| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
=head1 NAME |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Data::Float - details of the floating point data type |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Data::Float qw(have_signed_zero); |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
if(have_signed_zero) { ... |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# and many other constants; see text |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
use Data::Float qw( |
|
14
|
|
|
|
|
|
|
float_class float_is_normal float_is_subnormal |
|
15
|
|
|
|
|
|
|
float_is_nzfinite float_is_zero float_is_finite |
|
16
|
|
|
|
|
|
|
float_is_infinite float_is_nan |
|
17
|
|
|
|
|
|
|
); |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
$class = float_class($value); |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
if(float_is_normal($value)) { ... |
|
22
|
|
|
|
|
|
|
if(float_is_subnormal($value)) { ... |
|
23
|
|
|
|
|
|
|
if(float_is_nzfinite($value)) { ... |
|
24
|
|
|
|
|
|
|
if(float_is_zero($value)) { ... |
|
25
|
|
|
|
|
|
|
if(float_is_finite($value)) { ... |
|
26
|
|
|
|
|
|
|
if(float_is_infinite($value)) { ... |
|
27
|
|
|
|
|
|
|
if(float_is_nan($value)) { ... |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
use Data::Float qw(float_sign signbit float_parts); |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
$sign = float_sign($value); |
|
32
|
|
|
|
|
|
|
$sign_bit = signbit($value); |
|
33
|
|
|
|
|
|
|
($sign, $exponent, $significand) = float_parts($value); |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
use Data::Float qw(float_hex hex_float); |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
print float_hex($value); |
|
38
|
|
|
|
|
|
|
$value = hex_float($string); |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
use Data::Float qw(float_id_cmp totalorder); |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
@sorted_floats = sort { float_id_cmp($a, $b) } @floats; |
|
43
|
|
|
|
|
|
|
if(totalorder($a, $b)) { ... |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
use Data::Float qw( |
|
46
|
|
|
|
|
|
|
pow2 mult_pow2 copysign |
|
47
|
|
|
|
|
|
|
nextup nextdown nextafter |
|
48
|
|
|
|
|
|
|
); |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
$x = pow2($exp); |
|
51
|
|
|
|
|
|
|
$x = mult_pow2($value, $exp); |
|
52
|
|
|
|
|
|
|
$x = copysign($magnitude, $sign_from); |
|
53
|
|
|
|
|
|
|
$x = nextup($x); |
|
54
|
|
|
|
|
|
|
$x = nextdown($x); |
|
55
|
|
|
|
|
|
|
$x = nextafter($x, $direction); |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
This module is about the native floating point numerical data type. |
|
60
|
|
|
|
|
|
|
A floating point number is one of the types of datum that can appear |
|
61
|
|
|
|
|
|
|
in the numeric part of a Perl scalar. This module supplies constants |
|
62
|
|
|
|
|
|
|
describing the native floating point type, classification functions, |
|
63
|
|
|
|
|
|
|
and functions to manipulate floating point values at a low level. |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
=head1 FLOATING POINT |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
=head2 Classification |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
Floating point values are divided into five subtypes: |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
=over |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=item normalised |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
The value is made up of a sign bit (making the value positive or |
|
76
|
|
|
|
|
|
|
negative), a significand, and exponent. The significand is a number |
|
77
|
|
|
|
|
|
|
in the range [1, 2), expressed as a binary fraction of a certain fixed |
|
78
|
|
|
|
|
|
|
length. (Significands requiring a longer binary fraction, or lacking a |
|
79
|
|
|
|
|
|
|
terminating binary representation, cannot be obtained.) The exponent |
|
80
|
|
|
|
|
|
|
is an integer in a certain fixed range. The magnitude of the value |
|
81
|
|
|
|
|
|
|
represented is the product of the significand and two to the power of |
|
82
|
|
|
|
|
|
|
the exponent. |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=item subnormal |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
The value is made up of a sign bit, significand, and exponent, as |
|
87
|
|
|
|
|
|
|
for normalised values. However, the exponent is fixed at the minimum |
|
88
|
|
|
|
|
|
|
possible for a normalised value, and the significand is in the range |
|
89
|
|
|
|
|
|
|
(0, 1). The length of the significand is the same as for normalised |
|
90
|
|
|
|
|
|
|
values. This is essentially a fixed-point format, used to provide |
|
91
|
|
|
|
|
|
|
gradual underflow. Not all floating point formats support this subtype. |
|
92
|
|
|
|
|
|
|
Where it is not supported, underflow is sudden, and the difference between |
|
93
|
|
|
|
|
|
|
two minimum-exponent normalised values cannot be exactly represented. |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
=item zero |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
Depending on the floating point type, there may be either one or two |
|
98
|
|
|
|
|
|
|
zero values: zeroes may carry a sign bit. Where zeroes are signed, |
|
99
|
|
|
|
|
|
|
it is primarily in order to indicate the direction from which a value |
|
100
|
|
|
|
|
|
|
underflowed (was rounded) to zero. Positive and negative zero compare |
|
101
|
|
|
|
|
|
|
as numerically equal, and they give identical results in most arithmetic |
|
102
|
|
|
|
|
|
|
operations. They are on opposite sides of some branch cuts in complex |
|
103
|
|
|
|
|
|
|
arithmetic. |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=item infinite |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
Some floating point formats include special infinite values. These are |
|
108
|
|
|
|
|
|
|
generated by overflow, and by some arithmetic cases that mathematically |
|
109
|
|
|
|
|
|
|
generate infinities. There are two infinite values: positive infinity |
|
110
|
|
|
|
|
|
|
and negative infinity. |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
Perl does not always generate infinite values when normal floating point |
|
113
|
|
|
|
|
|
|
behaviour calls for it. For example, the division C<1.0/0.0> causes an |
|
114
|
|
|
|
|
|
|
exception rather than returning an infinity. |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
=item not-a-number (NaN) |
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
This type of value exists in some floating point formats to indicate |
|
119
|
|
|
|
|
|
|
error conditions. Mathematically undefined operations may generate NaNs, |
|
120
|
|
|
|
|
|
|
and NaNs propagate through all arithmetic operations. A NaN has the |
|
121
|
|
|
|
|
|
|
distinctive property of comparing numerically unequal to all floating |
|
122
|
|
|
|
|
|
|
point values, including itself. |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
Perl does not always generate NaNs when normal floating point behaviour |
|
125
|
|
|
|
|
|
|
calls for it. For example, the division C<0.0/0.0> causes an exception |
|
126
|
|
|
|
|
|
|
rather than returning a NaN. |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
Perl has only (at most) one NaN value, even if the underlying system |
|
129
|
|
|
|
|
|
|
supports different NaNs. (IEEE 754 arithmetic has NaNs which carry a |
|
130
|
|
|
|
|
|
|
quiet/signal bit, a sign bit (yes, a sign on a not-number), and many |
|
131
|
|
|
|
|
|
|
bits of implementation-defined data.) |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
=back |
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=head2 Mixing floating point and integer values |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
Perl does not draw a strong type distinction between native integer |
|
138
|
|
|
|
|
|
|
(see L) and native floating point values. Both types |
|
139
|
|
|
|
|
|
|
of value can be stored in the numeric part of a plain (string) scalar. |
|
140
|
|
|
|
|
|
|
No distinction is made between the integer representation and the floating |
|
141
|
|
|
|
|
|
|
point representation where they encode identical values. Thus, for |
|
142
|
|
|
|
|
|
|
floating point arithmetic, native integer values that can be represented |
|
143
|
|
|
|
|
|
|
exactly in floating point may be freely used as floating point values. |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
Native integer arithmetic has exactly one zero value, which has no sign. |
|
146
|
|
|
|
|
|
|
If the floating point type does not have signed zeroes then the floating |
|
147
|
|
|
|
|
|
|
point and integer zeroes are exactly equivalent. If the floating point |
|
148
|
|
|
|
|
|
|
type does have signed zeroes then the integer zero can still be used in |
|
149
|
|
|
|
|
|
|
floating point arithmetic, and it behaves as an unsigned floating point |
|
150
|
|
|
|
|
|
|
zero. On such systems there are therefore three types of zero available. |
|
151
|
|
|
|
|
|
|
There is a bug in Perl which sometimes causes floating point zeroes to |
|
152
|
|
|
|
|
|
|
change into integer zeroes; see L for details. |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
Where a native integer value is used that is too large to exactly |
|
155
|
|
|
|
|
|
|
represent in floating point, it will be rounded as necessary to a |
|
156
|
|
|
|
|
|
|
floating point value. This rounding will occur whenever an operation |
|
157
|
|
|
|
|
|
|
has to be performed in floating point because the result could not be |
|
158
|
|
|
|
|
|
|
exactly represented as an integer. This may be confusing to functions |
|
159
|
|
|
|
|
|
|
that expect a floating point argument. |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
Similarly, some operations on floating point numbers will actually be |
|
162
|
|
|
|
|
|
|
performed in integer arithmetic, and may result in values that cannot |
|
163
|
|
|
|
|
|
|
be exactly represented in floating point. This happens whenever the |
|
164
|
|
|
|
|
|
|
arguments have integer values that fit into the native integer type and |
|
165
|
|
|
|
|
|
|
the mathematical result can be exactly represented as a native integer. |
|
166
|
|
|
|
|
|
|
This may be confusing in cases where floating point semantics are |
|
167
|
|
|
|
|
|
|
expected. |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
See L for discussion of Perl's numeric semantics. |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
=cut |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
package Data::Float; |
|
174
|
|
|
|
|
|
|
|
|
175
|
8
|
|
|
8
|
|
279144
|
{ use 5.006; } |
|
|
8
|
|
|
|
|
33
|
|
|
|
8
|
|
|
|
|
373
|
|
|
176
|
8
|
|
|
8
|
|
44
|
use warnings; |
|
|
8
|
|
|
|
|
19
|
|
|
|
8
|
|
|
|
|
281
|
|
|
177
|
8
|
|
|
8
|
|
55
|
use strict; |
|
|
8
|
|
|
|
|
42
|
|
|
|
8
|
|
|
|
|
381
|
|
|
178
|
|
|
|
|
|
|
|
|
179
|
8
|
|
|
8
|
|
44
|
use Carp qw(croak); |
|
|
8
|
|
|
|
|
20
|
|
|
|
8
|
|
|
|
|
877
|
|
|
180
|
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
our $VERSION = "0.012"; |
|
182
|
|
|
|
|
|
|
|
|
183
|
8
|
|
|
8
|
|
10203
|
use parent "Exporter"; |
|
|
8
|
|
|
|
|
4082
|
|
|
|
8
|
|
|
|
|
44
|
|
|
184
|
|
|
|
|
|
|
our @EXPORT_OK = qw( |
|
185
|
|
|
|
|
|
|
float_class float_is_normal float_is_subnormal float_is_nzfinite |
|
186
|
|
|
|
|
|
|
float_is_zero float_is_finite float_is_infinite float_is_nan |
|
187
|
|
|
|
|
|
|
float_sign signbit float_parts |
|
188
|
|
|
|
|
|
|
float_hex hex_float |
|
189
|
|
|
|
|
|
|
float_id_cmp totalorder |
|
190
|
|
|
|
|
|
|
pow2 mult_pow2 copysign nextup nextdown nextafter |
|
191
|
|
|
|
|
|
|
); |
|
192
|
|
|
|
|
|
|
# constant functions get added to @EXPORT_OK later |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
=head1 CONSTANTS |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=head2 Features |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
=over |
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
=item have_signed_zero |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
Truth value indicating whether floating point zeroes carry a sign. If yes, |
|
203
|
|
|
|
|
|
|
then there are two floating point zero values: +0.0 and -0.0. (Perl |
|
204
|
|
|
|
|
|
|
scalars can nevertheless also hold an integer zero, which is unsigned.) |
|
205
|
|
|
|
|
|
|
If no, then there is only one zero value, which is unsigned. |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=item have_subnormal |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
Truth value indicating whether there are subnormal floating point values. |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
=item have_infinite |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
Truth value indicating whether there are infinite floating point values. |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
=item have_nan |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
Truth value indicating whether there are NaN floating point values. |
|
218
|
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
It is difficult to reliably generate a NaN in Perl, so in some unlikely |
|
220
|
|
|
|
|
|
|
circumstances it is possible that there might be NaNs that this module |
|
221
|
|
|
|
|
|
|
failed to detect. In that case this constant would be false but a NaN |
|
222
|
|
|
|
|
|
|
might still turn up somewhere. What this constant reliably indicates |
|
223
|
|
|
|
|
|
|
is the availability of the C constant below. |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
=back |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
=head2 Extrema |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
=over |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
=item significand_bits |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
The number of fractional bits in the significand of finite floating |
|
234
|
|
|
|
|
|
|
point values. The significand also has an implicit integer bit, not |
|
235
|
|
|
|
|
|
|
counted in this constant; the integer bit is always 1 for normalised |
|
236
|
|
|
|
|
|
|
values and always 0 for subnormal values. |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
=item significand_step |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
The difference between adjacent representable values in the range [1, 2] |
|
241
|
|
|
|
|
|
|
(where the exponent is zero). This is equal to 2^-significand_bits. |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=item max_finite_exp |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
The maximum exponent permitted for finite floating point values. |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
=item max_finite_pow2 |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
The maximum representable power of two. This is 2^max_finite_exp. |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=item max_finite |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
The maximum representable finite value. This is 2^(max_finite_exp+1) |
|
254
|
|
|
|
|
|
|
- 2^(max_finite_exp-significand_bits). |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
=item max_number |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
The maximum representable number. This is positive infinity if there |
|
259
|
|
|
|
|
|
|
are infinite values, or max_finite if there are not. |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=item max_integer |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
The maximum integral value for which all integers from zero to that |
|
264
|
|
|
|
|
|
|
value inclusive are representable. Equivalently: the minimum positive |
|
265
|
|
|
|
|
|
|
integral value N for which the value N+1 is not representable. This is |
|
266
|
|
|
|
|
|
|
2^(significand_bits+1). The name is somewhat misleading. |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
=item min_normal_exp |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
The minimum exponent permitted for normalised floating point values. |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
=item min_normal |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
The minimum positive value representable as a normalised floating |
|
275
|
|
|
|
|
|
|
point value. This is 2^min_normal_exp. |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
=item min_finite_exp |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
The base two logarithm of the minimum representable positive finite value. |
|
280
|
|
|
|
|
|
|
If there are subnormals then this is min_normal_exp - significand_bits. |
|
281
|
|
|
|
|
|
|
If there are no subnormals then this is min_normal_exp. |
|
282
|
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
=item min_finite |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
The minimum representable positive finite value. This is |
|
286
|
|
|
|
|
|
|
2^min_finite_exp. |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
=back |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
=head2 Special Values |
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
=over |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
=item pos_zero |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
The positive zero value. (Exists only if zeroes are signed, as indicated |
|
297
|
|
|
|
|
|
|
by the C constant.) |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
If Perl is at risk of transforming floating point zeroes into integer |
|
300
|
|
|
|
|
|
|
zeroes (see L), then this is actually a non-constant function |
|
301
|
|
|
|
|
|
|
that always returns a fresh floating point zero. Thus the return value |
|
302
|
|
|
|
|
|
|
is always a true floating point zero, regardless of what happened to |
|
303
|
|
|
|
|
|
|
zeroes previously returned. |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
=item neg_zero |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
The negative zero value. (Exists only if zeroes are signed, as indicated |
|
308
|
|
|
|
|
|
|
by the C constant.) |
|
309
|
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
If Perl is at risk of transforming floating point zeroes into integer |
|
311
|
|
|
|
|
|
|
zeroes (see L), then this is actually a non-constant function |
|
312
|
|
|
|
|
|
|
that always returns a fresh floating point zero. Thus the return value |
|
313
|
|
|
|
|
|
|
is always a true floating point zero, regardless of what happened to |
|
314
|
|
|
|
|
|
|
zeroes previously returned. |
|
315
|
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
=item pos_infinity |
|
317
|
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
The positive infinite value. (Exists only if there are infinite values, |
|
319
|
|
|
|
|
|
|
as indicated by the C constant.) |
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
=item neg_infinity |
|
322
|
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
The negative infinite value. (Exists only if there are infinite values, |
|
324
|
|
|
|
|
|
|
as indicated by the C constant.) |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
=item nan |
|
327
|
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
Not-a-number. (Exists only if NaN values were detected, as indicated |
|
329
|
|
|
|
|
|
|
by the C constant.) |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
=back |
|
332
|
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
=cut |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
sub _mk_constant($$) { |
|
336
|
144
|
|
|
144
|
|
474
|
my($name, $value) = @_; |
|
337
|
8
|
|
|
8
|
|
1592
|
no strict "refs"; |
|
|
8
|
|
|
|
|
14
|
|
|
|
8
|
|
|
|
|
10687
|
|
|
338
|
144
|
|
|
0
|
|
6862
|
*{__PACKAGE__."::".$name} = sub () { $value }; |
|
|
144
|
|
|
|
|
755
|
|
|
|
0
|
|
|
|
|
0
|
|
|
339
|
144
|
|
|
|
|
373
|
push @EXPORT_OK, $name; |
|
340
|
|
|
|
|
|
|
} |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
# |
|
343
|
|
|
|
|
|
|
# mult_pow2() multiplies a specified value by a specified power of two. |
|
344
|
|
|
|
|
|
|
# This is done using repeated multiplication, and can cope with cases |
|
345
|
|
|
|
|
|
|
# where the power of two cannot be directly represented as a floating |
|
346
|
|
|
|
|
|
|
# point value. (E.g., 0x1.b2p-900 can be multiplied by 2^1500 to get |
|
347
|
|
|
|
|
|
|
# to 0x1.b2p+600; the input and output values can be represented in |
|
348
|
|
|
|
|
|
|
# IEEE double, but 2^1500 cannot.) Overflow and underflow can occur. |
|
349
|
|
|
|
|
|
|
# |
|
350
|
|
|
|
|
|
|
# @powtwo is an array such that powtwo[i] = 2^2^i. Its elements are |
|
351
|
|
|
|
|
|
|
# used in the repeated multiplication in mult_pow2. Similarly, |
|
352
|
|
|
|
|
|
|
# @powhalf is such that powhalf[i] = 2^-2^i. Reading the exponent |
|
353
|
|
|
|
|
|
|
# in binary indicates which elements of @powtwo/@powhalf to multiply |
|
354
|
|
|
|
|
|
|
# by, except that it may indicate elements that don't exist, either |
|
355
|
|
|
|
|
|
|
# because they're not representable or because the arrays haven't |
|
356
|
|
|
|
|
|
|
# been filled yet. mult_pow2() will use the last element of the array |
|
357
|
|
|
|
|
|
|
# repeatedly in this case. Thus array elements after the first are |
|
358
|
|
|
|
|
|
|
# only an optimisation, and do not change behaviour. |
|
359
|
|
|
|
|
|
|
# |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
my @powtwo = (2.0); |
|
362
|
|
|
|
|
|
|
my @powhalf = (0.5); |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
sub mult_pow2($$) { |
|
365
|
649
|
|
|
649
|
1
|
10858
|
my($value, $exp) = @_; |
|
366
|
649
|
100
|
|
|
|
1592
|
return $_[0] if $value == 0.0; |
|
367
|
578
|
|
|
|
|
748
|
my $powa = \@powtwo; |
|
368
|
578
|
100
|
|
|
|
1156
|
if($exp < 0) { |
|
369
|
339
|
|
|
|
|
5992
|
$powa = \@powhalf; |
|
370
|
339
|
|
|
|
|
490
|
$exp = -$exp; |
|
371
|
|
|
|
|
|
|
} |
|
372
|
578
|
|
100
|
|
|
2760
|
for(my $i = 0; $i != $#$powa && $exp != 0; $i++) { |
|
373
|
2846
|
100
|
|
|
|
5661
|
$value *= $powa->[$i] if $exp & 1; |
|
374
|
2846
|
|
|
|
|
25352
|
$exp >>= 1; |
|
375
|
|
|
|
|
|
|
} |
|
376
|
578
|
|
|
|
|
1764
|
$value *= $powa->[-1] while $exp--; |
|
377
|
578
|
|
|
|
|
5036
|
return $value; |
|
378
|
|
|
|
|
|
|
} |
|
379
|
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
# |
|
381
|
|
|
|
|
|
|
# Range of finite exponent values. |
|
382
|
|
|
|
|
|
|
# |
|
383
|
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
my $min_finite_exp; |
|
385
|
|
|
|
|
|
|
my $max_finite_exp; |
|
386
|
|
|
|
|
|
|
my $max_finite_pow2; |
|
387
|
|
|
|
|
|
|
my $min_finite; |
|
388
|
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
my @directions = ( |
|
390
|
|
|
|
|
|
|
{ |
|
391
|
|
|
|
|
|
|
expsign => -1, |
|
392
|
|
|
|
|
|
|
powa => \@powhalf, |
|
393
|
|
|
|
|
|
|
xexp => \$min_finite_exp, |
|
394
|
|
|
|
|
|
|
xpower => \$min_finite, |
|
395
|
|
|
|
|
|
|
}, |
|
396
|
|
|
|
|
|
|
{ |
|
397
|
|
|
|
|
|
|
expsign => +1, |
|
398
|
|
|
|
|
|
|
powa => \@powtwo, |
|
399
|
|
|
|
|
|
|
xexp => \$max_finite_exp, |
|
400
|
|
|
|
|
|
|
xpower => \$max_finite_pow2, |
|
401
|
|
|
|
|
|
|
}, |
|
402
|
|
|
|
|
|
|
); |
|
403
|
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
while(!$directions[0]->{done} || !$directions[1]->{done}) { |
|
405
|
|
|
|
|
|
|
foreach my $direction (@directions) { |
|
406
|
|
|
|
|
|
|
next if $direction->{done}; |
|
407
|
|
|
|
|
|
|
my $lastpow = $direction->{powa}->[-1]; |
|
408
|
|
|
|
|
|
|
my $nextpow = $lastpow * $lastpow; |
|
409
|
|
|
|
|
|
|
unless(mult_pow2($nextpow, -$direction->{expsign} * |
|
410
|
|
|
|
|
|
|
(1 << (@{$direction->{powa}} - 1))) |
|
411
|
|
|
|
|
|
|
== $lastpow) { |
|
412
|
|
|
|
|
|
|
$direction->{done} = 1; |
|
413
|
|
|
|
|
|
|
next; |
|
414
|
|
|
|
|
|
|
} |
|
415
|
|
|
|
|
|
|
push @{$direction->{powa}}, $nextpow; |
|
416
|
|
|
|
|
|
|
} |
|
417
|
|
|
|
|
|
|
} |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
foreach my $direction (@directions) { |
|
420
|
|
|
|
|
|
|
my $expsign = $direction->{expsign}; |
|
421
|
|
|
|
|
|
|
my $xexp = 1 << (@{$direction->{powa}} - 1); |
|
422
|
|
|
|
|
|
|
my $extremum = $direction->{powa}->[-1]; |
|
423
|
|
|
|
|
|
|
for(my $addexp = $xexp; $addexp >>= 1; ) { |
|
424
|
|
|
|
|
|
|
my $nx = mult_pow2($extremum, $expsign*$addexp); |
|
425
|
|
|
|
|
|
|
if(mult_pow2($nx, -$expsign*$addexp) == $extremum) { |
|
426
|
|
|
|
|
|
|
$xexp += $addexp; |
|
427
|
|
|
|
|
|
|
$extremum = $nx; |
|
428
|
|
|
|
|
|
|
} |
|
429
|
|
|
|
|
|
|
} |
|
430
|
|
|
|
|
|
|
${$direction->{xexp}} = $expsign * $xexp; |
|
431
|
|
|
|
|
|
|
${$direction->{xpower}} = $extremum; |
|
432
|
|
|
|
|
|
|
} |
|
433
|
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
_mk_constant("min_finite_exp", $min_finite_exp); |
|
435
|
|
|
|
|
|
|
_mk_constant("min_finite", $min_finite); |
|
436
|
|
|
|
|
|
|
_mk_constant("max_finite_exp", $max_finite_exp); |
|
437
|
|
|
|
|
|
|
_mk_constant("max_finite_pow2", $max_finite_pow2); |
|
438
|
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
# |
|
440
|
|
|
|
|
|
|
# pow2() generates a power of two from scratch. It complains if given |
|
441
|
|
|
|
|
|
|
# an exponent that would make an unrepresentable value. |
|
442
|
|
|
|
|
|
|
# |
|
443
|
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
sub pow2($) { |
|
445
|
37
|
|
|
37
|
1
|
1707
|
my($exp) = @_; |
|
446
|
37
|
100
|
100
|
|
|
809
|
croak "exponent $exp out of range [$min_finite_exp, $max_finite_exp]" |
|
447
|
|
|
|
|
|
|
unless $exp >= $min_finite_exp && $exp <= $max_finite_exp; |
|
448
|
35
|
|
|
|
|
205
|
return mult_pow2(1.0, $exp); |
|
449
|
|
|
|
|
|
|
} |
|
450
|
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
# |
|
452
|
|
|
|
|
|
|
# Significand size. |
|
453
|
|
|
|
|
|
|
# |
|
454
|
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
my($significand_bits, $significand_step); |
|
456
|
|
|
|
|
|
|
{ |
|
457
|
|
|
|
|
|
|
my $i; |
|
458
|
|
|
|
|
|
|
for($i = 1; ; $i++) { |
|
459
|
|
|
|
|
|
|
my $tryeps = $powhalf[$i]; |
|
460
|
|
|
|
|
|
|
last unless (1.0 + $tryeps) - 1.0 == $tryeps; |
|
461
|
|
|
|
|
|
|
} |
|
462
|
|
|
|
|
|
|
$i--; |
|
463
|
|
|
|
|
|
|
$significand_bits = 1 << $i; |
|
464
|
|
|
|
|
|
|
$significand_step = $powhalf[$i]; |
|
465
|
|
|
|
|
|
|
while($i--) { |
|
466
|
|
|
|
|
|
|
my $tryeps = $significand_step * $powhalf[$i]; |
|
467
|
|
|
|
|
|
|
if((1.0 + $tryeps) - 1.0 == $tryeps) { |
|
468
|
|
|
|
|
|
|
$significand_bits += 1 << $i; |
|
469
|
|
|
|
|
|
|
$significand_step = $tryeps; |
|
470
|
|
|
|
|
|
|
} |
|
471
|
|
|
|
|
|
|
} |
|
472
|
|
|
|
|
|
|
} |
|
473
|
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
_mk_constant("significand_bits", $significand_bits); |
|
475
|
|
|
|
|
|
|
_mk_constant("significand_step", $significand_step); |
|
476
|
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
my $max_finite = $max_finite_pow2 - |
|
478
|
|
|
|
|
|
|
pow2($max_finite_exp - $significand_bits - 1); |
|
479
|
|
|
|
|
|
|
$max_finite += $max_finite; |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
my $max_integer = pow2($significand_bits + 1); |
|
482
|
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
_mk_constant("max_finite", $max_finite); |
|
484
|
|
|
|
|
|
|
_mk_constant("max_integer", $max_integer); |
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
# |
|
487
|
|
|
|
|
|
|
# Subnormals. |
|
488
|
|
|
|
|
|
|
# |
|
489
|
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
my $have_subnormal; |
|
491
|
|
|
|
|
|
|
{ |
|
492
|
|
|
|
|
|
|
my $testval = $min_finite * 1.5; |
|
493
|
|
|
|
|
|
|
$have_subnormal = $testval == $min_finite || |
|
494
|
|
|
|
|
|
|
$testval == ($min_finite + $min_finite); |
|
495
|
|
|
|
|
|
|
} |
|
496
|
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
_mk_constant("have_subnormal", $have_subnormal); |
|
498
|
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
my $min_normal_exp = $have_subnormal ? |
|
500
|
|
|
|
|
|
|
$min_finite_exp + $significand_bits : |
|
501
|
|
|
|
|
|
|
$min_finite_exp; |
|
502
|
|
|
|
|
|
|
my $min_normal = $have_subnormal ? |
|
503
|
|
|
|
|
|
|
mult_pow2($min_finite, $significand_bits) : |
|
504
|
|
|
|
|
|
|
$min_finite; |
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
_mk_constant("min_normal_exp", $min_normal_exp); |
|
507
|
|
|
|
|
|
|
_mk_constant("min_normal", $min_normal); |
|
508
|
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
# |
|
510
|
|
|
|
|
|
|
# Feature tests. |
|
511
|
|
|
|
|
|
|
# |
|
512
|
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
my $have_signed_zero = sprintf("%e", -0.0) =~ /\A-/; |
|
514
|
|
|
|
|
|
|
_mk_constant("have_signed_zero", $have_signed_zero); |
|
515
|
|
|
|
|
|
|
my($pos_zero, $neg_zero); |
|
516
|
|
|
|
|
|
|
if($have_signed_zero) { |
|
517
|
|
|
|
|
|
|
$pos_zero = +0.0; |
|
518
|
|
|
|
|
|
|
$neg_zero = -0.0; |
|
519
|
|
|
|
|
|
|
my $tzero = -0.0; |
|
520
|
8
|
|
|
8
|
|
67
|
{ no warnings "void"; $tzero == $tzero; } |
|
|
8
|
|
|
|
|
15
|
|
|
|
8
|
|
|
|
|
6031
|
|
|
521
|
|
|
|
|
|
|
my $ntzero = -$tzero; |
|
522
|
|
|
|
|
|
|
if(sprintf("%e", -$ntzero) =~ /\A-/) { |
|
523
|
|
|
|
|
|
|
_mk_constant("pos_zero", $pos_zero); |
|
524
|
|
|
|
|
|
|
_mk_constant("neg_zero", $neg_zero); |
|
525
|
|
|
|
|
|
|
} else { |
|
526
|
|
|
|
|
|
|
# Zeroes lose their signedness upon arithmetic operations. |
|
527
|
|
|
|
|
|
|
# Therefore make the pos_zero and neg_zero functions |
|
528
|
|
|
|
|
|
|
# return fresh zeroes to avoid trouble. |
|
529
|
2
|
|
|
2
|
|
8144
|
*pos_zero = sub () { my $ret = $pos_zero }; |
|
530
|
3
|
|
|
3
|
|
65
|
*neg_zero = sub () { my $ret = $neg_zero }; |
|
531
|
|
|
|
|
|
|
push @EXPORT_OK, "pos_zero", "neg_zero"; |
|
532
|
|
|
|
|
|
|
} |
|
533
|
|
|
|
|
|
|
} |
|
534
|
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
my($have_infinite, $pos_infinity, $neg_infinity); |
|
536
|
|
|
|
|
|
|
{ |
|
537
|
|
|
|
|
|
|
my $testval = $max_finite * $max_finite; |
|
538
|
|
|
|
|
|
|
$have_infinite = $testval == $testval && $testval != $max_finite; |
|
539
|
|
|
|
|
|
|
_mk_constant("have_infinite", $have_infinite); |
|
540
|
|
|
|
|
|
|
if($have_infinite) { |
|
541
|
|
|
|
|
|
|
_mk_constant("pos_infinity", $pos_infinity = $testval); |
|
542
|
|
|
|
|
|
|
_mk_constant("neg_infinity", $neg_infinity = -$testval); |
|
543
|
|
|
|
|
|
|
} |
|
544
|
|
|
|
|
|
|
} |
|
545
|
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
my $max_number = $have_infinite ? $pos_infinity : $max_finite; |
|
547
|
|
|
|
|
|
|
_mk_constant("max_number", $max_number); |
|
548
|
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
my($have_nan, $nan); |
|
550
|
|
|
|
|
|
|
foreach my $nan_formula ( |
|
551
|
|
|
|
|
|
|
'$have_infinite && $pos_infinity/$pos_infinity', |
|
552
|
|
|
|
|
|
|
'log(-1.0)', |
|
553
|
|
|
|
|
|
|
'0.0/0.0', |
|
554
|
|
|
|
|
|
|
'"nan"') { |
|
555
|
|
|
|
|
|
|
my $maybe_nan = |
|
556
|
|
|
|
|
|
|
eval 'local $SIG{__DIE__}; local $SIG{__WARN__} = sub { }; '. |
|
557
|
|
|
|
|
|
|
$nan_formula; |
|
558
|
|
|
|
|
|
|
if(do { local $SIG{__WARN__} = sub { }; $maybe_nan != $maybe_nan }) { |
|
559
|
|
|
|
|
|
|
$have_nan = 1; |
|
560
|
|
|
|
|
|
|
$nan = $maybe_nan; |
|
561
|
|
|
|
|
|
|
_mk_constant("nan", $nan); |
|
562
|
|
|
|
|
|
|
last; |
|
563
|
|
|
|
|
|
|
} |
|
564
|
|
|
|
|
|
|
} |
|
565
|
|
|
|
|
|
|
_mk_constant("have_nan", $have_nan); |
|
566
|
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
# The rest of the code is parsed after the constants have been calculated |
|
568
|
|
|
|
|
|
|
# and installed, so that it can benefit from their constancy. |
|
569
|
|
|
|
|
|
|
{ |
|
570
|
|
|
|
|
|
|
local $/ = undef; |
|
571
|
|
|
|
|
|
|
my $code = ; |
|
572
|
|
|
|
|
|
|
close(DATA); |
|
573
|
|
|
|
|
|
|
{ |
|
574
|
|
|
|
|
|
|
local $SIG{__DIE__}; |
|
575
|
8
|
50
|
66
|
8
|
1
|
67
|
eval $code; |
|
|
8
|
100
|
100
|
8
|
1
|
20
|
|
|
|
8
|
100
|
100
|
8
|
1
|
15
|
|
|
|
8
|
100
|
100
|
8
|
1
|
16
|
|
|
|
8
|
100
|
66
|
8
|
1
|
157
|
|
|
|
8
|
100
|
100
|
268
|
1
|
25
|
|
|
|
8
|
100
|
100
|
39
|
1
|
20
|
|
|
|
8
|
100
|
0
|
42
|
1
|
871
|
|
|
|
8
|
100
|
100
|
41
|
1
|
41
|
|
|
|
8
|
100
|
100
|
162
|
1
|
16
|
|
|
|
8
|
100
|
66
|
14
|
1
|
406
|
|
|
|
8
|
100
|
|
96
|
1
|
27133
|
|
|
|
8
|
100
|
|
402
|
1
|
308
|
|
|
|
8
|
100
|
|
14
|
1
|
42
|
|
|
|
8
|
100
|
|
76
|
1
|
588
|
|
|
|
8
|
100
|
|
14
|
1
|
15
|
|
|
|
8
|
50
|
|
174
|
1
|
15
|
|
|
|
8
|
100
|
|
62
|
1
|
22328
|
|
|
|
8
|
0
|
|
28
|
1
|
70
|
|
|
|
8
|
0
|
|
54
|
|
21
|
|
|
|
8
|
50
|
|
22
|
|
55
|
|
|
|
268
|
50
|
|
17
|
|
419
|
|
|
|
268
|
100
|
|
33
|
|
529
|
|
|
|
268
|
100
|
|
140
|
|
954
|
|
|
|
39
|
0
|
|
81
|
|
6915
|
|
|
|
39
|
50
|
|
|
|
86
|
|
|
|
37
|
50
|
|
|
|
78
|
|
|
|
37
|
50
|
|
|
|
160
|
|
|
|
42
|
50
|
|
|
|
5315
|
|
|
|
42
|
100
|
|
|
|
186
|
|
|
|
24
|
50
|
|
|
|
60
|
|
|
|
21
|
100
|
|
|
|
47
|
|
|
|
21
|
100
|
|
|
|
61
|
|
|
|
15
|
100
|
|
|
|
73
|
|
|
|
41
|
100
|
|
|
|
5123
|
|
|
|
41
|
50
|
|
|
|
123
|
|
|
|
39
|
100
|
|
|
|
51
|
|
|
|
39
|
50
|
|
|
|
46
|
|
|
|
39
|
100
|
|
|
|
128
|
|
|
|
2
|
100
|
|
|
|
6
|
|
|
|
4
|
100
|
|
|
|
10
|
|
|
|
2
|
100
|
|
|
|
5
|
|
|
|
2
|
100
|
|
|
|
38
|
|
|
|
35
|
100
|
|
|
|
47
|
|
|
|
35
|
50
|
|
|
|
63
|
|
|
|
6
|
100
|
|
|
|
13
|
|
|
|
6
|
100
|
|
|
|
13
|
|
|
|
6
|
100
|
|
|
|
30
|
|
|
|
4
|
100
|
|
|
|
9
|
|
|
|
4
|
100
|
|
|
|
19
|
|
|
|
1
|
100
|
|
|
|
2
|
|
|
|
1
|
50
|
|
|
|
3
|
|
|
|
0
|
100
|
|
|
|
0
|
|
|
|
2
|
100
|
|
|
|
4
|
|
|
|
29
|
100
|
|
|
|
63
|
|
|
|
31
|
100
|
|
|
|
56
|
|
|
|
31
|
100
|
|
|
|
90
|
|
|
|
0
|
100
|
|
|
|
0
|
|
|
|
0
|
0
|
|
|
|
0
|
|
|
|
0
|
50
|
|
|
|
0
|
|
|
|
0
|
50
|
|
|
|
0
|
|
|
|
0
|
50
|
|
|
|
0
|
|
|
|
0
|
50
|
|
|
|
0
|
|
|
|
0
|
0
|
|
|
|
0
|
|
|
|
31
|
0
|
|
|
|
36
|
|
|
|
31
|
0
|
|
|
|
77
|
|
|
|
62
|
0
|
|
|
|
70
|
|
|
|
62
|
0
|
|
|
|
69
|
|
|
|
62
|
0
|
|
|
|
151
|
|
|
|
62
|
50
|
|
|
|
442
|
|
|
|
31
|
100
|
|
|
|
146
|
|
|
|
31
|
100
|
|
|
|
64
|
|
|
|
31
|
100
|
|
|
|
72
|
|
|
|
31
|
100
|
|
|
|
36
|
|
|
|
31
|
50
|
|
|
|
39
|
|
|
|
31
|
100
|
|
|
|
105
|
|
|
|
62
|
100
|
|
|
|
88
|
|
|
|
62
|
100
|
|
|
|
107
|
|
|
|
62
|
100
|
|
|
|
180
|
|
|
|
32
|
100
|
|
|
|
74
|
|
|
|
62
|
50
|
|
|
|
174
|
|
|
|
0
|
100
|
|
|
|
0
|
|
|
|
62
|
100
|
|
|
|
264
|
|
|
|
31
|
100
|
|
|
|
90
|
|
|
|
31
|
100
|
|
|
|
73
|
|
|
|
31
|
100
|
|
|
|
73
|
|
|
|
11
|
|
|
|
|
28
|
|
|
|
4
|
|
|
|
|
9
|
|
|
|
4
|
|
|
|
|
36
|
|
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
10
|
|
|
|
2
|
|
|
|
|
9
|
|
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
3
|
|
|
|
31
|
|
|
|
|
54
|
|
|
|
31
|
|
|
|
|
57
|
|
|
|
31
|
|
|
|
|
91
|
|
|
|
2
|
|
|
|
|
8
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
31
|
|
|
|
|
462
|
|
|
|
31
|
|
|
|
|
87
|
|
|
|
162
|
|
|
|
|
11323
|
|
|
|
162
|
|
|
|
|
405
|
|
|
|
18
|
|
|
|
|
34
|
|
|
|
16
|
|
|
|
|
67
|
|
|
|
8
|
|
|
|
|
22
|
|
|
|
120
|
|
|
|
|
475
|
|
|
|
14
|
|
|
|
|
1332
|
|
|
|
14
|
|
|
|
|
59
|
|
|
|
96
|
|
|
|
|
1225
|
|
|
|
96
|
|
|
|
|
124
|
|
|
|
96
|
|
|
|
|
747
|
|
|
|
402
|
|
|
|
|
1481
|
|
|
|
402
|
|
|
|
|
1482
|
|
|
|
14
|
|
|
|
|
1347
|
|
|
|
76
|
|
|
|
|
1321
|
|
|
|
76
|
|
|
|
|
511
|
|
|
|
14
|
|
|
|
|
1193
|
|
|
|
174
|
|
|
|
|
1445
|
|
|
|
174
|
|
|
|
|
653
|
|
|
|
62
|
|
|
|
|
8466
|
|
|
|
62
|
|
|
|
|
181
|
|
|
|
62
|
|
|
|
|
158
|
|
|
|
62
|
|
|
|
|
137
|
|
|
|
19
|
|
|
|
|
32
|
|
|
|
19
|
|
|
|
|
34
|
|
|
|
62
|
|
|
|
|
134
|
|
|
|
5
|
|
|
|
|
20
|
|
|
|
57
|
|
|
|
|
80
|
|
|
|
57
|
|
|
|
|
162
|
|
|
|
7
|
|
|
|
|
25
|
|
|
|
77
|
|
|
|
|
81
|
|
|
|
77
|
|
|
|
|
215
|
|
|
|
10
|
|
|
|
|
15
|
|
|
|
10
|
|
|
|
|
32
|
|
|
|
7
|
|
|
|
|
13
|
|
|
|
7
|
|
|
|
|
11
|
|
|
|
27
|
|
|
|
|
96
|
|
|
|
270
|
|
|
|
|
374
|
|
|
|
270
|
|
|
|
|
726
|
|
|
|
70
|
|
|
|
|
83
|
|
|
|
70
|
|
|
|
|
221
|
|
|
|
57
|
|
|
|
|
170
|
|
|
|
28
|
|
|
|
|
22836
|
|
|
|
28
|
|
|
|
|
85
|
|
|
|
28
|
|
|
|
|
51
|
|
|
|
54
|
|
|
|
|
9643
|
|
|
|
54
|
|
|
|
|
376
|
|
|
|
18
|
|
|
|
|
61
|
|
|
|
18
|
|
|
|
|
21
|
|
|
|
18
|
|
|
|
|
44
|
|
|
|
18
|
|
|
|
|
37
|
|
|
|
18
|
|
|
|
|
28
|
|
|
|
18
|
|
|
|
|
42
|
|
|
|
18
|
|
|
|
|
42
|
|
|
|
6
|
|
|
|
|
8
|
|
|
|
6
|
|
|
|
|
31
|
|
|
|
12
|
|
|
|
|
22
|
|
|
|
12
|
|
|
|
|
16
|
|
|
|
12
|
|
|
|
|
49
|
|
|
|
12
|
|
|
|
|
64
|
|
|
|
12
|
|
|
|
|
32
|
|
|
|
12
|
|
|
|
|
26
|
|
|
|
12
|
|
|
|
|
12
|
|
|
|
12
|
|
|
|
|
41
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
12
|
|
|
|
|
16
|
|
|
|
12
|
|
|
|
|
14
|
|
|
|
12
|
|
|
|
|
21
|
|
|
|
12
|
|
|
|
|
29
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
12
|
|
|
|
|
14
|
|
|
|
12
|
|
|
|
|
117
|
|
|
|
15
|
|
|
|
|
53
|
|
|
|
12
|
|
|
|
|
33
|
|
|
|
18
|
|
|
|
|
103
|
|
|
|
18
|
|
|
|
|
19
|
|
|
|
18
|
|
|
|
|
96
|
|
|
|
18
|
|
|
|
|
18
|
|
|
|
18
|
|
|
|
|
57
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
22
|
|
|
|
|
8323
|
|
|
|
22
|
|
|
|
|
159
|
|
|
|
15
|
|
|
|
|
66
|
|
|
|
17
|
|
|
|
|
1041
|
|
|
|
33
|
|
|
|
|
4172
|
|
|
|
33
|
|
|
|
|
201
|
|
|
|
28
|
|
|
|
|
76
|
|
|
|
24
|
|
|
|
|
92
|
|
|
|
16
|
|
|
|
|
47
|
|
|
|
16
|
|
|
|
|
49
|
|
|
|
8
|
|
|
|
|
11
|
|
|
|
8
|
|
|
|
|
23
|
|
|
|
4
|
|
|
|
|
45
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
8
|
|
|
|
|
29
|
|
|
|
2
|
|
|
|
|
2
|
|
|
|
2
|
|
|
|
|
4
|
|
|
|
8
|
|
|
|
|
11
|
|
|
|
12
|
|
|
|
|
36
|
|
|
|
140
|
|
|
|
|
198
|
|
|
|
140
|
|
|
|
|
832
|
|
|
|
81
|
|
|
|
|
276
|
|
|
576
|
|
|
|
|
|
|
} |
|
577
|
|
|
|
|
|
|
die $@ if $@ ne ""; |
|
578
|
|
|
|
|
|
|
} |
|
579
|
|
|
|
|
|
|
|
|
580
|
|
|
|
|
|
|
1; |
|
581
|
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
__DATA__ |