
124
|
|
|
|
|
|
|
|
125
|
14
|
|
|
14
|
|
62
|
use constant J0 => -1_721_425; |
|
14
|
|
|
|
|
17
|
|
|
14
|
|
|
|
|
633
|
|
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
=head2 J1900 |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
The Julian date at noon on Jan 1, 1900. |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=cut |
132
|
|
|
|
|
|
|
|
133
|
14
|
|
|
14
|
|
60
|
use constant J1900 => 2_415_020.0; |
|
14
|
|
|
|
|
18
|
|
|
14
|
|
|
|
|
717
|
|
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=head2 sidereal_year |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
Mean length of Hindu sidereal year. |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
=cut |
140
|
|
|
|
|
|
|
|
141
|
14
|
|
|
14
|
|
60
|
use constant sidereal_year => 365 + ( 279_457 / 1_080_000 ); |
|
14
|
|
|
|
|
18
|
|
|
14
|
|
|
|
|
739
|
|
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=head2 sidereal_month |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
Mean time it takes for the moon to make one revolution around the earth. |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=cut |
148
|
|
|
|
|
|
|
|
149
|
14
|
|
|
14
|
|
69
|
use constant sidereal_month => 27 + ( 4_644_439 / 14_438_334 ); |
|
14
|
|
|
|
|
28
|
|
|
14
|
|
|
|
|
720
|
|
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head2 synodic_month |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
Mean time from new moon to new moon. |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=cut |
156
|
|
|
|
|
|
|
|
157
|
14
|
|
|
14
|
|
66
|
use constant synodic_month => 29.530_588_68; |
|
14
|
|
|
|
|
21
|
|
|
14
|
|
|
|
|
808
|
|
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
=head2 creation |
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
Fixed (RD) date of the beginning of the present yuga cycle. |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=cut |
164
|
|
|
|
|
|
|
|
165
|
14
|
|
|
14
|
|
65
|
use constant creation => epoch - 1_955_880_000 * sidereal_year; |
|
14
|
|
|
|
|
24
|
|
|
14
|
|
|
|
|
21782
|
|
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
=head1 FUNCTIONS |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
=head2 ayanamsha($jdate) |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
Given a Julian date C<$jdate>, returns the chitrapakSha ayanAMsha in decimal |
172
|
|
|
|
|
|
|
degrees. |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=cut |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
sub ayanamsha { |
177
|
0
|
|
|
0
|
1
|
|
my ($jdate) = @_; |
178
|
|
|
|
|
|
|
|
179
|
0
|
|
|
|
|
|
my $t = ( ( $jdate - J1900 ) - 0.5 ) / 36_525; |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
# Mean lunar node |
182
|
0
|
|
|
|
|
|
my $ln = ( ( 933_060 - 6_962_911 * $t + 7.5 * $t * $t ) / 3_600.0 ) % 360.0; |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
# Mean Sun |
185
|
0
|
|
|
|
|
|
my $off = ( 259_205_536.0 * $t + 2_013_816.0 ) / 3_600.0; |
186
|
|
|
|
|
|
|
|
187
|
0
|
|
|
|
|
|
$off = |
188
|
|
|
|
|
|
|
17.23 * sin_deg($ln) + |
189
|
|
|
|
|
|
|
1.27 * sin_deg($off) - |
190
|
|
|
|
|
|
|
( 5_025.64 + 1.11 * $t ) * $t; |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
# 84038.27 = Fagan-Bradley 80861.27 = Chitrapaksha (Lahiri) |
193
|
0
|
|
|
|
|
|
$off = ( $off - 80_861.27 ) / 3_600.0; |
194
|
|
|
|
|
|
|
|
195
|
0
|
|
|
|
|
|
return $off; |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
=head2 lunar_longitude($jdate) |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
Given a Julian date C<$jdate>, returns the sAyana longitude of the moon at |
201
|
|
|
|
|
|
|
C<$jdate> in decimal degrees. |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
=cut |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
sub lunar_longitude { |
206
|
0
|
|
|
0
|
1
|
|
my ($jdate) = @_; |
207
|
|
|
|
|
|
|
## no critic 'ProhibitParensWithBuiltins' |
208
|
|
|
|
|
|
|
|
209
|
0
|
|
|
|
|
|
my $t = ( $jdate - J1900 ) / 36_525.0; |
210
|
0
|
|
|
|
|
|
my $dn = $t * 36_525.0; |
211
|
0
|
|
|
|
|
|
my ( $A, $B, $C, $D, $E, $F, $l, $M, $mm ); |
212
|
0
|
|
|
|
|
|
my $t2 = $t * $t; |
213
|
0
|
|
|
|
|
|
my $t3 = $t2 * $t; |
214
|
0
|
|
|
|
|
|
my ( $ang, $ang1 ); |
215
|
0
|
|
|
|
|
|
my $anom = revolution( |
216
|
|
|
|
|
|
|
358.475_833 + 35_999.04_975 * $t - 1.50e-4 * $t2 - 3.3e-6 * $t3 ); |
217
|
0
|
|
|
|
|
|
$A = 0.003964 * ( sin deg2rad( 346.56 + $t * 132.87 - $t2 * 0.0091731 ) ); |
218
|
0
|
|
|
|
|
|
$B = ( sin deg2rad( 51.2 + 20.2 * $t ) ); |
219
|
0
|
|
|
|
|
|
my $omeg = revolution( |
220
|
|
|
|
|
|
|
259.183_275 - 1_934.1_420 * $t + 0.002_078 * $t2 + 0.0_000_022 * $t3 ); |
221
|
0
|
|
|
|
|
|
$C = ( sin deg2rad($omeg) ); |
222
|
|
|
|
|
|
|
|
223
|
0
|
|
|
|
|
|
$l = |
224
|
|
|
|
|
|
|
revolution( 270.434_164 + |
225
|
|
|
|
|
|
|
481_267.8_831 * $t - |
226
|
|
|
|
|
|
|
0.001_133 * $t2 + |
227
|
|
|
|
|
|
|
0.0_000_019 * $t3 + |
228
|
|
|
|
|
|
|
0.000_233 * $B + $A + |
229
|
|
|
|
|
|
|
0.001_964 * $C ); |
230
|
0
|
|
|
|
|
|
$mm = |
231
|
|
|
|
|
|
|
deg2rad( 296.104_608 + |
232
|
|
|
|
|
|
|
477_198.8_491 * $t + |
233
|
|
|
|
|
|
|
0.009_192 * $t2 + |
234
|
|
|
|
|
|
|
1.44e-5 * $t3 + |
235
|
|
|
|
|
|
|
0.000_817 * $B + $A + |
236
|
|
|
|
|
|
|
0.002_541 * $C ); |
237
|
0
|
|
|
|
|
|
$D = |
238
|
|
|
|
|
|
|
deg2rad( 350.737_486 + |
239
|
|
|
|
|
|
|
445_267.1_142 * $t - |
240
|
|
|
|
|
|
|
0.001_436 * $t2 + |
241
|
|
|
|
|
|
|
1.9e-6 * $t3 + $A + |
242
|
|
|
|
|
|
|
0.002_011 * $B + |
243
|
|
|
|
|
|
|
0.001_964 * $C ); |
244
|
0
|
|
|
|
|
|
$F = |
245
|
|
|
|
|
|
|
deg2rad( 11.250_889 + |
246
|
|
|
|
|
|
|
483_202.0_251 * $t - |
247
|
|
|
|
|
|
|
0.003_211 * $t2 - |
248
|
|
|
|
|
|
|
0.0_000_003 * $t3 + |
249
|
|
|
|
|
|
|
$A - |
250
|
|
|
|
|
|
|
0.024_691 * $C - |
251
|
|
|
|
|
|
|
0.004_328 * ( sin deg2rad( $omeg + 275.05 - 2.3 * $t ) ) ); |
252
|
0
|
|
|
|
|
|
$M = deg2rad( $anom - 0.001778 * $B ); |
253
|
0
|
|
|
|
|
|
$E = 1.0 - 0.002_495 * $t - 0.00_000_752 * $t2; |
254
|
0
|
|
|
|
|
|
$ang = |
255
|
|
|
|
|
|
|
$l + |
256
|
|
|
|
|
|
|
6.288_750 * ( sin $mm ) + |
257
|
|
|
|
|
|
|
1.274_018 * sin( $D + $D - $mm ) + |
258
|
|
|
|
|
|
|
0.658_309 * sin( $D + $D ) + |
259
|
|
|
|
|
|
|
0.213_616 * sin( $mm + $mm ) - |
260
|
|
|
|
|
|
|
0.114_336 * sin( $F + $F ) + |
261
|
|
|
|
|
|
|
0.058_793 * sin( $D + $D - $mm - $mm ); |
262
|
0
|
|
|
|
|
|
$ang = |
263
|
|
|
|
|
|
|
$ang + |
264
|
|
|
|
|
|
|
0.053_320 * sin( $D + $D + $mm ) - |
265
|
|
|
|
|
|
|
0.034_718 * ( sin $D ) + |
266
|
|
|
|
|
|
|
0.015_326 * sin( $D + $D - $F - $F ) - |
267
|
|
|
|
|
|
|
0.012_528 * sin( $F + $F + $mm ) - |
268
|
|
|
|
|
|
|
0.010_980 * sin( $F + $F - $mm ); |
269
|
0
|
|
|
|
|
|
$ang = |
270
|
|
|
|
|
|
|
$ang + |
271
|
|
|
|
|
|
|
0.010_674 * sin( 4.0 * $D - $mm ) + |
272
|
|
|
|
|
|
|
0.010_034 * sin( 3.0 * $mm ) + |
273
|
|
|
|
|
|
|
0.008_548 * sin( 4.0 * $D - $mm - $mm ) + |
274
|
|
|
|
|
|
|
0.005_162 * sin( $mm - $D ) + |
275
|
|
|
|
|
|
|
0.003_996 * sin( $mm + $mm + $D + $D ) + |
276
|
|
|
|
|
|
|
0.003_862 * sin( 4.0 * $D ); |
277
|
0
|
|
|
|
|
|
$ang = |
278
|
|
|
|
|
|
|
$ang + |
279
|
|
|
|
|
|
|
0.003_665 * sin( $D + $D - $mm - $mm - $mm ) + |
280
|
|
|
|
|
|
|
0.002_602 * sin( $mm - $F - $F - $D - $D ) - |
281
|
|
|
|
|
|
|
0.002_349 * sin( $mm + $D ) - |
282
|
|
|
|
|
|
|
0.001_773 * sin( $mm + $D + $D - $F - $F ) - |
283
|
|
|
|
|
|
|
0.001_595 * sin( $F + $F + $D + $D ) - |
284
|
|
|
|
|
|
|
0.001_110 * sin( $mm + $mm + $F + $F ); |
285
|
0
|
|
|
|
|
|
$ang1 = |
286
|
|
|
|
|
|
|
-0.185_596 * ( sin $M ) + |
287
|
|
|
|
|
|
|
0.057_212 * sin( $D + $D - $M - $mm ) + |
288
|
|
|
|
|
|
|
0.045_874 * sin( $D + $D - $M ) + |
289
|
|
|
|
|
|
|
0.041_024 * sin( $mm - $M ) - |
290
|
|
|
|
|
|
|
0.030_465 * sin( $mm + $M ) - |
291
|
|
|
|
|
|
|
0.007_910 * sin( $M - $mm + $D + $D ) - |
292
|
|
|
|
|
|
|
0.006_783 * sin( $D + $D + $M ) + |
293
|
|
|
|
|
|
|
0.005_000 * sin( $M + $D ); |
294
|
0
|
|
|
|
|
|
$ang1 = |
295
|
|
|
|
|
|
|
$ang1 + |
296
|
|
|
|
|
|
|
0.004_049 * sin( $D + $D + $mm - $M ) + |
297
|
|
|
|
|
|
|
0.002_695 * sin( $mm + $mm - $M ) + |
298
|
|
|
|
|
|
|
0.002_396 * sin( $D + $D - $M - $mm - $mm ) - |
299
|
|
|
|
|
|
|
0.002_125 * sin( $mm + $mm + $M ) + |
300
|
|
|
|
|
|
|
0.001_220 * sin( 4.0 * $D - $M - $mm ); |
301
|
0
|
|
|
|
|
|
$ang1 = |
302
|
|
|
|
|
|
|
$ang1 + |
303
|
|
|
|
|
|
|
$E * |
304
|
|
|
|
|
|
|
( 0.002_249 * sin( $D + $D - $M - $M ) - |
305
|
|
|
|
|
|
|
0.002_079 * sin( $M + $M ) + |
306
|
|
|
|
|
|
|
0.002_059 * sin( $D + $D - $M - $M - $mm ) ); |
307
|
|
|
|
|
|
|
|
308
|
0
|
|
|
|
|
|
return revolution( $ang + $E * $ang1 ); |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
=head2 lunar_on_or_before ($d1, $d2) |
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
Given two lunar dates, C<$d1> and C<$d2>, returns true if C<$d1> is on or |
314
|
|
|
|
|
|
|
before C<$d2>. |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
=cut |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
sub lunar_on_or_before { |
319
|
0
|
|
|
0
|
1
|
|
my ( $d1, $d2 ) = @_; |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
return $d1->{varsha} < $d2->{varsha} |
322
|
|
|
|
|
|
|
|| $d1->{varsha} == $d2->{varsha} |
323
|
|
|
|
|
|
|
&& ( |
324
|
|
|
|
|
|
|
$d1->{masa} < $d2->{masa} |
325
|
|
|
|
|
|
|
|| $d1->{masa} == $d2->{masa} |
326
|
|
|
|
|
|
|
&& ( |
327
|
|
|
|
|
|
|
$d1->{adhikamasa} && !$d2->{adhikamasa} |
328
|
|
|
|
|
|
|
|| $d1->{adhikamasa} == $d2->{adhikamasa} |
329
|
|
|
|
|
|
|
&& ( $d1->{lunar_day} < $d2->{lunar_day} |
330
|
|
|
|
|
|
|
|| $d1->{lunar_day} == $d2->{lunar_day} |
331
|
0
|
|
0
|
|
|
|
&& ( !$d1->{adhikatithi} || $d2->{adhikatithi} ) ) |
332
|
|
|
|
|
|
|
) |
333
|
|
|
|
|
|
|
); |
334
|
|
|
|
|
|
|
} |
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
=head2 newmoon($jdate, $arg) |
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
Calculates the moment of the nearest new moon at C<$jdate>. (the error does |
339
|
|
|
|
|
|
|
not exceed 2 minutes). The result is Julian date/time in UT. C<$arg> = 0 for |
340
|
|
|
|
|
|
|
the nearest previous new moon, 1 for the nearest next moon. |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=cut |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
# See http://www.iclasses.org/assets/math/scripts/science/new_and_full_moon_calculator.html |
345
|
|
|
|
|
|
|
sub newmoon { |
346
|
0
|
|
|
0
|
1
|
|
my ( $jdate, $arg ) = @_; |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
# Estimate of number of lunar cycles since J1900. |
349
|
0
|
|
|
|
|
|
my $k = floor( ( ( $jdate - J1900 ) / 365.25 ) * 12.3685 ) + $arg - 1; |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
# time in Julian centuries since J1900 |
352
|
0
|
|
|
|
|
|
my $t = ( $jdate - J1900 ) / 36525.0; |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# square for frequent use |
355
|
0
|
|
|
|
|
|
my $t2 = $t * $t; |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
# cube for frequent use |
358
|
0
|
|
|
|
|
|
my $t3 = $t2 * $t; |
359
|
|
|
|
|
|
|
|
360
|
0
|
|
|
|
|
|
my $jdnv = 0; |
361
|
0
|
|
|
|
|
|
while ( $jdnv <= $jdate ) { |
362
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
# mean time of phase |
364
|
0
|
|
|
|
|
|
my $jdnext = |
365
|
|
|
|
|
|
|
(2_415_020.759_33) + |
366
|
|
|
|
|
|
|
synodic_month * $k + |
367
|
|
|
|
|
|
|
0.000_117_8 * $t2 - |
368
|
|
|
|
|
|
|
0.000_000_155 * $t3 + |
369
|
|
|
|
|
|
|
0.000_33 * sin( deg2rad( 166.56 + 132.87 * $t - 0.009_173 * $t2 ) ); |
370
|
|
|
|
|
|
|
|
371
|
|
|
|
|
|
|
# Sun's mean anomaly |
372
|
0
|
|
|
|
|
|
my $m = |
373
|
|
|
|
|
|
|
deg2rad( 359.224_2 + |
374
|
|
|
|
|
|
|
29.105_356_08 * $k - |
375
|
|
|
|
|
|
|
0.000_033_3 * $t2 - |
376
|
|
|
|
|
|
|
0.000_003_47 * $t3 ); |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
# Moon's mean anomaly |
379
|
0
|
|
|
|
|
|
my $mprime = |
380
|
|
|
|
|
|
|
deg2rad( 306.025_3 + |
381
|
|
|
|
|
|
|
385.816_918_06 * $k + |
382
|
|
|
|
|
|
|
0.010_730_6 * $t2 + |
383
|
|
|
|
|
|
|
0.000_012_36 * $t3 ); |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
# Moon's argument of latitude |
386
|
0
|
|
|
|
|
|
my $f = |
387
|
|
|
|
|
|
|
deg2rad( 21.296_4 + |
388
|
|
|
|
|
|
|
390.670_506_46 * $k - |
389
|
|
|
|
|
|
|
0.001_652_8 * $t2 - |
390
|
|
|
|
|
|
|
0.000_002_39 * $t3 ); |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
# Correction for new moon |
393
|
0
|
|
|
|
|
|
my $djd = |
394
|
|
|
|
|
|
|
( 0.1734 - 0.000_393 * $t ) * sin($m) + 0.002_1 * sin( 2 * $m ); |
395
|
0
|
|
|
|
|
|
$djd = $djd - 0.406_8 * sin($mprime) + 0.016_1 * sin( 2 * $mprime ); |
396
|
0
|
|
|
|
|
|
$djd = $djd - 0.000_4 * sin( 3 * $mprime ) + 0.010_4 * sin( 2 * $f ); |
397
|
0
|
|
|
|
|
|
$djd = |
398
|
|
|
|
|
|
|
$djd - 0.005_1 * sin( $m + $mprime ) - 0.007_4 * sin( $m - $mprime ); |
399
|
0
|
|
|
|
|
|
$djd = |
400
|
|
|
|
|
|
|
$djd + 0.000_4 * sin( 2 * $f + $m ) - 0.000_4 * sin( 2 * $f - $m ); |
401
|
0
|
|
|
|
|
|
$djd = |
402
|
|
|
|
|
|
|
$djd - |
403
|
|
|
|
|
|
|
0.000_6 * sin( 2 * $f + $mprime ) + |
404
|
|
|
|
|
|
|
0.001 * sin( 2 * $f - $mprime ); |
405
|
0
|
|
|
|
|
|
$djd = $djd + 0.000_5 * sin( $m + 2 * $mprime ); |
406
|
0
|
|
|
|
|
|
$jdnext += $djd; |
407
|
0
|
|
|
|
|
|
$k++; |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
# This bit solves a problem where the function "overshoots" by one |
410
|
|
|
|
|
|
|
# lunar cycle. It works for our purposes but I am not convinced it |
411
|
|
|
|
|
|
|
# is a proper solution to the general problem. |
412
|
0
|
0
|
0
|
|
|
|
if ( $arg < 1 && $jdnext >= $jdate ) { |
413
|
0
|
|
|
|
|
|
last; |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
0
|
|
|
|
|
|
$jdnv = $jdnext; |
417
|
|
|
|
|
|
|
} |
418
|
0
|
|
|
|
|
|
return $jdnv; |
419
|
|
|
|
|
|
|
} |
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
=head2 saura_rashi ($jdate) |
422
|
|
|
|
|
|
|
|
423
|
|
|
|
|
|
|
returns the nirAyana rAshi of the sun at Julian date C<$jdate> as an integer |
424
|
|
|
|
|
|
|
in the range 1 .. 12. |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
=cut |
427
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
sub saura_rashi { |
429
|
0
|
|
|
0
|
1
|
|
my ($jdate) = @_; |
430
|
|
|
|
|
|
|
|
431
|
0
|
|
|
|
|
|
return floor( ( solar_longitude($jdate) + ayanamsha($jdate) ) / 30.0 ) + 1; |
432
|
|
|
|
|
|
|
} |
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
=head2 saura_varsha ($dt) |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
Returns the saura varSha at datetime C<$dt>. |
437
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
=cut |
439
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
sub saura_varsha { |
441
|
0
|
|
|
0
|
1
|
|
my ($dt) = @_; |
442
|
|
|
|
|
|
|
|
443
|
0
|
|
|
|
|
|
return floor( ( ( $dt->utc_rd_values )[0] - epoch ) / sidereal_year ); |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
|
446
|
|
|
|
|
|
|
=head2 solar_longitude($jdate) |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
Given a Julian date C<$jdate>, returns the sAyana longitude of the sun at |
449
|
|
|
|
|
|
|
C<$jdate> in decimal degrees. |
450
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
=cut |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
sub solar_longitude { |
454
|
0
|
|
|
0
|
1
|
|
my ($jdate) = @_; |
455
|
|
|
|
|
|
|
|
456
|
0
|
|
|
|
|
|
my $t = ( $jdate - J1900 ) / 36_525.0; |
457
|
0
|
|
|
|
|
|
my $dn = $t * 36_525.0; |
458
|
0
|
|
|
|
|
|
my $t2 = $t * $t; |
459
|
0
|
|
|
|
|
|
my $t3 = $t2 * $t; |
460
|
0
|
|
|
|
|
|
my $mnln = deg2rad( 279.69_668 + $t * 36_000.76_892 + $t2 * 0.0_003_025 ); |
461
|
0
|
|
|
|
|
|
my $ecc = 0.01675104 - $t * 0.0_000_418 - $t2 * 0.000_000_126; |
462
|
0
|
|
|
|
|
|
my $orbr = 1.0_000_002; |
463
|
0
|
|
|
|
|
|
my $anom = |
464
|
|
|
|
|
|
|
deg2rad( 358.475_833 + |
465
|
|
|
|
|
|
|
35_999.04_975 * $t - |
466
|
|
|
|
|
|
|
1.50e-4 * $t * $t - |
467
|
|
|
|
|
|
|
3.3e-6 * $t * $t * $t ); |
468
|
0
|
|
|
|
|
|
my $anmn = $anom; |
469
|
0
|
|
|
|
|
|
my $daily = deg2rad(1.0); |
470
|
0
|
|
|
|
|
|
my $A = deg2rad( 153.23 + 22_518.7_541 * $t ); |
471
|
0
|
|
|
|
|
|
my $B = deg2rad( 216.57 + 45_037.5_082 * $t ); |
472
|
0
|
|
|
|
|
|
my $C = deg2rad( 312.69 + 329_64.3_577 * $t ); |
473
|
0
|
|
|
|
|
|
my $D = deg2rad( 350.74 + 445_267.1_142 * $t - 0.00144 * $t2 ); |
474
|
0
|
|
|
|
|
|
my $E = deg2rad( 231.19 + 20.20 * $t ); |
475
|
0
|
|
|
|
|
|
my $H = deg2rad( 353.40 + 65_928.7_155 * $t ); |
476
|
0
|
|
|
|
|
|
my $c1 = deg2rad( |
477
|
|
|
|
|
|
|
( |
478
|
|
|
|
|
|
|
1.34 * ( cos $A ) + |
479
|
|
|
|
|
|
|
1.54 * ( cos $B ) + |
480
|
|
|
|
|
|
|
2.0 * ( cos $C ) + |
481
|
|
|
|
|
|
|
1.79 * ( sin $D ) + |
482
|
|
|
|
|
|
|
1.78 * ( sin $E ) |
483
|
|
|
|
|
|
|
) * 1.00e-3 |
484
|
|
|
|
|
|
|
); |
485
|
0
|
|
|
|
|
|
my $c2 = deg2rad( |
486
|
|
|
|
|
|
|
( |
487
|
|
|
|
|
|
|
0.543 * ( sin $A ) + |
488
|
|
|
|
|
|
|
1.575 * ( sin $B ) + |
489
|
|
|
|
|
|
|
1.627 * ( sin $C ) + |
490
|
|
|
|
|
|
|
3.076 * ( cos $D ) + |
491
|
|
|
|
|
|
|
0.927 * ( sin $H ) |
492
|
|
|
|
|
|
|
) * 1.0e-5 |
493
|
|
|
|
|
|
|
); |
494
|
0
|
|
|
|
|
|
my $incl = 0.0; |
495
|
0
|
|
|
|
|
|
my $ascn = 0.0; |
496
|
0
|
|
|
|
|
|
my $anec = 0.0; |
497
|
|
|
|
|
|
|
|
498
|
0
|
|
|
|
|
|
for ( my $eold = $anmn ; abs( $anec - $eold ) > 1.0e-8 ; $eold = $anec ) |
499
|
|
|
|
|
|
|
{ ## no critic 'ProhibitCStyleForLoops' |
500
|
0
|
|
|
|
|
|
$anec = |
501
|
|
|
|
|
|
|
$eold + |
502
|
|
|
|
|
|
|
( $anmn + $ecc * ( sin $eold ) - $eold ) / |
503
|
|
|
|
|
|
|
( 1.0 - $ecc * ( cos $eold ) ); |
504
|
|
|
|
|
|
|
} |
505
|
0
|
|
|
|
|
|
my $antr = |
506
|
|
|
|
|
|
|
atan( sqrt( ( 1.0 + $ecc ) / ( 1.0 - $ecc ) ) * tan( $anec / 2.0 ) ) * |
507
|
|
|
|
|
|
|
2.0; |
508
|
0
|
0
|
|
|
|
|
if ( $antr < 0.0 ) { |
509
|
0
|
|
|
|
|
|
$antr += pi2; |
510
|
|
|
|
|
|
|
} |
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
# calculate the heliocentric longitude trlong. |
513
|
0
|
|
|
|
|
|
my $u = $mnln + $antr - $anmn - $ascn; |
514
|
0
|
0
|
|
|
|
|
if ( $u > pi2 ) { |
515
|
0
|
|
|
|
|
|
$u -= pi2; |
516
|
|
|
|
|
|
|
} |
517
|
0
|
0
|
|
|
|
|
if ( $u < 0.0 ) { |
518
|
0
|
|
|
|
|
|
$u += pi2; |
519
|
|
|
|
|
|
|
} |
520
|
0
|
|
|
|
|
|
my $n = int( $u * 2.0 / pi ); |
521
|
0
|
|
|
|
|
|
my $uu = atan( cos($incl) * tan($u) ); |
522
|
0
|
0
|
|
|
|
|
if ( $n != int( $uu * 2.0 / pi ) ) { |
523
|
0
|
|
|
|
|
|
$uu += pi; |
524
|
|
|
|
|
|
|
} |
525
|
0
|
0
|
|
|
|
|
if ( $n == 3 ) { |
526
|
0
|
|
|
|
|
|
$uu += pi; |
527
|
|
|
|
|
|
|
} |
528
|
0
|
|
|
|
|
|
my $trlong = $uu + $ascn + $c1; |
529
|
0
|
|
|
|
|
|
my $rad = $orbr * ( 1.0 - $ecc * ( cos $anec ) ) + $c2; |
530
|
|
|
|
|
|
|
|
531
|
0
|
|
|
|
|
|
return revolution( $trlong * 180.0 / pi ); |
532
|
|
|
|
|
|
|
} |
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
=head2 tithi_at_dt ($dt) |
535
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
Returns the phase of the moon (tithi) at DateTime C<$dt>, as an integer in the |
537
|
|
|
|
|
|
|
range 1..30. |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
=cut |
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
sub tithi_at_dt { |
542
|
0
|
|
|
0
|
1
|
|
my ($dt) = @_; |
543
|
|
|
|
|
|
|
|
544
|
0
|
|
|
|
|
|
my $t = mod( lunar_longitude( $dt->jd ) - solar_longitude( $dt->jd ), 360 ); |
545
|
|
|
|
|
|
|
|
546
|
0
|
|
|
|
|
|
return ceil( $t / 12.0 ); |
547
|
|
|
|
|
|
|
} |
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
=head1 BUGS |
550
|
|
|
|
|
|
|
|
551
|
|
|
|
|
|
|
Please report any bugs or feature requests through the web interface at |
552
|
|
|
|
|
|
|
L. I |
553
|
|
|
|
|
|
|
will be notified, and then you’ll automatically be notified of progress |
554
|
|
|
|
|
|
|
on your bug as I make changes. B |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
=head1 SUPPORT |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
You can find documentation for this module with the perldoc command. |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
perldoc DateTime::Indic::Utils |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
Support requests for this module and questions about panchanga ganita should |
563
|
|
|
|
|
|
|
be sent to the panchanga-devel@lists.braincells.com email list. See |
564
|
|
|
|
|
|
|
L for more details. |
565
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
Questions related to the DateTime API should be sent to the |
567
|
|
|
|
|
|
|
datetime@perl.org email list. See L for more details. |
568
|
|
|
|
|
|
|
|
569
|
|
|
|
|
|
|
You can also look for information at: |
570
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
=over 4 |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=item * This projects git source code repository |
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
L |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
=item * AnnoCPAN: Annotated CPAN documentation |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
L |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
=item * CPAN Ratings |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
L |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
=item * Search CPAN |
586
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
L |
588
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
=back |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
=head1 SEE ALSO |
592
|
|
|
|
|
|
|
|
593
|
|
|
|
|
|
|
L |
594
|
|
|
|
|
|
|
|
595
|
|
|
|
|
|
|
=head1 AUTHOR |
596
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
Jaldhar H. Vyas, C<< >> |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
600
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
Copyright (C) 2009, Consolidated Braincells Inc. |
602
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under |
604
|
|
|
|
|
|
|
the terms of either: |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
=over 4 |
607
|
|
|
|
|
|
|
|
608
|
|
|
|
|
|
|
=item * the GNU General Public License as published by the Free Software |
609
|
|
|
|
|
|
|
Foundation; either version 2, or (at your option) any later version, or |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
=item * the Artistic License version 2.0. |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=back |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
The full text of the license can be found in the LICENSE file included |
616
|
|
|
|
|
|
|
with this distribution. |
617
|
|
|
|
|
|
|
|
618
|
|
|
|
|
|
|
=cut |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
1; # End of DateTime::Indic::Utils |