line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Date::Qreki; |
2
|
|
|
|
|
|
|
require Exporter; |
3
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
4
|
|
|
|
|
|
|
@EXPORT_OK = qw/calc_kyureki get_rokuyou/; |
5
|
1
|
|
|
1
|
|
12847
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
25
|
|
6
|
1
|
|
|
1
|
|
3
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
35
|
|
7
|
|
|
|
|
|
|
our $VERSION = '0.06'; |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
#========================================================================= |
10
|
|
|
|
|
|
|
# 旧暦計算サンプルプログラム $Revision: 1.1 $ |
11
|
|
|
|
|
|
|
# Coded by H.Takano 1993,1994 |
12
|
|
|
|
|
|
|
# |
13
|
|
|
|
|
|
|
# Arranged for Perl Script by N.Ueno |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# |
16
|
|
|
|
|
|
|
# オリジナルのスクリプトは高野氏のAWKです。下記より入手できます。 |
17
|
|
|
|
|
|
|
# http://www.vector.co.jp/soft/dos/personal/se016093.html |
18
|
|
|
|
|
|
|
# |
19
|
|
|
|
|
|
|
# |
20
|
|
|
|
|
|
|
#======================================================================== |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
23
|
|
|
|
|
|
|
# 円周率の定義と(角度の)度からラジアンに変換する係数の定義 |
24
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
25
|
1
|
|
|
1
|
|
3
|
use constant PI => 3.141592653589793238462; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
78
|
|
26
|
1
|
|
|
1
|
|
3
|
use constant k => PI/180.0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
2407
|
|
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
sub deg_cos |
29
|
|
|
|
|
|
|
{ |
30
|
22348
|
|
|
22348
|
0
|
13232
|
my ($angle) = @_; |
31
|
22348
|
|
|
|
|
19467
|
return cos ($angle * k); |
32
|
|
|
|
|
|
|
} |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
#========================================================================= |
35
|
|
|
|
|
|
|
# 六曜算出関数 |
36
|
|
|
|
|
|
|
# |
37
|
|
|
|
|
|
|
# 引数:新暦年月日 |
38
|
|
|
|
|
|
|
# 戻値:0:大安 1:赤口 2:先勝 3:友引 4:先負 5:仏滅 |
39
|
|
|
|
|
|
|
# |
40
|
|
|
|
|
|
|
#========================================================================= |
41
|
|
|
|
|
|
|
sub get_rokuyou |
42
|
|
|
|
|
|
|
{ |
43
|
|
|
|
|
|
|
|
44
|
4
|
|
|
4
|
1
|
2250
|
my ($year,$mon,$day) = @_; |
45
|
4
|
|
|
|
|
5
|
my ($tm0,$q_year,$q_mon,$q_day,$uruu,$q_yaer); |
46
|
|
|
|
|
|
|
|
47
|
4
|
|
|
|
|
9
|
($q_yaer,$uruu,$q_mon,$q_day) = calc_kyureki($year,$mon,$day); |
48
|
|
|
|
|
|
|
|
49
|
4
|
|
|
|
|
25
|
return(($q_mon + $q_day) % 6); |
50
|
|
|
|
|
|
|
} |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
#========================================================================= |
53
|
|
|
|
|
|
|
# 新暦に対応する、旧暦を求める。 |
54
|
|
|
|
|
|
|
# |
55
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
56
|
|
|
|
|
|
|
# 引 数 year : 計算する日付 |
57
|
|
|
|
|
|
|
# mon |
58
|
|
|
|
|
|
|
# day |
59
|
|
|
|
|
|
|
# |
60
|
|
|
|
|
|
|
# 戻り値 kyureki : 答えの格納先(配列に答えをかえす) |
61
|
|
|
|
|
|
|
# kyureki[0] : 旧暦年 |
62
|
|
|
|
|
|
|
# kyureki[1] : 平月/閏月 flag .... 平月:0 閏月:1 |
63
|
|
|
|
|
|
|
# kyureki[2] : 旧暦月 |
64
|
|
|
|
|
|
|
# kyureki[3] : 旧暦日 |
65
|
|
|
|
|
|
|
# |
66
|
|
|
|
|
|
|
#========================================================================= |
67
|
|
|
|
|
|
|
sub calc_kyureki |
68
|
|
|
|
|
|
|
{ |
69
|
8
|
|
|
8
|
1
|
1534
|
my ($year,$mon,$day) = @_; |
70
|
8
|
|
|
|
|
8
|
my (@kyureki,$tm,@saku,$lap,@a,$i,@m); |
71
|
|
|
|
|
|
|
|
72
|
8
|
|
|
|
|
19
|
my $tm0 = YMDT2JD($year,$mon,$day,0,0,0); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
75
|
|
|
|
|
|
|
# 計算対象の直前にあたる二分二至の時刻を求める |
76
|
|
|
|
|
|
|
# chu[0,0]:二分二至の時刻 chu[0,1]:その時の太陽黄経 |
77
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
78
|
8
|
|
|
|
|
10
|
my @chu; |
79
|
8
|
|
|
|
|
20
|
($chu[0][0],$chu[0][1]) = before_nibun($tm0); |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
82
|
|
|
|
|
|
|
# 中気の時刻を計算(4回計算する) |
83
|
|
|
|
|
|
|
# chu[i,0]:中気の時刻 chu[i,1]:太陽黄経 |
84
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
85
|
8
|
|
|
|
|
23
|
for($i=1;$i<4;$i++){ |
86
|
24
|
|
|
|
|
48
|
($chu[$i][0],$chu[$i][1]) = calc_chu($chu[$i-1][0]+32.0); |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
90
|
|
|
|
|
|
|
# 計算対象の直前にあたる二分二至の直前の朔の時刻を求める |
91
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
92
|
8
|
|
|
|
|
12
|
$saku[0] = calc_saku($chu[0][0]); |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
96
|
|
|
|
|
|
|
# 朔の時刻を求める |
97
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
98
|
8
|
|
|
|
|
17
|
for($i=1;$i<5;$i++){ |
99
|
32
|
|
|
|
|
30
|
$tm=$saku[$i-1]; |
100
|
32
|
|
|
|
|
22
|
$tm += 30.0; |
101
|
32
|
|
|
|
|
33
|
$saku[$i]=calc_saku($tm); |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# 前と同じ時刻を計算した場合(両者の差が26日以内)には、初期値を |
104
|
|
|
|
|
|
|
# +33日にして再実行させる。 |
105
|
32
|
50
|
|
|
|
115
|
if( abs( int($saku[$i-1])-int($saku[$i]) ) <= 26.0 ){ |
106
|
0
|
|
|
|
|
0
|
$saku[$i]=calc_saku($saku[$i-1]+35.0); |
107
|
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
} |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
111
|
|
|
|
|
|
|
# saku[1]が二分二至の時刻以前になってしまった場合には、朔をさかのぼり過ぎ |
112
|
|
|
|
|
|
|
# たと考えて、朔の時刻を繰り下げて修正する。 |
113
|
|
|
|
|
|
|
# その際、計算もれ(saku[4])になっている部分を補うため、朔の時刻を計算 |
114
|
|
|
|
|
|
|
# する。(近日点通過の近辺で朔があると起こる事があるようだ...?) |
115
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
116
|
8
|
50
|
|
|
|
46
|
if( int($saku[1]) <= int($chu[0][0]) ){ |
|
|
50
|
|
|
|
|
|
117
|
0
|
|
|
|
|
0
|
for($i=0;$i<5;$i++){ |
118
|
0
|
|
|
|
|
0
|
$saku[$i]=$saku[$i+1]; |
119
|
|
|
|
|
|
|
} |
120
|
0
|
|
|
|
|
0
|
$saku[4] = calc_saku($saku[3]+35.0); |
121
|
|
|
|
|
|
|
} |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
124
|
|
|
|
|
|
|
# saku[0]が二分二至の時刻以後になってしまった場合には、朔をさかのぼり足 |
125
|
|
|
|
|
|
|
# りないと見て、朔の時刻を繰り上げて修正する。 |
126
|
|
|
|
|
|
|
# その際、計算もれ(saku[0])になっている部分を補うため、朔の時刻を計算 |
127
|
|
|
|
|
|
|
# する。(春分点の近辺で朔があると起こる事があるようだ...?) |
128
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
129
|
|
|
|
|
|
|
elsif( int($saku[0]) > int($chu[0][0]) ){ |
130
|
0
|
|
|
|
|
0
|
for($i=4;$i>0;$i--){ |
131
|
0
|
|
|
|
|
0
|
$saku[$i] = $saku[$i-1]; |
132
|
|
|
|
|
|
|
} |
133
|
0
|
|
|
|
|
0
|
$saku[0] = calc_saku($saku[0]-27.0); |
134
|
|
|
|
|
|
|
} |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
137
|
|
|
|
|
|
|
# 閏月検索Flagセット |
138
|
|
|
|
|
|
|
# (節月で4ヶ月の間に朔が5回あると、閏月がある可能性がある。) |
139
|
|
|
|
|
|
|
# lap=0:平月 lap=1:閏月 |
140
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
141
|
8
|
50
|
|
|
|
29
|
if(int($saku[4]) <= int($chu[3][0]) ){ |
142
|
0
|
|
|
|
|
0
|
$lap=1; |
143
|
|
|
|
|
|
|
}else{ |
144
|
8
|
|
|
|
|
12
|
$lap=0; |
145
|
|
|
|
|
|
|
} |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
148
|
|
|
|
|
|
|
# 朔日行列の作成 |
149
|
|
|
|
|
|
|
# m[i,0] ... 月名(1:正月 2:2月 3:3月 ....) |
150
|
|
|
|
|
|
|
# m[i,1] ... 閏フラグ(0:平月 1:閏月) |
151
|
|
|
|
|
|
|
# m[i,2] ... 朔日のjd |
152
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
153
|
8
|
|
|
|
|
33
|
$m[0][0]=int($chu[0][1]/30.0) + 2; |
154
|
8
|
50
|
33
|
|
|
26
|
if(defined $m[0][1] && $m[0][1] > 12 ){ |
155
|
0
|
|
|
|
|
0
|
$m[0][0]-=12; |
156
|
|
|
|
|
|
|
} |
157
|
8
|
|
|
|
|
13
|
$m[0][2]=int($saku[0]); |
158
|
8
|
|
|
|
|
10
|
$m[0][1]=0; |
159
|
|
|
|
|
|
|
|
160
|
8
|
|
|
|
|
21
|
for($i=1;$i<5;$i++){ |
161
|
32
|
50
|
33
|
|
|
56
|
if($lap == 1 && $i !=1 ){ |
162
|
0
|
0
|
0
|
|
|
0
|
if( int($chu[$i-1][0]) <= int($saku[$i-1]) || int($chu[$i-1][0]) >= int($saku[$i]) ){ |
163
|
0
|
|
|
|
|
0
|
$m[$i-1][0] = $m[$i-2][0]; |
164
|
0
|
|
|
|
|
0
|
$m[$i-1][1] = 1; |
165
|
0
|
|
|
|
|
0
|
$m[$i-1][2] = int($saku[$i-1]); |
166
|
0
|
|
|
|
|
0
|
$lap=0; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
} |
169
|
32
|
|
|
|
|
54
|
$m[$i][0] = $m[$i-1][0]+1; |
170
|
32
|
100
|
|
|
|
47
|
if( $m[$i][0] > 12 ){ |
171
|
6
|
|
|
|
|
7
|
$m[$i][0]-=12; |
172
|
|
|
|
|
|
|
} |
173
|
32
|
|
|
|
|
25
|
$m[$i][2]=int($saku[$i]); |
174
|
32
|
|
|
|
|
59
|
$m[$i][1]=0; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
178
|
|
|
|
|
|
|
# 朔日行列から旧暦を求める。 |
179
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
180
|
8
|
|
|
|
|
8
|
my $state=0; |
181
|
8
|
|
|
|
|
15
|
for($i=0;$i<5;$i++){ |
182
|
28
|
100
|
|
|
|
65
|
if(int($tm0) < int($m[$i][2])){ |
|
|
50
|
|
|
|
|
|
183
|
8
|
|
|
|
|
6
|
$state=1; |
184
|
8
|
|
|
|
|
14
|
last; |
185
|
|
|
|
|
|
|
}elsif(int($tm0) == int($m[$i][2])){ |
186
|
0
|
|
|
|
|
0
|
$state=2; |
187
|
0
|
|
|
|
|
0
|
last; |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
} |
190
|
8
|
50
|
33
|
|
|
32
|
if($state==0||$state==1){ |
191
|
8
|
|
|
|
|
7
|
$i--; |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
8
|
|
|
|
|
12
|
$kyureki[1]=$m[$i][1]; |
195
|
8
|
|
|
|
|
12
|
$kyureki[2]=$m[$i][0]; |
196
|
8
|
|
|
|
|
18
|
$kyureki[3]=int($tm0)-int($m[$i][2])+1; |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
199
|
|
|
|
|
|
|
# 旧暦年の計算 |
200
|
|
|
|
|
|
|
# (旧暦月が10以上でかつ新暦月より大きい場合には、 |
201
|
|
|
|
|
|
|
# まだ年を越していないはず...) |
202
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
203
|
|
|
|
|
|
|
|
204
|
8
|
|
|
|
|
19
|
@a = JD2YMDT($tm0); |
205
|
8
|
|
|
|
|
11
|
$kyureki[0] = $a[0]; |
206
|
8
|
100
|
66
|
|
|
33
|
if($kyureki[2] > 9 && $kyureki[2] > $a[1]){ |
207
|
4
|
|
|
|
|
5
|
$kyureki[0]--; |
208
|
|
|
|
|
|
|
} |
209
|
|
|
|
|
|
|
|
210
|
8
|
|
|
|
|
58
|
return($kyureki[0],$kyureki[1],$kyureki[2],$kyureki[3]); |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
} |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
#========================================================================= |
215
|
|
|
|
|
|
|
# 中気の時刻を求める |
216
|
|
|
|
|
|
|
# |
217
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
218
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
219
|
|
|
|
|
|
|
# chu ....... 戻り値を格納する配列のポインター |
220
|
|
|
|
|
|
|
# i ......... 戻り値を格納する配列の要素番号 |
221
|
|
|
|
|
|
|
# 戻り値 .... 中気の時刻、その時の黄経を配列で渡す |
222
|
|
|
|
|
|
|
# |
223
|
|
|
|
|
|
|
#========================================================================= |
224
|
|
|
|
|
|
|
sub calc_chu |
225
|
|
|
|
|
|
|
{ |
226
|
24
|
|
|
24
|
0
|
25
|
my ($tm) = @_; |
227
|
24
|
|
|
|
|
14
|
my ($tm1,$tm2,$t,$rm_sun0,$rm_sun,$delta_t1,$delta_t2,$delta_rm); |
228
|
0
|
|
|
|
|
0
|
my (@temp); |
229
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
230
|
|
|
|
|
|
|
#時刻引数を分解する |
231
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
232
|
24
|
|
|
|
|
20
|
$tm1 = int( $tm ); |
233
|
24
|
|
|
|
|
22
|
$tm2 = $tm - $tm1; |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
236
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
237
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
238
|
24
|
|
|
|
|
17
|
$tm2-=9.0/24.0; |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
241
|
|
|
|
|
|
|
# 中気の黄経 λsun0 を求める |
242
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
243
|
24
|
|
|
|
|
29
|
$t=($tm2+0.5) / 36525.0; |
244
|
24
|
|
|
|
|
26
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
245
|
24
|
|
|
|
|
34
|
$rm_sun = LONGITUDE_SUN( $t ); |
246
|
|
|
|
|
|
|
|
247
|
24
|
|
|
|
|
26
|
$rm_sun0 = 30.0*int($rm_sun/30.0); |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
250
|
|
|
|
|
|
|
# 繰り返し計算によって中気の時刻を計算する |
251
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
252
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
253
|
24
|
|
|
|
|
13
|
$delta_t1 = 0; |
254
|
24
|
|
|
|
|
47
|
for( $delta_t2 = 1.0 ; abs( $delta_t1 + $delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
257
|
|
|
|
|
|
|
# λsun を計算 |
258
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
259
|
108
|
|
|
|
|
71
|
$t =($tm2+0.5) / 36525.0; |
260
|
108
|
|
|
|
|
66
|
$t =$t + ($tm1-2451545.0) / 36525.0; |
261
|
108
|
|
|
|
|
97
|
$rm_sun=LONGITUDE_SUN( $t ); |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
264
|
|
|
|
|
|
|
# 黄経差 Δλ=λsun −λsun0 |
265
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
266
|
108
|
|
|
|
|
71
|
$delta_rm = $rm_sun - $rm_sun0 ; |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
269
|
|
|
|
|
|
|
# Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う |
270
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
271
|
108
|
100
|
|
|
|
168
|
if( $delta_rm > 180.0 ){ |
|
|
50
|
|
|
|
|
|
272
|
8
|
|
|
|
|
8
|
$delta_rm-=360.0; |
273
|
|
|
|
|
|
|
}elsif( $delta_rm < -180.0 ){ |
274
|
0
|
|
|
|
|
0
|
$delta_rm+=360.0; |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
278
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
279
|
|
|
|
|
|
|
# delta_t = delta_rm * 365.2 / 360.0; |
280
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
281
|
108
|
|
|
|
|
85
|
$delta_t1 = int($delta_rm * 365.2 / 360.0); |
282
|
108
|
|
|
|
|
68
|
$delta_t2 = $delta_rm * 365.2 / 360.0; |
283
|
108
|
|
|
|
|
66
|
$delta_t2 -= $delta_t1; |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
286
|
|
|
|
|
|
|
# 時刻引数の補正 |
287
|
|
|
|
|
|
|
# tm -= delta_t; |
288
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
289
|
108
|
|
|
|
|
60
|
$tm1 = $tm1 - $delta_t1; |
290
|
108
|
|
|
|
|
63
|
$tm2 = $tm2 - $delta_t2; |
291
|
108
|
100
|
|
|
|
194
|
if($tm2 < 0){ |
292
|
18
|
|
|
|
|
12
|
$tm2+=1.0;$tm1-=1.0; |
|
18
|
|
|
|
|
29
|
|
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
} |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
297
|
|
|
|
|
|
|
# 戻り値の作成 |
298
|
|
|
|
|
|
|
# chu[i,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
299
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
300
|
|
|
|
|
|
|
# chu[i,1]:黄経 |
301
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
302
|
24
|
|
|
|
|
25
|
$temp[0] = $tm2+9.0/24.0; |
303
|
24
|
|
|
|
|
19
|
$temp[0] += $tm1; |
304
|
24
|
|
|
|
|
16
|
$temp[1] = $rm_sun0; |
305
|
|
|
|
|
|
|
|
306
|
24
|
|
|
|
|
83
|
return(@temp); |
307
|
|
|
|
|
|
|
} |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
#========================================================================= |
310
|
|
|
|
|
|
|
# 直前の二分二至の時刻を求める |
311
|
|
|
|
|
|
|
# |
312
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
313
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
314
|
|
|
|
|
|
|
# nibun ..... 戻り値を格納する配列のポインター |
315
|
|
|
|
|
|
|
# 戻り値 .... 二分二至の時刻、その時の黄経を配列で渡す |
316
|
|
|
|
|
|
|
# (戻り値の渡し方がちょっと気にくわないがまぁいいや。) |
317
|
|
|
|
|
|
|
#========================================================================= |
318
|
|
|
|
|
|
|
sub before_nibun |
319
|
|
|
|
|
|
|
{ |
320
|
8
|
|
|
8
|
0
|
8
|
my ($tm) = @_; |
321
|
8
|
|
|
|
|
7
|
my (@nibun,$tm1,$tm2,$t,$rm_sun0,$rm_sun,$delta_t1,$delta_t2,$delta_rm); |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
324
|
|
|
|
|
|
|
#時刻引数を分解する |
325
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
326
|
8
|
|
|
|
|
9
|
$tm1 = int( $tm ); |
327
|
8
|
|
|
|
|
9
|
$tm2 = $tm - $tm1; |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
330
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
331
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
332
|
8
|
|
|
|
|
8
|
$tm2-=9.0/24.0; |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
335
|
|
|
|
|
|
|
# 直前の二分二至の黄経 λsun0 を求める |
336
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
337
|
8
|
|
|
|
|
11
|
$t=($tm2+0.5) / 36525.0; |
338
|
8
|
|
|
|
|
12
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
339
|
8
|
|
|
|
|
15
|
$rm_sun=LONGITUDE_SUN( $t ); |
340
|
8
|
|
|
|
|
11
|
$rm_sun0=90*int($rm_sun/90.0); |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
343
|
|
|
|
|
|
|
# 繰り返し計算によって直前の二分二至の時刻を計算する |
344
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
345
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
346
|
8
|
|
|
|
|
11
|
$delta_t1 = 0; |
347
|
8
|
|
|
|
|
25
|
for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
350
|
|
|
|
|
|
|
# λsun を計算 |
351
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
352
|
44
|
|
|
|
|
34
|
$t=($tm2+0.5) / 36525.0; |
353
|
44
|
|
|
|
|
32
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
354
|
44
|
|
|
|
|
41
|
$rm_sun=LONGITUDE_SUN( $t ); |
355
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
357
|
|
|
|
|
|
|
# 黄経差 Δλ=λsun −λsun0 |
358
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
359
|
44
|
|
|
|
|
35
|
$delta_rm = $rm_sun - $rm_sun0 ; |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
362
|
|
|
|
|
|
|
# Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う |
363
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
364
|
44
|
50
|
|
|
|
114
|
if( $delta_rm > 180.0 ){ |
|
|
50
|
|
|
|
|
|
365
|
0
|
|
|
|
|
0
|
$delta_rm-=360.0; |
366
|
|
|
|
|
|
|
}elsif( $delta_rm < -180.0){ |
367
|
0
|
|
|
|
|
0
|
$delta_rm+=360.0; |
368
|
|
|
|
|
|
|
} |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
371
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
372
|
|
|
|
|
|
|
# delta_t = delta_rm * 365.2 / 360.0; |
373
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
374
|
44
|
|
|
|
|
38
|
$delta_t1 = int($delta_rm * 365.2 / 360.0); |
375
|
44
|
|
|
|
|
35
|
$delta_t2 = $delta_rm * 365.2 / 360.0; |
376
|
44
|
|
|
|
|
31
|
$delta_t2 -= $delta_t1; |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
379
|
|
|
|
|
|
|
# 時刻引数の補正 |
380
|
|
|
|
|
|
|
# tm -= delta_t; |
381
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
382
|
44
|
|
|
|
|
22
|
$tm1 = $tm1 - $delta_t1; |
383
|
44
|
|
|
|
|
24
|
$tm2 = $tm2 - $delta_t2; |
384
|
44
|
100
|
|
|
|
84
|
if($tm2 < 0){ |
385
|
10
|
|
|
|
|
6
|
$tm2+=1.0;$tm1-=1.0; |
|
10
|
|
|
|
|
19
|
|
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
} |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
391
|
|
|
|
|
|
|
# 戻り値の作成 |
392
|
|
|
|
|
|
|
# nibun[0,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
393
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
394
|
|
|
|
|
|
|
# nibun[0,1]:黄経 |
395
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
396
|
8
|
|
|
|
|
10
|
$nibun[0] = $tm2+9.0/24.0; |
397
|
8
|
|
|
|
|
8
|
$nibun[0] += $tm1; |
398
|
8
|
|
|
|
|
5
|
$nibun[1] = $rm_sun0; |
399
|
|
|
|
|
|
|
|
400
|
8
|
|
|
|
|
25
|
return(@nibun); |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
} |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
#========================================================================= |
405
|
|
|
|
|
|
|
# 朔の計算 |
406
|
|
|
|
|
|
|
# 与えられた時刻の直近の朔の時刻(JST)を求める |
407
|
|
|
|
|
|
|
# |
408
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
409
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
410
|
|
|
|
|
|
|
# 戻り値 .... 朔の時刻 |
411
|
|
|
|
|
|
|
# |
412
|
|
|
|
|
|
|
# ※ 引数、戻り値ともユリウス日で表し、時分秒は日の小数で表す。 |
413
|
|
|
|
|
|
|
# |
414
|
|
|
|
|
|
|
#========================================================================= |
415
|
|
|
|
|
|
|
sub calc_saku |
416
|
|
|
|
|
|
|
{ |
417
|
40
|
|
|
40
|
0
|
33
|
my ($tm) = @_; |
418
|
40
|
|
|
|
|
26
|
my ($lc,$t,$tm1,$tm2,$rm_sun,$rm_moon,$delta_rm,$delta_t1,$delta_t2); |
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
421
|
|
|
|
|
|
|
# ループカウンタのセット |
422
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
423
|
40
|
|
|
|
|
27
|
$lc=1; |
424
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
426
|
|
|
|
|
|
|
#時刻引数を分解する |
427
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
428
|
40
|
|
|
|
|
32
|
$tm1 = int( $tm ); |
429
|
40
|
|
|
|
|
28
|
$tm2 = $tm - $tm1; |
430
|
|
|
|
|
|
|
|
431
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
432
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
433
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
434
|
40
|
|
|
|
|
26
|
$tm2-=9.0/24.0; |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
437
|
|
|
|
|
|
|
# 繰り返し計算によって朔の時刻を計算する |
438
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
439
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
440
|
40
|
|
|
|
|
23
|
$delta_t1 = 0; |
441
|
40
|
|
|
|
|
69
|
for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; $lc++){ |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
444
|
|
|
|
|
|
|
# 太陽の黄経λsun ,月の黄経λmoon を計算 |
445
|
|
|
|
|
|
|
# t = (tm - 2451548.0 + 0.5)/36525.0; |
446
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
447
|
252
|
|
|
|
|
191
|
$t=($tm2+0.5) / 36525.0; |
448
|
252
|
|
|
|
|
189
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
449
|
252
|
|
|
|
|
228
|
$rm_sun=LONGITUDE_SUN( $t ); |
450
|
252
|
|
|
|
|
236
|
$rm_moon=LONGITUDE_MOON( $t ); |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
453
|
|
|
|
|
|
|
# 月と太陽の黄経差Δλ |
454
|
|
|
|
|
|
|
# Δλ=λmoon−λsun |
455
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
456
|
252
|
|
|
|
|
155
|
$delta_rm = $rm_moon - $rm_sun ; |
457
|
|
|
|
|
|
|
|
458
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
459
|
|
|
|
|
|
|
# ループの1回目(lc=1)で delta_rm < 0.0 の場合には引き込み範囲に |
460
|
|
|
|
|
|
|
# 入るように補正する |
461
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
462
|
252
|
100
|
100
|
|
|
1285
|
if( $lc==1 && $delta_rm < 0.0 ){ |
|
|
50
|
66
|
|
|
|
|
|
|
100
|
66
|
|
|
|
|
463
|
6
|
|
|
|
|
7
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
466
|
|
|
|
|
|
|
# 春分の近くで朔がある場合(0 ≦λsun≦ 20)で、月の黄経λmoon≧300 の |
467
|
|
|
|
|
|
|
# 場合には、Δλ= 360.0 − Δλ と計算して補正する |
468
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
469
|
|
|
|
|
|
|
elsif( $rm_sun >= 0 && $rm_sun <= 20 && $rm_moon >= 300 ){ |
470
|
0
|
|
|
|
|
0
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
471
|
0
|
|
|
|
|
0
|
$delta_rm = 360.0 - $delta_rm; |
472
|
|
|
|
|
|
|
} |
473
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
474
|
|
|
|
|
|
|
# Δλの引き込み範囲(±40°)を逸脱した場合には、補正を行う |
475
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
476
|
|
|
|
|
|
|
elsif( abs( $delta_rm ) > 40.0 ) { |
477
|
2
|
|
|
|
|
4
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
478
|
|
|
|
|
|
|
} |
479
|
|
|
|
|
|
|
|
480
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
481
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
482
|
|
|
|
|
|
|
# delta_t = delta_rm * 29.530589 / 360.0; |
483
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
484
|
252
|
|
|
|
|
204
|
$delta_t1 = int($delta_rm * 29.530589 / 360.0); |
485
|
252
|
|
|
|
|
186
|
$delta_t2 = $delta_rm * 29.530589 / 360.0; |
486
|
252
|
|
|
|
|
151
|
$delta_t2 -= $delta_t1; |
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
489
|
|
|
|
|
|
|
# 時刻引数の補正 |
490
|
|
|
|
|
|
|
# tm -= delta_t; |
491
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
492
|
252
|
|
|
|
|
152
|
$tm1 = $tm1 - $delta_t1; |
493
|
252
|
|
|
|
|
141
|
$tm2 = $tm2 - $delta_t2; |
494
|
252
|
100
|
|
|
|
304
|
if($tm2 < 0.0){ |
495
|
38
|
|
|
|
|
27
|
$tm2+=1.0;$tm1-=1.0; |
|
38
|
|
|
|
|
26
|
|
496
|
|
|
|
|
|
|
} |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
499
|
|
|
|
|
|
|
# ループ回数が15回になったら、初期値 tm を tm-26 とする。 |
500
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
501
|
252
|
50
|
33
|
|
|
958
|
if($lc == 15 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ |
|
|
50
|
33
|
|
|
|
|
502
|
0
|
|
|
|
|
0
|
$tm1 = int( $tm-26 ); |
503
|
0
|
|
|
|
|
0
|
$tm2 = 0; |
504
|
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
507
|
|
|
|
|
|
|
# 初期値を補正したにも関わらず、振動を続ける場合には初期値を答えとして |
508
|
|
|
|
|
|
|
# 返して強制的にループを抜け出して異常終了させる。 |
509
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
510
|
|
|
|
|
|
|
elsif( $lc > 30 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ |
511
|
0
|
|
|
|
|
0
|
$tm1=$tm;$tm2=0; |
|
0
|
|
|
|
|
0
|
|
512
|
0
|
|
|
|
|
0
|
last; |
513
|
|
|
|
|
|
|
} |
514
|
|
|
|
|
|
|
} |
515
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
517
|
|
|
|
|
|
|
# 時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
518
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
519
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
520
|
|
|
|
|
|
|
|
521
|
40
|
|
|
|
|
71
|
return($tm2+$tm1+9.0/24.0); |
522
|
|
|
|
|
|
|
} |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
#========================================================================= |
525
|
|
|
|
|
|
|
# 角度の正規化を行う。すなわち引数の範囲を 0≦θ<360 にする。 |
526
|
|
|
|
|
|
|
#========================================================================= |
527
|
|
|
|
|
|
|
sub NORMALIZATION_ANGLE |
528
|
|
|
|
|
|
|
{ |
529
|
23984
|
|
|
23984
|
0
|
13775
|
my ($angle) = @_; |
530
|
23984
|
|
|
|
|
13363
|
my ($angle1,$angle2); |
531
|
|
|
|
|
|
|
|
532
|
23984
|
100
|
|
|
|
20545
|
if( $angle < 0.0 ){ |
533
|
21756
|
|
|
|
|
12147
|
$angle1 = -$angle; |
534
|
21756
|
|
|
|
|
13623
|
$angle2 = int( $angle1 / 360.0 ); |
535
|
21756
|
|
|
|
|
12622
|
$angle1 -= 360.0 * $angle2; |
536
|
21756
|
|
|
|
|
13135
|
$angle1 = 360.0 - $angle1; |
537
|
|
|
|
|
|
|
}else{ |
538
|
2228
|
|
|
|
|
1443
|
$angle1 = int( $angle / 360.0 ); |
539
|
2228
|
|
|
|
|
1443
|
$angle1 = $angle - 360.0 * $angle1; |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
|
542
|
23984
|
|
|
|
|
17948
|
return($angle1); |
543
|
|
|
|
|
|
|
} |
544
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
#========================================================================= |
546
|
|
|
|
|
|
|
# 太陽の黄経 λsun を計算する |
547
|
|
|
|
|
|
|
#========================================================================= |
548
|
|
|
|
|
|
|
sub LONGITUDE_SUN |
549
|
|
|
|
|
|
|
{ |
550
|
436
|
|
|
436
|
0
|
342
|
my ($t) = @_; |
551
|
436
|
|
|
|
|
243
|
my ($th,$ang); |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
554
|
|
|
|
|
|
|
# 摂動項の計算 |
555
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
556
|
436
|
|
|
|
|
472
|
$ang = NORMALIZATION_ANGLE( 31557.0 * $t + 161.0 ); |
557
|
436
|
|
|
|
|
414
|
$th = .0004 * deg_cos( $ang ); |
558
|
436
|
|
|
|
|
413
|
$ang = NORMALIZATION_ANGLE( 29930.0 * $t + 48.0 ); |
559
|
436
|
|
|
|
|
421
|
$th = $th + .0004 * deg_cos ($ang ); |
560
|
436
|
|
|
|
|
441
|
$ang = NORMALIZATION_ANGLE( 2281.0 * $t + 221.0 ); |
561
|
436
|
|
|
|
|
427
|
$th = $th + .0005 * deg_cos ($ang ); |
562
|
436
|
|
|
|
|
454
|
$ang = NORMALIZATION_ANGLE( 155.0 * $t + 118.0 ); |
563
|
436
|
|
|
|
|
428
|
$th = $th + .0005 * deg_cos ($ang ); |
564
|
436
|
|
|
|
|
445
|
$ang = NORMALIZATION_ANGLE( 33718.0 * $t + 316.0 ); |
565
|
436
|
|
|
|
|
377
|
$th = $th + .0006 * deg_cos ($ang ); |
566
|
436
|
|
|
|
|
456
|
$ang = NORMALIZATION_ANGLE( 9038.0 * $t + 64.0 ); |
567
|
436
|
|
|
|
|
387
|
$th = $th + .0007 * deg_cos ($ang ); |
568
|
436
|
|
|
|
|
420
|
$ang = NORMALIZATION_ANGLE( 3035.0 * $t + 110.0 ); |
569
|
436
|
|
|
|
|
434
|
$th = $th + .0007 * deg_cos ($ang ); |
570
|
436
|
|
|
|
|
415
|
$ang = NORMALIZATION_ANGLE( 65929.0 * $t + 45.0 ); |
571
|
436
|
|
|
|
|
395
|
$th = $th + .0007 * deg_cos ($ang ); |
572
|
436
|
|
|
|
|
406
|
$ang = NORMALIZATION_ANGLE( 22519.0 * $t + 352.0 ); |
573
|
436
|
|
|
|
|
400
|
$th = $th + .0013 * deg_cos ($ang ); |
574
|
436
|
|
|
|
|
428
|
$ang = NORMALIZATION_ANGLE( 45038.0 * $t + 254.0 ); |
575
|
436
|
|
|
|
|
376
|
$th = $th + .0015 * deg_cos ($ang ); |
576
|
436
|
|
|
|
|
437
|
$ang = NORMALIZATION_ANGLE( 445267.0 * $t + 208.0 ); |
577
|
436
|
|
|
|
|
382
|
$th = $th + .0018 * deg_cos ($ang ); |
578
|
436
|
|
|
|
|
414
|
$ang = NORMALIZATION_ANGLE( 19.0 * $t + 159.0 ); |
579
|
436
|
|
|
|
|
395
|
$th = $th + .0018 * deg_cos ($ang ); |
580
|
436
|
|
|
|
|
412
|
$ang = NORMALIZATION_ANGLE( 32964.0 * $t + 158.0 ); |
581
|
436
|
|
|
|
|
396
|
$th = $th + .0020 * deg_cos ($ang ); |
582
|
436
|
|
|
|
|
415
|
$ang = NORMALIZATION_ANGLE( 71998.1 * $t + 265.1 ); |
583
|
436
|
|
|
|
|
368
|
$th = $th + .0200 * deg_cos ($ang ); |
584
|
436
|
|
|
|
|
445
|
$ang = NORMALIZATION_ANGLE( 35999.05 * $t + 267.52 ); |
585
|
436
|
|
|
|
|
414
|
$th = $th - 0.0048 * $t * deg_cos ($ang ) ; |
586
|
436
|
|
|
|
|
368
|
$th = $th + 1.9147 * deg_cos ($ang ) ; |
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
589
|
|
|
|
|
|
|
# 比例項の計算 |
590
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
591
|
436
|
|
|
|
|
406
|
$ang = NORMALIZATION_ANGLE( 36000.7695 * $t ); |
592
|
436
|
|
|
|
|
424
|
$ang = NORMALIZATION_ANGLE( $ang + 280.4659 ); |
593
|
436
|
|
|
|
|
420
|
$th = NORMALIZATION_ANGLE( $th + $ang ); |
594
|
|
|
|
|
|
|
|
595
|
436
|
|
|
|
|
331
|
return($th); |
596
|
|
|
|
|
|
|
} |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
#========================================================================= |
599
|
|
|
|
|
|
|
# 月の黄経 λmoon を計算する |
600
|
|
|
|
|
|
|
#========================================================================= |
601
|
|
|
|
|
|
|
sub LONGITUDE_MOON |
602
|
|
|
|
|
|
|
{ |
603
|
252
|
|
|
252
|
0
|
170
|
my ($t) = @_; |
604
|
252
|
|
|
|
|
131
|
my ($th,$ang); |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
607
|
|
|
|
|
|
|
# 摂動項の計算 |
608
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
609
|
252
|
|
|
|
|
252
|
$ang = NORMALIZATION_ANGLE( 2322131.0 * $t + 191.0 ); |
610
|
252
|
|
|
|
|
235
|
$th = .0003 * deg_cos ($ang ); |
611
|
252
|
|
|
|
|
254
|
$ang = NORMALIZATION_ANGLE( 4067.0 * $t + 70.0 ); |
612
|
252
|
|
|
|
|
239
|
$th = $th + .0003 * deg_cos ($ang ); |
613
|
252
|
|
|
|
|
252
|
$ang = NORMALIZATION_ANGLE( 549197.0 * $t + 220.0 ); |
614
|
252
|
|
|
|
|
270
|
$th = $th + .0003 * deg_cos ($ang ); |
615
|
252
|
|
|
|
|
242
|
$ang = NORMALIZATION_ANGLE( 1808933.0 * $t + 58.0 ); |
616
|
252
|
|
|
|
|
253
|
$th = $th + .0003 * deg_cos ($ang ); |
617
|
252
|
|
|
|
|
266
|
$ang = NORMALIZATION_ANGLE( 349472.0 * $t + 337.0 ); |
618
|
252
|
|
|
|
|
242
|
$th = $th + .0003 * deg_cos ($ang ); |
619
|
252
|
|
|
|
|
246
|
$ang = NORMALIZATION_ANGLE( 381404.0 * $t + 354.0 ); |
620
|
252
|
|
|
|
|
227
|
$th = $th + .0003 * deg_cos ($ang ); |
621
|
252
|
|
|
|
|
278
|
$ang = NORMALIZATION_ANGLE( 958465.0 * $t + 340.0 ); |
622
|
252
|
|
|
|
|
238
|
$th = $th + .0003 * deg_cos ($ang ); |
623
|
252
|
|
|
|
|
263
|
$ang = NORMALIZATION_ANGLE( 12006.0 * $t + 187.0 ); |
624
|
252
|
|
|
|
|
232
|
$th = $th + .0004 * deg_cos ($ang ); |
625
|
252
|
|
|
|
|
247
|
$ang = NORMALIZATION_ANGLE( 39871.0 * $t + 223.0 ); |
626
|
252
|
|
|
|
|
229
|
$th = $th + .0004 * deg_cos ($ang ); |
627
|
252
|
|
|
|
|
263
|
$ang = NORMALIZATION_ANGLE( 509131.0 * $t + 242.0 ); |
628
|
252
|
|
|
|
|
248
|
$th = $th + .0005 * deg_cos ($ang ); |
629
|
252
|
|
|
|
|
255
|
$ang = NORMALIZATION_ANGLE( 1745069.0 * $t + 24.0 ); |
630
|
252
|
|
|
|
|
229
|
$th = $th + .0005 * deg_cos ($ang ); |
631
|
252
|
|
|
|
|
239
|
$ang = NORMALIZATION_ANGLE( 1908795.0 * $t + 90.0 ); |
632
|
252
|
|
|
|
|
215
|
$th = $th + .0005 * deg_cos ($ang ); |
633
|
252
|
|
|
|
|
266
|
$ang = NORMALIZATION_ANGLE( 2258267.0 * $t + 156.0 ); |
634
|
252
|
|
|
|
|
218
|
$th = $th + .0006 * deg_cos ($ang ); |
635
|
252
|
|
|
|
|
246
|
$ang = NORMALIZATION_ANGLE( 111869.0 * $t + 38.0 ); |
636
|
252
|
|
|
|
|
229
|
$th = $th + .0006 * deg_cos ($ang ); |
637
|
252
|
|
|
|
|
242
|
$ang = NORMALIZATION_ANGLE( 27864.0 * $t + 127.0 ); |
638
|
252
|
|
|
|
|
235
|
$th = $th + .0007 * deg_cos ($ang ); |
639
|
252
|
|
|
|
|
234
|
$ang = NORMALIZATION_ANGLE( 485333.0 * $t + 186.0 ); |
640
|
252
|
|
|
|
|
235
|
$th = $th + .0007 * deg_cos ($ang ); |
641
|
252
|
|
|
|
|
238
|
$ang = NORMALIZATION_ANGLE( 405201.0 * $t + 50.0 ); |
642
|
252
|
|
|
|
|
234
|
$th = $th + .0007 * deg_cos ($ang ); |
643
|
252
|
|
|
|
|
253
|
$ang = NORMALIZATION_ANGLE( 790672.0 * $t + 114.0 ); |
644
|
252
|
|
|
|
|
218
|
$th = $th + .0007 * deg_cos ($ang ); |
645
|
252
|
|
|
|
|
237
|
$ang = NORMALIZATION_ANGLE( 1403732.0 * $t + 98.0 ); |
646
|
252
|
|
|
|
|
232
|
$th = $th + .0008 * deg_cos ($ang ); |
647
|
252
|
|
|
|
|
262
|
$ang = NORMALIZATION_ANGLE( 858602.0 * $t + 129.0 ); |
648
|
252
|
|
|
|
|
238
|
$th = $th + .0009 * deg_cos ($ang ); |
649
|
252
|
|
|
|
|
261
|
$ang = NORMALIZATION_ANGLE( 1920802.0 * $t + 186.0 ); |
650
|
252
|
|
|
|
|
236
|
$th = $th + .0011 * deg_cos ($ang ); |
651
|
252
|
|
|
|
|
261
|
$ang = NORMALIZATION_ANGLE( 1267871.0 * $t + 249.0 ); |
652
|
252
|
|
|
|
|
232
|
$th = $th + .0012 * deg_cos ($ang ); |
653
|
252
|
|
|
|
|
263
|
$ang = NORMALIZATION_ANGLE( 1856938.0 * $t + 152.0 ); |
654
|
252
|
|
|
|
|
254
|
$th = $th + .0016 * deg_cos ($ang ); |
655
|
252
|
|
|
|
|
248
|
$ang = NORMALIZATION_ANGLE( 401329.0 * $t + 274.0 ); |
656
|
252
|
|
|
|
|
224
|
$th = $th + .0018 * deg_cos ($ang ); |
657
|
252
|
|
|
|
|
256
|
$ang = NORMALIZATION_ANGLE( 341337.0 * $t + 16.0 ); |
658
|
252
|
|
|
|
|
237
|
$th = $th + .0021 * deg_cos ($ang ); |
659
|
252
|
|
|
|
|
252
|
$ang = NORMALIZATION_ANGLE( 71998.0 * $t + 85.0 ); |
660
|
252
|
|
|
|
|
228
|
$th = $th + .0021 * deg_cos ($ang ); |
661
|
252
|
|
|
|
|
259
|
$ang = NORMALIZATION_ANGLE( 990397.0 * $t + 357.0 ); |
662
|
252
|
|
|
|
|
221
|
$th = $th + .0021 * deg_cos ($ang ); |
663
|
252
|
|
|
|
|
258
|
$ang = NORMALIZATION_ANGLE( 818536.0 * $t + 151.0 ); |
664
|
252
|
|
|
|
|
286
|
$th = $th + .0022 * deg_cos ($ang ); |
665
|
252
|
|
|
|
|
247
|
$ang = NORMALIZATION_ANGLE( 922466.0 * $t + 163.0 ); |
666
|
252
|
|
|
|
|
237
|
$th = $th + .0023 * deg_cos ($ang ); |
667
|
252
|
|
|
|
|
256
|
$ang = NORMALIZATION_ANGLE( 99863.0 * $t + 122.0 ); |
668
|
252
|
|
|
|
|
240
|
$th = $th + .0024 * deg_cos ($ang ); |
669
|
252
|
|
|
|
|
269
|
$ang = NORMALIZATION_ANGLE( 1379739.0 * $t + 17.0 ); |
670
|
252
|
|
|
|
|
213
|
$th = $th + .0026 * deg_cos ($ang ); |
671
|
252
|
|
|
|
|
247
|
$ang = NORMALIZATION_ANGLE( 918399.0 * $t + 182.0 ); |
672
|
252
|
|
|
|
|
235
|
$th = $th + .0027 * deg_cos ($ang ); |
673
|
252
|
|
|
|
|
232
|
$ang = NORMALIZATION_ANGLE( 1934.0 * $t + 145.0 ); |
674
|
252
|
|
|
|
|
249
|
$th = $th + .0028 * deg_cos ($ang ); |
675
|
252
|
|
|
|
|
273
|
$ang = NORMALIZATION_ANGLE( 541062.0 * $t + 259.0 ); |
676
|
252
|
|
|
|
|
248
|
$th = $th + .0037 * deg_cos ($ang ); |
677
|
252
|
|
|
|
|
270
|
$ang = NORMALIZATION_ANGLE( 1781068.0 * $t + 21.0 ); |
678
|
252
|
|
|
|
|
566
|
$th = $th + .0038 * deg_cos ($ang ); |
679
|
252
|
|
|
|
|
268
|
$ang = NORMALIZATION_ANGLE( 133.0 * $t + 29.0 ); |
680
|
252
|
|
|
|
|
233
|
$th = $th + .0040 * deg_cos ($ang ); |
681
|
252
|
|
|
|
|
248
|
$ang = NORMALIZATION_ANGLE( 1844932.0 * $t + 56.0 ); |
682
|
252
|
|
|
|
|
228
|
$th = $th + .0040 * deg_cos ($ang ); |
683
|
252
|
|
|
|
|
253
|
$ang = NORMALIZATION_ANGLE( 1331734.0 * $t + 283.0 ); |
684
|
252
|
|
|
|
|
238
|
$th = $th + .0040 * deg_cos ($ang ); |
685
|
252
|
|
|
|
|
247
|
$ang = NORMALIZATION_ANGLE( 481266.0 * $t + 205.0 ); |
686
|
252
|
|
|
|
|
234
|
$th = $th + .0050 * deg_cos ($ang ); |
687
|
252
|
|
|
|
|
250
|
$ang = NORMALIZATION_ANGLE( 31932.0 * $t + 107.0 ); |
688
|
252
|
|
|
|
|
221
|
$th = $th + .0052 * deg_cos ($ang ); |
689
|
252
|
|
|
|
|
234
|
$ang = NORMALIZATION_ANGLE( 926533.0 * $t + 323.0 ); |
690
|
252
|
|
|
|
|
231
|
$th = $th + .0068 * deg_cos ($ang ); |
691
|
252
|
|
|
|
|
235
|
$ang = NORMALIZATION_ANGLE( 449334.0 * $t + 188.0 ); |
692
|
252
|
|
|
|
|
212
|
$th = $th + .0079 * deg_cos ($ang ); |
693
|
252
|
|
|
|
|
260
|
$ang = NORMALIZATION_ANGLE( 826671.0 * $t + 111.0 ); |
694
|
252
|
|
|
|
|
233
|
$th = $th + .0085 * deg_cos ($ang ); |
695
|
252
|
|
|
|
|
242
|
$ang = NORMALIZATION_ANGLE( 1431597.0 * $t + 315.0 ); |
696
|
252
|
|
|
|
|
213
|
$th = $th + .0100 * deg_cos ($ang ); |
697
|
252
|
|
|
|
|
232
|
$ang = NORMALIZATION_ANGLE( 1303870.0 * $t + 246.0 ); |
698
|
252
|
|
|
|
|
251
|
$th = $th + .0107 * deg_cos ($ang ); |
699
|
252
|
|
|
|
|
230
|
$ang = NORMALIZATION_ANGLE( 489205.0 * $t + 142.0 ); |
700
|
252
|
|
|
|
|
238
|
$th = $th + .0110 * deg_cos ($ang ); |
701
|
252
|
|
|
|
|
246
|
$ang = NORMALIZATION_ANGLE( 1443603.0 * $t + 52.0 ); |
702
|
252
|
|
|
|
|
235
|
$th = $th + .0125 * deg_cos ($ang ); |
703
|
252
|
|
|
|
|
253
|
$ang = NORMALIZATION_ANGLE( 75870.0 * $t + 41.0 ); |
704
|
252
|
|
|
|
|
301
|
$th = $th + .0154 * deg_cos ($ang ); |
705
|
252
|
|
|
|
|
239
|
$ang = NORMALIZATION_ANGLE( 513197.9 * $t + 222.5 ); |
706
|
252
|
|
|
|
|
237
|
$th = $th + .0304 * deg_cos ($ang ); |
707
|
252
|
|
|
|
|
233
|
$ang = NORMALIZATION_ANGLE( 445267.1 * $t + 27.9 ); |
708
|
252
|
|
|
|
|
227
|
$th = $th + .0347 * deg_cos ($ang ); |
709
|
252
|
|
|
|
|
232
|
$ang = NORMALIZATION_ANGLE( 441199.8 * $t + 47.4 ); |
710
|
252
|
|
|
|
|
218
|
$th = $th + .0409 * deg_cos ($ang ); |
711
|
252
|
|
|
|
|
273
|
$ang = NORMALIZATION_ANGLE( 854535.2 * $t + 148.2 ); |
712
|
252
|
|
|
|
|
227
|
$th = $th + .0458 * deg_cos ($ang ); |
713
|
252
|
|
|
|
|
240
|
$ang = NORMALIZATION_ANGLE( 1367733.1 * $t + 280.7 ); |
714
|
252
|
|
|
|
|
238
|
$th = $th + .0533 * deg_cos ($ang ); |
715
|
252
|
|
|
|
|
239
|
$ang = NORMALIZATION_ANGLE( 377336.3 * $t + 13.2 ); |
716
|
252
|
|
|
|
|
231
|
$th = $th + .0571 * deg_cos ($ang ); |
717
|
252
|
|
|
|
|
236
|
$ang = NORMALIZATION_ANGLE( 63863.5 * $t + 124.2 ); |
718
|
252
|
|
|
|
|
218
|
$th = $th + .0588 * deg_cos ($ang ); |
719
|
252
|
|
|
|
|
225
|
$ang = NORMALIZATION_ANGLE( 966404.0 * $t + 276.5 ); |
720
|
252
|
|
|
|
|
244
|
$th = $th + .1144 * deg_cos ($ang ); |
721
|
252
|
|
|
|
|
234
|
$ang = NORMALIZATION_ANGLE( 35999.05 * $t + 87.53 ); |
722
|
252
|
|
|
|
|
220
|
$th = $th + .1851 * deg_cos ($ang ); |
723
|
252
|
|
|
|
|
237
|
$ang = NORMALIZATION_ANGLE( 954397.74 * $t + 179.93 ); |
724
|
252
|
|
|
|
|
211
|
$th = $th + .2136 * deg_cos ($ang ); |
725
|
252
|
|
|
|
|
246
|
$ang = NORMALIZATION_ANGLE( 890534.22 * $t + 145.7 ); |
726
|
252
|
|
|
|
|
224
|
$th = $th + .6583 * deg_cos ($ang ); |
727
|
252
|
|
|
|
|
245
|
$ang = NORMALIZATION_ANGLE( 413335.35 * $t + 10.74 ); |
728
|
252
|
|
|
|
|
229
|
$th = $th + 1.2740 * deg_cos ($ang ); |
729
|
252
|
|
|
|
|
237
|
$ang = NORMALIZATION_ANGLE( 477198.868 * $t + 44.963 ); |
730
|
252
|
|
|
|
|
215
|
$th = $th + 6.2888 * deg_cos ($ang ); |
731
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
733
|
|
|
|
|
|
|
# 比例項の計算 |
734
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
735
|
252
|
|
|
|
|
218
|
$ang = NORMALIZATION_ANGLE( 481267.8809 * $t ); |
736
|
252
|
|
|
|
|
231
|
$ang = NORMALIZATION_ANGLE( $ang + 218.3162 ); |
737
|
252
|
|
|
|
|
242
|
$th = NORMALIZATION_ANGLE( $th + $ang ); |
738
|
|
|
|
|
|
|
|
739
|
252
|
|
|
|
|
207
|
return($th); |
740
|
|
|
|
|
|
|
} |
741
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
#========================================================================= |
743
|
|
|
|
|
|
|
# 年月日、時分秒(世界時)からユリウス日(JD)を計算する |
744
|
|
|
|
|
|
|
# |
745
|
|
|
|
|
|
|
# ※ この関数では、グレゴリオ暦法による年月日から求めるものである。 |
746
|
|
|
|
|
|
|
# (ユリウス暦法による年月日から求める場合には使用できない。) |
747
|
|
|
|
|
|
|
#========================================================================= |
748
|
|
|
|
|
|
|
sub YMDT2JD |
749
|
|
|
|
|
|
|
{ |
750
|
8
|
|
|
8
|
0
|
10
|
my ($year,$month,$day,$hour,$min,$sec) = @_; |
751
|
8
|
|
|
|
|
7
|
my ($jd,$t); |
752
|
|
|
|
|
|
|
|
753
|
8
|
100
|
|
|
|
24
|
if( $month < 3.0 ){ |
754
|
4
|
|
|
|
|
8
|
$year -= 1.0; |
755
|
4
|
|
|
|
|
5
|
$month += 12.0; |
756
|
|
|
|
|
|
|
} |
757
|
|
|
|
|
|
|
|
758
|
8
|
|
|
|
|
18
|
$jd = int( 365.25 * $year ); |
759
|
8
|
|
|
|
|
16
|
$jd += int( $year / 400.0 ); |
760
|
8
|
|
|
|
|
14
|
$jd -= int( $year / 100.0 ); |
761
|
8
|
|
|
|
|
13
|
$jd += int( 30.59 * ( $month-2.0 ) ); |
762
|
8
|
|
|
|
|
9
|
$jd += 1721088; |
763
|
8
|
|
|
|
|
11
|
$jd += $day; |
764
|
|
|
|
|
|
|
|
765
|
8
|
|
|
|
|
12
|
$t = $sec / 3600.0; |
766
|
8
|
|
|
|
|
8
|
$t += $min /60.0; |
767
|
8
|
|
|
|
|
7
|
$t += $hour; |
768
|
8
|
|
|
|
|
8
|
$t = $t / 24.0; |
769
|
|
|
|
|
|
|
|
770
|
8
|
|
|
|
|
5
|
$jd += $t; |
771
|
|
|
|
|
|
|
|
772
|
8
|
|
|
|
|
10
|
return( $jd ); |
773
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
} |
775
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
#========================================================================= |
777
|
|
|
|
|
|
|
# ユリウス日(JD)から年月日、時分秒(世界時)を計算する |
778
|
|
|
|
|
|
|
# |
779
|
|
|
|
|
|
|
# 戻り値の配列TIME[]の内訳 |
780
|
|
|
|
|
|
|
# TIME[0] ... 年 TIME[1] ... 月 TIME[2] ... 日 |
781
|
|
|
|
|
|
|
# TIME[3] ... 時 TIME[4] ... 分 TIME[5] ... 秒 |
782
|
|
|
|
|
|
|
# |
783
|
|
|
|
|
|
|
# ※ この関数で求めた年月日は、グレゴリオ暦法によって表されている。 |
784
|
|
|
|
|
|
|
# |
785
|
|
|
|
|
|
|
#========================================================================= |
786
|
|
|
|
|
|
|
sub JD2YMDT |
787
|
|
|
|
|
|
|
{ |
788
|
|
|
|
|
|
|
|
789
|
8
|
|
|
8
|
0
|
8
|
my ($JD) = @_; |
790
|
8
|
|
|
|
|
8
|
my (@TIME,$x0,$x1,$x2,$x3,$x4,$x5,$x6,$tm); |
791
|
|
|
|
|
|
|
|
792
|
8
|
|
|
|
|
9
|
$x0 = int( $JD+68570.0); |
793
|
8
|
|
|
|
|
8
|
$x1 = int( $x0/36524.25 ); |
794
|
8
|
|
|
|
|
11
|
$x2 = $x0 - int( 36524.25*$x1 + 0.75 ); |
795
|
8
|
|
|
|
|
9
|
$x3 = int( ( $x2+1 )/365.2425 ); |
796
|
8
|
|
|
|
|
19
|
$x4 = $x2 - int( 365.25*$x3 )+31.0; |
797
|
8
|
|
|
|
|
11
|
$x5 = int( int($x4) / 30.59 ); |
798
|
8
|
|
|
|
|
9
|
$x6 = int( int($x5) / 11.0 ); |
799
|
|
|
|
|
|
|
|
800
|
8
|
|
|
|
|
12
|
$TIME[2] = $x4 - int( 30.59*$x5 ); |
801
|
8
|
|
|
|
|
9
|
$TIME[1] = $x5 - 12*$x6 + 2; |
802
|
8
|
|
|
|
|
10
|
$TIME[0] = 100*( $x1-49 ) + $x3 + $x6; |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
# 2月30日の補正 |
805
|
8
|
50
|
33
|
|
|
21
|
if($TIME[1]==2 && $TIME[2] > 28){ |
806
|
0
|
0
|
0
|
|
|
0
|
if($TIME[0] % 100 == 0 && $TIME[0] % 400 == 0){ |
|
|
0
|
|
|
|
|
|
807
|
0
|
|
|
|
|
0
|
$TIME[2]=29; |
808
|
|
|
|
|
|
|
}elsif($TIME[0] % 4 ==0){ |
809
|
0
|
|
|
|
|
0
|
$TIME[2]=29; |
810
|
|
|
|
|
|
|
}else{ |
811
|
0
|
|
|
|
|
0
|
$TIME[2]=28; |
812
|
|
|
|
|
|
|
} |
813
|
|
|
|
|
|
|
} |
814
|
|
|
|
|
|
|
|
815
|
8
|
|
|
|
|
13
|
$tm=86400.0*( $JD - int( $JD ) ); |
816
|
8
|
|
|
|
|
11
|
$TIME[3] = int( $tm/3600.0 ); |
817
|
8
|
|
|
|
|
16
|
$TIME[4] = int( ($tm - 3600.0*$TIME[3])/60.0 ); |
818
|
8
|
|
|
|
|
32
|
$TIME[5] = int( $tm - 3600.0*$TIME[3] - 60*$TIME[4] ); |
819
|
|
|
|
|
|
|
|
820
|
8
|
|
|
|
|
27
|
return(@TIME); |
821
|
|
|
|
|
|
|
} |
822
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
#========================================================================= |
824
|
|
|
|
|
|
|
# 今日が24節気かどうか調べる |
825
|
|
|
|
|
|
|
# |
826
|
|
|
|
|
|
|
# 引数 .... 計算対象となる年月日 $year $mon $day |
827
|
|
|
|
|
|
|
# |
828
|
|
|
|
|
|
|
# 戻り値 .... 24節気の名称 |
829
|
|
|
|
|
|
|
# |
830
|
|
|
|
|
|
|
#========================================================================= |
831
|
|
|
|
|
|
|
sub check_24sekki |
832
|
|
|
|
|
|
|
{ |
833
|
0
|
|
|
0
|
0
|
|
my ($year,$mon,$day) = @_; |
834
|
0
|
|
|
|
|
|
my ($tm1,$tm2,$t,$rm_sun_today,$rm_sun_today0,$rm_sun_tommorow,$rm_sun_tommorow0); |
835
|
|
|
|
|
|
|
|
836
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
837
|
|
|
|
|
|
|
# 24節気の定義 |
838
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
839
|
0
|
|
|
|
|
|
my (@sekki24) = ("春分","清明","穀雨","立夏","小満","芒種","夏至","小暑","大暑","立秋","処暑","白露", |
840
|
|
|
|
|
|
|
"秋分","寒露","霜降","立冬","小雪","大雪","冬至","小寒","大寒","立春","雨水","啓蟄"); |
841
|
|
|
|
|
|
|
|
842
|
0
|
|
|
|
|
|
my $tm = YMDT2JD($year,$mon,$day,0,0,0); |
843
|
|
|
|
|
|
|
|
844
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
845
|
|
|
|
|
|
|
#時刻引数を分解する |
846
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
847
|
0
|
|
|
|
|
|
$tm1 = int( $tm ); |
848
|
0
|
|
|
|
|
|
$tm2 = $tm - $tm1; |
849
|
0
|
|
|
|
|
|
$tm2-=9.0/24.0; |
850
|
0
|
|
|
|
|
|
$t=($tm2+0.5) / 36525.0; |
851
|
0
|
|
|
|
|
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
852
|
|
|
|
|
|
|
|
853
|
|
|
|
|
|
|
#今日の太陽の黄経 |
854
|
0
|
|
|
|
|
|
$rm_sun_today = LONGITUDE_SUN( $t ); |
855
|
|
|
|
|
|
|
|
856
|
0
|
|
|
|
|
|
$tm++; |
857
|
0
|
|
|
|
|
|
$tm1 = int($tm); |
858
|
0
|
|
|
|
|
|
$tm2 = $tm - $tm1; |
859
|
0
|
|
|
|
|
|
$tm2-=9.0/24.0; |
860
|
0
|
|
|
|
|
|
$t=($tm2+0.5) / 36525.0; |
861
|
0
|
|
|
|
|
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
862
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
#明日の太陽の黄経 |
864
|
0
|
|
|
|
|
|
$rm_sun_tommorow = LONGITUDE_SUN($t); |
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
# |
867
|
0
|
|
|
|
|
|
$rm_sun_today0 = 15.0 * int($rm_sun_today / 15.0); |
868
|
0
|
|
|
|
|
|
$rm_sun_tommorow0 = 15.0 * int($rm_sun_tommorow / 15.0); |
869
|
|
|
|
|
|
|
|
870
|
0
|
0
|
|
|
|
|
if($rm_sun_today0 != $rm_sun_tommorow0){ |
871
|
0
|
|
|
|
|
|
return($sekki24[$rm_sun_tommorow0 / 15]); |
872
|
|
|
|
|
|
|
}else{ |
873
|
0
|
|
|
|
|
|
return(''); |
874
|
|
|
|
|
|
|
} |
875
|
|
|
|
|
|
|
} |
876
|
|
|
|
|
|
|
|
877
|
|
|
|
|
|
|
1; |