line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=encoding UTF-8 |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=head1 NAME |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
Date::Qreki - convert Gregorian to Japanese "kyureki" dates. |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 SYNOPSIS |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
This module is currently undocumented, so to use it you need to read |
10
|
|
|
|
|
|
|
the source code. If you are interested in helping write documentation |
11
|
|
|
|
|
|
|
for the module or would like to discuss, please contact the module |
12
|
|
|
|
|
|
|
author or visit |
13
|
|
|
|
|
|
|
L |
14
|
|
|
|
|
|
|
and vote for this project. |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
=head1 DESCRIPTION |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 FUNCTIONS |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=head2 calc_kyureki |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=head2 get_rokuyou |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=head1 SEE ALSO |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=head1 COPYRIGHT |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
Date::Qreki is copyright H. Takano, N. Ueno. |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=head1 LICENSE |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
The original licence in Japanese reads as follows: |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
19. 配布規定について |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
本当は、「一般常識の許す範囲で...」としたい所ですが、世の中には色々な人 |
37
|
|
|
|
|
|
|
がいますので、ある程度の枠組みが必要なのは仕方の無いことなのでしょう。 と |
38
|
|
|
|
|
|
|
もあれ拙者が希望するのは以下のようなものです。 |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
i 本スクリプト・説明書を再配布する場合はオリジナルのアーカイブファイ |
41
|
|
|
|
|
|
|
ルに含まれるファイルを全て含み、オリジナルのスクリプト・説明書を改変 |
42
|
|
|
|
|
|
|
しないで下さい。 また、 頒布の都合でアーカイブ形式(.arc .zip .zoo |
43
|
|
|
|
|
|
|
等)を変更する場合も同様に扱って下さい。 |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
ii 再配布する際の媒体に要するコストを除いて一切の金銭等の授受は禁止い |
46
|
|
|
|
|
|
|
たします。 (他の言語に移植したものを配布する場合にも適用いたしま |
47
|
|
|
|
|
|
|
す。) |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
iii 他の言語に移植したり、 本スクリプトの一部または全部を引用して作成 |
50
|
|
|
|
|
|
|
し、これを配布する場合には、オリジナルのスクリプトと本説明書を必ず同 |
51
|
|
|
|
|
|
|
梱して下さい。 |
52
|
|
|
|
|
|
|
その場合の著作権につきましては、引用した部分のみ著者に帰属し、その外 |
53
|
|
|
|
|
|
|
は製作者に帰属します。 |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
iv 配布によって著作者が一切の制限を受ける可能性がないようにして下さ |
56
|
|
|
|
|
|
|
い。 |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
なお、 いづれの場合におきましても、承諾・転載の報告など一切不要といたしま |
59
|
|
|
|
|
|
|
す。 |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
Translation: |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
19 Conditions for redistribution |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
I would prefer to release this under the conditions of "whatever |
66
|
|
|
|
|
|
|
normal common sense allows", but since there are a variety of people |
67
|
|
|
|
|
|
|
in the world, unfortunately I think some form of framework is |
68
|
|
|
|
|
|
|
necessary. My wishes are as follows |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
i. If this script is redistributed, please also include all the |
71
|
|
|
|
|
|
|
original scripts, and do not modify the original script and its |
72
|
|
|
|
|
|
|
documentation. This also applies if the archive format (.arc, .zip, |
73
|
|
|
|
|
|
|
.zoo, etc.) is changed. |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
ii. I forbid any resale of this program beyond the cost of |
76
|
|
|
|
|
|
|
distribution media. (This also applies if the program is translated to |
77
|
|
|
|
|
|
|
a different programming language). |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
iii. If this is translated to a different programming language, or if |
80
|
|
|
|
|
|
|
part or all of this script is used as part of another program, please |
81
|
|
|
|
|
|
|
be sure to include the original script and this explanation with |
82
|
|
|
|
|
|
|
it. If part of this program is used, I retain the copyright of the |
83
|
|
|
|
|
|
|
quoted material only and the remaining program remains copyrighted by |
84
|
|
|
|
|
|
|
its author. |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
iv. Please do not allow the author of this software to be placed under |
87
|
|
|
|
|
|
|
any restrictions by your redistribution. |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
In any case, there is absolutely no need to obtain the author's |
90
|
|
|
|
|
|
|
consent or notify the author. |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
End of artistic translation. |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
The original Awk script and its documentation are in F in |
95
|
|
|
|
|
|
|
the distribution. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
=head1 AUTHOR |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
Original Awk script by H. Takano. Perl conversion by N. Ueno. This |
100
|
|
|
|
|
|
|
CPAN-ification of N. Ueno's Perl script was performed by Ben Bullock. |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
For enquiries about this Perl module, please contact Ben Bullock |
103
|
|
|
|
|
|
|
. |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=cut |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
package Date::Qreki; |
108
|
|
|
|
|
|
|
require Exporter; |
109
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
110
|
|
|
|
|
|
|
@EXPORT_OK = qw/calc_kyureki get_rokuyou/; |
111
|
1
|
|
|
1
|
|
123452
|
use warnings; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
129
|
|
112
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
87
|
|
113
|
|
|
|
|
|
|
our $VERSION = 0.05; |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
#========================================================================= |
116
|
|
|
|
|
|
|
# 旧暦計算サンプルプログラム $Revision: 1.1 $ |
117
|
|
|
|
|
|
|
# Coded by H.Takano 1993,1994 |
118
|
|
|
|
|
|
|
# |
119
|
|
|
|
|
|
|
# Arranged for Perl Script by N.Ueno |
120
|
|
|
|
|
|
|
# |
121
|
|
|
|
|
|
|
# |
122
|
|
|
|
|
|
|
# オリジナルのスクリプトは高野氏のAWKです。下記より入手できます。 |
123
|
|
|
|
|
|
|
# http://www.vector.co.jp/soft/dos/personal/se016093.html |
124
|
|
|
|
|
|
|
# |
125
|
|
|
|
|
|
|
# |
126
|
|
|
|
|
|
|
#======================================================================== |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
129
|
|
|
|
|
|
|
# 円周率の定義と(角度の)度からラジアンに変換する係数の定義 |
130
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
131
|
1
|
|
|
1
|
|
15
|
use constant PI => 3.141592653589793238462; |
|
1
|
|
|
|
|
7
|
|
|
1
|
|
|
|
|
152
|
|
132
|
1
|
|
|
1
|
|
6
|
use constant k => PI/180.0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
17551
|
|
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub deg_cos |
135
|
|
|
|
|
|
|
{ |
136
|
22348
|
|
|
22348
|
0
|
42970
|
my ($angle) = @_; |
137
|
22348
|
|
|
|
|
61192
|
return cos ($angle * k); |
138
|
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
#========================================================================= |
141
|
|
|
|
|
|
|
# 六曜算出関数 |
142
|
|
|
|
|
|
|
# |
143
|
|
|
|
|
|
|
# 引数:新暦年月日 |
144
|
|
|
|
|
|
|
# 戻値:0:大安 1:赤口 2:先勝 3:友引 4:先負 5:仏滅 |
145
|
|
|
|
|
|
|
# |
146
|
|
|
|
|
|
|
#========================================================================= |
147
|
|
|
|
|
|
|
sub get_rokuyou |
148
|
|
|
|
|
|
|
{ |
149
|
|
|
|
|
|
|
|
150
|
4
|
|
|
4
|
1
|
6340
|
my ($year,$mon,$day) = @_; |
151
|
4
|
|
|
|
|
8
|
my ($tm0,$q_year,$q_mon,$q_day,$uruu,$q_yaer); |
152
|
|
|
|
|
|
|
|
153
|
4
|
|
|
|
|
11
|
($q_yaer,$uruu,$q_mon,$q_day) = calc_kyureki($year,$mon,$day); |
154
|
|
|
|
|
|
|
|
155
|
4
|
|
|
|
|
32
|
return(($q_mon + $q_day) % 6); |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
#========================================================================= |
159
|
|
|
|
|
|
|
# 新暦に対応する、旧暦を求める。 |
160
|
|
|
|
|
|
|
# |
161
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
162
|
|
|
|
|
|
|
# 引 数 year : 計算する日付 |
163
|
|
|
|
|
|
|
# mon |
164
|
|
|
|
|
|
|
# day |
165
|
|
|
|
|
|
|
# |
166
|
|
|
|
|
|
|
# 戻り値 kyureki : 答えの格納先(配列に答えをかえす) |
167
|
|
|
|
|
|
|
# kyureki[0] : 旧暦年 |
168
|
|
|
|
|
|
|
# kyureki[1] : 平月/閏月 flag .... 平月:0 閏月:1 |
169
|
|
|
|
|
|
|
# kyureki[2] : 旧暦月 |
170
|
|
|
|
|
|
|
# kyureki[3] : 旧暦日 |
171
|
|
|
|
|
|
|
# |
172
|
|
|
|
|
|
|
#========================================================================= |
173
|
|
|
|
|
|
|
sub calc_kyureki |
174
|
|
|
|
|
|
|
{ |
175
|
8
|
|
|
8
|
1
|
4127
|
my ($year,$mon,$day) = @_; |
176
|
8
|
|
|
|
|
13
|
my (@kyureki,$tm,@saku,$lap,@a,$i,@m); |
177
|
|
|
|
|
|
|
|
178
|
8
|
|
|
|
|
33
|
my $tm0 = YMDT2JD($year,$mon,$day,0,0,0); |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
181
|
|
|
|
|
|
|
# 計算対象の直前にあたる二分二至の時刻を求める |
182
|
|
|
|
|
|
|
# chu[0,0]:二分二至の時刻 chu[0,1]:その時の太陽黄経 |
183
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
184
|
8
|
|
|
|
|
11
|
my @chu; |
185
|
8
|
|
|
|
|
21
|
($chu[0][0],$chu[0][1]) = before_nibun($tm0); |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
188
|
|
|
|
|
|
|
# 中気の時刻を計算(4回計算する) |
189
|
|
|
|
|
|
|
# chu[i,0]:中気の時刻 chu[i,1]:太陽黄経 |
190
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
191
|
8
|
|
|
|
|
27
|
for($i=1;$i<4;$i++){ |
192
|
24
|
|
|
|
|
107
|
($chu[$i][0],$chu[$i][1]) = calc_chu($chu[$i-1][0]+32.0); |
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
196
|
|
|
|
|
|
|
# 計算対象の直前にあたる二分二至の直前の朔の時刻を求める |
197
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
198
|
8
|
|
|
|
|
35
|
$saku[0] = calc_saku($chu[0][0]); |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
202
|
|
|
|
|
|
|
# 朔の時刻を求める |
203
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
204
|
8
|
|
|
|
|
53
|
for($i=1;$i<5;$i++){ |
205
|
32
|
|
|
|
|
57
|
$tm=$saku[$i-1]; |
206
|
32
|
|
|
|
|
30
|
$tm += 30.0; |
207
|
32
|
|
|
|
|
910
|
$saku[$i]=calc_saku($tm); |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
# 前と同じ時刻を計算した場合(両者の差が26日以内)には、初期値を |
210
|
|
|
|
|
|
|
# +33日にして再実行させる。 |
211
|
32
|
50
|
|
|
|
318
|
if( abs( int($saku[$i-1])-int($saku[$i]) ) <= 26.0 ){ |
212
|
0
|
|
|
|
|
0
|
$saku[$i]=calc_saku($saku[$i-1]+35.0); |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
217
|
|
|
|
|
|
|
# saku[1]が二分二至の時刻以前になってしまった場合には、朔をさかのぼり過ぎ |
218
|
|
|
|
|
|
|
# たと考えて、朔の時刻を繰り下げて修正する。 |
219
|
|
|
|
|
|
|
# その際、計算もれ(saku[4])になっている部分を補うため、朔の時刻を計算 |
220
|
|
|
|
|
|
|
# する。(近日点通過の近辺で朔があると起こる事があるようだ...?) |
221
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
222
|
8
|
50
|
|
|
|
68
|
if( int($saku[1]) <= int($chu[0][0]) ){ |
|
|
50
|
|
|
|
|
|
223
|
0
|
|
|
|
|
0
|
for($i=0;$i<5;$i++){ |
224
|
0
|
|
|
|
|
0
|
$saku[$i]=$saku[$i+1]; |
225
|
|
|
|
|
|
|
} |
226
|
0
|
|
|
|
|
0
|
$saku[4] = calc_saku($saku[3]+35.0); |
227
|
|
|
|
|
|
|
} |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
230
|
|
|
|
|
|
|
# saku[0]が二分二至の時刻以後になってしまった場合には、朔をさかのぼり足 |
231
|
|
|
|
|
|
|
# りないと見て、朔の時刻を繰り上げて修正する。 |
232
|
|
|
|
|
|
|
# その際、計算もれ(saku[0])になっている部分を補うため、朔の時刻を計算 |
233
|
|
|
|
|
|
|
# する。(春分点の近辺で朔があると起こる事があるようだ...?) |
234
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
235
|
|
|
|
|
|
|
elsif( int($saku[0]) > int($chu[0][0]) ){ |
236
|
0
|
|
|
|
|
0
|
for($i=4;$i>0;$i--){ |
237
|
0
|
|
|
|
|
0
|
$saku[$i] = $saku[$i-1]; |
238
|
|
|
|
|
|
|
} |
239
|
0
|
|
|
|
|
0
|
$saku[0] = calc_saku($saku[0]-27.0); |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
243
|
|
|
|
|
|
|
# 閏月検索Flagセット |
244
|
|
|
|
|
|
|
# (節月で4ヶ月の間に朔が5回あると、閏月がある可能性がある。) |
245
|
|
|
|
|
|
|
# lap=0:平月 lap=1:閏月 |
246
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
247
|
8
|
50
|
|
|
|
32
|
if(int($saku[4]) <= int($chu[3][0]) ){ |
248
|
0
|
|
|
|
|
0
|
$lap=1; |
249
|
|
|
|
|
|
|
}else{ |
250
|
8
|
|
|
|
|
13
|
$lap=0; |
251
|
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
254
|
|
|
|
|
|
|
# 朔日行列の作成 |
255
|
|
|
|
|
|
|
# m[i,0] ... 月名(1:正月 2:2月 3:3月 ....) |
256
|
|
|
|
|
|
|
# m[i,1] ... 閏フラグ(0:平月 1:閏月) |
257
|
|
|
|
|
|
|
# m[i,2] ... 朔日のjd |
258
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
259
|
8
|
|
|
|
|
60
|
$m[0][0]=int($chu[0][1]/30.0) + 2; |
260
|
8
|
50
|
33
|
|
|
57
|
if(defined $m[0][1] && $m[0][1] > 12 ){ |
261
|
0
|
|
|
|
|
0
|
$m[0][0]-=12; |
262
|
|
|
|
|
|
|
} |
263
|
8
|
|
|
|
|
20
|
$m[0][2]=int($saku[0]); |
264
|
8
|
|
|
|
|
15
|
$m[0][1]=0; |
265
|
|
|
|
|
|
|
|
266
|
8
|
|
|
|
|
25
|
for($i=1;$i<5;$i++){ |
267
|
32
|
50
|
33
|
|
|
75
|
if($lap == 1 && $i !=1 ){ |
268
|
0
|
0
|
0
|
|
|
0
|
if( int($chu[$i-1][0]) <= int($saku[$i-1]) || int($chu[$i-1][0]) >= int($saku[$i]) ){ |
269
|
0
|
|
|
|
|
0
|
$m[$i-1][0] = $m[$i-2][0]; |
270
|
0
|
|
|
|
|
0
|
$m[$i-1][1] = 1; |
271
|
0
|
|
|
|
|
0
|
$m[$i-1][2] = int($saku[$i-1]); |
272
|
0
|
|
|
|
|
0
|
$lap=0; |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
} |
275
|
32
|
|
|
|
|
89
|
$m[$i][0] = $m[$i-1][0]+1; |
276
|
32
|
100
|
|
|
|
65
|
if( $m[$i][0] > 12 ){ |
277
|
6
|
|
|
|
|
12
|
$m[$i][0]-=12; |
278
|
|
|
|
|
|
|
} |
279
|
32
|
|
|
|
|
53
|
$m[$i][2]=int($saku[$i]); |
280
|
32
|
|
|
|
|
150
|
$m[$i][1]=0; |
281
|
|
|
|
|
|
|
} |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
284
|
|
|
|
|
|
|
# 朔日行列から旧暦を求める。 |
285
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
286
|
8
|
|
|
|
|
12
|
my $state=0; |
287
|
8
|
|
|
|
|
25
|
for($i=0;$i<5;$i++){ |
288
|
28
|
100
|
|
|
|
126
|
if(int($tm0) < int($m[$i][2])){ |
|
|
50
|
|
|
|
|
|
289
|
8
|
|
|
|
|
10
|
$state=1; |
290
|
8
|
|
|
|
|
22
|
last; |
291
|
|
|
|
|
|
|
}elsif(int($tm0) == int($m[$i][2])){ |
292
|
0
|
|
|
|
|
0
|
$state=2; |
293
|
0
|
|
|
|
|
0
|
last; |
294
|
|
|
|
|
|
|
} |
295
|
|
|
|
|
|
|
} |
296
|
8
|
50
|
33
|
|
|
65
|
if($state==0||$state==1){ |
297
|
8
|
|
|
|
|
11
|
$i--; |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
8
|
|
|
|
|
17
|
$kyureki[1]=$m[$i][1]; |
301
|
8
|
|
|
|
|
16
|
$kyureki[2]=$m[$i][0]; |
302
|
8
|
|
|
|
|
24
|
$kyureki[3]=int($tm0)-int($m[$i][2])+1; |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
305
|
|
|
|
|
|
|
# 旧暦年の計算 |
306
|
|
|
|
|
|
|
# (旧暦月が10以上でかつ新暦月より大きい場合には、 |
307
|
|
|
|
|
|
|
# まだ年を越していないはず...) |
308
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
309
|
|
|
|
|
|
|
|
310
|
8
|
|
|
|
|
27
|
@a = JD2YMDT($tm0); |
311
|
8
|
|
|
|
|
18
|
$kyureki[0] = $a[0]; |
312
|
8
|
100
|
66
|
|
|
366
|
if($kyureki[2] > 9 && $kyureki[2] > $a[1]){ |
313
|
4
|
|
|
|
|
7
|
$kyureki[0]--; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
8
|
|
|
|
|
88
|
return($kyureki[0],$kyureki[1],$kyureki[2],$kyureki[3]); |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
} |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
#========================================================================= |
321
|
|
|
|
|
|
|
# 中気の時刻を求める |
322
|
|
|
|
|
|
|
# |
323
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
324
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
325
|
|
|
|
|
|
|
# chu ....... 戻り値を格納する配列のポインター |
326
|
|
|
|
|
|
|
# i ......... 戻り値を格納する配列の要素番号 |
327
|
|
|
|
|
|
|
# 戻り値 .... 中気の時刻、その時の黄経を配列で渡す |
328
|
|
|
|
|
|
|
# |
329
|
|
|
|
|
|
|
#========================================================================= |
330
|
|
|
|
|
|
|
sub calc_chu |
331
|
|
|
|
|
|
|
{ |
332
|
24
|
|
|
24
|
0
|
30
|
my ($tm) = @_; |
333
|
24
|
|
|
|
|
30
|
my ($tm1,$tm2,$t,$rm_sun0,$rm_sun,$delta_t1,$delta_t2,$delta_rm); |
334
|
0
|
|
|
|
|
0
|
my (@temp); |
335
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
336
|
|
|
|
|
|
|
#時刻引数を分解する |
337
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
338
|
24
|
|
|
|
|
29
|
$tm1 = int( $tm ); |
339
|
24
|
|
|
|
|
25
|
$tm2 = $tm - $tm1; |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
342
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
343
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
344
|
24
|
|
|
|
|
30
|
$tm2-=9.0/24.0; |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
347
|
|
|
|
|
|
|
# 中気の黄経 λsun0 を求める |
348
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
349
|
24
|
|
|
|
|
30
|
$t=($tm2+0.5) / 36525.0; |
350
|
24
|
|
|
|
|
35
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
351
|
24
|
|
|
|
|
48
|
$rm_sun = LONGITUDE_SUN( $t ); |
352
|
|
|
|
|
|
|
|
353
|
24
|
|
|
|
|
44
|
$rm_sun0 = 30.0*int($rm_sun/30.0); |
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
356
|
|
|
|
|
|
|
# 繰り返し計算によって中気の時刻を計算する |
357
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
358
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
359
|
24
|
|
|
|
|
29
|
$delta_t1 = 0; |
360
|
24
|
|
|
|
|
83
|
for( $delta_t2 = 1.0 ; abs( $delta_t1 + $delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
363
|
|
|
|
|
|
|
# λsun を計算 |
364
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
365
|
108
|
|
|
|
|
130
|
$t =($tm2+0.5) / 36525.0; |
366
|
108
|
|
|
|
|
222
|
$t =$t + ($tm1-2451545.0) / 36525.0; |
367
|
108
|
|
|
|
|
344
|
$rm_sun=LONGITUDE_SUN( $t ); |
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
370
|
|
|
|
|
|
|
# 黄経差 Δλ=λsun −λsun0 |
371
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
372
|
108
|
|
|
|
|
138
|
$delta_rm = $rm_sun - $rm_sun0 ; |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
375
|
|
|
|
|
|
|
# Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う |
376
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
377
|
108
|
100
|
|
|
|
362
|
if( $delta_rm > 180.0 ){ |
|
|
50
|
|
|
|
|
|
378
|
8
|
|
|
|
|
14
|
$delta_rm-=360.0; |
379
|
|
|
|
|
|
|
}elsif( $delta_rm < -180.0 ){ |
380
|
0
|
|
|
|
|
0
|
$delta_rm+=360.0; |
381
|
|
|
|
|
|
|
} |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
384
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
385
|
|
|
|
|
|
|
# delta_t = delta_rm * 365.2 / 360.0; |
386
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
387
|
108
|
|
|
|
|
150
|
$delta_t1 = int($delta_rm * 365.2 / 360.0); |
388
|
108
|
|
|
|
|
368
|
$delta_t2 = $delta_rm * 365.2 / 360.0; |
389
|
108
|
|
|
|
|
126
|
$delta_t2 -= $delta_t1; |
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
392
|
|
|
|
|
|
|
# 時刻引数の補正 |
393
|
|
|
|
|
|
|
# tm -= delta_t; |
394
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
395
|
108
|
|
|
|
|
108
|
$tm1 = $tm1 - $delta_t1; |
396
|
108
|
|
|
|
|
117
|
$tm2 = $tm2 - $delta_t2; |
397
|
108
|
100
|
|
|
|
440
|
if($tm2 < 0){ |
398
|
18
|
|
|
|
|
22
|
$tm2+=1.0;$tm1-=1.0; |
|
18
|
|
|
|
|
43
|
|
399
|
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
} |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
403
|
|
|
|
|
|
|
# 戻り値の作成 |
404
|
|
|
|
|
|
|
# chu[i,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
405
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
406
|
|
|
|
|
|
|
# chu[i,1]:黄経 |
407
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
408
|
24
|
|
|
|
|
100
|
$temp[0] = $tm2+9.0/24.0; |
409
|
24
|
|
|
|
|
40
|
$temp[0] += $tm1; |
410
|
24
|
|
|
|
|
33
|
$temp[1] = $rm_sun0; |
411
|
|
|
|
|
|
|
|
412
|
24
|
|
|
|
|
201
|
return(@temp); |
413
|
|
|
|
|
|
|
} |
414
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
#========================================================================= |
416
|
|
|
|
|
|
|
# 直前の二分二至の時刻を求める |
417
|
|
|
|
|
|
|
# |
418
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
419
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
420
|
|
|
|
|
|
|
# nibun ..... 戻り値を格納する配列のポインター |
421
|
|
|
|
|
|
|
# 戻り値 .... 二分二至の時刻、その時の黄経を配列で渡す |
422
|
|
|
|
|
|
|
# (戻り値の渡し方がちょっと気にくわないがまぁいいや。) |
423
|
|
|
|
|
|
|
#========================================================================= |
424
|
|
|
|
|
|
|
sub before_nibun |
425
|
|
|
|
|
|
|
{ |
426
|
8
|
|
|
8
|
0
|
16
|
my ($tm) = @_; |
427
|
8
|
|
|
|
|
12
|
my (@nibun,$tm1,$tm2,$t,$rm_sun0,$rm_sun,$delta_t1,$delta_t2,$delta_rm); |
428
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
430
|
|
|
|
|
|
|
#時刻引数を分解する |
431
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
432
|
8
|
|
|
|
|
11
|
$tm1 = int( $tm ); |
433
|
8
|
|
|
|
|
10
|
$tm2 = $tm - $tm1; |
434
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
436
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
437
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
438
|
8
|
|
|
|
|
12
|
$tm2-=9.0/24.0; |
439
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
441
|
|
|
|
|
|
|
# 直前の二分二至の黄経 λsun0 を求める |
442
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
443
|
8
|
|
|
|
|
46
|
$t=($tm2+0.5) / 36525.0; |
444
|
8
|
|
|
|
|
16
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
445
|
8
|
|
|
|
|
15
|
$rm_sun=LONGITUDE_SUN( $t ); |
446
|
8
|
|
|
|
|
15
|
$rm_sun0=90*int($rm_sun/90.0); |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
449
|
|
|
|
|
|
|
# 繰り返し計算によって直前の二分二至の時刻を計算する |
450
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
451
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
452
|
8
|
|
|
|
|
547
|
$delta_t1 = 0; |
453
|
8
|
|
|
|
|
31
|
for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ |
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
456
|
|
|
|
|
|
|
# λsun を計算 |
457
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
458
|
44
|
|
|
|
|
50
|
$t=($tm2+0.5) / 36525.0; |
459
|
44
|
|
|
|
|
55
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
460
|
44
|
|
|
|
|
75
|
$rm_sun=LONGITUDE_SUN( $t ); |
461
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
463
|
|
|
|
|
|
|
# 黄経差 Δλ=λsun −λsun0 |
464
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
465
|
44
|
|
|
|
|
57
|
$delta_rm = $rm_sun - $rm_sun0 ; |
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
468
|
|
|
|
|
|
|
# Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う |
469
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
470
|
44
|
50
|
|
|
|
180
|
if( $delta_rm > 180.0 ){ |
|
|
50
|
|
|
|
|
|
471
|
0
|
|
|
|
|
0
|
$delta_rm-=360.0; |
472
|
|
|
|
|
|
|
}elsif( $delta_rm < -180.0){ |
473
|
0
|
|
|
|
|
0
|
$delta_rm+=360.0; |
474
|
|
|
|
|
|
|
} |
475
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
477
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
478
|
|
|
|
|
|
|
# delta_t = delta_rm * 365.2 / 360.0; |
479
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
480
|
44
|
|
|
|
|
65
|
$delta_t1 = int($delta_rm * 365.2 / 360.0); |
481
|
44
|
|
|
|
|
56
|
$delta_t2 = $delta_rm * 365.2 / 360.0; |
482
|
44
|
|
|
|
|
43
|
$delta_t2 -= $delta_t1; |
483
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
485
|
|
|
|
|
|
|
# 時刻引数の補正 |
486
|
|
|
|
|
|
|
# tm -= delta_t; |
487
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
488
|
44
|
|
|
|
|
44
|
$tm1 = $tm1 - $delta_t1; |
489
|
44
|
|
|
|
|
46
|
$tm2 = $tm2 - $delta_t2; |
490
|
44
|
100
|
|
|
|
265
|
if($tm2 < 0){ |
491
|
10
|
|
|
|
|
8
|
$tm2+=1.0;$tm1-=1.0; |
|
10
|
|
|
|
|
25
|
|
492
|
|
|
|
|
|
|
} |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
} |
495
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
497
|
|
|
|
|
|
|
# 戻り値の作成 |
498
|
|
|
|
|
|
|
# nibun[0,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
499
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
500
|
|
|
|
|
|
|
# nibun[0,1]:黄経 |
501
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
502
|
8
|
|
|
|
|
16
|
$nibun[0] = $tm2+9.0/24.0; |
503
|
8
|
|
|
|
|
16
|
$nibun[0] += $tm1; |
504
|
8
|
|
|
|
|
55
|
$nibun[1] = $rm_sun0; |
505
|
|
|
|
|
|
|
|
506
|
8
|
|
|
|
|
56
|
return(@nibun); |
507
|
|
|
|
|
|
|
|
508
|
|
|
|
|
|
|
} |
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
#========================================================================= |
511
|
|
|
|
|
|
|
# 朔の計算 |
512
|
|
|
|
|
|
|
# 与えられた時刻の直近の朔の時刻(JST)を求める |
513
|
|
|
|
|
|
|
# |
514
|
|
|
|
|
|
|
# 呼び出し時にセットする変数 |
515
|
|
|
|
|
|
|
# tm ........ 計算対象となる時刻(ユリウス日) |
516
|
|
|
|
|
|
|
# 戻り値 .... 朔の時刻 |
517
|
|
|
|
|
|
|
# |
518
|
|
|
|
|
|
|
# ※ 引数、戻り値ともユリウス日で表し、時分秒は日の小数で表す。 |
519
|
|
|
|
|
|
|
# |
520
|
|
|
|
|
|
|
#========================================================================= |
521
|
|
|
|
|
|
|
sub calc_saku |
522
|
|
|
|
|
|
|
{ |
523
|
40
|
|
|
40
|
0
|
59
|
my ($tm) = @_; |
524
|
40
|
|
|
|
|
52
|
my ($lc,$t,$tm1,$tm2,$rm_sun,$rm_moon,$delta_rm,$delta_t1,$delta_t2); |
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
527
|
|
|
|
|
|
|
# ループカウンタのセット |
528
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
529
|
40
|
|
|
|
|
346
|
$lc=1; |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
532
|
|
|
|
|
|
|
#時刻引数を分解する |
533
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
534
|
40
|
|
|
|
|
53
|
$tm1 = int( $tm ); |
535
|
40
|
|
|
|
|
119
|
$tm2 = $tm - $tm1; |
536
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
538
|
|
|
|
|
|
|
# JST ==> DT (補正時刻=0.0sec と仮定して計算) |
539
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
540
|
40
|
|
|
|
|
47
|
$tm2-=9.0/24.0; |
541
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
543
|
|
|
|
|
|
|
# 繰り返し計算によって朔の時刻を計算する |
544
|
|
|
|
|
|
|
# (誤差が±1.0 sec以内になったら打ち切る。) |
545
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
546
|
40
|
|
|
|
|
42
|
$delta_t1 = 0; |
547
|
40
|
|
|
|
|
196
|
for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; $lc++){ |
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
550
|
|
|
|
|
|
|
# 太陽の黄経λsun ,月の黄経λmoon を計算 |
551
|
|
|
|
|
|
|
# t = (tm - 2451548.0 + 0.5)/36525.0; |
552
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
553
|
252
|
|
|
|
|
341
|
$t=($tm2+0.5) / 36525.0; |
554
|
252
|
|
|
|
|
494
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
555
|
252
|
|
|
|
|
467
|
$rm_sun=LONGITUDE_SUN( $t ); |
556
|
252
|
|
|
|
|
490
|
$rm_moon=LONGITUDE_MOON( $t ); |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
559
|
|
|
|
|
|
|
# 月と太陽の黄経差Δλ |
560
|
|
|
|
|
|
|
# Δλ=λmoon−λsun |
561
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
562
|
252
|
|
|
|
|
434
|
$delta_rm = $rm_moon - $rm_sun ; |
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
565
|
|
|
|
|
|
|
# ループの1回目(lc=1)で delta_rm < 0.0 の場合には引き込み範囲に |
566
|
|
|
|
|
|
|
# 入るように補正する |
567
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
568
|
252
|
100
|
100
|
|
|
14517
|
if( $lc==1 && $delta_rm < 0.0 ){ |
|
|
50
|
66
|
|
|
|
|
|
|
100
|
66
|
|
|
|
|
569
|
6
|
|
|
|
|
16
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
570
|
|
|
|
|
|
|
} |
571
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
572
|
|
|
|
|
|
|
# 春分の近くで朔がある場合(0 ≦λsun≦ 20)で、月の黄経λmoon≧300 の |
573
|
|
|
|
|
|
|
# 場合には、Δλ= 360.0 − Δλ と計算して補正する |
574
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
575
|
|
|
|
|
|
|
elsif( $rm_sun >= 0 && $rm_sun <= 20 && $rm_moon >= 300 ){ |
576
|
0
|
|
|
|
|
0
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
577
|
0
|
|
|
|
|
0
|
$delta_rm = 360.0 - $delta_rm; |
578
|
|
|
|
|
|
|
} |
579
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
580
|
|
|
|
|
|
|
# Δλの引き込み範囲(±40°)を逸脱した場合には、補正を行う |
581
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
582
|
|
|
|
|
|
|
elsif( abs( $delta_rm ) > 40.0 ) { |
583
|
2
|
|
|
|
|
5
|
$delta_rm = NORMALIZATION_ANGLE( $delta_rm ); |
584
|
|
|
|
|
|
|
} |
585
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
587
|
|
|
|
|
|
|
# 時刻引数の補正値 Δt |
588
|
|
|
|
|
|
|
# delta_t = delta_rm * 29.530589 / 360.0; |
589
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
590
|
252
|
|
|
|
|
404
|
$delta_t1 = int($delta_rm * 29.530589 / 360.0); |
591
|
252
|
|
|
|
|
981
|
$delta_t2 = $delta_rm * 29.530589 / 360.0; |
592
|
252
|
|
|
|
|
470
|
$delta_t2 -= $delta_t1; |
593
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
595
|
|
|
|
|
|
|
# 時刻引数の補正 |
596
|
|
|
|
|
|
|
# tm -= delta_t; |
597
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
598
|
252
|
|
|
|
|
542
|
$tm1 = $tm1 - $delta_t1; |
599
|
252
|
|
|
|
|
350
|
$tm2 = $tm2 - $delta_t2; |
600
|
252
|
100
|
|
|
|
522
|
if($tm2 < 0.0){ |
601
|
38
|
|
|
|
|
46
|
$tm2+=1.0;$tm1-=1.0; |
|
38
|
|
|
|
|
150
|
|
602
|
|
|
|
|
|
|
} |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
605
|
|
|
|
|
|
|
# ループ回数が15回になったら、初期値 tm を tm-26 とする。 |
606
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
607
|
252
|
50
|
33
|
|
|
1599
|
if($lc == 15 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ |
|
|
50
|
33
|
|
|
|
|
608
|
0
|
|
|
|
|
0
|
$tm1 = int( $tm-26 ); |
609
|
0
|
|
|
|
|
0
|
$tm2 = 0; |
610
|
|
|
|
|
|
|
} |
611
|
|
|
|
|
|
|
|
612
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
613
|
|
|
|
|
|
|
# 初期値を補正したにも関わらず、振動を続ける場合には初期値を答えとして |
614
|
|
|
|
|
|
|
# 返して強制的にループを抜け出して異常終了させる。 |
615
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
616
|
|
|
|
|
|
|
elsif( $lc > 30 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ |
617
|
0
|
|
|
|
|
0
|
$tm1=$tm;$tm2=0; |
|
0
|
|
|
|
|
0
|
|
618
|
0
|
|
|
|
|
0
|
last; |
619
|
|
|
|
|
|
|
} |
620
|
|
|
|
|
|
|
} |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
623
|
|
|
|
|
|
|
# 時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする |
624
|
|
|
|
|
|
|
# (補正時刻=0.0sec と仮定して計算) |
625
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
626
|
|
|
|
|
|
|
|
627
|
40
|
|
|
|
|
150
|
return($tm2+$tm1+9.0/24.0); |
628
|
|
|
|
|
|
|
} |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
#========================================================================= |
631
|
|
|
|
|
|
|
# 角度の正規化を行う。すなわち引数の範囲を 0≦θ<360 にする。 |
632
|
|
|
|
|
|
|
#========================================================================= |
633
|
|
|
|
|
|
|
sub NORMALIZATION_ANGLE |
634
|
|
|
|
|
|
|
{ |
635
|
23984
|
|
|
23984
|
0
|
36840
|
my ($angle) = @_; |
636
|
23984
|
|
|
|
|
43158
|
my ($angle1,$angle2); |
637
|
|
|
|
|
|
|
|
638
|
23984
|
100
|
|
|
|
70578
|
if( $angle < 0.0 ){ |
639
|
21756
|
|
|
|
|
33072
|
$angle1 = -$angle; |
640
|
21756
|
|
|
|
|
29479
|
$angle2 = int( $angle1 / 360.0 ); |
641
|
21756
|
|
|
|
|
38103
|
$angle1 -= 360.0 * $angle2; |
642
|
21756
|
|
|
|
|
32919
|
$angle1 = 360.0 - $angle1; |
643
|
|
|
|
|
|
|
}else{ |
644
|
2228
|
|
|
|
|
2975
|
$angle1 = int( $angle / 360.0 ); |
645
|
2228
|
|
|
|
|
3075
|
$angle1 = $angle - 360.0 * $angle1; |
646
|
|
|
|
|
|
|
} |
647
|
|
|
|
|
|
|
|
648
|
23984
|
|
|
|
|
48699
|
return($angle1); |
649
|
|
|
|
|
|
|
} |
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
#========================================================================= |
652
|
|
|
|
|
|
|
# 太陽の黄経 λsun を計算する |
653
|
|
|
|
|
|
|
#========================================================================= |
654
|
|
|
|
|
|
|
sub LONGITUDE_SUN |
655
|
|
|
|
|
|
|
{ |
656
|
436
|
|
|
436
|
0
|
625
|
my ($t) = @_; |
657
|
436
|
|
|
|
|
574
|
my ($th,$ang); |
658
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
660
|
|
|
|
|
|
|
# 摂動項の計算 |
661
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
662
|
436
|
|
|
|
|
1147
|
$ang = NORMALIZATION_ANGLE( 31557.0 * $t + 161.0 ); |
663
|
436
|
|
|
|
|
1067
|
$th = .0004 * deg_cos( $ang ); |
664
|
436
|
|
|
|
|
1530
|
$ang = NORMALIZATION_ANGLE( 29930.0 * $t + 48.0 ); |
665
|
436
|
|
|
|
|
1276
|
$th = $th + .0004 * deg_cos ($ang ); |
666
|
436
|
|
|
|
|
1154
|
$ang = NORMALIZATION_ANGLE( 2281.0 * $t + 221.0 ); |
667
|
436
|
|
|
|
|
927
|
$th = $th + .0005 * deg_cos ($ang ); |
668
|
436
|
|
|
|
|
1091
|
$ang = NORMALIZATION_ANGLE( 155.0 * $t + 118.0 ); |
669
|
436
|
|
|
|
|
1498
|
$th = $th + .0005 * deg_cos ($ang ); |
670
|
436
|
|
|
|
|
858
|
$ang = NORMALIZATION_ANGLE( 33718.0 * $t + 316.0 ); |
671
|
436
|
|
|
|
|
945
|
$th = $th + .0006 * deg_cos ($ang ); |
672
|
436
|
|
|
|
|
1343
|
$ang = NORMALIZATION_ANGLE( 9038.0 * $t + 64.0 ); |
673
|
436
|
|
|
|
|
1276
|
$th = $th + .0007 * deg_cos ($ang ); |
674
|
436
|
|
|
|
|
1704
|
$ang = NORMALIZATION_ANGLE( 3035.0 * $t + 110.0 ); |
675
|
436
|
|
|
|
|
860
|
$th = $th + .0007 * deg_cos ($ang ); |
676
|
436
|
|
|
|
|
8365
|
$ang = NORMALIZATION_ANGLE( 65929.0 * $t + 45.0 ); |
677
|
436
|
|
|
|
|
877
|
$th = $th + .0007 * deg_cos ($ang ); |
678
|
436
|
|
|
|
|
1207
|
$ang = NORMALIZATION_ANGLE( 22519.0 * $t + 352.0 ); |
679
|
436
|
|
|
|
|
917
|
$th = $th + .0013 * deg_cos ($ang ); |
680
|
436
|
|
|
|
|
1049
|
$ang = NORMALIZATION_ANGLE( 45038.0 * $t + 254.0 ); |
681
|
436
|
|
|
|
|
945
|
$th = $th + .0015 * deg_cos ($ang ); |
682
|
436
|
|
|
|
|
871
|
$ang = NORMALIZATION_ANGLE( 445267.0 * $t + 208.0 ); |
683
|
436
|
|
|
|
|
862
|
$th = $th + .0018 * deg_cos ($ang ); |
684
|
436
|
|
|
|
|
1370
|
$ang = NORMALIZATION_ANGLE( 19.0 * $t + 159.0 ); |
685
|
436
|
|
|
|
|
879
|
$th = $th + .0018 * deg_cos ($ang ); |
686
|
436
|
|
|
|
|
1145
|
$ang = NORMALIZATION_ANGLE( 32964.0 * $t + 158.0 ); |
687
|
436
|
|
|
|
|
1028
|
$th = $th + .0020 * deg_cos ($ang ); |
688
|
436
|
|
|
|
|
1156
|
$ang = NORMALIZATION_ANGLE( 71998.1 * $t + 265.1 ); |
689
|
436
|
|
|
|
|
882
|
$th = $th + .0200 * deg_cos ($ang ); |
690
|
436
|
|
|
|
|
1309
|
$ang = NORMALIZATION_ANGLE( 35999.05 * $t + 267.52 ); |
691
|
436
|
|
|
|
|
1195
|
$th = $th - 0.0048 * $t * deg_cos ($ang ) ; |
692
|
436
|
|
|
|
|
669
|
$th = $th + 1.9147 * deg_cos ($ang ) ; |
693
|
|
|
|
|
|
|
|
694
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
695
|
|
|
|
|
|
|
# 比例項の計算 |
696
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
697
|
436
|
|
|
|
|
1304
|
$ang = NORMALIZATION_ANGLE( 36000.7695 * $t ); |
698
|
436
|
|
|
|
|
1106
|
$ang = NORMALIZATION_ANGLE( $ang + 280.4659 ); |
699
|
436
|
|
|
|
|
1421
|
$th = NORMALIZATION_ANGLE( $th + $ang ); |
700
|
|
|
|
|
|
|
|
701
|
436
|
|
|
|
|
843
|
return($th); |
702
|
|
|
|
|
|
|
} |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
#========================================================================= |
705
|
|
|
|
|
|
|
# 月の黄経 λmoon を計算する |
706
|
|
|
|
|
|
|
#========================================================================= |
707
|
|
|
|
|
|
|
sub LONGITUDE_MOON |
708
|
|
|
|
|
|
|
{ |
709
|
252
|
|
|
252
|
0
|
507
|
my ($t) = @_; |
710
|
252
|
|
|
|
|
255
|
my ($th,$ang); |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
713
|
|
|
|
|
|
|
# 摂動項の計算 |
714
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
715
|
252
|
|
|
|
|
537
|
$ang = NORMALIZATION_ANGLE( 2322131.0 * $t + 191.0 ); |
716
|
252
|
|
|
|
|
727
|
$th = .0003 * deg_cos ($ang ); |
717
|
252
|
|
|
|
|
851
|
$ang = NORMALIZATION_ANGLE( 4067.0 * $t + 70.0 ); |
718
|
252
|
|
|
|
|
525
|
$th = $th + .0003 * deg_cos ($ang ); |
719
|
252
|
|
|
|
|
758
|
$ang = NORMALIZATION_ANGLE( 549197.0 * $t + 220.0 ); |
720
|
252
|
|
|
|
|
500
|
$th = $th + .0003 * deg_cos ($ang ); |
721
|
252
|
|
|
|
|
477
|
$ang = NORMALIZATION_ANGLE( 1808933.0 * $t + 58.0 ); |
722
|
252
|
|
|
|
|
524
|
$th = $th + .0003 * deg_cos ($ang ); |
723
|
252
|
|
|
|
|
626
|
$ang = NORMALIZATION_ANGLE( 349472.0 * $t + 337.0 ); |
724
|
252
|
|
|
|
|
515
|
$th = $th + .0003 * deg_cos ($ang ); |
725
|
252
|
|
|
|
|
862
|
$ang = NORMALIZATION_ANGLE( 381404.0 * $t + 354.0 ); |
726
|
252
|
|
|
|
|
460
|
$th = $th + .0003 * deg_cos ($ang ); |
727
|
252
|
|
|
|
|
645
|
$ang = NORMALIZATION_ANGLE( 958465.0 * $t + 340.0 ); |
728
|
252
|
|
|
|
|
575
|
$th = $th + .0003 * deg_cos ($ang ); |
729
|
252
|
|
|
|
|
529
|
$ang = NORMALIZATION_ANGLE( 12006.0 * $t + 187.0 ); |
730
|
252
|
|
|
|
|
549
|
$th = $th + .0004 * deg_cos ($ang ); |
731
|
252
|
|
|
|
|
957
|
$ang = NORMALIZATION_ANGLE( 39871.0 * $t + 223.0 ); |
732
|
252
|
|
|
|
|
586
|
$th = $th + .0004 * deg_cos ($ang ); |
733
|
252
|
|
|
|
|
522
|
$ang = NORMALIZATION_ANGLE( 509131.0 * $t + 242.0 ); |
734
|
252
|
|
|
|
|
419
|
$th = $th + .0005 * deg_cos ($ang ); |
735
|
252
|
|
|
|
|
978
|
$ang = NORMALIZATION_ANGLE( 1745069.0 * $t + 24.0 ); |
736
|
252
|
|
|
|
|
551
|
$th = $th + .0005 * deg_cos ($ang ); |
737
|
252
|
|
|
|
|
675
|
$ang = NORMALIZATION_ANGLE( 1908795.0 * $t + 90.0 ); |
738
|
252
|
|
|
|
|
1018
|
$th = $th + .0005 * deg_cos ($ang ); |
739
|
252
|
|
|
|
|
564
|
$ang = NORMALIZATION_ANGLE( 2258267.0 * $t + 156.0 ); |
740
|
252
|
|
|
|
|
527
|
$th = $th + .0006 * deg_cos ($ang ); |
741
|
252
|
|
|
|
|
494
|
$ang = NORMALIZATION_ANGLE( 111869.0 * $t + 38.0 ); |
742
|
252
|
|
|
|
|
677
|
$th = $th + .0006 * deg_cos ($ang ); |
743
|
252
|
|
|
|
|
715
|
$ang = NORMALIZATION_ANGLE( 27864.0 * $t + 127.0 ); |
744
|
252
|
|
|
|
|
417
|
$th = $th + .0007 * deg_cos ($ang ); |
745
|
252
|
|
|
|
|
871
|
$ang = NORMALIZATION_ANGLE( 485333.0 * $t + 186.0 ); |
746
|
252
|
|
|
|
|
529
|
$th = $th + .0007 * deg_cos ($ang ); |
747
|
252
|
|
|
|
|
583
|
$ang = NORMALIZATION_ANGLE( 405201.0 * $t + 50.0 ); |
748
|
252
|
|
|
|
|
466
|
$th = $th + .0007 * deg_cos ($ang ); |
749
|
252
|
|
|
|
|
836
|
$ang = NORMALIZATION_ANGLE( 790672.0 * $t + 114.0 ); |
750
|
252
|
|
|
|
|
428
|
$th = $th + .0007 * deg_cos ($ang ); |
751
|
252
|
|
|
|
|
503
|
$ang = NORMALIZATION_ANGLE( 1403732.0 * $t + 98.0 ); |
752
|
252
|
|
|
|
|
530
|
$th = $th + .0008 * deg_cos ($ang ); |
753
|
252
|
|
|
|
|
944
|
$ang = NORMALIZATION_ANGLE( 858602.0 * $t + 129.0 ); |
754
|
252
|
|
|
|
|
803
|
$th = $th + .0009 * deg_cos ($ang ); |
755
|
252
|
|
|
|
|
816
|
$ang = NORMALIZATION_ANGLE( 1920802.0 * $t + 186.0 ); |
756
|
252
|
|
|
|
|
520
|
$th = $th + .0011 * deg_cos ($ang ); |
757
|
252
|
|
|
|
|
691
|
$ang = NORMALIZATION_ANGLE( 1267871.0 * $t + 249.0 ); |
758
|
252
|
|
|
|
|
610
|
$th = $th + .0012 * deg_cos ($ang ); |
759
|
252
|
|
|
|
|
1154
|
$ang = NORMALIZATION_ANGLE( 1856938.0 * $t + 152.0 ); |
760
|
252
|
|
|
|
|
455
|
$th = $th + .0016 * deg_cos ($ang ); |
761
|
252
|
|
|
|
|
486
|
$ang = NORMALIZATION_ANGLE( 401329.0 * $t + 274.0 ); |
762
|
252
|
|
|
|
|
545
|
$th = $th + .0018 * deg_cos ($ang ); |
763
|
252
|
|
|
|
|
474
|
$ang = NORMALIZATION_ANGLE( 341337.0 * $t + 16.0 ); |
764
|
252
|
|
|
|
|
514
|
$th = $th + .0021 * deg_cos ($ang ); |
765
|
252
|
|
|
|
|
814
|
$ang = NORMALIZATION_ANGLE( 71998.0 * $t + 85.0 ); |
766
|
252
|
|
|
|
|
512
|
$th = $th + .0021 * deg_cos ($ang ); |
767
|
252
|
|
|
|
|
797
|
$ang = NORMALIZATION_ANGLE( 990397.0 * $t + 357.0 ); |
768
|
252
|
|
|
|
|
502
|
$th = $th + .0021 * deg_cos ($ang ); |
769
|
252
|
|
|
|
|
541
|
$ang = NORMALIZATION_ANGLE( 818536.0 * $t + 151.0 ); |
770
|
252
|
|
|
|
|
561
|
$th = $th + .0022 * deg_cos ($ang ); |
771
|
252
|
|
|
|
|
706
|
$ang = NORMALIZATION_ANGLE( 922466.0 * $t + 163.0 ); |
772
|
252
|
|
|
|
|
663
|
$th = $th + .0023 * deg_cos ($ang ); |
773
|
252
|
|
|
|
|
929
|
$ang = NORMALIZATION_ANGLE( 99863.0 * $t + 122.0 ); |
774
|
252
|
|
|
|
|
511
|
$th = $th + .0024 * deg_cos ($ang ); |
775
|
252
|
|
|
|
|
1050
|
$ang = NORMALIZATION_ANGLE( 1379739.0 * $t + 17.0 ); |
776
|
252
|
|
|
|
|
558
|
$th = $th + .0026 * deg_cos ($ang ); |
777
|
252
|
|
|
|
|
569
|
$ang = NORMALIZATION_ANGLE( 918399.0 * $t + 182.0 ); |
778
|
252
|
|
|
|
|
617
|
$th = $th + .0027 * deg_cos ($ang ); |
779
|
252
|
|
|
|
|
599
|
$ang = NORMALIZATION_ANGLE( 1934.0 * $t + 145.0 ); |
780
|
252
|
|
|
|
|
626
|
$th = $th + .0028 * deg_cos ($ang ); |
781
|
252
|
|
|
|
|
755
|
$ang = NORMALIZATION_ANGLE( 541062.0 * $t + 259.0 ); |
782
|
252
|
|
|
|
|
467
|
$th = $th + .0037 * deg_cos ($ang ); |
783
|
252
|
|
|
|
|
597
|
$ang = NORMALIZATION_ANGLE( 1781068.0 * $t + 21.0 ); |
784
|
252
|
|
|
|
|
687
|
$th = $th + .0038 * deg_cos ($ang ); |
785
|
252
|
|
|
|
|
569
|
$ang = NORMALIZATION_ANGLE( 133.0 * $t + 29.0 ); |
786
|
252
|
|
|
|
|
856
|
$th = $th + .0040 * deg_cos ($ang ); |
787
|
252
|
|
|
|
|
493
|
$ang = NORMALIZATION_ANGLE( 1844932.0 * $t + 56.0 ); |
788
|
252
|
|
|
|
|
515
|
$th = $th + .0040 * deg_cos ($ang ); |
789
|
252
|
|
|
|
|
685
|
$ang = NORMALIZATION_ANGLE( 1331734.0 * $t + 283.0 ); |
790
|
252
|
|
|
|
|
616
|
$th = $th + .0040 * deg_cos ($ang ); |
791
|
252
|
|
|
|
|
501
|
$ang = NORMALIZATION_ANGLE( 481266.0 * $t + 205.0 ); |
792
|
252
|
|
|
|
|
620
|
$th = $th + .0050 * deg_cos ($ang ); |
793
|
252
|
|
|
|
|
482
|
$ang = NORMALIZATION_ANGLE( 31932.0 * $t + 107.0 ); |
794
|
252
|
|
|
|
|
634
|
$th = $th + .0052 * deg_cos ($ang ); |
795
|
252
|
|
|
|
|
914
|
$ang = NORMALIZATION_ANGLE( 926533.0 * $t + 323.0 ); |
796
|
252
|
|
|
|
|
520
|
$th = $th + .0068 * deg_cos ($ang ); |
797
|
252
|
|
|
|
|
718
|
$ang = NORMALIZATION_ANGLE( 449334.0 * $t + 188.0 ); |
798
|
252
|
|
|
|
|
532
|
$th = $th + .0079 * deg_cos ($ang ); |
799
|
252
|
|
|
|
|
684
|
$ang = NORMALIZATION_ANGLE( 826671.0 * $t + 111.0 ); |
800
|
252
|
|
|
|
|
597
|
$th = $th + .0085 * deg_cos ($ang ); |
801
|
252
|
|
|
|
|
477
|
$ang = NORMALIZATION_ANGLE( 1431597.0 * $t + 315.0 ); |
802
|
252
|
|
|
|
|
428
|
$th = $th + .0100 * deg_cos ($ang ); |
803
|
252
|
|
|
|
|
1214
|
$ang = NORMALIZATION_ANGLE( 1303870.0 * $t + 246.0 ); |
804
|
252
|
|
|
|
|
669
|
$th = $th + .0107 * deg_cos ($ang ); |
805
|
252
|
|
|
|
|
770
|
$ang = NORMALIZATION_ANGLE( 489205.0 * $t + 142.0 ); |
806
|
252
|
|
|
|
|
473
|
$th = $th + .0110 * deg_cos ($ang ); |
807
|
252
|
|
|
|
|
901
|
$ang = NORMALIZATION_ANGLE( 1443603.0 * $t + 52.0 ); |
808
|
252
|
|
|
|
|
437
|
$th = $th + .0125 * deg_cos ($ang ); |
809
|
252
|
|
|
|
|
427
|
$ang = NORMALIZATION_ANGLE( 75870.0 * $t + 41.0 ); |
810
|
252
|
|
|
|
|
662
|
$th = $th + .0154 * deg_cos ($ang ); |
811
|
252
|
|
|
|
|
859
|
$ang = NORMALIZATION_ANGLE( 513197.9 * $t + 222.5 ); |
812
|
252
|
|
|
|
|
735
|
$th = $th + .0304 * deg_cos ($ang ); |
813
|
252
|
|
|
|
|
659
|
$ang = NORMALIZATION_ANGLE( 445267.1 * $t + 27.9 ); |
814
|
252
|
|
|
|
|
449
|
$th = $th + .0347 * deg_cos ($ang ); |
815
|
252
|
|
|
|
|
741
|
$ang = NORMALIZATION_ANGLE( 441199.8 * $t + 47.4 ); |
816
|
252
|
|
|
|
|
511
|
$th = $th + .0409 * deg_cos ($ang ); |
817
|
252
|
|
|
|
|
748
|
$ang = NORMALIZATION_ANGLE( 854535.2 * $t + 148.2 ); |
818
|
252
|
|
|
|
|
649
|
$th = $th + .0458 * deg_cos ($ang ); |
819
|
252
|
|
|
|
|
587
|
$ang = NORMALIZATION_ANGLE( 1367733.1 * $t + 280.7 ); |
820
|
252
|
|
|
|
|
428
|
$th = $th + .0533 * deg_cos ($ang ); |
821
|
252
|
|
|
|
|
527
|
$ang = NORMALIZATION_ANGLE( 377336.3 * $t + 13.2 ); |
822
|
252
|
|
|
|
|
670
|
$th = $th + .0571 * deg_cos ($ang ); |
823
|
252
|
|
|
|
|
584
|
$ang = NORMALIZATION_ANGLE( 63863.5 * $t + 124.2 ); |
824
|
252
|
|
|
|
|
638
|
$th = $th + .0588 * deg_cos ($ang ); |
825
|
252
|
|
|
|
|
435
|
$ang = NORMALIZATION_ANGLE( 966404.0 * $t + 276.5 ); |
826
|
252
|
|
|
|
|
712
|
$th = $th + .1144 * deg_cos ($ang ); |
827
|
252
|
|
|
|
|
1475
|
$ang = NORMALIZATION_ANGLE( 35999.05 * $t + 87.53 ); |
828
|
252
|
|
|
|
|
926
|
$th = $th + .1851 * deg_cos ($ang ); |
829
|
252
|
|
|
|
|
902
|
$ang = NORMALIZATION_ANGLE( 954397.74 * $t + 179.93 ); |
830
|
252
|
|
|
|
|
497
|
$th = $th + .2136 * deg_cos ($ang ); |
831
|
252
|
|
|
|
|
703
|
$ang = NORMALIZATION_ANGLE( 890534.22 * $t + 145.7 ); |
832
|
252
|
|
|
|
|
771
|
$th = $th + .6583 * deg_cos ($ang ); |
833
|
252
|
|
|
|
|
793
|
$ang = NORMALIZATION_ANGLE( 413335.35 * $t + 10.74 ); |
834
|
252
|
|
|
|
|
1146
|
$th = $th + 1.2740 * deg_cos ($ang ); |
835
|
252
|
|
|
|
|
578
|
$ang = NORMALIZATION_ANGLE( 477198.868 * $t + 44.963 ); |
836
|
252
|
|
|
|
|
464
|
$th = $th + 6.2888 * deg_cos ($ang ); |
837
|
|
|
|
|
|
|
|
838
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
839
|
|
|
|
|
|
|
# 比例項の計算 |
840
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
841
|
252
|
|
|
|
|
462
|
$ang = NORMALIZATION_ANGLE( 481267.8809 * $t ); |
842
|
252
|
|
|
|
|
759
|
$ang = NORMALIZATION_ANGLE( $ang + 218.3162 ); |
843
|
252
|
|
|
|
|
656
|
$th = NORMALIZATION_ANGLE( $th + $ang ); |
844
|
|
|
|
|
|
|
|
845
|
252
|
|
|
|
|
395
|
return($th); |
846
|
|
|
|
|
|
|
} |
847
|
|
|
|
|
|
|
|
848
|
|
|
|
|
|
|
#========================================================================= |
849
|
|
|
|
|
|
|
# 年月日、時分秒(世界時)からユリウス日(JD)を計算する |
850
|
|
|
|
|
|
|
# |
851
|
|
|
|
|
|
|
# ※ この関数では、グレゴリオ暦法による年月日から求めるものである。 |
852
|
|
|
|
|
|
|
# (ユリウス暦法による年月日から求める場合には使用できない。) |
853
|
|
|
|
|
|
|
#========================================================================= |
854
|
|
|
|
|
|
|
sub YMDT2JD |
855
|
|
|
|
|
|
|
{ |
856
|
8
|
|
|
8
|
0
|
17
|
my ($year,$month,$day,$hour,$min,$sec) = @_; |
857
|
8
|
|
|
|
|
16
|
my ($jd,$t); |
858
|
|
|
|
|
|
|
|
859
|
8
|
100
|
|
|
|
33
|
if( $month < 3.0 ){ |
860
|
4
|
|
|
|
|
8
|
$year -= 1.0; |
861
|
4
|
|
|
|
|
12
|
$month += 12.0; |
862
|
|
|
|
|
|
|
} |
863
|
|
|
|
|
|
|
|
864
|
8
|
|
|
|
|
23
|
$jd = int( 365.25 * $year ); |
865
|
8
|
|
|
|
|
17
|
$jd += int( $year / 400.0 ); |
866
|
8
|
|
|
|
|
16
|
$jd -= int( $year / 100.0 ); |
867
|
8
|
|
|
|
|
17
|
$jd += int( 30.59 * ( $month-2.0 ) ); |
868
|
8
|
|
|
|
|
11
|
$jd += 1721088; |
869
|
8
|
|
|
|
|
11
|
$jd += $day; |
870
|
|
|
|
|
|
|
|
871
|
8
|
|
|
|
|
10
|
$t = $sec / 3600.0; |
872
|
8
|
|
|
|
|
13
|
$t += $min /60.0; |
873
|
8
|
|
|
|
|
11
|
$t += $hour; |
874
|
8
|
|
|
|
|
11
|
$t = $t / 24.0; |
875
|
|
|
|
|
|
|
|
876
|
8
|
|
|
|
|
8
|
$jd += $t; |
877
|
|
|
|
|
|
|
|
878
|
8
|
|
|
|
|
69
|
return( $jd ); |
879
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
} |
881
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
#========================================================================= |
883
|
|
|
|
|
|
|
# ユリウス日(JD)から年月日、時分秒(世界時)を計算する |
884
|
|
|
|
|
|
|
# |
885
|
|
|
|
|
|
|
# 戻り値の配列TIME[]の内訳 |
886
|
|
|
|
|
|
|
# TIME[0] ... 年 TIME[1] ... 月 TIME[2] ... 日 |
887
|
|
|
|
|
|
|
# TIME[3] ... 時 TIME[4] ... 分 TIME[5] ... 秒 |
888
|
|
|
|
|
|
|
# |
889
|
|
|
|
|
|
|
# ※ この関数で求めた年月日は、グレゴリオ暦法によって表されている。 |
890
|
|
|
|
|
|
|
# |
891
|
|
|
|
|
|
|
#========================================================================= |
892
|
|
|
|
|
|
|
sub JD2YMDT |
893
|
|
|
|
|
|
|
{ |
894
|
|
|
|
|
|
|
|
895
|
8
|
|
|
8
|
0
|
16
|
my ($JD) = @_; |
896
|
8
|
|
|
|
|
10
|
my (@TIME,$x0,$x1,$x2,$x3,$x4,$x5,$x6,$tm); |
897
|
|
|
|
|
|
|
|
898
|
8
|
|
|
|
|
14
|
$x0 = int( $JD+68570.0); |
899
|
8
|
|
|
|
|
14
|
$x1 = int( $x0/36524.25 ); |
900
|
8
|
|
|
|
|
15
|
$x2 = $x0 - int( 36524.25*$x1 + 0.75 ); |
901
|
8
|
|
|
|
|
100
|
$x3 = int( ( $x2+1 )/365.2425 ); |
902
|
8
|
|
|
|
|
13
|
$x4 = $x2 - int( 365.25*$x3 )+31.0; |
903
|
8
|
|
|
|
|
17
|
$x5 = int( int($x4) / 30.59 ); |
904
|
8
|
|
|
|
|
16
|
$x6 = int( int($x5) / 11.0 ); |
905
|
|
|
|
|
|
|
|
906
|
8
|
|
|
|
|
15
|
$TIME[2] = $x4 - int( 30.59*$x5 ); |
907
|
8
|
|
|
|
|
17
|
$TIME[1] = $x5 - 12*$x6 + 2; |
908
|
8
|
|
|
|
|
18
|
$TIME[0] = 100*( $x1-49 ) + $x3 + $x6; |
909
|
|
|
|
|
|
|
|
910
|
|
|
|
|
|
|
# 2月30日の補正 |
911
|
8
|
50
|
33
|
|
|
28
|
if($TIME[1]==2 && $TIME[2] > 28){ |
912
|
0
|
0
|
0
|
|
|
0
|
if($TIME[0] % 100 == 0 && $TIME[0] % 400 == 0){ |
|
|
0
|
|
|
|
|
|
913
|
0
|
|
|
|
|
0
|
$TIME[2]=29; |
914
|
|
|
|
|
|
|
}elsif($TIME[0] % 4 ==0){ |
915
|
0
|
|
|
|
|
0
|
$TIME[2]=29; |
916
|
|
|
|
|
|
|
}else{ |
917
|
0
|
|
|
|
|
0
|
$TIME[2]=28; |
918
|
|
|
|
|
|
|
} |
919
|
|
|
|
|
|
|
} |
920
|
|
|
|
|
|
|
|
921
|
8
|
|
|
|
|
15
|
$tm=86400.0*( $JD - int( $JD ) ); |
922
|
8
|
|
|
|
|
19
|
$TIME[3] = int( $tm/3600.0 ); |
923
|
8
|
|
|
|
|
18
|
$TIME[4] = int( ($tm - 3600.0*$TIME[3])/60.0 ); |
924
|
8
|
|
|
|
|
35
|
$TIME[5] = int( $tm - 3600.0*$TIME[3] - 60*$TIME[4] ); |
925
|
|
|
|
|
|
|
|
926
|
8
|
|
|
|
|
42
|
return(@TIME); |
927
|
|
|
|
|
|
|
} |
928
|
|
|
|
|
|
|
|
929
|
|
|
|
|
|
|
#========================================================================= |
930
|
|
|
|
|
|
|
# 今日が24節気かどうか調べる |
931
|
|
|
|
|
|
|
# |
932
|
|
|
|
|
|
|
# 引数 .... 計算対象となる年月日 $year $mon $day |
933
|
|
|
|
|
|
|
# |
934
|
|
|
|
|
|
|
# 戻り値 .... 24節気の名称 |
935
|
|
|
|
|
|
|
# |
936
|
|
|
|
|
|
|
#========================================================================= |
937
|
|
|
|
|
|
|
sub check_24sekki |
938
|
|
|
|
|
|
|
{ |
939
|
0
|
|
|
0
|
0
|
|
my ($year,$mon,$day) = @_; |
940
|
0
|
|
|
|
|
|
my ($tm1,$tm2,$t,$rm_sun_today,$rm_sun_today0,$rm_sun_tommorow,$rm_sun_tommorow0); |
941
|
|
|
|
|
|
|
|
942
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
943
|
|
|
|
|
|
|
# 24節気の定義 |
944
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
945
|
0
|
|
|
|
|
|
my (@sekki24) = ("春分","清明","穀雨","立夏","小満","芒種","夏至","小暑","大暑","立秋","処暑","白露", |
946
|
|
|
|
|
|
|
"秋分","寒露","霜降","立冬","小雪","大雪","冬至","小寒","大寒","立春","雨水","啓蟄"); |
947
|
|
|
|
|
|
|
|
948
|
0
|
|
|
|
|
|
my $tm = YMDT2JD($year,$mon,$day,0,0,0); |
949
|
|
|
|
|
|
|
|
950
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
951
|
|
|
|
|
|
|
#時刻引数を分解する |
952
|
|
|
|
|
|
|
#----------------------------------------------------------------------- |
953
|
0
|
|
|
|
|
|
$tm1 = int( $tm ); |
954
|
0
|
|
|
|
|
|
$tm2 = $tm - $tm1; |
955
|
0
|
|
|
|
|
|
$tm2-=9.0/24.0; |
956
|
0
|
|
|
|
|
|
$t=($tm2+0.5) / 36525.0; |
957
|
0
|
|
|
|
|
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
958
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
#今日の太陽の黄経 |
960
|
0
|
|
|
|
|
|
$rm_sun_today = LONGITUDE_SUN( $t ); |
961
|
|
|
|
|
|
|
|
962
|
0
|
|
|
|
|
|
$tm++; |
963
|
0
|
|
|
|
|
|
$tm1 = int($tm); |
964
|
0
|
|
|
|
|
|
$tm2 = $tm - $tm1; |
965
|
0
|
|
|
|
|
|
$tm2-=9.0/24.0; |
966
|
0
|
|
|
|
|
|
$t=($tm2+0.5) / 36525.0; |
967
|
0
|
|
|
|
|
|
$t=$t + ($tm1-2451545.0) / 36525.0; |
968
|
|
|
|
|
|
|
|
969
|
|
|
|
|
|
|
#明日の太陽の黄経 |
970
|
0
|
|
|
|
|
|
$rm_sun_tommorow = LONGITUDE_SUN($t); |
971
|
|
|
|
|
|
|
|
972
|
|
|
|
|
|
|
# |
973
|
0
|
|
|
|
|
|
$rm_sun_today0 = 15.0 * int($rm_sun_today / 15.0); |
974
|
0
|
|
|
|
|
|
$rm_sun_tommorow0 = 15.0 * int($rm_sun_tommorow / 15.0); |
975
|
|
|
|
|
|
|
|
976
|
0
|
0
|
|
|
|
|
if($rm_sun_today0 != $rm_sun_tommorow0){ |
977
|
0
|
|
|
|
|
|
return($sekki24[$rm_sun_tommorow0 / 15]); |
978
|
|
|
|
|
|
|
}else{ |
979
|
0
|
|
|
|
|
|
return(''); |
980
|
|
|
|
|
|
|
} |
981
|
|
|
|
|
|
|
} |
982
|
|
|
|
|
|
|
|
983
|
|
|
|
|
|
|
1; |