line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Data::BitStream::Code::Additive; |
2
|
28
|
|
|
28
|
|
24734
|
use strict; |
|
28
|
|
|
|
|
229
|
|
|
28
|
|
|
|
|
1006
|
|
3
|
28
|
|
|
28
|
|
162
|
use warnings; |
|
28
|
|
|
|
|
56
|
|
|
28
|
|
|
|
|
1752
|
|
4
|
|
|
|
|
|
|
BEGIN { |
5
|
28
|
|
|
28
|
|
69
|
$Data::BitStream::Code::Escape::AUTHORITY = 'cpan:DANAJ'; |
6
|
28
|
|
|
|
|
6889
|
$Data::BitStream::Code::Escape::VERSION = '0.08'; |
7
|
|
|
|
|
|
|
} |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
our $CODEINFO = [ { package => __PACKAGE__, |
10
|
|
|
|
|
|
|
name => 'Additive', |
11
|
|
|
|
|
|
|
universal => 0, |
12
|
|
|
|
|
|
|
params => 1, |
13
|
|
|
|
|
|
|
encodesub => sub {shift->put_additive_seeded([split('-',shift)], @_)}, |
14
|
|
|
|
|
|
|
decodesub => sub {shift->get_additive_seeded([split('-',shift)], @_)}, |
15
|
|
|
|
|
|
|
}, |
16
|
|
|
|
|
|
|
{ package => __PACKAGE__, |
17
|
|
|
|
|
|
|
name => 'GoldbachG1', |
18
|
|
|
|
|
|
|
universal => 1, |
19
|
|
|
|
|
|
|
params => 0, |
20
|
|
|
|
|
|
|
encodesub => sub {shift->put_goldbach_g1(@_)}, |
21
|
|
|
|
|
|
|
decodesub => sub {shift->get_goldbach_g1(@_)}, |
22
|
|
|
|
|
|
|
}, |
23
|
|
|
|
|
|
|
{ package => __PACKAGE__, |
24
|
|
|
|
|
|
|
name => 'GoldbachG2', |
25
|
|
|
|
|
|
|
universal => 1, |
26
|
|
|
|
|
|
|
params => 0, |
27
|
|
|
|
|
|
|
encodesub => sub {shift->put_goldbach_g2(@_)}, |
28
|
|
|
|
|
|
|
decodesub => sub {shift->get_goldbach_g2(@_)}, |
29
|
|
|
|
|
|
|
}, |
30
|
|
|
|
|
|
|
]; |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
#use List::Util qw(max); |
35
|
28
|
|
|
28
|
|
196
|
use Moo::Role; |
|
28
|
|
|
|
|
111
|
|
|
28
|
|
|
|
|
293
|
|
36
|
|
|
|
|
|
|
requires qw(read write); |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# Precalculate the lengths for small values. |
39
|
|
|
|
|
|
|
my @_agl = (1,3,3,(5)x4,(7)x8,(9)x16,(11)x32,(13)x64,(15)x128,(17)x256); |
40
|
2
|
|
|
2
|
|
3672
|
sub _push_more_agls { push @_agl, (19)x512,(21)x1024,(23)x2048,(25)x4096,(27)x8192; } |
41
|
|
|
|
|
|
|
sub _additive_gamma_len { |
42
|
145674
|
|
|
145674
|
|
152600
|
my($n) = @_; |
43
|
145674
|
100
|
|
|
|
448063
|
return $_agl[$n] if $n <= $#_agl; |
44
|
2
|
50
|
|
|
|
16
|
_push_more_agls if $n < 16383; |
45
|
2
|
|
|
|
|
8
|
my $gammalen = 1; |
46
|
2
|
|
|
|
|
40
|
$gammalen += 2 while $n >= ((2 << ($gammalen>>1))-1); |
47
|
2
|
|
|
|
|
8
|
$gammalen; |
48
|
|
|
|
|
|
|
} |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
# Determine the best 2-ary sum over the basis p to use for this value. |
51
|
|
|
|
|
|
|
sub _find_best_pair { |
52
|
4172
|
|
|
4172
|
|
11261
|
my($p, $val, $pairsub) = @_; |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
# Determine how far to look in the basis |
55
|
4172
|
|
|
|
|
4975
|
my $maxbasis = 0; |
56
|
4172
|
|
100
|
|
|
30985
|
$maxbasis+=100 while exists $p->[$maxbasis+101] && $val > $p->[$maxbasis+100]; |
57
|
4172
|
|
100
|
|
|
55583
|
$maxbasis+=10 while exists $p->[$maxbasis+ 11] && $val > $p->[$maxbasis+ 10]; |
58
|
4172
|
|
100
|
|
|
82238
|
$maxbasis++ while exists $p->[$maxbasis+ 1] && $val > $p->[$maxbasis ]; |
59
|
|
|
|
|
|
|
# Or we could do binary search: |
60
|
|
|
|
|
|
|
# my $lo = 0; |
61
|
|
|
|
|
|
|
# my $hi = $#$p; |
62
|
|
|
|
|
|
|
# while ($lo < $hi) { |
63
|
|
|
|
|
|
|
# my $mid = int(($lo + $hi) / 2); |
64
|
|
|
|
|
|
|
# if ($p->[$mid] <= $val) { $lo = $mid+1; } |
65
|
|
|
|
|
|
|
# else { $hi = $mid; } |
66
|
|
|
|
|
|
|
# } |
67
|
|
|
|
|
|
|
# my $maxbasis = $lo; |
68
|
|
|
|
|
|
|
|
69
|
4172
|
|
|
|
|
4715
|
my @best_pair; |
70
|
4172
|
|
|
|
|
5035
|
my $best_pair_len = 100000000; |
71
|
4172
|
|
|
|
|
4535
|
my $i = 0; |
72
|
4172
|
|
|
|
|
4796
|
my $j = $maxbasis; |
73
|
4172
|
|
|
|
|
5225
|
my $pi = $p->[$i]; |
74
|
4172
|
|
|
|
|
4956
|
my $pj = $p->[$j]; |
75
|
4172
|
|
|
|
|
8547
|
while ($i <= $j) { |
76
|
546888
|
|
|
|
|
608601
|
my $sum = $pi + $pj; |
77
|
546888
|
100
|
|
|
|
938033
|
if ($sum < $val) { $pi = $p->[++$i]; } |
|
227572
|
100
|
|
|
|
470966
|
|
78
|
246479
|
|
|
|
|
530084
|
elsif ($sum > $val) { $pj = $p->[--$j]; } |
79
|
|
|
|
|
|
|
else { |
80
|
72837
|
|
|
|
|
124326
|
my($p1, $p2) = $pairsub->($i, $j); # How i,j are stored |
81
|
72837
|
|
|
|
|
115458
|
my $glen = _additive_gamma_len($p1) + _additive_gamma_len($p2); |
82
|
|
|
|
|
|
|
#print "poss: $pi + $pj = $val. Indices $i,$j. Pair $p1,$p2. Len $glen.\n"; |
83
|
72837
|
100
|
|
|
|
141570
|
if ($glen < $best_pair_len) { |
84
|
6096
|
|
|
|
|
12055
|
@best_pair = ($p1, $p2); |
85
|
6096
|
|
|
|
|
7329
|
$best_pair_len = $glen; |
86
|
|
|
|
|
|
|
} |
87
|
72837
|
|
|
|
|
173716
|
$pi = $p->[++$i]; |
88
|
|
|
|
|
|
|
} |
89
|
|
|
|
|
|
|
} |
90
|
4172
|
|
|
|
|
11647
|
@best_pair; |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
# 2-ary additive code. |
94
|
|
|
|
|
|
|
# |
95
|
|
|
|
|
|
|
# The parameter comes in as an array. Hence: |
96
|
|
|
|
|
|
|
# |
97
|
|
|
|
|
|
|
# $stream->put_additive( [0,1,3,5,7,8,10,16,22,28,34,40], $value ); |
98
|
|
|
|
|
|
|
# |
99
|
|
|
|
|
|
|
# $stream->get_additive( [0,1,3,5,7,8,10,16,22,28,34,40], $value ); |
100
|
|
|
|
|
|
|
# |
101
|
|
|
|
|
|
|
# You can optionally put a sub in the first arg. |
102
|
|
|
|
|
|
|
# |
103
|
|
|
|
|
|
|
# This array must be sorted and non-negative. |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
sub put_additive { |
106
|
813
|
|
|
813
|
1
|
1017
|
my $self = shift; |
107
|
813
|
50
|
|
|
|
2132
|
$self->error_stream_mode('write') unless $self->writing; |
108
|
813
|
50
|
|
|
|
2793
|
my $sub = shift if ref $_[0] eq 'CODE'; ## no critic |
109
|
813
|
|
|
|
|
1070
|
my $p = shift; |
110
|
813
|
50
|
33
|
|
|
4637
|
$self->error_code('param', 'p must be an array') unless (ref $p eq 'ARRAY') && scalar @$p >= 1; |
111
|
|
|
|
|
|
|
|
112
|
813
|
|
|
|
|
1637
|
foreach my $val (@_) { |
113
|
2340
|
50
|
33
|
|
|
10133
|
$self->error_code('zeroval') unless defined $val and $val >= 0; |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
# Expand the basis if necessary and possible. |
116
|
2340
|
100
|
66
|
|
|
10851
|
$sub->($p, $val) if defined $sub && $p->[-1] < $val; |
117
|
|
|
|
|
|
|
|
118
|
2340
|
|
|
46715
|
|
11273
|
my @best_pair = _find_best_pair($p, $val, sub { ($_[0], $_[1]-$_[0]) } ); |
|
46715
|
|
|
|
|
103701
|
|
119
|
|
|
|
|
|
|
|
120
|
2340
|
50
|
|
|
|
16235
|
$self->error_code('range', $val) unless @best_pair; |
121
|
2340
|
|
|
|
|
17351
|
$self->put_gamma(@best_pair); |
122
|
|
|
|
|
|
|
} |
123
|
813
|
|
|
|
|
2943
|
1; |
124
|
|
|
|
|
|
|
} |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
sub get_additive { |
127
|
813
|
|
|
813
|
1
|
1035
|
my $self = shift; |
128
|
813
|
50
|
|
|
|
2265
|
$self->error_stream_mode('read') if $self->writing; |
129
|
813
|
50
|
|
|
|
2416
|
my $sub = shift if ref $_[0] eq 'CODE'; ## no critic |
130
|
813
|
|
|
|
|
1049
|
my $p = shift; |
131
|
813
|
50
|
33
|
|
|
4078
|
$self->error_code('param', 'p must be an array') unless (ref $p eq 'ARRAY') && scalar @$p >= 1; |
132
|
813
|
|
|
|
|
1221
|
my $count = shift; |
133
|
813
|
100
|
|
|
|
1686
|
if (!defined $count) { $count = 1; } |
|
792
|
50
|
|
|
|
2188
|
|
|
|
0
|
|
|
|
|
|
134
|
21
|
|
|
|
|
47
|
elsif ($count < 0) { $count = ~0; } # Get everything |
135
|
0
|
|
|
|
|
0
|
elsif ($count == 0) { return; } |
136
|
|
|
|
|
|
|
|
137
|
813
|
|
|
|
|
1273
|
my @vals; |
138
|
813
|
|
|
|
|
2569
|
$self->code_pos_start('Additive'); |
139
|
813
|
|
|
|
|
29913
|
while ($count-- > 0) { |
140
|
2361
|
|
|
|
|
6469
|
$self->code_pos_set; |
141
|
|
|
|
|
|
|
# Read the two gamma-encoded values |
142
|
2361
|
|
|
|
|
73149
|
my ($i,$j) = $self->get_gamma(2); |
143
|
2361
|
100
|
|
|
|
5604
|
last unless defined $i; |
144
|
2340
|
50
|
|
|
|
4238
|
$self->error_off_stream unless defined $j; |
145
|
2340
|
|
|
|
|
2602
|
$j += $i; |
146
|
2340
|
|
|
|
|
3736
|
my $pi = $p->[$i]; |
147
|
2340
|
|
|
|
|
3079
|
my $pj = $p->[$j]; |
148
|
2340
|
50
|
33
|
|
|
5605
|
if ( (!defined $pj) && (defined $sub) ) { |
149
|
0
|
|
|
|
|
0
|
$sub->($p, -$j); # Generate the basis through j |
150
|
0
|
|
|
|
|
0
|
$pi = $p->[$i]; |
151
|
0
|
|
|
|
|
0
|
$pj = $p->[$j]; |
152
|
|
|
|
|
|
|
} |
153
|
2340
|
50
|
33
|
|
|
9750
|
$self->error_code('overflow') unless defined $pi && defined $pj; |
154
|
2340
|
|
|
|
|
7452
|
push @vals, $pi+$pj; |
155
|
|
|
|
|
|
|
} |
156
|
813
|
|
|
|
|
2736
|
$self->code_pos_end; |
157
|
813
|
50
|
|
|
|
25600
|
wantarray ? @vals : $vals[-1]; |
158
|
|
|
|
|
|
|
} |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
########## Additive codes using seeds |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
my $expand_additive_basis = sub { |
164
|
|
|
|
|
|
|
my $p = shift; |
165
|
|
|
|
|
|
|
my $maxval = shift; |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
push @{$p}, 0, 1 unless @{$p}; |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
# Assume the basis is sorted and complete to $p->[-1]. |
170
|
|
|
|
|
|
|
my %sumhash; |
171
|
|
|
|
|
|
|
my @sums; |
172
|
|
|
|
|
|
|
foreach my $b1 (@{$p}) { |
173
|
|
|
|
|
|
|
foreach my $b2 (@{$p}) { |
174
|
|
|
|
|
|
|
$sumhash{$b1+$b2} = 1; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
my $lastp = $p->[-1]; |
178
|
|
|
|
|
|
|
delete $sumhash{$_} for (grep { $_ <= $lastp } keys %sumhash); |
179
|
|
|
|
|
|
|
@sums = sort { $a <=> $b } keys %sumhash; |
180
|
|
|
|
|
|
|
my $n = $lastp; |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
while (1) { |
183
|
|
|
|
|
|
|
if ($maxval >= 0) { last if $maxval <= $n; } |
184
|
|
|
|
|
|
|
else { last if -$maxval < scalar @{$p}; } |
185
|
|
|
|
|
|
|
$n++; |
186
|
|
|
|
|
|
|
if (!@sums || ($sums[0] > $n)) { |
187
|
|
|
|
|
|
|
push @{$p}, $n; # add $n to basis |
188
|
|
|
|
|
|
|
$sumhash{$n+$_} = 1 for @{$p}; # calculate new sums |
189
|
|
|
|
|
|
|
delete $sumhash{$n}; # sums from $n+1 up |
190
|
|
|
|
|
|
|
@sums = sort { $a <=> $b } keys %sumhash; |
191
|
|
|
|
|
|
|
} else { |
192
|
|
|
|
|
|
|
shift @sums if @sums && $sums[0] <= $n; # remove obsolete sums |
193
|
|
|
|
|
|
|
delete $sumhash{$n}; |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
1; |
197
|
|
|
|
|
|
|
}; |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
# Give a maximum range and some seeds (even numbers). You can then take the |
200
|
|
|
|
|
|
|
# resulting basis and hand it to get_additive() / put_additive(). |
201
|
|
|
|
|
|
|
# |
202
|
|
|
|
|
|
|
# Examples: |
203
|
|
|
|
|
|
|
# 99, 8, 10, 16 |
204
|
|
|
|
|
|
|
# 127, 8, 20, 24 |
205
|
|
|
|
|
|
|
# 249, 2, 16, 46 |
206
|
|
|
|
|
|
|
# 499, 2, 34, 82 |
207
|
|
|
|
|
|
|
# 999, 2, 52, 154 |
208
|
|
|
|
|
|
|
sub generate_additive_basis { |
209
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
210
|
0
|
|
|
|
|
0
|
my $max = shift; |
211
|
|
|
|
|
|
|
|
212
|
0
|
|
|
|
|
0
|
my @basis = (0, 1); |
213
|
|
|
|
|
|
|
# Perhaps some checking of defined, even, >= 2, no duplicates. |
214
|
0
|
|
|
|
|
0
|
foreach my $seed (sort {$a<=>$b} @_) { |
|
0
|
|
|
|
|
0
|
|
215
|
|
|
|
|
|
|
# Expand basis to $seed-1 |
216
|
0
|
0
|
|
|
|
0
|
$expand_additive_basis->(\@basis, $seed-1) if $seed > ($basis[-1]+1); |
217
|
|
|
|
|
|
|
# Add seed to basis |
218
|
0
|
0
|
|
|
|
0
|
push @basis, $seed if $seed > $basis[-1]; |
219
|
0
|
0
|
|
|
|
0
|
last if $seed >= $max; |
220
|
|
|
|
|
|
|
} |
221
|
0
|
0
|
|
|
|
0
|
$expand_additive_basis->(\@basis, $max) if $max > $basis[-1]; |
222
|
0
|
|
|
|
|
0
|
@basis; |
223
|
|
|
|
|
|
|
} |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
# More flexible seeded functions. These take the seeds and expand the basis |
227
|
|
|
|
|
|
|
# as needed to construct the desired values. They also cache the constructed |
228
|
|
|
|
|
|
|
# bases. |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
my %_cached_bases; |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
sub put_additive_seeded { |
233
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
234
|
0
|
0
|
|
|
|
0
|
$self->error_stream_mode('write') unless $self->writing; |
235
|
0
|
|
|
|
|
0
|
my $p = shift; |
236
|
0
|
0
|
0
|
|
|
0
|
$self->error_code('param', 'p must be an array') unless (ref $p eq 'ARRAY') && scalar @$p >= 1; |
237
|
|
|
|
|
|
|
|
238
|
0
|
|
|
|
|
0
|
my $handle = join('-', @{$p}); |
|
0
|
|
|
|
|
0
|
|
239
|
0
|
0
|
|
|
|
0
|
if (!defined $_cached_bases{$handle}) { |
240
|
0
|
|
|
|
|
0
|
my @basis = $self->generate_additive_basis($p->[-1], @{$p}); |
|
0
|
|
|
|
|
0
|
|
241
|
0
|
|
|
|
|
0
|
$_cached_bases{$handle} = \@basis; |
242
|
|
|
|
|
|
|
} |
243
|
0
|
|
|
|
|
0
|
$self->put_additive($expand_additive_basis, $_cached_bases{$handle}, @_); |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
sub get_additive_seeded { |
247
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
248
|
0
|
0
|
|
|
|
0
|
$self->error_stream_mode('read') if $self->writing; |
249
|
0
|
|
|
|
|
0
|
my $p = shift; |
250
|
0
|
0
|
0
|
|
|
0
|
$self->error_code('param', 'p must be an array') unless (ref $p eq 'ARRAY') && scalar @$p >= 1; |
251
|
|
|
|
|
|
|
|
252
|
0
|
|
|
|
|
0
|
my $handle = join('-', @$p); |
253
|
0
|
0
|
|
|
|
0
|
if (!defined $_cached_bases{$handle}) { |
254
|
0
|
|
|
|
|
0
|
my @basis = $self->generate_additive_basis($p->[-1], @{$p}); |
|
0
|
|
|
|
|
0
|
|
255
|
0
|
|
|
|
|
0
|
$_cached_bases{$handle} = \@basis; |
256
|
|
|
|
|
|
|
} |
257
|
0
|
|
|
|
|
0
|
$self->get_additive($expand_additive_basis, $_cached_bases{$handle}, @_); |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
########## Support code for Goldbach codes |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
my $expand_primes_sub; |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
# Performance options, in order: |
266
|
|
|
|
|
|
|
# |
267
|
|
|
|
|
|
|
# 1. Install Data::BitStream::XS. |
268
|
|
|
|
|
|
|
# |
269
|
|
|
|
|
|
|
# Whether you use it directly or install it and let Data::BitStream |
270
|
|
|
|
|
|
|
# use it behind the curtains, this is BY FAR the best solution. |
271
|
|
|
|
|
|
|
# 20-50x faster overall. |
272
|
|
|
|
|
|
|
# |
273
|
|
|
|
|
|
|
# 2. Install Math::Prime::Util. |
274
|
|
|
|
|
|
|
# |
275
|
|
|
|
|
|
|
# Fast prime basis formation. If you're installing modules, you may as |
276
|
|
|
|
|
|
|
# well install DBXS though, as it gets you much more. With large codes |
277
|
|
|
|
|
|
|
# this can be 1.5x faster. |
278
|
|
|
|
|
|
|
# |
279
|
|
|
|
|
|
|
# 3. Use this pure perl code. |
280
|
|
|
|
|
|
|
# |
281
|
|
|
|
|
|
|
# There really are three parts that let one efficiently produce Goldbach codes |
282
|
|
|
|
|
|
|
# for large inputs. |
283
|
|
|
|
|
|
|
# |
284
|
|
|
|
|
|
|
# - Fast prime basis formation. Both options 1 and 2 will do this well. |
285
|
|
|
|
|
|
|
# Since switching to a segmented sieve in Perl, this isn't much of a |
286
|
|
|
|
|
|
|
# bottleneck any more. Version 0.01 of this module was MUCH slower. |
287
|
|
|
|
|
|
|
# |
288
|
|
|
|
|
|
|
# - Fast best-pair search. Doing this in Data::BitStream::XS is a 10-50x |
289
|
|
|
|
|
|
|
# speedup for large numbers. For very large numbers (over 32-bit), a |
290
|
|
|
|
|
|
|
# different algorithm would be needed, as that module uses the normal |
291
|
|
|
|
|
|
|
# array scan method. Honestly these codes were meant for tiny inputs. |
292
|
|
|
|
|
|
|
# |
293
|
|
|
|
|
|
|
# - Generic coding speedup. Having the XS module installed gives a 10-100x |
294
|
|
|
|
|
|
|
# reduction in overhead. This will have a big impact if inserting many |
295
|
|
|
|
|
|
|
# small codes. |
296
|
|
|
|
|
|
|
# |
297
|
|
|
|
|
|
|
# You can find lots of benchmarks and results for prime generation in the |
298
|
|
|
|
|
|
|
# Math::Prime::Util module. That module is by far the fastest on CPAN |
299
|
|
|
|
|
|
|
# (2012-2014). Math::Prime::FastSieve is fast enough if you start at 2. |
300
|
|
|
|
|
|
|
# For non-Perl solutions, I recommend primesieve -- it is faster than MPU, |
301
|
|
|
|
|
|
|
# yafu, primegen, or TOeS's code. |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
if (eval {require Math::Prime::Util; Math::Prime::Util->import(qw(primes nth_prime_upper next_prime)); 1;}) { |
304
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
$expand_primes_sub = sub { |
306
|
|
|
|
|
|
|
my $p = shift; |
307
|
|
|
|
|
|
|
my $maxval = shift; |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
$maxval = nth_prime_upper(-$maxval) if $maxval < 0; |
310
|
|
|
|
|
|
|
$maxval += 100; |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
push @$p, @{primes($p->[-1]+1, $maxval)}; |
313
|
|
|
|
|
|
|
push @$p, next_prime($p->[-1]) if $p->[-1] < $maxval; |
314
|
|
|
|
|
|
|
1; |
315
|
|
|
|
|
|
|
}; |
316
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
} else { |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
sub _dj_pp_string_sieve { |
320
|
34
|
|
|
34
|
|
57
|
my($end) = @_; |
321
|
34
|
50
|
|
|
|
97
|
return '0' if $end < 2; |
322
|
34
|
50
|
|
|
|
103
|
return '1' if $end < 3; |
323
|
34
|
100
|
|
|
|
90
|
$end-- if ($end & 1) == 0; |
324
|
34
|
|
|
|
|
48
|
my $s_end = $end >> 1; |
325
|
|
|
|
|
|
|
|
326
|
34
|
|
|
|
|
58
|
my $whole = int( ($end>>1) / 15); # prefill with 3 and 5 marked |
327
|
34
|
|
|
|
|
111
|
my $sieve = '100010010010110' . '011010010010110' x $whole; |
328
|
34
|
|
|
|
|
92
|
substr($sieve, ($end>>1)+1) = ''; |
329
|
34
|
|
|
|
|
72
|
my ($n, $limit) = ( 7, int(sqrt($end)) ); |
330
|
34
|
|
|
|
|
92
|
while ( $n <= $limit ) { |
331
|
24
|
|
|
|
|
79
|
for (my $s = ($n*$n) >> 1; $s <= $s_end; $s += $n) { |
332
|
96
|
|
|
|
|
201
|
substr($sieve, $s, 1) = '1'; |
333
|
|
|
|
|
|
|
} |
334
|
24
|
|
|
|
|
37
|
do { $n += 2 } while substr($sieve, $n>>1, 1); |
|
43
|
|
|
|
|
131
|
|
335
|
|
|
|
|
|
|
} |
336
|
34
|
|
|
|
|
74
|
return \$sieve; |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
sub _dj_pp_segment_sieve { |
339
|
34
|
|
|
34
|
|
56
|
my($beg,$end) = @_; |
340
|
34
|
|
|
|
|
103
|
my $range = int( ($end - $beg) / 2 ) + 1; |
341
|
|
|
|
|
|
|
# Prefill with 3 and 5 already marked, and offset to the segment start. |
342
|
34
|
|
|
|
|
66
|
my $whole = int( ($range+14) / 15); |
343
|
34
|
|
|
|
|
61
|
my $startp = ($beg % 30) >> 1; |
344
|
34
|
|
|
|
|
364
|
my $sieve = substr("011010010010110", $startp) . "011010010010110" x $whole; |
345
|
|
|
|
|
|
|
# Set 3 and 5 to prime if we're sieving them. |
346
|
34
|
50
|
|
|
|
99
|
substr($sieve,0,2) = "00" if $beg == 3; |
347
|
34
|
50
|
|
|
|
94
|
substr($sieve,0,1) = "0" if $beg == 5; |
348
|
|
|
|
|
|
|
# Get rid of any extra we added. |
349
|
34
|
|
|
|
|
98
|
substr($sieve, $range) = ''; |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
# If the end value is below 7^2, then the pre-sieve is all we needed. |
352
|
34
|
50
|
|
|
|
114
|
return \$sieve if $end < 49; |
353
|
|
|
|
|
|
|
|
354
|
34
|
|
|
|
|
155
|
my $limit = int(sqrt($end)) + 1; |
355
|
|
|
|
|
|
|
# For large value of end, it's a huge win to just walk primes. |
356
|
34
|
|
|
|
|
106
|
my $primesieveref = _dj_pp_string_sieve($limit); |
357
|
34
|
|
|
|
|
56
|
my $p = 7-2; |
358
|
34
|
|
|
|
|
268
|
foreach my $s (split("0", substr($$primesieveref, 3), -1)) { |
359
|
524
|
|
|
|
|
700
|
$p += 2 + 2 * length($s); |
360
|
524
|
|
|
|
|
676
|
my $p2 = $p*$p; |
361
|
524
|
100
|
|
|
|
916
|
last if $p2 > $end; |
362
|
490
|
100
|
|
|
|
825
|
if ($p2 < $beg) { |
363
|
330
|
|
|
|
|
438
|
$p2 = int($beg / $p) * $p; |
364
|
330
|
100
|
|
|
|
558
|
$p2 += $p if $p2 < $beg; |
365
|
330
|
100
|
|
|
|
618
|
$p2 += $p if ($p2 % 2) == 0; # Make sure p2 is odd |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
# With large bases and small segments, it's common to find we don't hit |
368
|
|
|
|
|
|
|
# the segment at all. Skip all the setup if we find this now. |
369
|
490
|
50
|
|
|
|
1249
|
if ($p2 <= $end) { |
370
|
|
|
|
|
|
|
# Inner loop marking multiples of p |
371
|
|
|
|
|
|
|
# (everything is divided by 2 to keep inner loop simpler) |
372
|
490
|
|
|
|
|
535
|
my $fend = ($end - $beg) >> 1; |
373
|
490
|
|
|
|
|
1101
|
for (my $fp2 = ($p2 - $beg) >> 1; $fp2 <= $fend; $fp2 += $p) { |
374
|
45340
|
|
|
|
|
82624
|
substr($sieve, $fp2, 1) = '1'; |
375
|
|
|
|
|
|
|
} |
376
|
|
|
|
|
|
|
} |
377
|
|
|
|
|
|
|
} |
378
|
34
|
|
|
|
|
242
|
\$sieve; |
379
|
|
|
|
|
|
|
} |
380
|
|
|
|
|
|
|
sub _dj_pp_sieve { |
381
|
34
|
|
|
34
|
|
69
|
my($low, $high) = @_; |
382
|
|
|
|
|
|
|
|
383
|
34
|
|
|
|
|
120
|
my $sref = []; |
384
|
34
|
50
|
33
|
|
|
205
|
return $sref if ($low > $high) || ($high < 2); |
385
|
34
|
50
|
33
|
|
|
139
|
push @$sref, 2 if ($low <= 2) && ($high >= 2); |
386
|
34
|
50
|
33
|
|
|
211
|
push @$sref, 3 if ($low <= 3) && ($high >= 3); |
387
|
34
|
50
|
33
|
|
|
174
|
push @$sref, 5 if ($low <= 5) && ($high >= 5); |
388
|
34
|
50
|
|
|
|
88
|
$low = 7 if $low < 7; |
389
|
34
|
50
|
|
|
|
101
|
$low++ if ($low % 2) == 0; |
390
|
34
|
100
|
|
|
|
79
|
$high-- if ($high % 2) == 0; |
391
|
34
|
50
|
|
|
|
88
|
return $sref if $low > $high; |
392
|
|
|
|
|
|
|
|
393
|
34
|
50
|
|
|
|
166
|
my($n, $s, $sieveref) = ($low == 7) |
394
|
|
|
|
|
|
|
? ($low-2, 3, _dj_pp_string_sieve($high)) |
395
|
|
|
|
|
|
|
: ($low-2, 0, _dj_pp_segment_sieve($low,$high)); |
396
|
34
|
|
|
|
|
171
|
while ( (my $nexts = 1 + index($$sieveref, "0", $s)) > 0 ) { |
397
|
12057
|
|
|
|
|
11519
|
$n += 2 * ($nexts - $s); |
398
|
12057
|
|
|
|
|
10323
|
$s = $nexts; |
399
|
12057
|
|
|
|
|
573139
|
push @$sref, $n; |
400
|
|
|
|
|
|
|
} |
401
|
34
|
|
|
|
|
1656
|
$sref; |
402
|
|
|
|
|
|
|
} |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
$expand_primes_sub = sub { |
405
|
|
|
|
|
|
|
my $p = shift; |
406
|
|
|
|
|
|
|
my $maxval = shift; |
407
|
|
|
|
|
|
|
if ($maxval < 0) { # We need $p->[-$maxval] defined. |
408
|
|
|
|
|
|
|
# Inequality: p_n < n*ln(n)+n*ln(ln(n)) for n >= 6 |
409
|
|
|
|
|
|
|
my $n = ($maxval > -6) ? 6 : -$maxval; |
410
|
|
|
|
|
|
|
$n++; # Because we skip 2 in our basis. |
411
|
|
|
|
|
|
|
$maxval = int($n * log($n) + $n * log(log($n))) + 1; |
412
|
|
|
|
|
|
|
} |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
# We want to ensure there is a prime >= $maxval on our list. |
415
|
|
|
|
|
|
|
# Use maximal gap, so this loop ought to run exactly once. |
416
|
|
|
|
|
|
|
my $adder = ($maxval <= 0xFFFFFFFF) ? 336 : 2000; |
417
|
|
|
|
|
|
|
while ($p->[-1] < $maxval) { |
418
|
|
|
|
|
|
|
push @{$p}, @{_dj_pp_sieve($p->[-1]+1, $maxval+$adder)}; |
419
|
|
|
|
|
|
|
$adder *= 2; # Ensure success |
420
|
|
|
|
|
|
|
} |
421
|
|
|
|
|
|
|
1; |
422
|
|
|
|
|
|
|
}; |
423
|
|
|
|
|
|
|
} |
424
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
########## Goldbach G1 codes using the 2N form, and modified for 0-based. |
427
|
|
|
|
|
|
|
|
428
|
|
|
|
|
|
|
my @_pbasis = (1, 3, 5, 7, 11, 13, 17, 19, 23, 29); |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
sub put_goldbach_g1 { |
431
|
813
|
|
|
813
|
1
|
11652
|
my $self = shift; |
432
|
813
|
50
|
|
|
|
2723
|
$self->error_stream_mode('write') unless $self->writing; |
433
|
|
|
|
|
|
|
|
434
|
2340
|
|
|
|
|
6125
|
$self->put_additive($expand_primes_sub, |
435
|
|
|
|
|
|
|
\@_pbasis, |
436
|
813
|
|
|
|
|
2037
|
map { ($_+1)*2 } @_); |
437
|
|
|
|
|
|
|
} |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
sub get_goldbach_g1 { |
440
|
813
|
|
|
813
|
1
|
10831
|
my $self = shift; |
441
|
813
|
50
|
|
|
|
2612
|
$self->error_stream_mode('read') if $self->writing; |
442
|
|
|
|
|
|
|
|
443
|
813
|
|
|
|
|
3359
|
my @vals = map { int($_/2)-1 } $self->get_additive($expand_primes_sub, |
|
2340
|
|
|
|
|
6301
|
|
444
|
|
|
|
|
|
|
\@_pbasis, |
445
|
|
|
|
|
|
|
@_); |
446
|
813
|
100
|
|
|
|
3656
|
wantarray ? @vals : $vals[-1]; |
447
|
|
|
|
|
|
|
} |
448
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
########## Goldbach G2 codes modified for 0-based. |
450
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
sub put_goldbach_g2 { |
452
|
813
|
|
|
813
|
1
|
23747
|
my $self = shift; |
453
|
813
|
50
|
|
|
|
2821
|
$self->error_stream_mode('write') unless $self->writing; |
454
|
|
|
|
|
|
|
|
455
|
813
|
|
|
|
|
1631
|
foreach my $v (@_) { |
456
|
2340
|
50
|
33
|
|
|
10905
|
$self->error_code('zeroval') unless defined $v and $v >= 0; |
457
|
|
|
|
|
|
|
|
458
|
2340
|
100
|
|
|
|
4929
|
if ($v == 0) { $self->write(3, 6); next; } |
|
75
|
|
|
|
|
826
|
|
|
75
|
|
|
|
|
209
|
|
459
|
2265
|
100
|
|
|
|
4115
|
if ($v == 1) { $self->write(3, 7); next; } |
|
36
|
|
|
|
|
118
|
|
|
36
|
|
|
|
|
72
|
|
460
|
|
|
|
|
|
|
|
461
|
2229
|
|
|
|
|
3015
|
my $val = $v+1; # $val >= 3 (note ~0 will not encode) |
462
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
# Expand prime list as needed |
464
|
2229
|
100
|
|
|
|
4573
|
$expand_primes_sub->(\@_pbasis, $val) if $_pbasis[-1] < $val; |
465
|
2229
|
50
|
|
|
|
4378
|
$self->error_code('assert', "Basis not expanded to $val") unless $_pbasis[-1] >= $val; |
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
# Check to see if $val is prime |
468
|
2229
|
100
|
100
|
|
|
8982
|
if ( (($val%2) != 0) && (($val == 3) || (($val%3) != 0)) ) { |
|
|
|
66
|
|
|
|
|
469
|
|
|
|
|
|
|
# Not a multiple of 2 or 3, so look for it in _pbasis |
470
|
668
|
|
|
|
|
801
|
my $spindex = 0; |
471
|
668
|
|
100
|
|
|
3070
|
$spindex += 200 while exists $_pbasis[$spindex+200] |
472
|
|
|
|
|
|
|
&& $val > $_pbasis[$spindex+200]; |
473
|
668
|
|
|
|
|
24609
|
$spindex++ while $val > $_pbasis[$spindex]; |
474
|
668
|
100
|
|
|
|
1464
|
if ($val == $_pbasis[$spindex]) { |
475
|
|
|
|
|
|
|
# We store the index (noting that value 3 is index 1 for us) |
476
|
397
|
|
|
|
|
1240
|
$self->put_gamma($spindex); |
477
|
397
|
|
|
|
|
1234
|
$self->write(1, 1); |
478
|
397
|
|
|
|
|
936
|
next; |
479
|
|
|
|
|
|
|
} |
480
|
|
|
|
|
|
|
} |
481
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
# Odd integer. |
483
|
1832
|
100
|
|
|
|
3949
|
if ( ($val % 2) == 1 ) { |
484
|
569
|
|
|
|
|
1964
|
$self->write(1, 1); |
485
|
569
|
|
|
|
|
876
|
$val--; |
486
|
|
|
|
|
|
|
} |
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
# Encode the even value $val as the sum of two primes |
489
|
|
|
|
|
|
|
my @best_pair = _find_best_pair(\@_pbasis, $val, |
490
|
1832
|
|
|
26122
|
|
11004
|
sub { my($i,$j) = @_; ($i+1,$j-$i+1); } ); |
|
26122
|
|
|
|
|
31762
|
|
|
26122
|
|
|
|
|
50754
|
|
491
|
|
|
|
|
|
|
|
492
|
1832
|
50
|
|
|
|
10222
|
$self->error_code('range', $v) unless @best_pair; |
493
|
1832
|
|
|
|
|
6884
|
$self->put_gamma(@best_pair); |
494
|
|
|
|
|
|
|
} |
495
|
813
|
|
|
|
|
2489
|
1; |
496
|
|
|
|
|
|
|
} |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
sub get_goldbach_g2 { |
499
|
813
|
|
|
813
|
1
|
13341
|
my $self = shift; |
500
|
813
|
50
|
|
|
|
2364
|
$self->error_stream_mode('read') if $self->writing; |
501
|
|
|
|
|
|
|
|
502
|
813
|
|
|
|
|
1107
|
my $count = shift; |
503
|
813
|
100
|
|
|
|
1893
|
if (!defined $count) { $count = 1; } |
|
792
|
50
|
|
|
|
1045
|
|
|
|
0
|
|
|
|
|
|
504
|
21
|
|
|
|
|
35
|
elsif ($count < 0) { $count = ~0; } # Get everything |
505
|
0
|
|
|
|
|
0
|
elsif ($count == 0) { return; } |
506
|
|
|
|
|
|
|
|
507
|
813
|
|
|
|
|
1034
|
my @vals; |
508
|
813
|
|
|
|
|
1398
|
my $p = \@_pbasis; |
509
|
813
|
|
|
|
|
2676
|
$self->code_pos_start('Goldbach G2'); |
510
|
813
|
|
|
|
|
24825
|
while ($count-- > 0) { |
511
|
2361
|
|
|
|
|
6579
|
$self->code_pos_set; |
512
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
# Look at the start 3 values |
514
|
2361
|
|
|
|
|
79257
|
my $look = $self->read(3, 'readahead'); |
515
|
2361
|
100
|
|
|
|
5019
|
last unless defined $look; |
516
|
|
|
|
|
|
|
|
517
|
2340
|
100
|
|
|
|
5074
|
if ($look == 6) { $self->skip(3); push @vals, 0; next; } |
|
75
|
|
|
|
|
260
|
|
|
75
|
|
|
|
|
117
|
|
|
75
|
|
|
|
|
339
|
|
518
|
2265
|
100
|
|
|
|
4334
|
if ($look == 7) { $self->skip(3); push @vals, 1; next; } |
|
36
|
|
|
|
|
116
|
|
|
36
|
|
|
|
|
47
|
|
|
36
|
|
|
|
|
97
|
|
519
|
|
|
|
|
|
|
|
520
|
2229
|
|
|
|
|
2502
|
my $val = -1; # Take into account the +1 for 1-based |
521
|
|
|
|
|
|
|
|
522
|
2229
|
100
|
|
|
|
4290
|
if ($look >= 4) { # First bit is a 1 => Odd number |
523
|
569
|
|
|
|
|
772
|
$val++; |
524
|
569
|
|
|
|
|
1737
|
$self->skip(1); |
525
|
|
|
|
|
|
|
} |
526
|
|
|
|
|
|
|
|
527
|
2229
|
|
|
|
|
6940
|
my ($i,$j) = $self->get_gamma(2); |
528
|
2229
|
50
|
33
|
|
|
10610
|
$self->error_off_stream unless defined $i && defined $j; |
529
|
|
|
|
|
|
|
|
530
|
2229
|
100
|
|
|
|
5319
|
my $maxindex = ($j == 0) ? $i : $j + ($i-1) - 1; |
531
|
2229
|
50
|
|
|
|
5024
|
$expand_primes_sub->(\@_pbasis, -$maxindex) unless defined $p->[$maxindex]; |
532
|
2229
|
50
|
|
|
|
4140
|
$self->error_code('overflow') unless defined $p->[$maxindex]; |
533
|
2229
|
100
|
|
|
|
3819
|
if ($j == 0) { |
534
|
397
|
|
|
|
|
655
|
$val += $p->[$i]; |
535
|
|
|
|
|
|
|
} else { |
536
|
1832
|
|
|
|
|
2354
|
$i = $i - 1; |
537
|
1832
|
|
|
|
|
2191
|
$j = $j + $i - 1; |
538
|
1832
|
|
|
|
|
3317
|
$val += $p->[$i] + $p->[$j]; |
539
|
|
|
|
|
|
|
} |
540
|
|
|
|
|
|
|
|
541
|
2229
|
|
|
|
|
6786
|
push @vals, $val; |
542
|
|
|
|
|
|
|
} |
543
|
813
|
|
|
|
|
2613
|
$self->code_pos_end; |
544
|
813
|
100
|
|
|
|
26070
|
wantarray ? @vals : $vals[-1]; |
545
|
|
|
|
|
|
|
} |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
|
548
|
28
|
|
|
28
|
|
146819
|
no Moo::Role; |
|
28
|
|
|
|
|
81
|
|
|
28
|
|
|
|
|
242
|
|
549
|
|
|
|
|
|
|
1; |
550
|
|
|
|
|
|
|
|
551
|
|
|
|
|
|
|
# ABSTRACT: A Role implementing Additive codes |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
=pod |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
=head1 NAME |
556
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
Data::BitStream::Code::Additive - A Role implementing Additive codes |
558
|
|
|
|
|
|
|
|
559
|
|
|
|
|
|
|
=head1 VERSION |
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
version 0.08 |
562
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
=head1 DESCRIPTION |
565
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
A role written for L that provides get and set methods for |
567
|
|
|
|
|
|
|
Additive codes. The role applies to a stream object. |
568
|
|
|
|
|
|
|
|
569
|
|
|
|
|
|
|
If you use the Goldbach codes for inputs more than ~1000, I highly recommend |
570
|
|
|
|
|
|
|
installing L for better performance. While these codes |
571
|
|
|
|
|
|
|
were not designed for large inputs, they work fine, however at large |
572
|
|
|
|
|
|
|
computational costs. |
573
|
|
|
|
|
|
|
|
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
=head1 EXAMPLES |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
use Data::BitStream; |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
my @array = (4, 2, 0, 3, 7, 72, 0, 1, 13); |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
$stream->put_goldbach_g1( @array ); |
582
|
|
|
|
|
|
|
$stream->rewind_for_read; |
583
|
|
|
|
|
|
|
my @array2 = $stream->get_goldbach_g1( -1 ); |
584
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
my @seeds = (2, 16, 46); |
586
|
|
|
|
|
|
|
$stream->erase_for_write; |
587
|
|
|
|
|
|
|
$stream->put_additive_seeded( \@seeds, @array ); |
588
|
|
|
|
|
|
|
$stream->rewind_for_read; |
589
|
|
|
|
|
|
|
my @array2 = $stream->get_additive_seeded( \@seeds, -1 ); |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
my @basis = (0,1,3,5,7,8,10,16,22,28,34,40,46,52,58,64,70,76,82,88,94); |
592
|
|
|
|
|
|
|
$stream->erase_for_write; |
593
|
|
|
|
|
|
|
$stream->put_additive( \@basis, @array ); |
594
|
|
|
|
|
|
|
$stream->rewind_for_read; |
595
|
|
|
|
|
|
|
my @array2 = $stream->get_additive( \@basis, -1 ); |
596
|
|
|
|
|
|
|
=head1 METHODS |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
=head2 Provided Object Methods |
599
|
|
|
|
|
|
|
|
600
|
|
|
|
|
|
|
=over 4 |
601
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
=item B< put_goldbach_g1($value) > |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
=item B< put_goldbach_g1(@values) > |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
Insert one or more values as Goldbach G1 codes. Returns 1. |
607
|
|
|
|
|
|
|
The Goldbach conjecture claims that any even number is the sum of two primes. |
608
|
|
|
|
|
|
|
This coding finds, for any value, the shortest pair of gamma-encoded prime |
609
|
|
|
|
|
|
|
indices that form C<2*($value+1)>. |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
=item B< get_goldbach_g1() > |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=item B< get_goldbach_g1($count) > |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
Decode one or more Goldbach G1 codes from the stream. If count is omitted, |
616
|
|
|
|
|
|
|
one value will be read. If count is negative, values will be read until |
617
|
|
|
|
|
|
|
the end of the stream is reached. In scalar context it returns the last |
618
|
|
|
|
|
|
|
code read; in array context it returns an array of all codes read. |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
=item B< put_goldbach_g2($value) > |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
=item B< put_goldbach_g2(@values) > |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
Insert one or more values as Goldbach G2 codes. Returns 1. Uses a different |
625
|
|
|
|
|
|
|
coding than G1 that should yield slightly smaller codes for large values. They |
626
|
|
|
|
|
|
|
will also be almost twice as fast to encode and decode. |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
=item B< get_goldbach_g2() > |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
=item B< get_goldbach_g2($count) > |
631
|
|
|
|
|
|
|
|
632
|
|
|
|
|
|
|
Decode one or more Goldbach G2 codes from the stream. If count is omitted, |
633
|
|
|
|
|
|
|
one value will be read. If count is negative, values will be read until |
634
|
|
|
|
|
|
|
the end of the stream is reached. In scalar context it returns the last |
635
|
|
|
|
|
|
|
code read; in array context it returns an array of all codes read. |
636
|
|
|
|
|
|
|
|
637
|
|
|
|
|
|
|
=item B< put_additive_seeded(\@seeds, $value) > |
638
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
=item B< put_additive_seeded(\@seeds, @values) > |
640
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
Insert one or more values as Additive codes. Returns 1. Arbitrary values |
642
|
|
|
|
|
|
|
may be given as input, with the basis constructed as needed using the seeds. |
643
|
|
|
|
|
|
|
The seeds should be sorted and not contain duplicates. They will typically |
644
|
|
|
|
|
|
|
be even numbers. Examples include |
645
|
|
|
|
|
|
|
C<[2,16,46]>, C<[2,34,82]>, C<[2,52,154,896]>. Each generated basis is |
646
|
|
|
|
|
|
|
cached, so successive put/get calls using the same seeds will run quickly. |
647
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
=item B< get_additive_seeded(\@seeds) > |
649
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
=item B< get_additive_seeded(\@seeds, $count) > |
651
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
Decode one or more Additive codes from the stream. If count is omitted, |
653
|
|
|
|
|
|
|
one value will be read. If count is negative, values will be read until |
654
|
|
|
|
|
|
|
the end of the stream is reached. In scalar context it returns the last |
655
|
|
|
|
|
|
|
code read; in array context it returns an array of all codes read. |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
=item B< generate_additive_basis($maxval, @seeds) > |
658
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
Construct an additive basis from C<0> to C<$maxval> using the given seeds. |
660
|
|
|
|
|
|
|
This allows construction of bases as shown in Fenwick's 2002 paper. The |
661
|
|
|
|
|
|
|
basis is returned as an array. The bases will be identical to those used |
662
|
|
|
|
|
|
|
with the C routines, though the latter allows the |
663
|
|
|
|
|
|
|
basis to be expanded as needed. |
664
|
|
|
|
|
|
|
|
665
|
|
|
|
|
|
|
=item B< put_additive(\@basis, $value) > |
666
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
=item B< put_additive(\@basis, @values) > |
668
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
Insert one or more values as 2-ary additive codes. Returns 1. An arbitrary |
670
|
|
|
|
|
|
|
basis to be used is provided. This basis should be sorted and consist of |
671
|
|
|
|
|
|
|
non-negative integers. For each value, all possible pairs C<(i,j)> are found |
672
|
|
|
|
|
|
|
where C, with the pair having the smallest sum of Gamma |
673
|
|
|
|
|
|
|
encoding for C and C being chosen. This pair is then Gamma encoded. |
674
|
|
|
|
|
|
|
If no two values in the basis sum to the requested value, a range error results. |
675
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
=item B< put_additive(sub { ... }, \@basis, @values) > |
677
|
|
|
|
|
|
|
|
678
|
|
|
|
|
|
|
Insert one or more values as 2-ary additive codes, as above. The provided |
679
|
|
|
|
|
|
|
subroutine is used to expand the basis as needed if a value is too large for |
680
|
|
|
|
|
|
|
the current basis. As before, the basis should be sorted and consist of |
681
|
|
|
|
|
|
|
non-negative integers. It is assumed the basis is complete up to the last |
682
|
|
|
|
|
|
|
element (that is, the basis will only be expanded). The argument to the sub |
683
|
|
|
|
|
|
|
is a reference to the basis array and a value. When returned, the last entry |
684
|
|
|
|
|
|
|
of the basis should be greater than or equal to the value. |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
=item B< get_additive(\@basis) > |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
=item B< get_additive(\@basis, $count) > |
689
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
Decode one or more 2-ary additive codes from the stream. If count is omitted, |
691
|
|
|
|
|
|
|
one value will be read. If count is negative, values will be read until |
692
|
|
|
|
|
|
|
the end of the stream is reached. In scalar context it returns the last |
693
|
|
|
|
|
|
|
code read; in array context it returns an array of all codes read. |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
=item B< get_additive(sub { ... }, \@basis, @values) > |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
Decode one or more values as 2-ary additive codes, as above. The provided |
698
|
|
|
|
|
|
|
subroutine is used to expand the basis as needed if an index is too large for |
699
|
|
|
|
|
|
|
the current basis. The argument to the sub is a reference to the basis array |
700
|
|
|
|
|
|
|
and a negative index. When returned, index C<-$index> of the basis must be |
701
|
|
|
|
|
|
|
defined as a non-negative integer. |
702
|
|
|
|
|
|
|
|
703
|
|
|
|
|
|
|
=back |
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
=head2 Parameters |
706
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
Both the basis and seed arrays are passed as array references. The basis |
708
|
|
|
|
|
|
|
array may be modified if a sub is given (since its job is to expand the basis). |
709
|
|
|
|
|
|
|
It is possible to use a tied array as the basis, but using an expansion |
710
|
|
|
|
|
|
|
callback sub is typically faster. |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
=head2 Required Methods |
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
=over 4 |
715
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
=item B< read > |
717
|
|
|
|
|
|
|
|
718
|
|
|
|
|
|
|
=item B< write > |
719
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
=item B< get_gamma > |
721
|
|
|
|
|
|
|
|
722
|
|
|
|
|
|
|
=item B< put_gamma > |
723
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
These methods are required for the role. |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
=back |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
=head1 SEE ALSO |
729
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
=over 4 |
731
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
=item L |
733
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
=item L |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
=item L |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
=item Peter Fenwick, "Variable-Length Integer Codes Based on the Goldbach Conjecture, and Other Additive Codes", IEEE Trans. Information Theory 48(8), pp 2412-2417, Aug 2002. |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
=back |
741
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
=head1 AUTHORS |
743
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
Dana Jacobsen |
745
|
|
|
|
|
|
|
|
746
|
|
|
|
|
|
|
=head1 COPYRIGHT |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
Copyright 2012 by Dana Jacobsen |
749
|
|
|
|
|
|
|
|
750
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
751
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
=cut |