line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=head1 NAME |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Data::Float - details of the floating point data type |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 SYNOPSIS |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Data::Float qw(have_signed_zero); |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
if(have_signed_zero) { ... |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# and many other constants; see text |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
use Data::Float qw( |
14
|
|
|
|
|
|
|
float_class float_is_normal float_is_subnormal |
15
|
|
|
|
|
|
|
float_is_nzfinite float_is_zero float_is_finite |
16
|
|
|
|
|
|
|
float_is_infinite float_is_nan); |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
$class = float_class($value); |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
if(float_is_normal($value)) { ... |
21
|
|
|
|
|
|
|
if(float_is_subnormal($value)) { ... |
22
|
|
|
|
|
|
|
if(float_is_nzfinite($value)) { ... |
23
|
|
|
|
|
|
|
if(float_is_zero($value)) { ... |
24
|
|
|
|
|
|
|
if(float_is_finite($value)) { ... |
25
|
|
|
|
|
|
|
if(float_is_infinite($value)) { ... |
26
|
|
|
|
|
|
|
if(float_is_nan($value)) { ... |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
use Data::Float qw(float_sign signbit float_parts); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
$sign = float_sign($value); |
31
|
|
|
|
|
|
|
$sign_bit = signbit($value); |
32
|
|
|
|
|
|
|
($sign, $exponent, $significand) = float_parts($value); |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
use Data::Float qw(float_hex hex_float); |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
print float_hex($value); |
37
|
|
|
|
|
|
|
$value = hex_float($string); |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Data::Float qw(float_id_cmp totalorder); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
@sorted_floats = sort { float_id_cmp($a, $b) } @floats; |
42
|
|
|
|
|
|
|
if(totalorder($a, $b)) { ... |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
use Data::Float qw( |
45
|
|
|
|
|
|
|
pow2 mult_pow2 copysign nextup nextdown nextafter); |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
$x = pow2($exp); |
48
|
|
|
|
|
|
|
$x = mult_pow2($value, $exp); |
49
|
|
|
|
|
|
|
$x = copysign($magnitude, $sign_from); |
50
|
|
|
|
|
|
|
$x = nextup($x); |
51
|
|
|
|
|
|
|
$x = nextdown($x); |
52
|
|
|
|
|
|
|
$x = nextafter($x, $direction); |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=head1 DESCRIPTION |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
This module is about the native floating point numerical data type. |
57
|
|
|
|
|
|
|
A floating point number is one of the types of datum that can appear |
58
|
|
|
|
|
|
|
in the numeric part of a Perl scalar. This module supplies constants |
59
|
|
|
|
|
|
|
describing the native floating point type, classification functions, |
60
|
|
|
|
|
|
|
and functions to manipulate floating point values at a low level. |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
=head1 FLOATING POINT |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
=head2 Classification |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
Floating point values are divided into five subtypes: |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
=over |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=item normalised |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
The value is made up of a sign bit (making the value positive or |
73
|
|
|
|
|
|
|
negative), a significand, and exponent. The significand is a number |
74
|
|
|
|
|
|
|
in the range [1, 2), expressed as a binary fraction of a certain fixed |
75
|
|
|
|
|
|
|
length. (Significands requiring a longer binary fraction, or lacking a |
76
|
|
|
|
|
|
|
terminating binary representation, cannot be obtained.) The exponent |
77
|
|
|
|
|
|
|
is an integer in a certain fixed range. The magnitude of the value |
78
|
|
|
|
|
|
|
represented is the product of the significand and two to the power of |
79
|
|
|
|
|
|
|
the exponent. |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
=item subnormal |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
The value is made up of a sign bit, significand, and exponent, as |
84
|
|
|
|
|
|
|
for normalised values. However, the exponent is fixed at the minimum |
85
|
|
|
|
|
|
|
possible for a normalised value, and the significand is in the range |
86
|
|
|
|
|
|
|
(0, 1). The length of the significand is the same as for normalised |
87
|
|
|
|
|
|
|
values. This is essentially a fixed-point format, used to provide |
88
|
|
|
|
|
|
|
gradual underflow. Not all floating point formats support this subtype. |
89
|
|
|
|
|
|
|
Where it is not supported, underflow is sudden, and the difference between |
90
|
|
|
|
|
|
|
two minimum-exponent normalised values cannot be exactly represented. |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
=item zero |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
Depending on the floating point type, there may be either one or two |
95
|
|
|
|
|
|
|
zero values: zeroes may carry a sign bit. Where zeroes are signed, |
96
|
|
|
|
|
|
|
it is primarily in order to indicate the direction from which a value |
97
|
|
|
|
|
|
|
underflowed (was rounded) to zero. Positive and negative zero compare |
98
|
|
|
|
|
|
|
as numerically equal, and they give identical results in most arithmetic |
99
|
|
|
|
|
|
|
operations. They are on opposite sides of some branch cuts in complex |
100
|
|
|
|
|
|
|
arithmetic. |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=item infinite |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
Some floating point formats include special infinite values. These are |
105
|
|
|
|
|
|
|
generated by overflow, and by some arithmetic cases that mathematically |
106
|
|
|
|
|
|
|
generate infinities. There are two infinite values: positive infinity |
107
|
|
|
|
|
|
|
and negative infinity. |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
Perl does not always generate infinite values when normal floating point |
110
|
|
|
|
|
|
|
behaviour calls for it. For example, the division C<1.0/0.0> causes an |
111
|
|
|
|
|
|
|
exception rather than returning an infinity. |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
=item not-a-number (NaN) |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
This type of value exists in some floating point formats to indicate |
116
|
|
|
|
|
|
|
error conditions. Mathematically undefined operations may generate NaNs, |
117
|
|
|
|
|
|
|
and NaNs propagate through all arithmetic operations. A NaN has the |
118
|
|
|
|
|
|
|
distinctive property of comparing numerically unequal to all floating |
119
|
|
|
|
|
|
|
point values, including itself. |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
Perl does not always generate NaNs when normal floating point behaviour |
122
|
|
|
|
|
|
|
calls for it. For example, the division C<0.0/0.0> causes an exception |
123
|
|
|
|
|
|
|
rather than returning a NaN. |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
Perl has only (at most) one NaN value, even if the underlying system |
126
|
|
|
|
|
|
|
supports different NaNs. (IEEE 754 arithmetic has NaNs which carry a |
127
|
|
|
|
|
|
|
quiet/signal bit, a sign bit (yes, a sign on a not-number), and many |
128
|
|
|
|
|
|
|
bits of implementation-defined data.) |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
=back |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
=head2 Mixing floating point and integer values |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
Perl does not draw a strong type distinction between native integer |
135
|
|
|
|
|
|
|
(see L<Data::Integer>) and native floating point values. Both types |
136
|
|
|
|
|
|
|
of value can be stored in the numeric part of a plain (string) scalar. |
137
|
|
|
|
|
|
|
No distinction is made between the integer representation and the floating |
138
|
|
|
|
|
|
|
point representation where they encode identical values. Thus, for |
139
|
|
|
|
|
|
|
floating point arithmetic, native integer values that can be represented |
140
|
|
|
|
|
|
|
exactly in floating point may be freely used as floating point values. |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Native integer arithmetic has exactly one zero value, which has no sign. |
143
|
|
|
|
|
|
|
If the floating point type does not have signed zeroes then the floating |
144
|
|
|
|
|
|
|
point and integer zeroes are exactly equivalent. If the floating point |
145
|
|
|
|
|
|
|
type does have signed zeroes then the integer zero can still be used in |
146
|
|
|
|
|
|
|
floating point arithmetic, and it behaves as an unsigned floating point |
147
|
|
|
|
|
|
|
zero. On such systems there are therefore three types of zero available. |
148
|
|
|
|
|
|
|
There is a bug in Perl which sometimes causes floating point zeroes to |
149
|
|
|
|
|
|
|
change into integer zeroes; see L</BUGS> for details. |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
Where a native integer value is used that is too large to exactly |
152
|
|
|
|
|
|
|
represent in floating point, it will be rounded as necessary to a |
153
|
|
|
|
|
|
|
floating point value. This rounding will occur whenever an operation |
154
|
|
|
|
|
|
|
has to be performed in floating point because the result could not be |
155
|
|
|
|
|
|
|
exactly represented as an integer. This may be confusing to functions |
156
|
|
|
|
|
|
|
that expect a floating point argument. |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
Similarly, some operations on floating point numbers will actually be |
159
|
|
|
|
|
|
|
performed in integer arithmetic, and may result in values that cannot |
160
|
|
|
|
|
|
|
be exactly represented in floating point. This happens whenever the |
161
|
|
|
|
|
|
|
arguments have integer values that fit into the native integer type and |
162
|
|
|
|
|
|
|
the mathematical result can be exactly represented as a native integer. |
163
|
|
|
|
|
|
|
This may be confusing in cases where floating point semantics are |
164
|
|
|
|
|
|
|
expected. |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
See L<perlnumber(1)> for discussion of Perl's numeric semantics. |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
=cut |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
package Data::Float; |
171
|
|
|
|
|
|
|
|
172
|
9
|
|
|
9
|
|
561094
|
{ use 5.006; } |
|
9
|
|
|
|
|
35
|
|
173
|
9
|
|
|
9
|
|
55
|
use warnings; |
|
9
|
|
|
|
|
23
|
|
|
9
|
|
|
|
|
320
|
|
174
|
9
|
|
|
9
|
|
53
|
use strict; |
|
9
|
|
|
|
|
34
|
|
|
9
|
|
|
|
|
275
|
|
175
|
|
|
|
|
|
|
|
176
|
9
|
|
|
9
|
|
56
|
use Carp qw(croak); |
|
9
|
|
|
|
|
26
|
|
|
9
|
|
|
|
|
609
|
|
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
our $VERSION = "0.013"; |
179
|
|
|
|
|
|
|
|
180
|
9
|
|
|
9
|
|
2764
|
use parent "Exporter"; |
|
9
|
|
|
|
|
2719
|
|
|
9
|
|
|
|
|
51
|
|
181
|
|
|
|
|
|
|
our @EXPORT_OK = qw( |
182
|
|
|
|
|
|
|
float_class float_is_normal float_is_subnormal float_is_nzfinite |
183
|
|
|
|
|
|
|
float_is_zero float_is_finite float_is_infinite float_is_nan |
184
|
|
|
|
|
|
|
float_sign signbit float_parts |
185
|
|
|
|
|
|
|
float_hex hex_float |
186
|
|
|
|
|
|
|
float_id_cmp totalorder |
187
|
|
|
|
|
|
|
pow2 mult_pow2 copysign nextup nextdown nextafter |
188
|
|
|
|
|
|
|
); |
189
|
|
|
|
|
|
|
# constant functions get added to @EXPORT_OK later |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=head1 CONSTANTS |
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
=head2 Features |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
=over |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=item have_signed_zero |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
Truth value indicating whether floating point zeroes carry a sign. If yes, |
200
|
|
|
|
|
|
|
then there are two floating point zero values: +0.0 and -0.0. (Perl |
201
|
|
|
|
|
|
|
scalars can nevertheless also hold an integer zero, which is unsigned.) |
202
|
|
|
|
|
|
|
If no, then there is only one zero value, which is unsigned. |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
=item have_subnormal |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
Truth value indicating whether there are subnormal floating point values. |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
=item have_infinite |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
Truth value indicating whether there are infinite floating point values. |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=item have_nan |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
Truth value indicating whether there are NaN floating point values. |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
It is difficult to reliably generate a NaN in Perl, so in some unlikely |
217
|
|
|
|
|
|
|
circumstances it is possible that there might be NaNs that this module |
218
|
|
|
|
|
|
|
failed to detect. In that case this constant would be false but a NaN |
219
|
|
|
|
|
|
|
might still turn up somewhere. What this constant reliably indicates |
220
|
|
|
|
|
|
|
is the availability of the C<nan> constant below. |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
=back |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
=head2 Extrema |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=over |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
=item significand_bits |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
The number of fractional bits in the significand of finite floating |
231
|
|
|
|
|
|
|
point values. The significand also has an implicit integer bit, not |
232
|
|
|
|
|
|
|
counted in this constant; the integer bit is always 1 for normalised |
233
|
|
|
|
|
|
|
values and always 0 for subnormal values. |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
=item significand_step |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
The difference between adjacent representable values in the range [1, 2] |
238
|
|
|
|
|
|
|
(where the exponent is zero). This is equal to 2^-significand_bits. |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
=item max_finite_exp |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
The maximum exponent permitted for finite floating point values. |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
=item max_finite_pow2 |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
The maximum representable power of two. This is 2^max_finite_exp. |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
=item max_finite |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
The maximum representable finite value. This is 2^(max_finite_exp+1) |
251
|
|
|
|
|
|
|
- 2^(max_finite_exp-significand_bits). |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
=item max_number |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
The maximum representable number. This is positive infinity if there |
256
|
|
|
|
|
|
|
are infinite values, or max_finite if there are not. |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
=item max_integer |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
The maximum integral value for which all integers from zero to that |
261
|
|
|
|
|
|
|
value inclusive are representable. Equivalently: the minimum positive |
262
|
|
|
|
|
|
|
integral value N for which the value N+1 is not representable. This is |
263
|
|
|
|
|
|
|
2^(significand_bits+1). The name is somewhat misleading. |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
=item min_normal_exp |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
The minimum exponent permitted for normalised floating point values. |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=item min_normal |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
The minimum positive value representable as a normalised floating |
272
|
|
|
|
|
|
|
point value. This is 2^min_normal_exp. |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=item min_finite_exp |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
The base two logarithm of the minimum representable positive finite value. |
277
|
|
|
|
|
|
|
If there are subnormals then this is min_normal_exp - significand_bits. |
278
|
|
|
|
|
|
|
If there are no subnormals then this is min_normal_exp. |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
=item min_finite |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
The minimum representable positive finite value. This is |
283
|
|
|
|
|
|
|
2^min_finite_exp. |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
=back |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
=head2 Special Values |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=over |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
=item pos_zero |
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
The positive zero value. (Exists only if zeroes are signed, as indicated |
294
|
|
|
|
|
|
|
by the C<have_signed_zero> constant.) |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
If Perl is at risk of transforming floating point zeroes into integer |
297
|
|
|
|
|
|
|
zeroes (see L</BUGS>), then this is actually a non-constant function |
298
|
|
|
|
|
|
|
that always returns a fresh floating point zero. Thus the return value |
299
|
|
|
|
|
|
|
is always a true floating point zero, regardless of what happened to |
300
|
|
|
|
|
|
|
zeroes previously returned. |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
=item neg_zero |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
The negative zero value. (Exists only if zeroes are signed, as indicated |
305
|
|
|
|
|
|
|
by the C<have_signed_zero> constant.) |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
If Perl is at risk of transforming floating point zeroes into integer |
308
|
|
|
|
|
|
|
zeroes (see L</BUGS>), then this is actually a non-constant function |
309
|
|
|
|
|
|
|
that always returns a fresh floating point zero. Thus the return value |
310
|
|
|
|
|
|
|
is always a true floating point zero, regardless of what happened to |
311
|
|
|
|
|
|
|
zeroes previously returned. |
312
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
=item pos_infinity |
314
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
The positive infinite value. (Exists only if there are infinite values, |
316
|
|
|
|
|
|
|
as indicated by the C<have_infinite> constant.) |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
=item neg_infinity |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
The negative infinite value. (Exists only if there are infinite values, |
321
|
|
|
|
|
|
|
as indicated by the C<have_infinite> constant.) |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
=item nan |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
Not-a-number. (Exists only if NaN values were detected, as indicated |
326
|
|
|
|
|
|
|
by the C<have_nan> constant.) |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
=back |
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
=cut |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
sub _mk_constant($$) { |
333
|
162
|
|
|
162
|
|
345
|
my($name, $value) = @_; |
334
|
9
|
|
|
9
|
|
1121
|
no strict "refs"; |
|
9
|
|
|
|
|
21
|
|
|
9
|
|
|
|
|
7212
|
|
335
|
162
|
|
|
0
|
|
951
|
*{__PACKAGE__."::".$name} = sub () { $value }; |
|
162
|
|
|
|
|
849
|
|
|
0
|
|
|
|
|
0
|
|
336
|
162
|
|
|
|
|
424
|
push @EXPORT_OK, $name; |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
# |
340
|
|
|
|
|
|
|
# mult_pow2() multiplies a specified value by a specified power of two. |
341
|
|
|
|
|
|
|
# This is done using repeated multiplication, and can cope with cases |
342
|
|
|
|
|
|
|
# where the power of two cannot be directly represented as a floating |
343
|
|
|
|
|
|
|
# point value. (E.g., 0x1.b2p-900 can be multiplied by 2^1500 to get |
344
|
|
|
|
|
|
|
# to 0x1.b2p+600; the input and output values can be represented in |
345
|
|
|
|
|
|
|
# IEEE double, but 2^1500 cannot.) Overflow and underflow can occur. |
346
|
|
|
|
|
|
|
# |
347
|
|
|
|
|
|
|
# @powtwo is an array such that powtwo[i] = 2^2^i. Its elements are |
348
|
|
|
|
|
|
|
# used in the repeated multiplication in mult_pow2. Similarly, |
349
|
|
|
|
|
|
|
# @powhalf is such that powhalf[i] = 2^-2^i. Reading the exponent |
350
|
|
|
|
|
|
|
# in binary indicates which elements of @powtwo/@powhalf to multiply |
351
|
|
|
|
|
|
|
# by, except that it may indicate elements that don't exist, either |
352
|
|
|
|
|
|
|
# because they're not representable or because the arrays haven't |
353
|
|
|
|
|
|
|
# been filled yet. mult_pow2() will use the last element of the array |
354
|
|
|
|
|
|
|
# repeatedly in this case. Thus array elements after the first are |
355
|
|
|
|
|
|
|
# only an optimisation, and do not change behaviour. |
356
|
|
|
|
|
|
|
# |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
my @powtwo = (2.0); |
359
|
|
|
|
|
|
|
my @powhalf = (0.5); |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
sub mult_pow2($$) { |
362
|
711
|
|
|
711
|
1
|
6145
|
my($value, $exp) = @_; |
363
|
711
|
100
|
|
|
|
1556
|
return $_[0] if $value == 0.0; |
364
|
632
|
|
|
|
|
951
|
my $powa = \@powtwo; |
365
|
632
|
100
|
|
|
|
1202
|
if($exp < 0) { |
366
|
368
|
|
|
|
|
553
|
$powa = \@powhalf; |
367
|
368
|
|
|
|
|
549
|
$exp = -$exp; |
368
|
|
|
|
|
|
|
} |
369
|
632
|
|
100
|
|
|
2059
|
for(my $i = 0; $i != $#$powa && $exp != 0; $i++) { |
370
|
3125
|
100
|
|
|
|
5590
|
$value *= $powa->[$i] if $exp & 1; |
371
|
3125
|
|
|
|
|
8704
|
$exp >>= 1; |
372
|
|
|
|
|
|
|
} |
373
|
632
|
|
|
|
|
1291
|
$value *= $powa->[-1] while $exp--; |
374
|
632
|
|
|
|
|
3843
|
return $value; |
375
|
|
|
|
|
|
|
} |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
# |
378
|
|
|
|
|
|
|
# Range of finite exponent values. |
379
|
|
|
|
|
|
|
# |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
my $min_finite_exp; |
382
|
|
|
|
|
|
|
my $max_finite_exp; |
383
|
|
|
|
|
|
|
my $max_finite_pow2; |
384
|
|
|
|
|
|
|
my $min_finite; |
385
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
my @directions = ( |
387
|
|
|
|
|
|
|
{ |
388
|
|
|
|
|
|
|
expsign => -1, |
389
|
|
|
|
|
|
|
powa => \@powhalf, |
390
|
|
|
|
|
|
|
xexp => \$min_finite_exp, |
391
|
|
|
|
|
|
|
xpower => \$min_finite, |
392
|
|
|
|
|
|
|
}, |
393
|
|
|
|
|
|
|
{ |
394
|
|
|
|
|
|
|
expsign => +1, |
395
|
|
|
|
|
|
|
powa => \@powtwo, |
396
|
|
|
|
|
|
|
xexp => \$max_finite_exp, |
397
|
|
|
|
|
|
|
xpower => \$max_finite_pow2, |
398
|
|
|
|
|
|
|
}, |
399
|
|
|
|
|
|
|
); |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
while(!$directions[0]->{done} || !$directions[1]->{done}) { |
402
|
|
|
|
|
|
|
foreach my $direction (@directions) { |
403
|
|
|
|
|
|
|
next if $direction->{done}; |
404
|
|
|
|
|
|
|
my $lastpow = $direction->{powa}->[-1]; |
405
|
|
|
|
|
|
|
my $nextpow = $lastpow * $lastpow; |
406
|
|
|
|
|
|
|
unless(mult_pow2($nextpow, -$direction->{expsign} * |
407
|
|
|
|
|
|
|
(1 << (@{$direction->{powa}} - 1))) |
408
|
|
|
|
|
|
|
== $lastpow) { |
409
|
|
|
|
|
|
|
$direction->{done} = 1; |
410
|
|
|
|
|
|
|
next; |
411
|
|
|
|
|
|
|
} |
412
|
|
|
|
|
|
|
push @{$direction->{powa}}, $nextpow; |
413
|
|
|
|
|
|
|
} |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
foreach my $direction (@directions) { |
417
|
|
|
|
|
|
|
my $expsign = $direction->{expsign}; |
418
|
|
|
|
|
|
|
my $xexp = 1 << (@{$direction->{powa}} - 1); |
419
|
|
|
|
|
|
|
my $extremum = $direction->{powa}->[-1]; |
420
|
|
|
|
|
|
|
for(my $addexp = $xexp; $addexp >>= 1; ) { |
421
|
|
|
|
|
|
|
my $nx = mult_pow2($extremum, $expsign*$addexp); |
422
|
|
|
|
|
|
|
if(mult_pow2($nx, -$expsign*$addexp) == $extremum) { |
423
|
|
|
|
|
|
|
$xexp += $addexp; |
424
|
|
|
|
|
|
|
$extremum = $nx; |
425
|
|
|
|
|
|
|
} |
426
|
|
|
|
|
|
|
} |
427
|
|
|
|
|
|
|
${$direction->{xexp}} = $expsign * $xexp; |
428
|
|
|
|
|
|
|
${$direction->{xpower}} = $extremum; |
429
|
|
|
|
|
|
|
} |
430
|
|
|
|
|
|
|
|
431
|
|
|
|
|
|
|
_mk_constant("min_finite_exp", $min_finite_exp); |
432
|
|
|
|
|
|
|
_mk_constant("min_finite", $min_finite); |
433
|
|
|
|
|
|
|
_mk_constant("max_finite_exp", $max_finite_exp); |
434
|
|
|
|
|
|
|
_mk_constant("max_finite_pow2", $max_finite_pow2); |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
# |
437
|
|
|
|
|
|
|
# pow2() generates a power of two from scratch. It complains if given |
438
|
|
|
|
|
|
|
# an exponent that would make an unrepresentable value. |
439
|
|
|
|
|
|
|
# |
440
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
sub pow2($) { |
442
|
39
|
|
|
39
|
1
|
696
|
my($exp) = @_; |
443
|
39
|
100
|
100
|
|
|
422
|
croak "exponent $exp out of range [$min_finite_exp, $max_finite_exp]" |
444
|
|
|
|
|
|
|
unless $exp >= $min_finite_exp && $exp <= $max_finite_exp; |
445
|
37
|
|
|
|
|
114
|
return mult_pow2(1.0, $exp); |
446
|
|
|
|
|
|
|
} |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
# |
449
|
|
|
|
|
|
|
# Significand size. |
450
|
|
|
|
|
|
|
# |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
my($significand_bits, $significand_step); |
453
|
|
|
|
|
|
|
{ |
454
|
|
|
|
|
|
|
my $i; |
455
|
|
|
|
|
|
|
for($i = 1; ; $i++) { |
456
|
|
|
|
|
|
|
my $tryeps = $powhalf[$i]; |
457
|
|
|
|
|
|
|
last unless (1.0 + $tryeps) - 1.0 == $tryeps; |
458
|
|
|
|
|
|
|
} |
459
|
|
|
|
|
|
|
$i--; |
460
|
|
|
|
|
|
|
$significand_bits = 1 << $i; |
461
|
|
|
|
|
|
|
$significand_step = $powhalf[$i]; |
462
|
|
|
|
|
|
|
while($i--) { |
463
|
|
|
|
|
|
|
my $tryeps = $significand_step * $powhalf[$i]; |
464
|
|
|
|
|
|
|
if((1.0 + $tryeps) - 1.0 == $tryeps) { |
465
|
|
|
|
|
|
|
$significand_bits += 1 << $i; |
466
|
|
|
|
|
|
|
$significand_step = $tryeps; |
467
|
|
|
|
|
|
|
} |
468
|
|
|
|
|
|
|
} |
469
|
|
|
|
|
|
|
} |
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
_mk_constant("significand_bits", $significand_bits); |
472
|
|
|
|
|
|
|
_mk_constant("significand_step", $significand_step); |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
my $max_finite = $max_finite_pow2 - |
475
|
|
|
|
|
|
|
pow2($max_finite_exp - $significand_bits - 1); |
476
|
|
|
|
|
|
|
$max_finite += $max_finite; |
477
|
|
|
|
|
|
|
|
478
|
|
|
|
|
|
|
my $max_integer = pow2($significand_bits + 1); |
479
|
|
|
|
|
|
|
|
480
|
|
|
|
|
|
|
_mk_constant("max_finite", $max_finite); |
481
|
|
|
|
|
|
|
_mk_constant("max_integer", $max_integer); |
482
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
# |
484
|
|
|
|
|
|
|
# Subnormals. |
485
|
|
|
|
|
|
|
# |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
my $have_subnormal; |
488
|
|
|
|
|
|
|
{ |
489
|
|
|
|
|
|
|
my $testval = $min_finite * 1.5; |
490
|
|
|
|
|
|
|
$have_subnormal = $testval == $min_finite || |
491
|
|
|
|
|
|
|
$testval == ($min_finite + $min_finite); |
492
|
|
|
|
|
|
|
} |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
_mk_constant("have_subnormal", $have_subnormal); |
495
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
my $min_normal_exp = $have_subnormal ? |
497
|
|
|
|
|
|
|
$min_finite_exp + $significand_bits : |
498
|
|
|
|
|
|
|
$min_finite_exp; |
499
|
|
|
|
|
|
|
my $min_normal = $have_subnormal ? |
500
|
|
|
|
|
|
|
mult_pow2($min_finite, $significand_bits) : |
501
|
|
|
|
|
|
|
$min_finite; |
502
|
|
|
|
|
|
|
|
503
|
|
|
|
|
|
|
_mk_constant("min_normal_exp", $min_normal_exp); |
504
|
|
|
|
|
|
|
_mk_constant("min_normal", $min_normal); |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
# |
507
|
|
|
|
|
|
|
# Feature tests. |
508
|
|
|
|
|
|
|
# |
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
my $have_signed_zero = sprintf("%e", -0.0) =~ /\A-/; |
511
|
|
|
|
|
|
|
_mk_constant("have_signed_zero", $have_signed_zero); |
512
|
|
|
|
|
|
|
my($pos_zero, $neg_zero); |
513
|
|
|
|
|
|
|
if($have_signed_zero) { |
514
|
|
|
|
|
|
|
$pos_zero = +0.0; |
515
|
|
|
|
|
|
|
$neg_zero = -0.0; |
516
|
|
|
|
|
|
|
my $tzero = -0.0; |
517
|
9
|
|
|
9
|
|
75
|
{ no warnings "void"; $tzero == $tzero; } |
|
9
|
|
|
|
|
21
|
|
|
9
|
|
|
|
|
3996
|
|
518
|
|
|
|
|
|
|
my $ntzero = -$tzero; |
519
|
|
|
|
|
|
|
if(sprintf("%e", -$ntzero) =~ /\A-/) { |
520
|
|
|
|
|
|
|
_mk_constant("pos_zero", $pos_zero); |
521
|
|
|
|
|
|
|
_mk_constant("neg_zero", $neg_zero); |
522
|
|
|
|
|
|
|
} else { |
523
|
|
|
|
|
|
|
# Zeroes lose their signedness upon arithmetic operations. |
524
|
|
|
|
|
|
|
# Therefore make the pos_zero and neg_zero functions |
525
|
|
|
|
|
|
|
# return fresh zeroes to avoid trouble. |
526
|
2
|
|
|
2
|
|
10132
|
*pos_zero = sub () { my $ret = $pos_zero }; |
527
|
3
|
|
|
3
|
|
151
|
*neg_zero = sub () { my $ret = $neg_zero }; |
528
|
|
|
|
|
|
|
push @EXPORT_OK, "pos_zero", "neg_zero"; |
529
|
|
|
|
|
|
|
} |
530
|
|
|
|
|
|
|
} |
531
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
my($have_infinite, $pos_infinity, $neg_infinity); |
533
|
|
|
|
|
|
|
{ |
534
|
|
|
|
|
|
|
my $testval = $max_finite * $max_finite; |
535
|
|
|
|
|
|
|
$have_infinite = $testval == $testval && $testval != $max_finite; |
536
|
|
|
|
|
|
|
_mk_constant("have_infinite", $have_infinite); |
537
|
|
|
|
|
|
|
if($have_infinite) { |
538
|
|
|
|
|
|
|
_mk_constant("pos_infinity", $pos_infinity = $testval); |
539
|
|
|
|
|
|
|
_mk_constant("neg_infinity", $neg_infinity = -$testval); |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
} |
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
my $max_number = $have_infinite ? $pos_infinity : $max_finite; |
544
|
|
|
|
|
|
|
_mk_constant("max_number", $max_number); |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
my($have_nan, $nan); |
547
|
|
|
|
|
|
|
foreach my $nan_formula ( |
548
|
|
|
|
|
|
|
'$have_infinite && $pos_infinity/$pos_infinity', |
549
|
|
|
|
|
|
|
'log(-1.0)', |
550
|
|
|
|
|
|
|
'0.0/0.0', |
551
|
|
|
|
|
|
|
'"nan"') { |
552
|
|
|
|
|
|
|
my $maybe_nan = |
553
|
|
|
|
|
|
|
eval 'local $SIG{__DIE__}; local $SIG{__WARN__} = sub { }; '. |
554
|
|
|
|
|
|
|
$nan_formula; |
555
|
|
|
|
|
|
|
if(do { local $SIG{__WARN__} = sub { }; $maybe_nan != $maybe_nan }) { |
556
|
|
|
|
|
|
|
$have_nan = 1; |
557
|
|
|
|
|
|
|
$nan = $maybe_nan; |
558
|
|
|
|
|
|
|
_mk_constant("nan", $nan); |
559
|
|
|
|
|
|
|
last; |
560
|
|
|
|
|
|
|
} |
561
|
|
|
|
|
|
|
} |
562
|
|
|
|
|
|
|
_mk_constant("have_nan", $have_nan); |
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
# The rest of the code is parsed after the constants have been calculated |
565
|
|
|
|
|
|
|
# and installed, so that it can benefit from their constancy. |
566
|
|
|
|
|
|
|
{ |
567
|
|
|
|
|
|
|
local $/ = undef; |
568
|
|
|
|
|
|
|
my $code = <DATA>; |
569
|
|
|
|
|
|
|
close(DATA); |
570
|
|
|
|
|
|
|
{ |
571
|
|
|
|
|
|
|
local $SIG{__DIE__}; |
572
|
9
|
50
|
66
|
9
|
1
|
88
|
eval $code; |
|
9
|
100
|
100
|
9
|
1
|
21
|
|
|
9
|
100
|
100
|
9
|
1
|
19
|
|
|
9
|
100
|
100
|
9
|
1
|
21
|
|
|
9
|
100
|
66
|
9
|
1
|
20
|
|
|
9
|
100
|
100
|
268
|
1
|
30
|
|
|
9
|
100
|
100
|
39
|
1
|
19
|
|
|
9
|
100
|
0
|
42
|
1
|
933
|
|
|
9
|
100
|
100
|
41
|
1
|
67
|
|
|
9
|
100
|
100
|
162
|
1
|
22
|
|
|
9
|
100
|
66
|
14
|
1
|
628
|
|
|
9
|
100
|
|
96
|
1
|
3686
|
|
|
9
|
100
|
|
402
|
1
|
383
|
|
|
9
|
100
|
|
14
|
1
|
49
|
|
|
9
|
100
|
|
76
|
1
|
557
|
|
|
9
|
100
|
|
14
|
1
|
19
|
|
|
9
|
50
|
|
174
|
1
|
19
|
|
|
9
|
100
|
|
62
|
1
|
12735
|
|
|
9
|
0
|
|
28
|
1
|
78
|
|
|
9
|
0
|
|
54
|
|
20
|
|
|
9
|
50
|
|
22
|
|
46
|
|
|
268
|
50
|
|
17
|
|
443
|
|
|
268
|
100
|
|
33
|
|
507
|
|
|
268
|
100
|
|
140
|
|
879
|
|
|
39
|
0
|
|
81
|
|
7112
|
|
|
39
|
50
|
|
|
|
75
|
|
|
37
|
50
|
|
|
|
75
|
|
|
37
|
50
|
|
|
|
132
|
|
|
42
|
50
|
|
|
|
6805
|
|
|
42
|
100
|
|
|
|
156
|
|
|
24
|
50
|
|
|
|
53
|
|
|
21
|
100
|
|
|
|
46
|
|
|
21
|
100
|
|
|
|
51
|
|
|
15
|
100
|
|
|
|
74
|
|
|
41
|
100
|
|
|
|
4255
|
|
|
41
|
50
|
|
|
|
125
|
|
|
39
|
100
|
|
|
|
63
|
|
|
39
|
50
|
|
|
|
52
|
|
|
39
|
100
|
|
|
|
114
|
|
|
2
|
100
|
|
|
|
8
|
|
|
4
|
100
|
|
|
|
11
|
|
|
2
|
100
|
|
|
|
8
|
|
|
2
|
100
|
|
|
|
28
|
|
|
35
|
100
|
|
|
|
52
|
|
|
35
|
50
|
|
|
|
80
|
|
|
6
|
100
|
|
|
|
16
|
|
|
6
|
100
|
|
|
|
11
|
|
|
6
|
100
|
|
|
|
30
|
|
|
4
|
100
|
|
|
|
9
|
|
|
4
|
100
|
|
|
|
9
|
|
|
1
|
100
|
|
|
|
2
|
|
|
1
|
50
|
|
|
|
3
|
|
|
0
|
100
|
|
|
|
0
|
|
|
2
|
100
|
|
|
|
4
|
|
|
29
|
100
|
|
|
|
53
|
|
|
31
|
100
|
|
|
|
72
|
|
|
31
|
100
|
|
|
|
87
|
|
|
0
|
100
|
|
|
|
0
|
|
|
0
|
0
|
|
|
|
0
|
|
|
0
|
50
|
|
|
|
0
|
|
|
0
|
50
|
|
|
|
0
|
|
|
0
|
50
|
|
|
|
0
|
|
|
0
|
50
|
|
|
|
0
|
|
|
0
|
0
|
|
|
|
0
|
|
|
31
|
0
|
|
|
|
54
|
|
|
31
|
0
|
|
|
|
67
|
|
|
62
|
0
|
|
|
|
84
|
|
|
62
|
0
|
|
|
|
85
|
|
|
62
|
0
|
|
|
|
179
|
|
|
62
|
50
|
|
|
|
124
|
|
|
31
|
100
|
|
|
|
170
|
|
|
31
|
100
|
|
|
|
74
|
|
|
31
|
100
|
|
|
|
66
|
|
|
31
|
100
|
|
|
|
40
|
|
|
31
|
50
|
|
|
|
48
|
|
|
31
|
100
|
|
|
|
93
|
|
|
62
|
100
|
|
|
|
116
|
|
|
62
|
100
|
|
|
|
106
|
|
|
62
|
100
|
|
|
|
154
|
|
|
32
|
100
|
|
|
|
66
|
|
|
62
|
50
|
|
|
|
164
|
|
|
0
|
100
|
|
|
|
0
|
|
|
62
|
100
|
|
|
|
208
|
|
|
31
|
100
|
|
|
|
84
|
|
|
31
|
100
|
|
|
|
82
|
|
|
31
|
100
|
|
|
|
98
|
|
|
11
|
|
|
|
|
30
|
|
|
4
|
|
|
|
|
16
|
|
|
4
|
|
|
|
|
35
|
|
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
8
|
|
|
2
|
|
|
|
|
37
|
|
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
3
|
|
|
31
|
|
|
|
|
62
|
|
|
31
|
|
|
|
|
61
|
|
|
31
|
|
|
|
|
78
|
|
|
2
|
|
|
|
|
8
|
|
|
0
|
|
|
|
|
0
|
|
|
31
|
|
|
|
|
179
|
|
|
31
|
|
|
|
|
84
|
|
|
162
|
|
|
|
|
10987
|
|
|
162
|
|
|
|
|
364
|
|
|
18
|
|
|
|
|
42
|
|
|
16
|
|
|
|
|
61
|
|
|
8
|
|
|
|
|
24
|
|
|
120
|
|
|
|
|
640
|
|
|
14
|
|
|
|
|
1492
|
|
|
14
|
|
|
|
|
65
|
|
|
96
|
|
|
|
|
1610
|
|
|
96
|
|
|
|
|
156
|
|
|
96
|
|
|
|
|
629
|
|
|
402
|
|
|
|
|
2258
|
|
|
402
|
|
|
|
|
1278
|
|
|
14
|
|
|
|
|
2293
|
|
|
76
|
|
|
|
|
1713
|
|
|
76
|
|
|
|
|
406
|
|
|
14
|
|
|
|
|
1597
|
|
|
174
|
|
|
|
|
1706
|
|
|
174
|
|
|
|
|
558
|
|
|
62
|
|
|
|
|
8037
|
|
|
62
|
|
|
|
|
123
|
|
|
62
|
|
|
|
|
117
|
|
|
62
|
|
|
|
|
146
|
|
|
19
|
|
|
|
|
28
|
|
|
19
|
|
|
|
|
28
|
|
|
62
|
|
|
|
|
124
|
|
|
5
|
|
|
|
|
17
|
|
|
57
|
|
|
|
|
97
|
|
|
57
|
|
|
|
|
162
|
|
|
7
|
|
|
|
|
22
|
|
|
77
|
|
|
|
|
86
|
|
|
77
|
|
|
|
|
142
|
|
|
10
|
|
|
|
|
15
|
|
|
10
|
|
|
|
|
27
|
|
|
7
|
|
|
|
|
19
|
|
|
7
|
|
|
|
|
11
|
|
|
27
|
|
|
|
|
77
|
|
|
270
|
|
|
|
|
373
|
|
|
270
|
|
|
|
|
552
|
|
|
70
|
|
|
|
|
123
|
|
|
70
|
|
|
|
|
205
|
|
|
57
|
|
|
|
|
192
|
|
|
28
|
|
|
|
|
13940
|
|
|
28
|
|
|
|
|
70
|
|
|
28
|
|
|
|
|
50
|
|
|
54
|
|
|
|
|
4586
|
|
|
54
|
|
|
|
|
430
|
|
|
18
|
|
|
|
|
65
|
|
|
18
|
|
|
|
|
34
|
|
|
18
|
|
|
|
|
39
|
|
|
18
|
|
|
|
|
35
|
|
|
18
|
|
|
|
|
32
|
|
|
18
|
|
|
|
|
45
|
|
|
18
|
|
|
|
|
38
|
|
|
6
|
|
|
|
|
12
|
|
|
6
|
|
|
|
|
22
|
|
|
12
|
|
|
|
|
25
|
|
|
12
|
|
|
|
|
16
|
|
|
12
|
|
|
|
|
38
|
|
|
12
|
|
|
|
|
55
|
|
|
12
|
|
|
|
|
32
|
|
|
12
|
|
|
|
|
27
|
|
|
12
|
|
|
|
|
16
|
|
|
12
|
|
|
|
|
28
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
12
|
|
|
|
|
16
|
|
|
12
|
|
|
|
|
15
|
|
|
12
|
|
|
|
|
23
|
|
|
12
|
|
|
|
|
26
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
12
|
|
|
|
|
18
|
|
|
12
|
|
|
|
|
26
|
|
|
15
|
|
|
|
|
46
|
|
|
12
|
|
|
|
|
30
|
|
|
18
|
|
|
|
|
91
|
|
|
18
|
|
|
|
|
34
|
|
|
18
|
|
|
|
|
131
|
|
|
18
|
|
|
|
|
35
|
|
|
18
|
|
|
|
|
79
|
|
|
0
|
|
|
|
|
0
|
|
|
22
|
|
|
|
|
6332
|
|
|
22
|
|
|
|
|
112
|
|
|
15
|
|
|
|
|
49
|
|
|
17
|
|
|
|
|
786
|
|
|
33
|
|
|
|
|
3484
|
|
|
33
|
|
|
|
|
153
|
|
|
28
|
|
|
|
|
79
|
|
|
24
|
|
|
|
|
73
|
|
|
16
|
|
|
|
|
31
|
|
|
16
|
|
|
|
|
36
|
|
|
8
|
|
|
|
|
15
|
|
|
8
|
|
|
|
|
21
|
|
|
4
|
|
|
|
|
34
|
|
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
|
8
|
|
|
|
|
24
|
|
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
2
|
|
|
8
|
|
|
|
|
12
|
|
|
12
|
|
|
|
|
27
|
|
|
140
|
|
|
|
|
245
|
|
|
140
|
|
|
|
|
658
|
|
|
81
|
|
|
|
|
317
|
|
573
|
|
|
|
|
|
|
} |
574
|
|
|
|
|
|
|
die $@ if $@ ne ""; |
575
|
|
|
|
|
|
|
} |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
1; |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
__DATA__ |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
=head1 FUNCTIONS |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
Each "float_" function takes a floating point argument to operate on. The |
584
|
|
|
|
|
|
|
argument must be a native floating point value, or a native integer with |
585
|
|
|
|
|
|
|
a value that can be represented in floating point. Giving a non-numeric |
586
|
|
|
|
|
|
|
argument will cause mayhem. See L<Params::Classify/is_number> for a way |
587
|
|
|
|
|
|
|
to check for numericness. Only the numeric value of the scalar is used; |
588
|
|
|
|
|
|
|
the string value is completely ignored, so dualvars are not a problem. |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
=head2 Classification |
591
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
Each "float_is_" function returns a simple truth value result. |
593
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
=over |
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
=item float_class(VALUE) |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
Determines which of the five classes described above VALUE falls |
599
|
|
|
|
|
|
|
into. Returns "NORMAL", "SUBNORMAL", "ZERO", "INFINITE", or "NAN" |
600
|
|
|
|
|
|
|
accordingly. |
601
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
=cut |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
sub float_class($) { |
605
|
|
|
|
|
|
|
my($val) = @_; |
606
|
|
|
|
|
|
|
return "ZERO" if $val == 0.0; |
607
|
|
|
|
|
|
|
return "NAN" if $val != $val; |
608
|
|
|
|
|
|
|
$val = -$val if $val < 0; |
609
|
|
|
|
|
|
|
return "INFINITE" if have_infinite && $val == $pos_infinity; |
610
|
|
|
|
|
|
|
return have_subnormal && $val < min_normal ? "SUBNORMAL" : "NORMAL"; |
611
|
|
|
|
|
|
|
} |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=item float_is_normal(VALUE) |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
Returns true iff VALUE is a normalised floating point value. |
616
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
=cut |
618
|
|
|
|
|
|
|
|
619
|
|
|
|
|
|
|
sub float_is_normal($) { float_class($_[0]) eq "NORMAL" } |
620
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
=item float_is_subnormal(VALUE) |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
Returns true iff VALUE is a subnormal floating point value. |
624
|
|
|
|
|
|
|
|
625
|
|
|
|
|
|
|
=cut |
626
|
|
|
|
|
|
|
|
627
|
|
|
|
|
|
|
sub float_is_subnormal($) { float_class($_[0]) eq "SUBNORMAL" } |
628
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
=item float_is_nzfinite(VALUE) |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
Returns true iff VALUE is a non-zero finite value (either normal or |
632
|
|
|
|
|
|
|
subnormal; not zero, infinite, or NaN). |
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
=cut |
635
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
sub float_is_infinite($); |
637
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
sub float_is_nzfinite($) { |
639
|
|
|
|
|
|
|
my($val) = @_; |
640
|
|
|
|
|
|
|
return $val != 0.0 && $val == $val && !float_is_infinite($val); |
641
|
|
|
|
|
|
|
} |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
=item float_is_zero(VALUE) |
644
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
Returns true iff VALUE is a zero. If zeroes are signed then the sign |
646
|
|
|
|
|
|
|
is irrelevant. |
647
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
=cut |
649
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
sub float_is_zero($) { |
651
|
|
|
|
|
|
|
my($val) = @_; |
652
|
|
|
|
|
|
|
return $val == 0.0; |
653
|
|
|
|
|
|
|
} |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
=item float_is_finite(VALUE) |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
Returns true iff VALUE is a finite value (either normal, subnormal, |
658
|
|
|
|
|
|
|
or zero; not infinite or NaN). |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
=cut |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
sub float_is_finite($) { |
663
|
|
|
|
|
|
|
my($val) = @_; |
664
|
|
|
|
|
|
|
return $val == $val && !float_is_infinite($val); |
665
|
|
|
|
|
|
|
} |
666
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
=item float_is_infinite(VALUE) |
668
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
Returns true iff VALUE is an infinity (either positive infinity or |
670
|
|
|
|
|
|
|
negative infinity). |
671
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
=cut |
673
|
|
|
|
|
|
|
|
674
|
|
|
|
|
|
|
sub float_is_infinite($) { |
675
|
|
|
|
|
|
|
return undef unless have_infinite; |
676
|
|
|
|
|
|
|
my($val) = @_; |
677
|
|
|
|
|
|
|
return $val == $pos_infinity || $val == $neg_infinity; |
678
|
|
|
|
|
|
|
} |
679
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
=item float_is_nan(VALUE) |
681
|
|
|
|
|
|
|
|
682
|
|
|
|
|
|
|
Returns true iff VALUE is a NaN. |
683
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
=cut |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
sub float_is_nan($) { |
687
|
|
|
|
|
|
|
my($val) = @_; |
688
|
|
|
|
|
|
|
return $val != $val; |
689
|
|
|
|
|
|
|
} |
690
|
|
|
|
|
|
|
|
691
|
|
|
|
|
|
|
=back |
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
=head2 Examination |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
=over |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
=item float_sign(VALUE) |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
Returns "B<+>" or "B<->" to indicate the sign of VALUE. An unsigned |
700
|
|
|
|
|
|
|
zero returns the sign "B<+>". C<die>s if VALUE is a NaN. |
701
|
|
|
|
|
|
|
|
702
|
|
|
|
|
|
|
=cut |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
sub signbit($); |
705
|
|
|
|
|
|
|
|
706
|
|
|
|
|
|
|
sub float_sign($) { |
707
|
|
|
|
|
|
|
my($val) = @_; |
708
|
|
|
|
|
|
|
croak "can't get sign of a NaN" if $val != $val; |
709
|
|
|
|
|
|
|
return signbit($val) ? "-" : "+"; |
710
|
|
|
|
|
|
|
} |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
=item signbit(VALUE) |
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
VALUE must be a floating point value. Returns the sign bit of VALUE: |
715
|
|
|
|
|
|
|
0 if VALUE is positive or a positive or unsigned zero, or 1 if VALUE is |
716
|
|
|
|
|
|
|
negative or a negative zero. Returns an unpredictable value if VALUE |
717
|
|
|
|
|
|
|
is a NaN. |
718
|
|
|
|
|
|
|
|
719
|
|
|
|
|
|
|
This is an IEEE 754 standard function. According to the standard NaNs |
720
|
|
|
|
|
|
|
have a well-behaved sign bit, but Perl can't see that bit. |
721
|
|
|
|
|
|
|
|
722
|
|
|
|
|
|
|
=cut |
723
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
sub signbit($) { |
725
|
|
|
|
|
|
|
my($val) = @_; |
726
|
|
|
|
|
|
|
return (have_signed_zero && $val == 0.0 ? |
727
|
|
|
|
|
|
|
sprintf("%+.f", $val) eq "-0" : $val < 0.0) ? 1 : 0; |
728
|
|
|
|
|
|
|
} |
729
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
=item float_parts(VALUE) |
731
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
Divides up a non-zero finite floating point value into sign, exponent, |
733
|
|
|
|
|
|
|
and significand, returning these as a three-element list in that order. |
734
|
|
|
|
|
|
|
The significand is returned as a floating point value, in the range |
735
|
|
|
|
|
|
|
[1, 2) for normalised values, and in the range (0, 1) for subnormals. |
736
|
|
|
|
|
|
|
C<die>s if VALUE is not finite and non-zero. |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
=cut |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
sub float_parts($) { |
741
|
|
|
|
|
|
|
my($val) = @_; |
742
|
|
|
|
|
|
|
croak "$val is not non-zero finite" unless float_is_nzfinite($val); |
743
|
|
|
|
|
|
|
my $sign = "+"; |
744
|
|
|
|
|
|
|
if($val < 0.0) { |
745
|
|
|
|
|
|
|
$sign = "-"; |
746
|
|
|
|
|
|
|
$val = -$val; |
747
|
|
|
|
|
|
|
} |
748
|
|
|
|
|
|
|
if(have_subnormal && $val < min_normal) { |
749
|
|
|
|
|
|
|
return ($sign, min_normal_exp, |
750
|
|
|
|
|
|
|
mult_pow2($val, -(min_normal_exp))); |
751
|
|
|
|
|
|
|
} |
752
|
|
|
|
|
|
|
my $exp = 0; |
753
|
|
|
|
|
|
|
if($val < 1.0) { |
754
|
|
|
|
|
|
|
for(my $i = @powhalf; $i--; ) { |
755
|
|
|
|
|
|
|
$exp <<= 1; |
756
|
|
|
|
|
|
|
if($val < $powhalf[$i]) { |
757
|
|
|
|
|
|
|
$exp |= 1; |
758
|
|
|
|
|
|
|
$val = mult_pow2($val, 1 << $i); |
759
|
|
|
|
|
|
|
} |
760
|
|
|
|
|
|
|
} |
761
|
|
|
|
|
|
|
$val *= 2.0; |
762
|
|
|
|
|
|
|
$exp = -1-$exp; |
763
|
|
|
|
|
|
|
} elsif($val >= 2.0) { |
764
|
|
|
|
|
|
|
for(my $i = @powtwo; $i--; ) { |
765
|
|
|
|
|
|
|
$exp <<= 1; |
766
|
|
|
|
|
|
|
if($val >= $powtwo[$i]) { |
767
|
|
|
|
|
|
|
$exp |= 1; |
768
|
|
|
|
|
|
|
$val = mult_pow2($val, -(1 << $i)); |
769
|
|
|
|
|
|
|
} |
770
|
|
|
|
|
|
|
} |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
return ($sign, $exp, $val); |
773
|
|
|
|
|
|
|
} |
774
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
=back |
776
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
=head2 String conversion |
778
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
=over |
780
|
|
|
|
|
|
|
|
781
|
|
|
|
|
|
|
=item float_hex(VALUE[, OPTIONS]) |
782
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
Encodes the exact value of VALUE as a hexadecimal fraction, returning |
784
|
|
|
|
|
|
|
the fraction as a string. Specifically, for finite values the output is |
785
|
|
|
|
|
|
|
of the form "I<s>B<0x>I<m>B<.>I<mmmmm>B<p>I<eee>", where "I<s>" is the |
786
|
|
|
|
|
|
|
sign, "I<m>B<.>I<mmmm>" is the significand in hexadecimal, and "I<eee>" |
787
|
|
|
|
|
|
|
is the exponent in decimal with a sign. |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
The details of the output format are very configurable. If OPTIONS |
790
|
|
|
|
|
|
|
is supplied, it must be a reference to a hash, in which these keys may |
791
|
|
|
|
|
|
|
be present: |
792
|
|
|
|
|
|
|
|
793
|
|
|
|
|
|
|
=over |
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
=item B<exp_digits> |
796
|
|
|
|
|
|
|
|
797
|
|
|
|
|
|
|
The number of digits of exponent to show, unless this is modified by |
798
|
|
|
|
|
|
|
B<exp_digits_range_mod> or more are required to show the exponent exactly. |
799
|
|
|
|
|
|
|
(The exponent is always shown in full.) Default 0, so the minimum |
800
|
|
|
|
|
|
|
possible number of digits is used. |
801
|
|
|
|
|
|
|
|
802
|
|
|
|
|
|
|
=item B<exp_digits_range_mod> |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
Modifies the number of exponent digits to show, based on the number of |
805
|
|
|
|
|
|
|
digits required to show the full range of exponents for normalised and |
806
|
|
|
|
|
|
|
subnormal values. If "B<IGNORE>" then nothing is done. If "B<ATLEAST>" |
807
|
|
|
|
|
|
|
then at least this many digits are shown. Default "B<IGNORE>". |
808
|
|
|
|
|
|
|
|
809
|
|
|
|
|
|
|
=item B<exp_neg_sign> |
810
|
|
|
|
|
|
|
|
811
|
|
|
|
|
|
|
The string that is prepended to a negative exponent. Default "B<->". |
812
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
=item B<exp_pos_sign> |
814
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
The string that is prepended to a non-negative exponent. Default "B<+>". |
816
|
|
|
|
|
|
|
Make it the empty string to suppress the positive sign. |
817
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
=item B<frac_digits> |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
The number of fractional digits to show, unless this is modified by |
821
|
|
|
|
|
|
|
B<frac_digits_bits_mod> or B<frac_digits_value_mod>. Default 0, but by |
822
|
|
|
|
|
|
|
default this gets modified. |
823
|
|
|
|
|
|
|
|
824
|
|
|
|
|
|
|
=item B<frac_digits_bits_mod> |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
Modifies the number of fractional digits to show, based on the length of |
827
|
|
|
|
|
|
|
the significand. There is a certain number of digits that is the minimum |
828
|
|
|
|
|
|
|
required to explicitly state every bit that is stored, and the number |
829
|
|
|
|
|
|
|
of digits to show might get set to that number depending on this option. |
830
|
|
|
|
|
|
|
If "B<IGNORE>" then nothing is done. If "B<ATLEAST>" then at least this |
831
|
|
|
|
|
|
|
many digits are shown. If "B<ATMOST>" then at most this many digits |
832
|
|
|
|
|
|
|
are shown. If "B<EXACTLY>" then exactly this many digits are shown. |
833
|
|
|
|
|
|
|
Default "B<ATLEAST>". |
834
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
=item B<frac_digits_value_mod> |
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
Modifies the number of fractional digits to show, based on the number |
838
|
|
|
|
|
|
|
of digits required to show the actual value exactly. Works the same |
839
|
|
|
|
|
|
|
way as B<frac_digits_bits_mod>. Default "B<ATLEAST>". |
840
|
|
|
|
|
|
|
|
841
|
|
|
|
|
|
|
=item B<hex_prefix_string> |
842
|
|
|
|
|
|
|
|
843
|
|
|
|
|
|
|
The string that is prefixed to hexadecimal digits. Default "B<0x>". |
844
|
|
|
|
|
|
|
Make it the empty string to suppress the prefix. |
845
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
=item B<infinite_string> |
847
|
|
|
|
|
|
|
|
848
|
|
|
|
|
|
|
The string that is returned for an infinite magnitude. Default "B<inf>". |
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
=item B<nan_string> |
851
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
The string that is returned for a NaN value. Default "B<nan>". |
853
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
=item B<neg_sign> |
855
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
The string that is prepended to a negative value (including negative |
857
|
|
|
|
|
|
|
zero). Default "B<->". |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
=item B<pos_sign> |
860
|
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
The string that is prepended to a positive value (including positive or |
862
|
|
|
|
|
|
|
unsigned zero). Default "B<+>". Make it the empty string to suppress |
863
|
|
|
|
|
|
|
the positive sign. |
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
=item B<subnormal_strategy> |
866
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
The manner in which subnormal values are displayed. If "B<SUBNORMAL>", |
868
|
|
|
|
|
|
|
they are shown with the minimum exponent for normalised values and |
869
|
|
|
|
|
|
|
a significand in the range (0, 1). This matches how they are stored |
870
|
|
|
|
|
|
|
internally. If "B<NORMAL>", they are shown with a significand in the |
871
|
|
|
|
|
|
|
range [1, 2) and a lower exponent, as if they were normalised. This gives |
872
|
|
|
|
|
|
|
a consistent appearance for magnitudes regardless of normalisation. |
873
|
|
|
|
|
|
|
Default "B<SUBNORMAL>". |
874
|
|
|
|
|
|
|
|
875
|
|
|
|
|
|
|
=item B<zero_strategy> |
876
|
|
|
|
|
|
|
|
877
|
|
|
|
|
|
|
The manner in which zero values are displayed. If "B<STRING=>I<str>", |
878
|
|
|
|
|
|
|
the string I<str> is used, preceded by a sign. If "B<SUBNORMAL>", |
879
|
|
|
|
|
|
|
it is shown with significand zero and the minimum normalised exponent. |
880
|
|
|
|
|
|
|
If "B<EXPONENT=>I<exp>", it is shown with significand zero and exponent |
881
|
|
|
|
|
|
|
I<exp>. Default "B<STRING=0.0>". An unsigned zero is treated as having |
882
|
|
|
|
|
|
|
a positive sign. |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
=back |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
=cut |
887
|
|
|
|
|
|
|
|
888
|
|
|
|
|
|
|
my %float_hex_defaults = ( |
889
|
|
|
|
|
|
|
infinite_string => "inf", |
890
|
|
|
|
|
|
|
nan_string => "nan", |
891
|
|
|
|
|
|
|
exp_neg_sign => "-", |
892
|
|
|
|
|
|
|
exp_pos_sign => "+", |
893
|
|
|
|
|
|
|
pos_sign => "+", |
894
|
|
|
|
|
|
|
neg_sign => "-", |
895
|
|
|
|
|
|
|
hex_prefix_string => "0x", |
896
|
|
|
|
|
|
|
subnormal_strategy => "SUBNORMAL", |
897
|
|
|
|
|
|
|
zero_strategy => "STRING=0.0", |
898
|
|
|
|
|
|
|
frac_digits => 0, |
899
|
|
|
|
|
|
|
frac_digits_bits_mod => "ATLEAST", |
900
|
|
|
|
|
|
|
frac_digits_value_mod => "ATLEAST", |
901
|
|
|
|
|
|
|
exp_digits => 0, |
902
|
|
|
|
|
|
|
exp_digits_range_mod => "IGNORE", |
903
|
|
|
|
|
|
|
); |
904
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
sub _float_hex_option($$) { |
906
|
|
|
|
|
|
|
my($options, $name) = @_; |
907
|
|
|
|
|
|
|
my $val = defined($options) ? $options->{$name} : undef; |
908
|
|
|
|
|
|
|
return defined($val) ? $val : $float_hex_defaults{$name}; |
909
|
|
|
|
|
|
|
} |
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
use constant exp_digits_range => do { |
912
|
|
|
|
|
|
|
my $minexp = min_normal_exp - significand_bits; |
913
|
|
|
|
|
|
|
my $maxexp = max_finite_exp + 1; |
914
|
|
|
|
|
|
|
my $len_minexp = length(-$minexp); |
915
|
|
|
|
|
|
|
my $len_maxexp = length($maxexp); |
916
|
|
|
|
|
|
|
$len_minexp > $len_maxexp ? $len_minexp : $len_maxexp; |
917
|
|
|
|
|
|
|
}; |
918
|
|
|
|
|
|
|
use constant frac_digits_bits => (significand_bits + 3) >> 2; |
919
|
|
|
|
|
|
|
use constant frac_sections => do { use integer; (frac_digits_bits + 6) / 7; }; |
920
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
sub float_hex($;$) { |
922
|
|
|
|
|
|
|
my($val, $options) = @_; |
923
|
|
|
|
|
|
|
return _float_hex_option($options, "nan_string") if $val != $val; |
924
|
|
|
|
|
|
|
if(have_infinite) { |
925
|
|
|
|
|
|
|
my $inf_sign; |
926
|
|
|
|
|
|
|
if($val == $pos_infinity) { |
927
|
|
|
|
|
|
|
$inf_sign = _float_hex_option($options, "pos_sign"); |
928
|
|
|
|
|
|
|
EMIT_INFINITY: |
929
|
|
|
|
|
|
|
return $inf_sign. |
930
|
|
|
|
|
|
|
_float_hex_option($options, "infinite_string"); |
931
|
|
|
|
|
|
|
} elsif($val == $neg_infinity) { |
932
|
|
|
|
|
|
|
$inf_sign = _float_hex_option($options, "neg_sign"); |
933
|
|
|
|
|
|
|
goto EMIT_INFINITY; |
934
|
|
|
|
|
|
|
} |
935
|
|
|
|
|
|
|
} |
936
|
|
|
|
|
|
|
my($sign, $exp, $sgnf); |
937
|
|
|
|
|
|
|
if($val == 0.0) { |
938
|
|
|
|
|
|
|
$sign = float_sign($val); |
939
|
|
|
|
|
|
|
my $strat = _float_hex_option($options, "zero_strategy"); |
940
|
|
|
|
|
|
|
if($strat =~ /\ASTRING=(.*)\z/s) { |
941
|
|
|
|
|
|
|
my $string = $1; |
942
|
|
|
|
|
|
|
return _float_hex_option($options, |
943
|
|
|
|
|
|
|
$sign eq "-" ? "neg_sign" : "pos_sign"). |
944
|
|
|
|
|
|
|
$string; |
945
|
|
|
|
|
|
|
} elsif($strat eq "SUBNORMAL") { |
946
|
|
|
|
|
|
|
$exp = min_normal_exp; |
947
|
|
|
|
|
|
|
} elsif($strat =~ /\AEXPONENT=([-+]?[0-9]+)\z/) { |
948
|
|
|
|
|
|
|
$exp = $1; |
949
|
|
|
|
|
|
|
} else { |
950
|
|
|
|
|
|
|
croak "unrecognised zero strategy `$strat'"; |
951
|
|
|
|
|
|
|
} |
952
|
|
|
|
|
|
|
$sgnf = 0.0; |
953
|
|
|
|
|
|
|
} else { |
954
|
|
|
|
|
|
|
($sign, $exp, $sgnf) = float_parts($val); |
955
|
|
|
|
|
|
|
} |
956
|
|
|
|
|
|
|
my $digits = int($sgnf); |
957
|
|
|
|
|
|
|
if($digits eq "0" && $sgnf != 0.0) { |
958
|
|
|
|
|
|
|
my $strat = _float_hex_option($options, "subnormal_strategy"); |
959
|
|
|
|
|
|
|
if($strat eq "NORMAL") { |
960
|
|
|
|
|
|
|
my $add_exp; |
961
|
|
|
|
|
|
|
(undef, $add_exp, $sgnf) = float_parts($sgnf); |
962
|
|
|
|
|
|
|
$exp += $add_exp; |
963
|
|
|
|
|
|
|
$digits = "1"; |
964
|
|
|
|
|
|
|
} elsif($strat eq "SUBNORMAL") { |
965
|
|
|
|
|
|
|
# do nothing extra |
966
|
|
|
|
|
|
|
} else { |
967
|
|
|
|
|
|
|
croak "unrecognised subnormal strategy `$strat'"; |
968
|
|
|
|
|
|
|
} |
969
|
|
|
|
|
|
|
} |
970
|
|
|
|
|
|
|
$sgnf -= $digits; |
971
|
|
|
|
|
|
|
for(my $i = frac_sections; $i--; ) { |
972
|
|
|
|
|
|
|
$sgnf *= 268435456.0; |
973
|
|
|
|
|
|
|
my $section = int($sgnf); |
974
|
|
|
|
|
|
|
$digits .= sprintf("%07x", $section); |
975
|
|
|
|
|
|
|
$sgnf -= $section; |
976
|
|
|
|
|
|
|
} |
977
|
|
|
|
|
|
|
$digits =~ s/(.)0+\z/$1/; |
978
|
|
|
|
|
|
|
my $ndigits = 1 + _float_hex_option($options, "frac_digits"); |
979
|
|
|
|
|
|
|
croak "negative number of digits requested" if $ndigits <= 0; |
980
|
|
|
|
|
|
|
my $mindigits = 1; |
981
|
|
|
|
|
|
|
my $maxdigits = $ndigits + frac_digits_bits; |
982
|
|
|
|
|
|
|
foreach my $constraint (["frac_digits_bits_mod", 1+frac_digits_bits], |
983
|
|
|
|
|
|
|
["frac_digits_value_mod", length($digits)]) { |
984
|
|
|
|
|
|
|
my($optname, $number) = @$constraint; |
985
|
|
|
|
|
|
|
my $mod = _float_hex_option($options, $optname); |
986
|
|
|
|
|
|
|
if($mod =~ /\A(?:ATLEAST|EXACTLY)\z/) { |
987
|
|
|
|
|
|
|
$mindigits = $number if $mindigits < $number; |
988
|
|
|
|
|
|
|
} |
989
|
|
|
|
|
|
|
if($mod =~ /\A(?:ATMOST|EXACTLY)\z/) { |
990
|
|
|
|
|
|
|
$maxdigits = $number if $maxdigits > $number; |
991
|
|
|
|
|
|
|
} |
992
|
|
|
|
|
|
|
croak "unrecognised length modification setting `$mod'" |
993
|
|
|
|
|
|
|
unless $mod =~ /\A(?:AT(?:MO|LEA)ST|EXACTLY|IGNORE)\z/; |
994
|
|
|
|
|
|
|
} |
995
|
|
|
|
|
|
|
croak "incompatible length constraints" if $maxdigits < $mindigits; |
996
|
|
|
|
|
|
|
$ndigits = $ndigits < $mindigits ? $mindigits : |
997
|
|
|
|
|
|
|
$ndigits > $maxdigits ? $maxdigits : $ndigits; |
998
|
|
|
|
|
|
|
if($ndigits > length($digits)) { |
999
|
|
|
|
|
|
|
$digits .= "0" x ($ndigits - length($digits)); |
1000
|
|
|
|
|
|
|
} elsif($ndigits < length($digits)) { |
1001
|
|
|
|
|
|
|
my $chopped = substr($digits, $ndigits, length($digits), ""); |
1002
|
|
|
|
|
|
|
if($chopped =~ /\A[89abcdef]/ && |
1003
|
|
|
|
|
|
|
!($chopped =~ /\A80*\z/ && |
1004
|
|
|
|
|
|
|
$digits =~ /[02468ace]\z/)) { |
1005
|
|
|
|
|
|
|
for(my $i = length($digits) - 1; ; ) { |
1006
|
|
|
|
|
|
|
my $d = substr($digits, $i, 1); |
1007
|
|
|
|
|
|
|
$d =~ tr/0-9a-f/1-9a-f0/; |
1008
|
|
|
|
|
|
|
substr($digits, $i, 1, $d); |
1009
|
|
|
|
|
|
|
last unless $d eq "0"; |
1010
|
|
|
|
|
|
|
} |
1011
|
|
|
|
|
|
|
if($digits =~ /\A2/) { |
1012
|
|
|
|
|
|
|
$exp++; |
1013
|
|
|
|
|
|
|
substr($digits, 0, 1, "1"); |
1014
|
|
|
|
|
|
|
} |
1015
|
|
|
|
|
|
|
} |
1016
|
|
|
|
|
|
|
} |
1017
|
|
|
|
|
|
|
my $nexpdigits = _float_hex_option($options, "exp_digits"); |
1018
|
|
|
|
|
|
|
my $mod = _float_hex_option($options, "exp_digits_range_mod"); |
1019
|
|
|
|
|
|
|
if($mod eq "ATLEAST") { |
1020
|
|
|
|
|
|
|
$nexpdigits = exp_digits_range |
1021
|
|
|
|
|
|
|
if $nexpdigits < exp_digits_range; |
1022
|
|
|
|
|
|
|
} elsif($mod ne "IGNORE") { |
1023
|
|
|
|
|
|
|
croak "unrecognised exponent length ". |
1024
|
|
|
|
|
|
|
"modification setting `$mod'"; |
1025
|
|
|
|
|
|
|
} |
1026
|
|
|
|
|
|
|
$digits =~ s/\A(.)(.)/$1.$2/; |
1027
|
|
|
|
|
|
|
return sprintf("%s%s%sp%s%0*d", |
1028
|
|
|
|
|
|
|
_float_hex_option($options, |
1029
|
|
|
|
|
|
|
$sign eq "-" ? "neg_sign" : "pos_sign"), |
1030
|
|
|
|
|
|
|
_float_hex_option($options, "hex_prefix_string"), |
1031
|
|
|
|
|
|
|
$digits, |
1032
|
|
|
|
|
|
|
_float_hex_option($options, |
1033
|
|
|
|
|
|
|
$exp < 0 ? "exp_neg_sign" : "exp_pos_sign"), |
1034
|
|
|
|
|
|
|
$nexpdigits, abs($exp)); |
1035
|
|
|
|
|
|
|
} |
1036
|
|
|
|
|
|
|
|
1037
|
|
|
|
|
|
|
=item hex_float(STRING) |
1038
|
|
|
|
|
|
|
|
1039
|
|
|
|
|
|
|
Generates and returns a floating point value from a string |
1040
|
|
|
|
|
|
|
encoding it in hexadecimal. The standard input form is |
1041
|
|
|
|
|
|
|
"[I<s>][B<0x>]I<m>[B<.>I<mmmmm>][B<p>I<eee>]", where "I<s>" is the sign, |
1042
|
|
|
|
|
|
|
"I<m>[B<.>I<mmmm>]" is a (fractional) hexadecimal number, and "I<eee>" |
1043
|
|
|
|
|
|
|
an optionally-signed exponent in decimal. If present, the exponent |
1044
|
|
|
|
|
|
|
identifies a power of two (not sixteen) by which the given fraction will |
1045
|
|
|
|
|
|
|
be multiplied. |
1046
|
|
|
|
|
|
|
|
1047
|
|
|
|
|
|
|
If the value given in the string cannot be exactly represented in the |
1048
|
|
|
|
|
|
|
floating point type because it has too many fraction bits, the nearest |
1049
|
|
|
|
|
|
|
representable value is returned, with ties broken in favour of the value |
1050
|
|
|
|
|
|
|
with a zero low-order bit. If the value given is too large to exactly |
1051
|
|
|
|
|
|
|
represent then an infinity is returned, or the largest finite value if |
1052
|
|
|
|
|
|
|
there are no infinities. |
1053
|
|
|
|
|
|
|
|
1054
|
|
|
|
|
|
|
Additional input formats are accepted for special values. |
1055
|
|
|
|
|
|
|
"[I<s>]B<inf>[B<inity>]" returns an infinity, or C<die>s if there are |
1056
|
|
|
|
|
|
|
no infinities. "[I<s>][B<s>]B<nan>" returns a NaN, or C<die>s if there |
1057
|
|
|
|
|
|
|
are no NaNs available. |
1058
|
|
|
|
|
|
|
|
1059
|
|
|
|
|
|
|
All input formats are understood case insensitively. The function |
1060
|
|
|
|
|
|
|
correctly interprets all possible outputs from C<float_hex> with default |
1061
|
|
|
|
|
|
|
settings. |
1062
|
|
|
|
|
|
|
|
1063
|
|
|
|
|
|
|
=cut |
1064
|
|
|
|
|
|
|
|
1065
|
|
|
|
|
|
|
sub hex_float($) { |
1066
|
|
|
|
|
|
|
my($str) = @_; |
1067
|
|
|
|
|
|
|
if($str =~ /\A([-+]?)(?:0x)?([0-9a-f]+)(?:\.([0-9a-f]+)+)? |
1068
|
|
|
|
|
|
|
(?:p([-+]?[0-9]+))?\z/xi) { |
1069
|
|
|
|
|
|
|
my($sign, $digits, $frac_digits, $in_exp) = ($1, $2, $3, $4); |
1070
|
|
|
|
|
|
|
my $value; |
1071
|
|
|
|
|
|
|
$frac_digits = "" unless defined $frac_digits; |
1072
|
|
|
|
|
|
|
$in_exp = "0" unless defined $in_exp; |
1073
|
|
|
|
|
|
|
$digits .= $frac_digits; |
1074
|
|
|
|
|
|
|
$digits =~ s/\A0+//; |
1075
|
|
|
|
|
|
|
if($digits eq "") { |
1076
|
|
|
|
|
|
|
$value = 0.0; |
1077
|
|
|
|
|
|
|
goto GOT_MAG; |
1078
|
|
|
|
|
|
|
} |
1079
|
|
|
|
|
|
|
my $digit_exp = (length($digits) - length($frac_digits)) * 4; |
1080
|
|
|
|
|
|
|
my @limbs; |
1081
|
|
|
|
|
|
|
push @limbs, hex($1) while $digits =~ /(.{7})/sgc; |
1082
|
|
|
|
|
|
|
push @limbs, hex(substr($1."000000", 0, 7)) |
1083
|
|
|
|
|
|
|
if $digits =~ /(.+)/sg; |
1084
|
|
|
|
|
|
|
my $skip_bits = $limbs[0] < 0x4000000 ? |
1085
|
|
|
|
|
|
|
$limbs[0] < 0x2000000 ? 3 : 2 : |
1086
|
|
|
|
|
|
|
$limbs[0] < 0x8000000 ? 1 : 0; |
1087
|
|
|
|
|
|
|
my $val_exp = $digit_exp - $skip_bits - 1 + $in_exp; |
1088
|
|
|
|
|
|
|
my $sig_bits; |
1089
|
|
|
|
|
|
|
if($val_exp > max_finite_exp) { |
1090
|
|
|
|
|
|
|
$value = have_infinite ? Data::Float::pos_infinity() : |
1091
|
|
|
|
|
|
|
max_finite; |
1092
|
|
|
|
|
|
|
goto GOT_MAG; |
1093
|
|
|
|
|
|
|
} elsif($val_exp < min_finite_exp-1) { |
1094
|
|
|
|
|
|
|
$value = 0.0; |
1095
|
|
|
|
|
|
|
goto GOT_MAG; |
1096
|
|
|
|
|
|
|
} elsif($val_exp < min_normal_exp) { |
1097
|
|
|
|
|
|
|
$sig_bits = $val_exp - (min_finite_exp-1); |
1098
|
|
|
|
|
|
|
} else { |
1099
|
|
|
|
|
|
|
$sig_bits = significand_bits+1; |
1100
|
|
|
|
|
|
|
} |
1101
|
|
|
|
|
|
|
my $gbit_lpos = do { use integer; ($skip_bits+$sig_bits)/28 }; |
1102
|
|
|
|
|
|
|
if(@limbs > $gbit_lpos) { |
1103
|
|
|
|
|
|
|
my $gbit_bpos = 27 - ($skip_bits + $sig_bits) % 28; |
1104
|
|
|
|
|
|
|
my $sbit = 0; |
1105
|
|
|
|
|
|
|
while(@limbs > $gbit_lpos+1) { |
1106
|
|
|
|
|
|
|
$sbit = 1 if pop(@limbs) != 0; |
1107
|
|
|
|
|
|
|
} |
1108
|
|
|
|
|
|
|
my $gbit_mask = 1 << $gbit_bpos; |
1109
|
|
|
|
|
|
|
my $sbit_mask = $gbit_mask - 1; |
1110
|
|
|
|
|
|
|
if($limbs[$gbit_lpos] & $sbit_mask) { |
1111
|
|
|
|
|
|
|
$sbit = 1; |
1112
|
|
|
|
|
|
|
$limbs[$gbit_lpos] &= ~$sbit_mask; |
1113
|
|
|
|
|
|
|
} |
1114
|
|
|
|
|
|
|
if($limbs[$gbit_lpos] & $gbit_mask) { |
1115
|
|
|
|
|
|
|
unless($sbit) { |
1116
|
|
|
|
|
|
|
if($gbit_bpos == 27 && |
1117
|
|
|
|
|
|
|
$gbit_lpos != 0) { |
1118
|
|
|
|
|
|
|
$sbit = $limbs[$gbit_lpos - 1] |
1119
|
|
|
|
|
|
|
& 1; |
1120
|
|
|
|
|
|
|
} else { |
1121
|
|
|
|
|
|
|
$sbit = $limbs[$gbit_lpos] & |
1122
|
|
|
|
|
|
|
($gbit_mask << 1); |
1123
|
|
|
|
|
|
|
} |
1124
|
|
|
|
|
|
|
} |
1125
|
|
|
|
|
|
|
if($sbit) { |
1126
|
|
|
|
|
|
|
$limbs[$gbit_lpos] += $gbit_mask; |
1127
|
|
|
|
|
|
|
} else { |
1128
|
|
|
|
|
|
|
$limbs[$gbit_lpos] -= $gbit_mask; |
1129
|
|
|
|
|
|
|
} |
1130
|
|
|
|
|
|
|
} |
1131
|
|
|
|
|
|
|
} |
1132
|
|
|
|
|
|
|
$value = 0.0; |
1133
|
|
|
|
|
|
|
for(my $i = @limbs; $i--; ) { |
1134
|
|
|
|
|
|
|
$value += mult_pow2($limbs[$i], -28*($i+1)); |
1135
|
|
|
|
|
|
|
} |
1136
|
|
|
|
|
|
|
$value = mult_pow2($value, $in_exp + $digit_exp); |
1137
|
|
|
|
|
|
|
GOT_MAG: |
1138
|
|
|
|
|
|
|
return $sign eq "-" ? -$value : $value; |
1139
|
|
|
|
|
|
|
} elsif($str =~ /\A([-+]?)inf(?:inity)?\z/i) { |
1140
|
|
|
|
|
|
|
croak "infinite values not available" unless have_infinite; |
1141
|
|
|
|
|
|
|
return $1 eq "-" ? Data::Float::neg_infinity() : |
1142
|
|
|
|
|
|
|
Data::Float::pos_infinity(); |
1143
|
|
|
|
|
|
|
} elsif($str =~ /\A([-+]?)s?nan\z/si) { |
1144
|
|
|
|
|
|
|
croak "Nan value not available" unless have_nan; |
1145
|
|
|
|
|
|
|
return Data::Float::nan(); |
1146
|
|
|
|
|
|
|
} else { |
1147
|
|
|
|
|
|
|
croak "bad syntax for hexadecimal floating point value"; |
1148
|
|
|
|
|
|
|
} |
1149
|
|
|
|
|
|
|
} |
1150
|
|
|
|
|
|
|
|
1151
|
|
|
|
|
|
|
=back |
1152
|
|
|
|
|
|
|
|
1153
|
|
|
|
|
|
|
=head2 Comparison |
1154
|
|
|
|
|
|
|
|
1155
|
|
|
|
|
|
|
=over |
1156
|
|
|
|
|
|
|
|
1157
|
|
|
|
|
|
|
=item float_id_cmp(A, B) |
1158
|
|
|
|
|
|
|
|
1159
|
|
|
|
|
|
|
This is a comparison function supplying a total ordering of floating |
1160
|
|
|
|
|
|
|
point values. A and B must both be floating point values. Returns -1, |
1161
|
|
|
|
|
|
|
0, or +1, indicating whether A is to be sorted before, the same as, |
1162
|
|
|
|
|
|
|
or after B. |
1163
|
|
|
|
|
|
|
|
1164
|
|
|
|
|
|
|
The ordering is of the identities of floating point values, not their |
1165
|
|
|
|
|
|
|
numerical values. If zeroes are signed, then the two types are considered |
1166
|
|
|
|
|
|
|
to be distinct. NaNs compare equal to each other, but different from |
1167
|
|
|
|
|
|
|
all numeric values. The exact ordering provided is mostly numerical |
1168
|
|
|
|
|
|
|
order: NaNs come first, followed by negative infinity, then negative |
1169
|
|
|
|
|
|
|
finite values, then negative zero, then positive (or unsigned) zero, |
1170
|
|
|
|
|
|
|
then positive finite values, then positive infinity. |
1171
|
|
|
|
|
|
|
|
1172
|
|
|
|
|
|
|
In addition to sorting, this function can be useful to check for a zero |
1173
|
|
|
|
|
|
|
of a particular sign. |
1174
|
|
|
|
|
|
|
|
1175
|
|
|
|
|
|
|
=cut |
1176
|
|
|
|
|
|
|
|
1177
|
|
|
|
|
|
|
sub float_id_cmp($$) { |
1178
|
|
|
|
|
|
|
my($a, $b) = @_; |
1179
|
|
|
|
|
|
|
if(float_is_nan($a)) { |
1180
|
|
|
|
|
|
|
return float_is_nan($b) ? 0 : -1; |
1181
|
|
|
|
|
|
|
} elsif(float_is_nan($b)) { |
1182
|
|
|
|
|
|
|
return +1; |
1183
|
|
|
|
|
|
|
} elsif(float_is_zero($a) && float_is_zero($b)) { |
1184
|
|
|
|
|
|
|
return signbit($b) - signbit($a); |
1185
|
|
|
|
|
|
|
} else { |
1186
|
|
|
|
|
|
|
return $a <=> $b; |
1187
|
|
|
|
|
|
|
} |
1188
|
|
|
|
|
|
|
} |
1189
|
|
|
|
|
|
|
|
1190
|
|
|
|
|
|
|
=item totalorder(A, B) |
1191
|
|
|
|
|
|
|
|
1192
|
|
|
|
|
|
|
This is a comparison function supplying a total ordering of floating point |
1193
|
|
|
|
|
|
|
values. A and B must both be floating point values. Returns a truth value |
1194
|
|
|
|
|
|
|
indicating whether A is to be sorted before-or-the-same-as B. That is, |
1195
|
|
|
|
|
|
|
it is a <= predicate on the total ordering. The ordering is the same as |
1196
|
|
|
|
|
|
|
that provided by C<float_id_cmp>: NaNs come first, followed by negative |
1197
|
|
|
|
|
|
|
infinity, then negative finite values, then negative zero, then positive |
1198
|
|
|
|
|
|
|
(or unsigned) zero, then positive finite values, then positive infinity. |
1199
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
This is an IEEE 754r standard function. According to the standard it |
1201
|
|
|
|
|
|
|
is meant to distinguish different kinds of NaNs, based on their sign |
1202
|
|
|
|
|
|
|
bit, quietness, and payload, but this function (like the rest of Perl) |
1203
|
|
|
|
|
|
|
perceives only one NaN. |
1204
|
|
|
|
|
|
|
|
1205
|
|
|
|
|
|
|
=cut |
1206
|
|
|
|
|
|
|
|
1207
|
|
|
|
|
|
|
sub totalorder($$) { float_id_cmp($_[0], $_[1]) <= 0 } |
1208
|
|
|
|
|
|
|
|
1209
|
|
|
|
|
|
|
=back |
1210
|
|
|
|
|
|
|
|
1211
|
|
|
|
|
|
|
=head2 Manipulation |
1212
|
|
|
|
|
|
|
|
1213
|
|
|
|
|
|
|
=over |
1214
|
|
|
|
|
|
|
|
1215
|
|
|
|
|
|
|
=item pow2(EXP) |
1216
|
|
|
|
|
|
|
|
1217
|
|
|
|
|
|
|
EXP must be an integer. Returns the value two the the power EXP. |
1218
|
|
|
|
|
|
|
C<die>s if that value cannot be represented exactly as a floating |
1219
|
|
|
|
|
|
|
point value. The return value may be either normalised or subnormal. |
1220
|
|
|
|
|
|
|
|
1221
|
|
|
|
|
|
|
=item mult_pow2(VALUE, EXP) |
1222
|
|
|
|
|
|
|
|
1223
|
|
|
|
|
|
|
EXP must be an integer, and VALUE a floating point value. Multiplies |
1224
|
|
|
|
|
|
|
VALUE by two to the power EXP. This gives exact results, except in |
1225
|
|
|
|
|
|
|
cases of underflow and overflow. The range of EXP is not constrained. |
1226
|
|
|
|
|
|
|
All normal floating point multiplication behaviour applies. |
1227
|
|
|
|
|
|
|
|
1228
|
|
|
|
|
|
|
=item copysign(VALUE, SIGN_FROM) |
1229
|
|
|
|
|
|
|
|
1230
|
|
|
|
|
|
|
VALUE and SIGN_FROM must both be floating point values. Returns a |
1231
|
|
|
|
|
|
|
floating point value with the magnitude of VALUE and the sign of |
1232
|
|
|
|
|
|
|
SIGN_FROM. If SIGN_FROM is an unsigned zero then it is treated as |
1233
|
|
|
|
|
|
|
positive. If VALUE is an unsigned zero then it is returned unchanged. |
1234
|
|
|
|
|
|
|
If VALUE is a NaN then it is returned unchanged. If SIGN_FROM is a NaN |
1235
|
|
|
|
|
|
|
then the sign copied to VALUE is unpredictable. |
1236
|
|
|
|
|
|
|
|
1237
|
|
|
|
|
|
|
This is an IEEE 754 standard function. According to the standard NaNs |
1238
|
|
|
|
|
|
|
have a well-behaved sign bit, which can be read and modified by this |
1239
|
|
|
|
|
|
|
function, but Perl only perceives one NaN and can't see its sign bit, |
1240
|
|
|
|
|
|
|
so behaviour on NaNs is not standard-conforming. |
1241
|
|
|
|
|
|
|
|
1242
|
|
|
|
|
|
|
=cut |
1243
|
|
|
|
|
|
|
|
1244
|
|
|
|
|
|
|
sub copysign($$) { |
1245
|
|
|
|
|
|
|
my($val, $signfrom) = @_; |
1246
|
|
|
|
|
|
|
return $val if float_is_nan($val); |
1247
|
|
|
|
|
|
|
$val = -$val if signbit($val) != signbit($signfrom); |
1248
|
|
|
|
|
|
|
return $val; |
1249
|
|
|
|
|
|
|
} |
1250
|
|
|
|
|
|
|
|
1251
|
|
|
|
|
|
|
=item nextup(VALUE) |
1252
|
|
|
|
|
|
|
|
1253
|
|
|
|
|
|
|
VALUE must be a floating point value. Returns the next representable |
1254
|
|
|
|
|
|
|
floating point value adjacent to VALUE with a numerical value that is |
1255
|
|
|
|
|
|
|
strictly greater than VALUE, or returns VALUE unchanged if there is |
1256
|
|
|
|
|
|
|
no such value. Infinite values are regarded as being adjacent to the |
1257
|
|
|
|
|
|
|
largest representable finite values. Zero counts as one value, even if |
1258
|
|
|
|
|
|
|
it is signed, and it is adjacent to the smallest representable positive |
1259
|
|
|
|
|
|
|
and negative finite values. If a zero is returned, because VALUE is |
1260
|
|
|
|
|
|
|
the smallest representable negative value, and zeroes are signed, it is |
1261
|
|
|
|
|
|
|
a negative zero that is returned. Returns NaN if VALUE is a NaN. |
1262
|
|
|
|
|
|
|
|
1263
|
|
|
|
|
|
|
This is an IEEE 754r standard function. |
1264
|
|
|
|
|
|
|
|
1265
|
|
|
|
|
|
|
=cut |
1266
|
|
|
|
|
|
|
|
1267
|
|
|
|
|
|
|
sub nextup($) { |
1268
|
|
|
|
|
|
|
my($val) = @_; |
1269
|
|
|
|
|
|
|
return $val if $val != $val || $val == max_number; |
1270
|
|
|
|
|
|
|
return -(max_finite) if have_infinite && $val == -(max_number); |
1271
|
|
|
|
|
|
|
return min_finite if $val == 0.0; |
1272
|
|
|
|
|
|
|
my($sign, $exp, $significand) = float_parts($val); |
1273
|
|
|
|
|
|
|
if($sign eq "+") { |
1274
|
|
|
|
|
|
|
$significand += significand_step; |
1275
|
|
|
|
|
|
|
if($significand == 2.0) { |
1276
|
|
|
|
|
|
|
return max_number |
1277
|
|
|
|
|
|
|
if have_infinite && $exp == max_finite_exp; |
1278
|
|
|
|
|
|
|
$significand = 1.0; |
1279
|
|
|
|
|
|
|
$exp++; |
1280
|
|
|
|
|
|
|
} |
1281
|
|
|
|
|
|
|
} else { |
1282
|
|
|
|
|
|
|
if($significand == 1.0 && $exp != min_normal_exp) { |
1283
|
|
|
|
|
|
|
$significand = 2.0; |
1284
|
|
|
|
|
|
|
$exp--; |
1285
|
|
|
|
|
|
|
} |
1286
|
|
|
|
|
|
|
$significand -= significand_step; |
1287
|
|
|
|
|
|
|
} |
1288
|
|
|
|
|
|
|
return copysign(mult_pow2($significand, $exp), $val); |
1289
|
|
|
|
|
|
|
} |
1290
|
|
|
|
|
|
|
|
1291
|
|
|
|
|
|
|
=item nextdown(VALUE) |
1292
|
|
|
|
|
|
|
|
1293
|
|
|
|
|
|
|
VALUE must be a floating point value. Returns the next representable |
1294
|
|
|
|
|
|
|
floating point value adjacent to VALUE with a numerical value that |
1295
|
|
|
|
|
|
|
is strictly less than VALUE, or returns VALUE unchanged if there is |
1296
|
|
|
|
|
|
|
no such value. Infinite values are regarded as being adjacent to the |
1297
|
|
|
|
|
|
|
largest representable finite values. Zero counts as one value, even if |
1298
|
|
|
|
|
|
|
it is signed, and it is adjacent to the smallest representable positive |
1299
|
|
|
|
|
|
|
and negative finite values. If a zero is returned, because VALUE is |
1300
|
|
|
|
|
|
|
the smallest representable positive value, and zeroes are signed, it is |
1301
|
|
|
|
|
|
|
a positive zero that is returned. Returns NaN if VALUE is a NaN. |
1302
|
|
|
|
|
|
|
|
1303
|
|
|
|
|
|
|
This is an IEEE 754r standard function. |
1304
|
|
|
|
|
|
|
|
1305
|
|
|
|
|
|
|
=cut |
1306
|
|
|
|
|
|
|
|
1307
|
|
|
|
|
|
|
sub nextdown($) { -nextup(-(my $n = $_[0])) } |
1308
|
|
|
|
|
|
|
|
1309
|
|
|
|
|
|
|
=item nextafter(VALUE, DIRECTION) |
1310
|
|
|
|
|
|
|
|
1311
|
|
|
|
|
|
|
VALUE and DIRECTION must both be floating point values. Returns the |
1312
|
|
|
|
|
|
|
next representable floating point value adjacent to VALUE in the |
1313
|
|
|
|
|
|
|
direction of DIRECTION, or returns DIRECTION if it is numerically |
1314
|
|
|
|
|
|
|
equal to VALUE. Infinite values are regarded as being adjacent to |
1315
|
|
|
|
|
|
|
the largest representable finite values. Zero counts as one value, |
1316
|
|
|
|
|
|
|
even if it is signed, and it is adjacent to the positive and negative |
1317
|
|
|
|
|
|
|
smallest representable finite values. If a zero is returned and zeroes |
1318
|
|
|
|
|
|
|
are signed then it has the same sign as VALUE. Returns NaN if either |
1319
|
|
|
|
|
|
|
argument is a NaN. |
1320
|
|
|
|
|
|
|
|
1321
|
|
|
|
|
|
|
This is an IEEE 754 standard function. |
1322
|
|
|
|
|
|
|
|
1323
|
|
|
|
|
|
|
=cut |
1324
|
|
|
|
|
|
|
|
1325
|
|
|
|
|
|
|
sub nextafter($$) { |
1326
|
|
|
|
|
|
|
my($val, $dir) = @_; |
1327
|
|
|
|
|
|
|
return $_[1] if $dir != $dir || $val == $dir; |
1328
|
|
|
|
|
|
|
return $dir > $val ? nextup($_[0]) : nextdown($_[0]); |
1329
|
|
|
|
|
|
|
} |
1330
|
|
|
|
|
|
|
|
1331
|
|
|
|
|
|
|
=back |
1332
|
|
|
|
|
|
|
|
1333
|
|
|
|
|
|
|
=head1 BUGS |
1334
|
|
|
|
|
|
|
|
1335
|
|
|
|
|
|
|
As of Perl 5.8.7 floating point zeroes will be partially transformed into |
1336
|
|
|
|
|
|
|
integer zeroes if used in almost any arithmetic, including numerical |
1337
|
|
|
|
|
|
|
comparisons. Such a transformed zero appears as a floating point zero |
1338
|
|
|
|
|
|
|
(with its original sign) for some purposes, but behaves as an integer |
1339
|
|
|
|
|
|
|
zero for other purposes. Where this happens to a positive zero the |
1340
|
|
|
|
|
|
|
result is indistinguishable from a true integer zero. Where it happens |
1341
|
|
|
|
|
|
|
to a negative zero the result is a fourth type of zero, the existence of |
1342
|
|
|
|
|
|
|
which is a bug in Perl. This fourth type of zero will give confusing |
1343
|
|
|
|
|
|
|
results, and in particular will elicit inconsistent behaviour from the |
1344
|
|
|
|
|
|
|
functions in this module. |
1345
|
|
|
|
|
|
|
|
1346
|
|
|
|
|
|
|
Because of this transforming behaviour, it is best to avoid relying on |
1347
|
|
|
|
|
|
|
the sign of zeroes. If you require signed-zero semantics then take |
1348
|
|
|
|
|
|
|
special care to maintain signedness. Avoid using a zero directly |
1349
|
|
|
|
|
|
|
in arithmetic and handle it as a special case. Any flavour of zero |
1350
|
|
|
|
|
|
|
can be accurately copied from one scalar to another without affecting |
1351
|
|
|
|
|
|
|
the original. The functions in this module all avoid modifying their |
1352
|
|
|
|
|
|
|
arguments, and where they are meant to return signed zeroes they always |
1353
|
|
|
|
|
|
|
return a pristine one. |
1354
|
|
|
|
|
|
|
|
1355
|
|
|
|
|
|
|
As of Perl 5.8.7 stringification of a floating point zero does not |
1356
|
|
|
|
|
|
|
preserve its signedness. The number-to-string-to-number round trip |
1357
|
|
|
|
|
|
|
turns a positive floating point zero into an integer zero, but accurately |
1358
|
|
|
|
|
|
|
maintains negative and integer zeroes. If a negative zero gets partially |
1359
|
|
|
|
|
|
|
transformed into an integer zero, as described above, the stringification |
1360
|
|
|
|
|
|
|
that it gets is based on its state at the first occasion on which the |
1361
|
|
|
|
|
|
|
scalar was stringified. |
1362
|
|
|
|
|
|
|
|
1363
|
|
|
|
|
|
|
NaN handling is generally not well defined in Perl. Arithmetic with |
1364
|
|
|
|
|
|
|
a mathematically undefined result may either C<die> or generate a NaN. |
1365
|
|
|
|
|
|
|
Avoid relying on any particular behaviour for such operations, even if |
1366
|
|
|
|
|
|
|
your hardware's behaviour is known. |
1367
|
|
|
|
|
|
|
|
1368
|
|
|
|
|
|
|
As of Perl 5.8.7 the B<%> operator truncates its arguments to integers, if |
1369
|
|
|
|
|
|
|
the divisor is within the range of the native integer type. It therefore |
1370
|
|
|
|
|
|
|
operates correctly on non-integer values only when the divisor is |
1371
|
|
|
|
|
|
|
very large. |
1372
|
|
|
|
|
|
|
|
1373
|
|
|
|
|
|
|
=head1 SEE ALSO |
1374
|
|
|
|
|
|
|
|
1375
|
|
|
|
|
|
|
L<Data::Integer>, |
1376
|
|
|
|
|
|
|
L<Scalar::Number>, |
1377
|
|
|
|
|
|
|
L<perlnumber(1)> |
1378
|
|
|
|
|
|
|
|
1379
|
|
|
|
|
|
|
=head1 AUTHOR |
1380
|
|
|
|
|
|
|
|
1381
|
|
|
|
|
|
|
Andrew Main (Zefram) <zefram@fysh.org> |
1382
|
|
|
|
|
|
|
|
1383
|
|
|
|
|
|
|
=head1 COPYRIGHT |
1384
|
|
|
|
|
|
|
|
1385
|
|
|
|
|
|
|
Copyright (C) 2006, 2007, 2008, 2010, 2012, 2017 |
1386
|
|
|
|
|
|
|
Andrew Main (Zefram) <zefram@fysh.org> |
1387
|
|
|
|
|
|
|
|
1388
|
|
|
|
|
|
|
=head1 LICENSE |
1389
|
|
|
|
|
|
|
|
1390
|
|
|
|
|
|
|
This module is free software; you can redistribute it and/or modify it |
1391
|
|
|
|
|
|
|
under the same terms as Perl itself. |
1392
|
|
|
|
|
|
|
|
1393
|
|
|
|
|
|
|
=cut |
1394
|
|
|
|
|
|
|
|
1395
|
|
|
|
|
|
|
1; |