line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
** 2001 September 15 |
3
|
|
|
|
|
|
|
** |
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
6
|
|
|
|
|
|
|
** |
7
|
|
|
|
|
|
|
** May you do good and not evil. |
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
10
|
|
|
|
|
|
|
** |
11
|
|
|
|
|
|
|
************************************************************************* |
12
|
|
|
|
|
|
|
** This module contains C code that generates VDBE code used to process |
13
|
|
|
|
|
|
|
** the WHERE clause of SQL statements. |
14
|
|
|
|
|
|
|
** |
15
|
|
|
|
|
|
|
** $Id: where.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $ |
16
|
|
|
|
|
|
|
*/ |
17
|
|
|
|
|
|
|
#include "sqliteInt.h" |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
/* |
20
|
|
|
|
|
|
|
** The query generator uses an array of instances of this structure to |
21
|
|
|
|
|
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE |
22
|
|
|
|
|
|
|
** clause subexpression is separated from the others by an AND operator. |
23
|
|
|
|
|
|
|
*/ |
24
|
|
|
|
|
|
|
typedef struct ExprInfo ExprInfo; |
25
|
|
|
|
|
|
|
struct ExprInfo { |
26
|
|
|
|
|
|
|
Expr *p; /* Pointer to the subexpression */ |
27
|
|
|
|
|
|
|
u8 indexable; /* True if this subexprssion is usable by an index */ |
28
|
|
|
|
|
|
|
short int idxLeft; /* p->pLeft is a column in this table number. -1 if |
29
|
|
|
|
|
|
|
** p->pLeft is not the column of any table */ |
30
|
|
|
|
|
|
|
short int idxRight; /* p->pRight is a column in this table number. -1 if |
31
|
|
|
|
|
|
|
** p->pRight is not the column of any table */ |
32
|
|
|
|
|
|
|
unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */ |
33
|
|
|
|
|
|
|
unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */ |
34
|
|
|
|
|
|
|
unsigned prereqAll; /* Bitmask of tables referenced by p */ |
35
|
|
|
|
|
|
|
}; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
/* |
38
|
|
|
|
|
|
|
** An instance of the following structure keeps track of a mapping |
39
|
|
|
|
|
|
|
** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers |
40
|
|
|
|
|
|
|
** are small integers contained in SrcList_item.iCursor and Expr.iTable |
41
|
|
|
|
|
|
|
** fields. For any given WHERE clause, we want to track which cursors |
42
|
|
|
|
|
|
|
** are being used, so we assign a single bit in a 32-bit word to track |
43
|
|
|
|
|
|
|
** that cursor. Then a 32-bit integer is able to show the set of all |
44
|
|
|
|
|
|
|
** cursors being used. |
45
|
|
|
|
|
|
|
*/ |
46
|
|
|
|
|
|
|
typedef struct ExprMaskSet ExprMaskSet; |
47
|
|
|
|
|
|
|
struct ExprMaskSet { |
48
|
|
|
|
|
|
|
int n; /* Number of assigned cursor values */ |
49
|
|
|
|
|
|
|
int ix[31]; /* Cursor assigned to each bit */ |
50
|
|
|
|
|
|
|
}; |
51
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
/* |
53
|
|
|
|
|
|
|
** Determine the number of elements in an array. |
54
|
|
|
|
|
|
|
*/ |
55
|
|
|
|
|
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
/* |
58
|
|
|
|
|
|
|
** This routine is used to divide the WHERE expression into subexpressions |
59
|
|
|
|
|
|
|
** separated by the AND operator. |
60
|
|
|
|
|
|
|
** |
61
|
|
|
|
|
|
|
** aSlot[] is an array of subexpressions structures. |
62
|
|
|
|
|
|
|
** There are nSlot spaces left in this array. This routine attempts to |
63
|
|
|
|
|
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions. |
64
|
|
|
|
|
|
|
** The return value is the number of slots filled. |
65
|
|
|
|
|
|
|
*/ |
66
|
144
|
|
|
|
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ |
67
|
144
|
|
|
|
|
|
int cnt = 0; |
68
|
144
|
100
|
|
|
|
|
if( pExpr==0 || nSlot<1 ) return 0; |
|
|
50
|
|
|
|
|
|
69
|
36
|
50
|
|
|
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){ |
|
|
100
|
|
|
|
|
|
70
|
33
|
|
|
|
|
|
aSlot[0].p = pExpr; |
71
|
33
|
|
|
|
|
|
return 1; |
72
|
|
|
|
|
|
|
} |
73
|
3
|
50
|
|
|
|
|
if( pExpr->pLeft->op!=TK_AND ){ |
74
|
3
|
|
|
|
|
|
aSlot[0].p = pExpr->pLeft; |
75
|
3
|
|
|
|
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); |
76
|
|
|
|
|
|
|
}else{ |
77
|
0
|
|
|
|
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); |
78
|
0
|
|
|
|
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); |
79
|
|
|
|
|
|
|
} |
80
|
3
|
|
|
|
|
|
return cnt; |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
/* |
84
|
|
|
|
|
|
|
** Initialize an expression mask set |
85
|
|
|
|
|
|
|
*/ |
86
|
|
|
|
|
|
|
#define initMaskSet(P) memset(P, 0, sizeof(*P)) |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
/* |
89
|
|
|
|
|
|
|
** Return the bitmask for the given cursor. Assign a new bitmask |
90
|
|
|
|
|
|
|
** if this is the first time the cursor has been seen. |
91
|
|
|
|
|
|
|
*/ |
92
|
309
|
|
|
|
|
|
static int getMask(ExprMaskSet *pMaskSet, int iCursor){ |
93
|
|
|
|
|
|
|
int i; |
94
|
313
|
100
|
|
|
|
|
for(i=0; in; i++){ |
95
|
194
|
100
|
|
|
|
|
if( pMaskSet->ix[i]==iCursor ) return 1<
|
96
|
|
|
|
|
|
|
} |
97
|
119
|
50
|
|
|
|
|
if( i==pMaskSet->n && iix) ){ |
|
|
50
|
|
|
|
|
|
98
|
119
|
|
|
|
|
|
pMaskSet->n++; |
99
|
119
|
|
|
|
|
|
pMaskSet->ix[i] = iCursor; |
100
|
119
|
|
|
|
|
|
return 1<
|
101
|
|
|
|
|
|
|
} |
102
|
0
|
|
|
|
|
|
return 0; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
/* |
106
|
|
|
|
|
|
|
** Destroy an expression mask set |
107
|
|
|
|
|
|
|
*/ |
108
|
|
|
|
|
|
|
#define freeMaskSet(P) /* NO-OP */ |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
/* |
111
|
|
|
|
|
|
|
** This routine walks (recursively) an expression tree and generates |
112
|
|
|
|
|
|
|
** a bitmask indicating which tables are used in that expression |
113
|
|
|
|
|
|
|
** tree. |
114
|
|
|
|
|
|
|
** |
115
|
|
|
|
|
|
|
** In order for this routine to work, the calling function must have |
116
|
|
|
|
|
|
|
** previously invoked sqliteExprResolveIds() on the expression. See |
117
|
|
|
|
|
|
|
** the header comment on that routine for additional information. |
118
|
|
|
|
|
|
|
** The sqliteExprResolveIds() routines looks for column names and |
119
|
|
|
|
|
|
|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
120
|
|
|
|
|
|
|
** the VDBE cursor number of the table. |
121
|
|
|
|
|
|
|
*/ |
122
|
182
|
|
|
|
|
|
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
123
|
182
|
|
|
|
|
|
unsigned int mask = 0; |
124
|
182
|
100
|
|
|
|
|
if( p==0 ) return 0; |
125
|
166
|
100
|
|
|
|
|
if( p->op==TK_COLUMN ){ |
126
|
71
|
|
|
|
|
|
mask = getMask(pMaskSet, p->iTable); |
127
|
71
|
50
|
|
|
|
|
if( mask==0 ) mask = -1; |
128
|
71
|
|
|
|
|
|
return mask; |
129
|
|
|
|
|
|
|
} |
130
|
95
|
100
|
|
|
|
|
if( p->pRight ){ |
131
|
23
|
|
|
|
|
|
mask = exprTableUsage(pMaskSet, p->pRight); |
132
|
|
|
|
|
|
|
} |
133
|
95
|
100
|
|
|
|
|
if( p->pLeft ){ |
134
|
33
|
|
|
|
|
|
mask |= exprTableUsage(pMaskSet, p->pLeft); |
135
|
|
|
|
|
|
|
} |
136
|
95
|
100
|
|
|
|
|
if( p->pList ){ |
137
|
|
|
|
|
|
|
int i; |
138
|
27
|
100
|
|
|
|
|
for(i=0; ipList->nExpr; i++){ |
139
|
18
|
|
|
|
|
|
mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
} |
142
|
95
|
|
|
|
|
|
return mask; |
143
|
|
|
|
|
|
|
} |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
/* |
146
|
|
|
|
|
|
|
** Return TRUE if the given operator is one of the operators that is |
147
|
|
|
|
|
|
|
** allowed for an indexable WHERE clause. The allowed operators are |
148
|
|
|
|
|
|
|
** "=", "<", ">", "<=", ">=", and "IN". |
149
|
|
|
|
|
|
|
*/ |
150
|
36
|
|
|
|
|
|
static int allowedOp(int op){ |
151
|
36
|
100
|
|
|
|
|
switch( op ){ |
152
|
|
|
|
|
|
|
case TK_LT: |
153
|
|
|
|
|
|
|
case TK_LE: |
154
|
|
|
|
|
|
|
case TK_GT: |
155
|
|
|
|
|
|
|
case TK_GE: |
156
|
|
|
|
|
|
|
case TK_EQ: |
157
|
|
|
|
|
|
|
case TK_IN: |
158
|
29
|
|
|
|
|
|
return 1; |
159
|
|
|
|
|
|
|
default: |
160
|
7
|
|
|
|
|
|
return 0; |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
/* |
165
|
|
|
|
|
|
|
** The input to this routine is an ExprInfo structure with only the |
166
|
|
|
|
|
|
|
** "p" field filled in. The job of this routine is to analyze the |
167
|
|
|
|
|
|
|
** subexpression and populate all the other fields of the ExprInfo |
168
|
|
|
|
|
|
|
** structure. |
169
|
|
|
|
|
|
|
*/ |
170
|
36
|
|
|
|
|
|
static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){ |
171
|
36
|
|
|
|
|
|
Expr *pExpr = pInfo->p; |
172
|
36
|
|
|
|
|
|
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
173
|
36
|
|
|
|
|
|
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
174
|
36
|
|
|
|
|
|
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); |
175
|
36
|
|
|
|
|
|
pInfo->indexable = 0; |
176
|
36
|
|
|
|
|
|
pInfo->idxLeft = -1; |
177
|
36
|
|
|
|
|
|
pInfo->idxRight = -1; |
178
|
36
|
100
|
|
|
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ |
|
|
50
|
|
|
|
|
|
179
|
29
|
100
|
|
|
|
|
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ |
|
|
100
|
|
|
|
|
|
180
|
1
|
|
|
|
|
|
pInfo->idxRight = pExpr->pRight->iTable; |
181
|
1
|
|
|
|
|
|
pInfo->indexable = 1; |
182
|
|
|
|
|
|
|
} |
183
|
29
|
50
|
|
|
|
|
if( pExpr->pLeft->op==TK_COLUMN ){ |
184
|
29
|
|
|
|
|
|
pInfo->idxLeft = pExpr->pLeft->iTable; |
185
|
29
|
|
|
|
|
|
pInfo->indexable = 1; |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
} |
188
|
36
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
/* |
191
|
|
|
|
|
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
192
|
|
|
|
|
|
|
** left-most table in the FROM clause of that same SELECT statement and |
193
|
|
|
|
|
|
|
** the table has a cursor number of "base". |
194
|
|
|
|
|
|
|
** |
195
|
|
|
|
|
|
|
** This routine attempts to find an index for pTab that generates the |
196
|
|
|
|
|
|
|
** correct record sequence for the given ORDER BY clause. The return value |
197
|
|
|
|
|
|
|
** is a pointer to an index that does the job. NULL is returned if the |
198
|
|
|
|
|
|
|
** table has no index that will generate the correct sort order. |
199
|
|
|
|
|
|
|
** |
200
|
|
|
|
|
|
|
** If there are two or more indices that generate the correct sort order |
201
|
|
|
|
|
|
|
** and pPreferredIdx is one of those indices, then return pPreferredIdx. |
202
|
|
|
|
|
|
|
** |
203
|
|
|
|
|
|
|
** nEqCol is the number of columns of pPreferredIdx that are used as |
204
|
|
|
|
|
|
|
** equality constraints. Any index returned must have exactly this same |
205
|
|
|
|
|
|
|
** set of columns. The ORDER BY clause only matches index columns beyond the |
206
|
|
|
|
|
|
|
** the first nEqCol columns. |
207
|
|
|
|
|
|
|
** |
208
|
|
|
|
|
|
|
** All terms of the ORDER BY clause must be either ASC or DESC. The |
209
|
|
|
|
|
|
|
** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is |
210
|
|
|
|
|
|
|
** set to 0 if the ORDER BY clause is all ASC. |
211
|
|
|
|
|
|
|
*/ |
212
|
4
|
|
|
|
|
|
static Index *findSortingIndex( |
213
|
|
|
|
|
|
|
Table *pTab, /* The table to be sorted */ |
214
|
|
|
|
|
|
|
int base, /* Cursor number for pTab */ |
215
|
|
|
|
|
|
|
ExprList *pOrderBy, /* The ORDER BY clause */ |
216
|
|
|
|
|
|
|
Index *pPreferredIdx, /* Use this index, if possible and not NULL */ |
217
|
|
|
|
|
|
|
int nEqCol, /* Number of index columns used with == constraints */ |
218
|
|
|
|
|
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */ |
219
|
|
|
|
|
|
|
){ |
220
|
|
|
|
|
|
|
int i, j; |
221
|
|
|
|
|
|
|
Index *pMatch; |
222
|
|
|
|
|
|
|
Index *pIdx; |
223
|
|
|
|
|
|
|
int sortOrder; |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
assert( pOrderBy!=0 ); |
226
|
|
|
|
|
|
|
assert( pOrderBy->nExpr>0 ); |
227
|
4
|
|
|
|
|
|
sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK; |
228
|
8
|
100
|
|
|
|
|
for(i=0; inExpr; i++){ |
229
|
|
|
|
|
|
|
Expr *p; |
230
|
7
|
50
|
|
|
|
|
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){ |
231
|
|
|
|
|
|
|
/* Indices can only be used if all ORDER BY terms are either |
232
|
|
|
|
|
|
|
** DESC or ASC. Indices cannot be used on a mixture. */ |
233
|
0
|
|
|
|
|
|
return 0; |
234
|
|
|
|
|
|
|
} |
235
|
7
|
50
|
|
|
|
|
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){ |
236
|
|
|
|
|
|
|
/* Do not sort by index if there is a COLLATE clause */ |
237
|
0
|
|
|
|
|
|
return 0; |
238
|
|
|
|
|
|
|
} |
239
|
7
|
|
|
|
|
|
p = pOrderBy->a[i].pExpr; |
240
|
7
|
100
|
|
|
|
|
if( p->op!=TK_COLUMN || p->iTable!=base ){ |
|
|
50
|
|
|
|
|
|
241
|
|
|
|
|
|
|
/* Can not use an index sort on anything that is not a column in the |
242
|
|
|
|
|
|
|
** left-most table of the FROM clause */ |
243
|
3
|
|
|
|
|
|
return 0; |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
/* If we get this far, it means the ORDER BY clause consists only of |
248
|
|
|
|
|
|
|
** ascending columns in the left-most table of the FROM clause. Now |
249
|
|
|
|
|
|
|
** check for a matching index. |
250
|
|
|
|
|
|
|
*/ |
251
|
1
|
|
|
|
|
|
pMatch = 0; |
252
|
1
|
50
|
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
253
|
0
|
|
|
|
|
|
int nExpr = pOrderBy->nExpr; |
254
|
0
|
0
|
|
|
|
|
if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; |
|
|
0
|
|
|
|
|
|
255
|
0
|
0
|
|
|
|
|
for(i=j=0; i
|
256
|
0
|
0
|
|
|
|
|
if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; |
257
|
0
|
0
|
|
|
|
|
if( ja[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; } |
|
|
0
|
|
|
|
|
|
258
|
|
|
|
|
|
|
} |
259
|
0
|
0
|
|
|
|
|
if( i
|
260
|
0
|
0
|
|
|
|
|
for(i=0; i+j
|
261
|
0
|
0
|
|
|
|
|
if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break; |
262
|
|
|
|
|
|
|
} |
263
|
0
|
0
|
|
|
|
|
if( i+j>=nExpr ){ |
264
|
0
|
|
|
|
|
|
pMatch = pIdx; |
265
|
0
|
0
|
|
|
|
|
if( pIdx==pPreferredIdx ) break; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
} |
268
|
1
|
50
|
|
|
|
|
if( pMatch && pbRev ){ |
|
|
0
|
|
|
|
|
|
269
|
0
|
|
|
|
|
|
*pbRev = sortOrder==SQLITE_SO_DESC; |
270
|
|
|
|
|
|
|
} |
271
|
1
|
|
|
|
|
|
return pMatch; |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* |
275
|
|
|
|
|
|
|
** Disable a term in the WHERE clause. Except, do not disable the term |
276
|
|
|
|
|
|
|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
277
|
|
|
|
|
|
|
** or USING clause of that join. |
278
|
|
|
|
|
|
|
** |
279
|
|
|
|
|
|
|
** Consider the term t2.z='ok' in the following queries: |
280
|
|
|
|
|
|
|
** |
281
|
|
|
|
|
|
|
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
282
|
|
|
|
|
|
|
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
283
|
|
|
|
|
|
|
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
284
|
|
|
|
|
|
|
** |
285
|
|
|
|
|
|
|
** The t2.z='ok' is disabled in the in (2) because it did not originate |
286
|
|
|
|
|
|
|
** in the ON clause. The term is disabled in (3) because it is not part |
287
|
|
|
|
|
|
|
** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
288
|
|
|
|
|
|
|
** |
289
|
|
|
|
|
|
|
** Disabling a term causes that term to not be tested in the inner loop |
290
|
|
|
|
|
|
|
** of the join. Disabling is an optimization. We would get the correct |
291
|
|
|
|
|
|
|
** results if nothing were ever disabled, but joins might run a little |
292
|
|
|
|
|
|
|
** slower. The trick is to disable as much as we can without disabling |
293
|
|
|
|
|
|
|
** too much. If we disabled in (1), we'd get the wrong answer. |
294
|
|
|
|
|
|
|
** See ticket #813. |
295
|
|
|
|
|
|
|
*/ |
296
|
0
|
|
|
|
|
|
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){ |
297
|
0
|
|
|
|
|
|
Expr *pExpr = *ppExpr; |
298
|
0
|
0
|
|
|
|
|
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){ |
|
|
0
|
|
|
|
|
|
299
|
0
|
|
|
|
|
|
*ppExpr = 0; |
300
|
|
|
|
|
|
|
} |
301
|
0
|
|
|
|
|
|
} |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
/* |
304
|
|
|
|
|
|
|
** Generate the beginning of the loop used for WHERE clause processing. |
305
|
|
|
|
|
|
|
** The return value is a pointer to an (opaque) structure that contains |
306
|
|
|
|
|
|
|
** information needed to terminate the loop. Later, the calling routine |
307
|
|
|
|
|
|
|
** should invoke sqliteWhereEnd() with the return value of this function |
308
|
|
|
|
|
|
|
** in order to complete the WHERE clause processing. |
309
|
|
|
|
|
|
|
** |
310
|
|
|
|
|
|
|
** If an error occurs, this routine returns NULL. |
311
|
|
|
|
|
|
|
** |
312
|
|
|
|
|
|
|
** The basic idea is to do a nested loop, one loop for each table in |
313
|
|
|
|
|
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the |
314
|
|
|
|
|
|
|
** same as a SELECT with only a single table in the FROM clause.) For |
315
|
|
|
|
|
|
|
** example, if the SQL is this: |
316
|
|
|
|
|
|
|
** |
317
|
|
|
|
|
|
|
** SELECT * FROM t1, t2, t3 WHERE ...; |
318
|
|
|
|
|
|
|
** |
319
|
|
|
|
|
|
|
** Then the code generated is conceptually like the following: |
320
|
|
|
|
|
|
|
** |
321
|
|
|
|
|
|
|
** foreach row1 in t1 do \ Code generated |
322
|
|
|
|
|
|
|
** foreach row2 in t2 do |-- by sqliteWhereBegin() |
323
|
|
|
|
|
|
|
** foreach row3 in t3 do / |
324
|
|
|
|
|
|
|
** ... |
325
|
|
|
|
|
|
|
** end \ Code generated |
326
|
|
|
|
|
|
|
** end |-- by sqliteWhereEnd() |
327
|
|
|
|
|
|
|
** end / |
328
|
|
|
|
|
|
|
** |
329
|
|
|
|
|
|
|
** There are Btree cursors associated with each table. t1 uses cursor |
330
|
|
|
|
|
|
|
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
331
|
|
|
|
|
|
|
** And so forth. This routine generates code to open those VDBE cursors |
332
|
|
|
|
|
|
|
** and sqliteWhereEnd() generates the code to close them. |
333
|
|
|
|
|
|
|
** |
334
|
|
|
|
|
|
|
** If the WHERE clause is empty, the foreach loops must each scan their |
335
|
|
|
|
|
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if |
336
|
|
|
|
|
|
|
** the tables have indices and there are terms in the WHERE clause that |
337
|
|
|
|
|
|
|
** refer to those indices, a complete table scan can be avoided and the |
338
|
|
|
|
|
|
|
** code will run much faster. Most of the work of this routine is checking |
339
|
|
|
|
|
|
|
** to see if there are indices that can be used to speed up the loop. |
340
|
|
|
|
|
|
|
** |
341
|
|
|
|
|
|
|
** Terms of the WHERE clause are also used to limit which rows actually |
342
|
|
|
|
|
|
|
** make it to the "..." in the middle of the loop. After each "foreach", |
343
|
|
|
|
|
|
|
** terms of the WHERE clause that use only terms in that loop and outer |
344
|
|
|
|
|
|
|
** loops are evaluated and if false a jump is made around all subsequent |
345
|
|
|
|
|
|
|
** inner loops (or around the "..." if the test occurs within the inner- |
346
|
|
|
|
|
|
|
** most loop) |
347
|
|
|
|
|
|
|
** |
348
|
|
|
|
|
|
|
** OUTER JOINS |
349
|
|
|
|
|
|
|
** |
350
|
|
|
|
|
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows: |
351
|
|
|
|
|
|
|
** |
352
|
|
|
|
|
|
|
** foreach row1 in t1 do |
353
|
|
|
|
|
|
|
** flag = 0 |
354
|
|
|
|
|
|
|
** foreach row2 in t2 do |
355
|
|
|
|
|
|
|
** start: |
356
|
|
|
|
|
|
|
** ... |
357
|
|
|
|
|
|
|
** flag = 1 |
358
|
|
|
|
|
|
|
** end |
359
|
|
|
|
|
|
|
** if flag==0 then |
360
|
|
|
|
|
|
|
** move the row2 cursor to a null row |
361
|
|
|
|
|
|
|
** goto start |
362
|
|
|
|
|
|
|
** fi |
363
|
|
|
|
|
|
|
** end |
364
|
|
|
|
|
|
|
** |
365
|
|
|
|
|
|
|
** ORDER BY CLAUSE PROCESSING |
366
|
|
|
|
|
|
|
** |
367
|
|
|
|
|
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
368
|
|
|
|
|
|
|
** if there is one. If there is no ORDER BY clause or if this routine |
369
|
|
|
|
|
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
370
|
|
|
|
|
|
|
** |
371
|
|
|
|
|
|
|
** If an index can be used so that the natural output order of the table |
372
|
|
|
|
|
|
|
** scan is correct for the ORDER BY clause, then that index is used and |
373
|
|
|
|
|
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an |
374
|
|
|
|
|
|
|
** unnecessary sort of the result set if an index appropriate for the |
375
|
|
|
|
|
|
|
** ORDER BY clause already exists. |
376
|
|
|
|
|
|
|
** |
377
|
|
|
|
|
|
|
** If the where clause loops cannot be arranged to provide the correct |
378
|
|
|
|
|
|
|
** output order, then the *ppOrderBy is unchanged. |
379
|
|
|
|
|
|
|
*/ |
380
|
141
|
|
|
|
|
|
WhereInfo *sqliteWhereBegin( |
381
|
|
|
|
|
|
|
Parse *pParse, /* The parser context */ |
382
|
|
|
|
|
|
|
SrcList *pTabList, /* A list of all tables to be scanned */ |
383
|
|
|
|
|
|
|
Expr *pWhere, /* The WHERE clause */ |
384
|
|
|
|
|
|
|
int pushKey, /* If TRUE, leave the table key on the stack */ |
385
|
|
|
|
|
|
|
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ |
386
|
|
|
|
|
|
|
){ |
387
|
|
|
|
|
|
|
int i; /* Loop counter */ |
388
|
|
|
|
|
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */ |
389
|
141
|
|
|
|
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
390
|
141
|
|
|
|
|
|
int brk, cont = 0; /* Addresses used during code generation */ |
391
|
|
|
|
|
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */ |
392
|
|
|
|
|
|
|
int loopMask; /* One bit set for each outer loop */ |
393
|
|
|
|
|
|
|
int haveKey; /* True if KEY is on the stack */ |
394
|
|
|
|
|
|
|
ExprMaskSet maskSet; /* The expression mask set */ |
395
|
|
|
|
|
|
|
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */ |
396
|
|
|
|
|
|
|
int iDirectLt[32]; /* Term of the form ROWID
|
397
|
|
|
|
|
|
|
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */ |
398
|
|
|
|
|
|
|
ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */ |
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
/* pushKey is only allowed if there is a single table (as in an INSERT or |
401
|
|
|
|
|
|
|
** UPDATE statement) |
402
|
|
|
|
|
|
|
*/ |
403
|
|
|
|
|
|
|
assert( pushKey==0 || pTabList->nSrc==1 ); |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each |
406
|
|
|
|
|
|
|
** subexpression is separated by an AND operator. If the aExpr[] |
407
|
|
|
|
|
|
|
** array fills up, the last entry might point to an expression which |
408
|
|
|
|
|
|
|
** contains additional unfactored AND operators. |
409
|
|
|
|
|
|
|
*/ |
410
|
141
|
|
|
|
|
|
initMaskSet(&maskSet); |
411
|
141
|
|
|
|
|
|
memset(aExpr, 0, sizeof(aExpr)); |
412
|
141
|
|
|
|
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); |
413
|
141
|
50
|
|
|
|
|
if( nExpr==ARRAYSIZE(aExpr) ){ |
414
|
0
|
|
|
|
|
|
sqliteErrorMsg(pParse, "WHERE clause too complex - no more " |
415
|
|
|
|
|
|
|
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); |
416
|
0
|
|
|
|
|
|
return 0; |
417
|
|
|
|
|
|
|
} |
418
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the |
420
|
|
|
|
|
|
|
** return value. |
421
|
|
|
|
|
|
|
*/ |
422
|
141
|
|
|
|
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
423
|
141
|
50
|
|
|
|
|
if( sqlite_malloc_failed ){ |
424
|
0
|
|
|
|
|
|
sqliteFree(pWInfo); |
425
|
0
|
|
|
|
|
|
return 0; |
426
|
|
|
|
|
|
|
} |
427
|
141
|
|
|
|
|
|
pWInfo->pParse = pParse; |
428
|
141
|
|
|
|
|
|
pWInfo->pTabList = pTabList; |
429
|
141
|
|
|
|
|
|
pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab; |
430
|
141
|
|
|
|
|
|
pWInfo->iBreak = sqliteVdbeMakeLabel(v); |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the |
433
|
|
|
|
|
|
|
** expression and either jump over all of the code or fall thru. |
434
|
|
|
|
|
|
|
*/ |
435
|
141
|
100
|
|
|
|
|
if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
436
|
0
|
|
|
|
|
|
sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); |
437
|
0
|
|
|
|
|
|
pWhere = 0; |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
/* Analyze all of the subexpressions. |
441
|
|
|
|
|
|
|
*/ |
442
|
177
|
100
|
|
|
|
|
for(i=0; i
|
443
|
36
|
|
|
|
|
|
exprAnalyze(&maskSet, &aExpr[i]); |
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
/* If we are executing a trigger body, remove all references to |
446
|
|
|
|
|
|
|
** new.* and old.* tables from the prerequisite masks. |
447
|
|
|
|
|
|
|
*/ |
448
|
36
|
50
|
|
|
|
|
if( pParse->trigStack ){ |
449
|
|
|
|
|
|
|
int x; |
450
|
0
|
0
|
|
|
|
|
if( (x = pParse->trigStack->newIdx) >= 0 ){ |
451
|
0
|
|
|
|
|
|
int mask = ~getMask(&maskSet, x); |
452
|
0
|
|
|
|
|
|
aExpr[i].prereqRight &= mask; |
453
|
0
|
|
|
|
|
|
aExpr[i].prereqLeft &= mask; |
454
|
0
|
|
|
|
|
|
aExpr[i].prereqAll &= mask; |
455
|
|
|
|
|
|
|
} |
456
|
0
|
0
|
|
|
|
|
if( (x = pParse->trigStack->oldIdx) >= 0 ){ |
457
|
0
|
|
|
|
|
|
int mask = ~getMask(&maskSet, x); |
458
|
0
|
|
|
|
|
|
aExpr[i].prereqRight &= mask; |
459
|
0
|
|
|
|
|
|
aExpr[i].prereqLeft &= mask; |
460
|
0
|
|
|
|
|
|
aExpr[i].prereqAll &= mask; |
461
|
|
|
|
|
|
|
} |
462
|
|
|
|
|
|
|
} |
463
|
|
|
|
|
|
|
} |
464
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
/* Figure out what index to use (if any) for each nested loop. |
466
|
|
|
|
|
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested |
467
|
|
|
|
|
|
|
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner |
468
|
|
|
|
|
|
|
** loop. |
469
|
|
|
|
|
|
|
** |
470
|
|
|
|
|
|
|
** If terms exist that use the ROWID of any table, then set the |
471
|
|
|
|
|
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table |
472
|
|
|
|
|
|
|
** to the index of the term containing the ROWID. We always prefer |
473
|
|
|
|
|
|
|
** to use a ROWID which can directly access a table rather than an |
474
|
|
|
|
|
|
|
** index which requires reading an index first to get the rowid then |
475
|
|
|
|
|
|
|
** doing a second read of the actual database table. |
476
|
|
|
|
|
|
|
** |
477
|
|
|
|
|
|
|
** Actually, if there are more than 32 tables in the join, only the |
478
|
|
|
|
|
|
|
** first 32 tables are candidates for indices. This is (again) due |
479
|
|
|
|
|
|
|
** to the limit of 32 bits in an integer bitmask. |
480
|
|
|
|
|
|
|
*/ |
481
|
141
|
|
|
|
|
|
loopMask = 0; |
482
|
260
|
100
|
|
|
|
|
for(i=0; inSrc && i
|
|
|
50
|
|
|
|
|
|
483
|
|
|
|
|
|
|
int j; |
484
|
119
|
|
|
|
|
|
int iCur = pTabList->a[i].iCursor; /* The cursor for this table */ |
485
|
119
|
|
|
|
|
|
int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ |
486
|
119
|
|
|
|
|
|
Table *pTab = pTabList->a[i].pTab; |
487
|
|
|
|
|
|
|
Index *pIdx; |
488
|
119
|
|
|
|
|
|
Index *pBestIdx = 0; |
489
|
119
|
|
|
|
|
|
int bestScore = 0; |
490
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
/* Check to see if there is an expression that uses only the |
492
|
|
|
|
|
|
|
** ROWID field of this table. For terms of the form ROWID==expr |
493
|
|
|
|
|
|
|
** set iDirectEq[i] to the index of the term. For terms of the |
494
|
|
|
|
|
|
|
** form ROWID
|
495
|
|
|
|
|
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. |
496
|
|
|
|
|
|
|
** |
497
|
|
|
|
|
|
|
** (Added:) Treat ROWID IN expr like ROWID=expr. |
498
|
|
|
|
|
|
|
*/ |
499
|
119
|
|
|
|
|
|
pWInfo->a[i].iCur = -1; |
500
|
119
|
|
|
|
|
|
iDirectEq[i] = -1; |
501
|
119
|
|
|
|
|
|
iDirectLt[i] = -1; |
502
|
119
|
|
|
|
|
|
iDirectGt[i] = -1; |
503
|
156
|
100
|
|
|
|
|
for(j=0; j
|
504
|
37
|
100
|
|
|
|
|
if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0 |
|
|
50
|
|
|
|
|
|
505
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ |
506
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
507
|
|
|
|
|
|
|
case TK_IN: |
508
|
0
|
|
|
|
|
|
case TK_EQ: iDirectEq[i] = j; break; |
509
|
|
|
|
|
|
|
case TK_LE: |
510
|
0
|
|
|
|
|
|
case TK_LT: iDirectLt[i] = j; break; |
511
|
|
|
|
|
|
|
case TK_GE: |
512
|
0
|
|
|
|
|
|
case TK_GT: iDirectGt[i] = j; break; |
513
|
|
|
|
|
|
|
} |
514
|
|
|
|
|
|
|
} |
515
|
37
|
100
|
|
|
|
|
if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0 |
|
|
50
|
|
|
|
|
|
516
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ |
517
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
518
|
0
|
|
|
|
|
|
case TK_EQ: iDirectEq[i] = j; break; |
519
|
|
|
|
|
|
|
case TK_LE: |
520
|
0
|
|
|
|
|
|
case TK_LT: iDirectGt[i] = j; break; |
521
|
|
|
|
|
|
|
case TK_GE: |
522
|
0
|
|
|
|
|
|
case TK_GT: iDirectLt[i] = j; break; |
523
|
|
|
|
|
|
|
} |
524
|
|
|
|
|
|
|
} |
525
|
|
|
|
|
|
|
} |
526
|
119
|
50
|
|
|
|
|
if( iDirectEq[i]>=0 ){ |
527
|
0
|
|
|
|
|
|
loopMask |= mask; |
528
|
0
|
|
|
|
|
|
pWInfo->a[i].pIdx = 0; |
529
|
0
|
|
|
|
|
|
continue; |
530
|
|
|
|
|
|
|
} |
531
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to |
533
|
|
|
|
|
|
|
** the "best" index. pBestIdx is left set to NULL if no indices |
534
|
|
|
|
|
|
|
** are usable. |
535
|
|
|
|
|
|
|
** |
536
|
|
|
|
|
|
|
** The best index is determined as follows. For each of the |
537
|
|
|
|
|
|
|
** left-most terms that is fixed by an equality operator, add |
538
|
|
|
|
|
|
|
** 8 to the score. The right-most term of the index may be |
539
|
|
|
|
|
|
|
** constrained by an inequality. Add 1 if for an "x<..." constraint |
540
|
|
|
|
|
|
|
** and add 2 for an "x>..." constraint. Chose the index that |
541
|
|
|
|
|
|
|
** gives the best score. |
542
|
|
|
|
|
|
|
** |
543
|
|
|
|
|
|
|
** This scoring system is designed so that the score can later be |
544
|
|
|
|
|
|
|
** used to determine how the index is used. If the score&7 is 0 |
545
|
|
|
|
|
|
|
** then all constraints are equalities. If score&1 is not 0 then |
546
|
|
|
|
|
|
|
** there is an inequality used as a termination key. (ex: "x<...") |
547
|
|
|
|
|
|
|
** If score&2 is not 0 then there is an inequality used as the |
548
|
|
|
|
|
|
|
** start key. (ex: "x>..."). A score or 4 is the special case |
549
|
|
|
|
|
|
|
** of an IN operator constraint. (ex: "x IN ..."). |
550
|
|
|
|
|
|
|
** |
551
|
|
|
|
|
|
|
** The IN operator (as in " IN (...)") is treated the same as |
552
|
|
|
|
|
|
|
** an equality comparison except that it can only be used on the |
553
|
|
|
|
|
|
|
** left-most column of an index and other terms of the WHERE clause |
554
|
|
|
|
|
|
|
** cannot be used in conjunction with the IN operator to help satisfy |
555
|
|
|
|
|
|
|
** other columns of the index. |
556
|
|
|
|
|
|
|
*/ |
557
|
120
|
100
|
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
558
|
1
|
|
|
|
|
|
int eqMask = 0; /* Index columns covered by an x=... term */ |
559
|
1
|
|
|
|
|
|
int ltMask = 0; /* Index columns covered by an x<... term */ |
560
|
1
|
|
|
|
|
|
int gtMask = 0; /* Index columns covered by an x>... term */ |
561
|
1
|
|
|
|
|
|
int inMask = 0; /* Index columns covered by an x IN .. term */ |
562
|
|
|
|
|
|
|
int nEq, m, score; |
563
|
|
|
|
|
|
|
|
564
|
1
|
50
|
|
|
|
|
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ |
565
|
1
|
50
|
|
|
|
|
for(j=0; j
|
566
|
0
|
0
|
|
|
|
|
if( aExpr[j].idxLeft==iCur |
567
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ |
568
|
0
|
|
|
|
|
|
int iColumn = aExpr[j].p->pLeft->iColumn; |
569
|
|
|
|
|
|
|
int k; |
570
|
0
|
0
|
|
|
|
|
for(k=0; knColumn; k++){ |
571
|
0
|
0
|
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){ |
572
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
573
|
|
|
|
|
|
|
case TK_IN: { |
574
|
0
|
0
|
|
|
|
|
if( k==0 ) inMask |= 1; |
575
|
0
|
|
|
|
|
|
break; |
576
|
|
|
|
|
|
|
} |
577
|
|
|
|
|
|
|
case TK_EQ: { |
578
|
0
|
|
|
|
|
|
eqMask |= 1<
|
579
|
0
|
|
|
|
|
|
break; |
580
|
|
|
|
|
|
|
} |
581
|
|
|
|
|
|
|
case TK_LE: |
582
|
|
|
|
|
|
|
case TK_LT: { |
583
|
0
|
|
|
|
|
|
ltMask |= 1<
|
584
|
0
|
|
|
|
|
|
break; |
585
|
|
|
|
|
|
|
} |
586
|
|
|
|
|
|
|
case TK_GE: |
587
|
|
|
|
|
|
|
case TK_GT: { |
588
|
0
|
|
|
|
|
|
gtMask |= 1<
|
589
|
0
|
|
|
|
|
|
break; |
590
|
|
|
|
|
|
|
} |
591
|
|
|
|
|
|
|
default: { |
592
|
|
|
|
|
|
|
/* CANT_HAPPEN */ |
593
|
|
|
|
|
|
|
assert( 0 ); |
594
|
0
|
|
|
|
|
|
break; |
595
|
|
|
|
|
|
|
} |
596
|
|
|
|
|
|
|
} |
597
|
0
|
|
|
|
|
|
break; |
598
|
|
|
|
|
|
|
} |
599
|
|
|
|
|
|
|
} |
600
|
|
|
|
|
|
|
} |
601
|
0
|
0
|
|
|
|
|
if( aExpr[j].idxRight==iCur |
602
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ |
603
|
0
|
|
|
|
|
|
int iColumn = aExpr[j].p->pRight->iColumn; |
604
|
|
|
|
|
|
|
int k; |
605
|
0
|
0
|
|
|
|
|
for(k=0; knColumn; k++){ |
606
|
0
|
0
|
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){ |
607
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
608
|
|
|
|
|
|
|
case TK_EQ: { |
609
|
0
|
|
|
|
|
|
eqMask |= 1<
|
610
|
0
|
|
|
|
|
|
break; |
611
|
|
|
|
|
|
|
} |
612
|
|
|
|
|
|
|
case TK_LE: |
613
|
|
|
|
|
|
|
case TK_LT: { |
614
|
0
|
|
|
|
|
|
gtMask |= 1<
|
615
|
0
|
|
|
|
|
|
break; |
616
|
|
|
|
|
|
|
} |
617
|
|
|
|
|
|
|
case TK_GE: |
618
|
|
|
|
|
|
|
case TK_GT: { |
619
|
0
|
|
|
|
|
|
ltMask |= 1<
|
620
|
0
|
|
|
|
|
|
break; |
621
|
|
|
|
|
|
|
} |
622
|
|
|
|
|
|
|
default: { |
623
|
|
|
|
|
|
|
/* CANT_HAPPEN */ |
624
|
|
|
|
|
|
|
assert( 0 ); |
625
|
0
|
|
|
|
|
|
break; |
626
|
|
|
|
|
|
|
} |
627
|
|
|
|
|
|
|
} |
628
|
0
|
|
|
|
|
|
break; |
629
|
|
|
|
|
|
|
} |
630
|
|
|
|
|
|
|
} |
631
|
|
|
|
|
|
|
} |
632
|
|
|
|
|
|
|
} |
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
/* The following loop ends with nEq set to the number of columns |
635
|
|
|
|
|
|
|
** on the left of the index with == constraints. |
636
|
|
|
|
|
|
|
*/ |
637
|
1
|
50
|
|
|
|
|
for(nEq=0; nEqnColumn; nEq++){ |
638
|
1
|
|
|
|
|
|
m = (1<<(nEq+1))-1; |
639
|
1
|
50
|
|
|
|
|
if( (m & eqMask)!=m ) break; |
640
|
|
|
|
|
|
|
} |
641
|
1
|
|
|
|
|
|
score = nEq*8; /* Base score is 8 times number of == constraints */ |
642
|
1
|
|
|
|
|
|
m = 1<
|
643
|
1
|
50
|
|
|
|
|
if( m & ltMask ) score++; /* Increase score for a < constraint */ |
644
|
1
|
50
|
|
|
|
|
if( m & gtMask ) score+=2; /* Increase score for a > constraint */ |
645
|
1
|
50
|
|
|
|
|
if( score==0 && inMask ) score = 4; /* Default score for IN constraint */ |
|
|
50
|
|
|
|
|
|
646
|
1
|
50
|
|
|
|
|
if( score>bestScore ){ |
647
|
0
|
|
|
|
|
|
pBestIdx = pIdx; |
648
|
0
|
|
|
|
|
|
bestScore = score; |
649
|
|
|
|
|
|
|
} |
650
|
|
|
|
|
|
|
} |
651
|
119
|
|
|
|
|
|
pWInfo->a[i].pIdx = pBestIdx; |
652
|
119
|
|
|
|
|
|
pWInfo->a[i].score = bestScore; |
653
|
119
|
|
|
|
|
|
pWInfo->a[i].bRev = 0; |
654
|
119
|
|
|
|
|
|
loopMask |= mask; |
655
|
119
|
50
|
|
|
|
|
if( pBestIdx ){ |
656
|
0
|
|
|
|
|
|
pWInfo->a[i].iCur = pParse->nTab++; |
657
|
0
|
|
|
|
|
|
pWInfo->peakNTab = pParse->nTab; |
658
|
|
|
|
|
|
|
} |
659
|
|
|
|
|
|
|
} |
660
|
|
|
|
|
|
|
|
661
|
|
|
|
|
|
|
/* Check to see if the ORDER BY clause is or can be satisfied by the |
662
|
|
|
|
|
|
|
** use of an index on the first table. |
663
|
|
|
|
|
|
|
*/ |
664
|
141
|
100
|
|
|
|
|
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
665
|
|
|
|
|
|
|
Index *pSortIdx; |
666
|
|
|
|
|
|
|
Index *pIdx; |
667
|
|
|
|
|
|
|
Table *pTab; |
668
|
4
|
|
|
|
|
|
int bRev = 0; |
669
|
|
|
|
|
|
|
|
670
|
4
|
|
|
|
|
|
pTab = pTabList->a[0].pTab; |
671
|
4
|
|
|
|
|
|
pIdx = pWInfo->a[0].pIdx; |
672
|
4
|
50
|
|
|
|
|
if( pIdx && pWInfo->a[0].score==4 ){ |
|
|
0
|
|
|
|
|
|
673
|
|
|
|
|
|
|
/* If there is already an IN index on the left-most table, |
674
|
|
|
|
|
|
|
** it will not give the correct sort order. |
675
|
|
|
|
|
|
|
** So, pretend that no suitable index is found. |
676
|
|
|
|
|
|
|
*/ |
677
|
0
|
|
|
|
|
|
pSortIdx = 0; |
678
|
4
|
50
|
|
|
|
|
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
679
|
|
|
|
|
|
|
/* If the left-most column is accessed using its ROWID, then do |
680
|
|
|
|
|
|
|
** not try to sort by index. |
681
|
|
|
|
|
|
|
*/ |
682
|
0
|
|
|
|
|
|
pSortIdx = 0; |
683
|
|
|
|
|
|
|
}else{ |
684
|
4
|
|
|
|
|
|
int nEqCol = (pWInfo->a[0].score+4)/8; |
685
|
4
|
|
|
|
|
|
pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, |
686
|
|
|
|
|
|
|
*ppOrderBy, pIdx, nEqCol, &bRev); |
687
|
|
|
|
|
|
|
} |
688
|
4
|
50
|
|
|
|
|
if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
689
|
0
|
0
|
|
|
|
|
if( pIdx==0 ){ |
690
|
0
|
|
|
|
|
|
pWInfo->a[0].pIdx = pSortIdx; |
691
|
0
|
|
|
|
|
|
pWInfo->a[0].iCur = pParse->nTab++; |
692
|
0
|
|
|
|
|
|
pWInfo->peakNTab = pParse->nTab; |
693
|
|
|
|
|
|
|
} |
694
|
0
|
|
|
|
|
|
pWInfo->a[0].bRev = bRev; |
695
|
4
|
|
|
|
|
|
*ppOrderBy = 0; |
696
|
|
|
|
|
|
|
} |
697
|
|
|
|
|
|
|
} |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
/* Open all tables in the pTabList and all indices used by those tables. |
700
|
|
|
|
|
|
|
*/ |
701
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
702
|
|
|
|
|
|
|
Table *pTab; |
703
|
|
|
|
|
|
|
Index *pIx; |
704
|
|
|
|
|
|
|
|
705
|
119
|
|
|
|
|
|
pTab = pTabList->a[i].pTab; |
706
|
119
|
100
|
|
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue; |
|
|
50
|
|
|
|
|
|
707
|
116
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); |
708
|
116
|
|
|
|
|
|
sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum, |
709
|
116
|
|
|
|
|
|
pTab->zName, P3_STATIC); |
710
|
116
|
|
|
|
|
|
sqliteCodeVerifySchema(pParse, pTab->iDb); |
711
|
116
|
50
|
|
|
|
|
if( (pIx = pWInfo->a[i].pIdx)!=0 ){ |
712
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0); |
713
|
0
|
|
|
|
|
|
sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0); |
714
|
|
|
|
|
|
|
} |
715
|
|
|
|
|
|
|
} |
716
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
/* Generate the code to do the search |
718
|
|
|
|
|
|
|
*/ |
719
|
141
|
|
|
|
|
|
loopMask = 0; |
720
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
721
|
|
|
|
|
|
|
int j, k; |
722
|
119
|
|
|
|
|
|
int iCur = pTabList->a[i].iCursor; |
723
|
|
|
|
|
|
|
Index *pIdx; |
724
|
119
|
|
|
|
|
|
WhereLevel *pLevel = &pWInfo->a[i]; |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and |
727
|
|
|
|
|
|
|
** initialize a memory cell that records if this table matches any |
728
|
|
|
|
|
|
|
** row of the left table of the join. |
729
|
|
|
|
|
|
|
*/ |
730
|
119
|
100
|
|
|
|
|
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ |
|
|
50
|
|
|
|
|
|
731
|
0
|
0
|
|
|
|
|
if( !pParse->nMem ) pParse->nMem++; |
732
|
0
|
|
|
|
|
|
pLevel->iLeftJoin = pParse->nMem++; |
733
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0); |
734
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); |
735
|
|
|
|
|
|
|
} |
736
|
|
|
|
|
|
|
|
737
|
119
|
|
|
|
|
|
pIdx = pLevel->pIdx; |
738
|
119
|
|
|
|
|
|
pLevel->inOp = OP_Noop; |
739
|
119
|
50
|
|
|
|
|
if( i=0 ){ |
|
|
50
|
|
|
|
|
|
740
|
|
|
|
|
|
|
/* Case 1: We can directly reference a single row using an |
741
|
|
|
|
|
|
|
** equality comparison against the ROWID field. Or |
742
|
|
|
|
|
|
|
** we reference multiple rows using a "rowid IN (...)" |
743
|
|
|
|
|
|
|
** construct. |
744
|
|
|
|
|
|
|
*/ |
745
|
0
|
|
|
|
|
|
k = iDirectEq[i]; |
746
|
|
|
|
|
|
|
assert( k
|
747
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
748
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
749
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
750
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
751
|
0
|
|
|
|
|
|
Expr *pX = aExpr[k].p; |
752
|
0
|
0
|
|
|
|
|
if( pX->op!=TK_IN ){ |
753
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
754
|
0
|
0
|
|
|
|
|
}else if( pX->pList ){ |
755
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); |
756
|
0
|
|
|
|
|
|
pLevel->inOp = OP_SetNext; |
757
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
758
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v); |
759
|
|
|
|
|
|
|
}else{ |
760
|
|
|
|
|
|
|
assert( pX->pSelect ); |
761
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); |
762
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); |
763
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); |
764
|
0
|
|
|
|
|
|
pLevel->inOp = OP_Next; |
765
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
766
|
|
|
|
|
|
|
} |
767
|
|
|
|
|
|
|
}else{ |
768
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
769
|
|
|
|
|
|
|
} |
770
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
771
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
772
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk); |
773
|
0
|
|
|
|
|
|
haveKey = 0; |
774
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotExists, iCur, brk); |
775
|
0
|
|
|
|
|
|
pLevel->op = OP_Noop; |
776
|
119
|
50
|
|
|
|
|
}else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
777
|
|
|
|
|
|
|
/* Case 2: There is an index and all terms of the WHERE clause that |
778
|
|
|
|
|
|
|
** refer to the index use the "==" or "IN" operators. |
779
|
|
|
|
|
|
|
*/ |
780
|
|
|
|
|
|
|
int start; |
781
|
|
|
|
|
|
|
int testOp; |
782
|
0
|
|
|
|
|
|
int nColumn = (pLevel->score+4)/8; |
783
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
784
|
0
|
0
|
|
|
|
|
for(j=0; j
|
785
|
0
|
0
|
|
|
|
|
for(k=0; k
|
786
|
0
|
|
|
|
|
|
Expr *pX = aExpr[k].p; |
787
|
0
|
0
|
|
|
|
|
if( pX==0 ) continue; |
788
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
789
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
790
|
0
|
0
|
|
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j] |
791
|
|
|
|
|
|
|
){ |
792
|
0
|
0
|
|
|
|
|
if( pX->op==TK_EQ ){ |
793
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pX->pRight); |
794
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
795
|
0
|
|
|
|
|
|
break; |
796
|
|
|
|
|
|
|
} |
797
|
0
|
0
|
|
|
|
|
if( pX->op==TK_IN && nColumn==1 ){ |
|
|
0
|
|
|
|
|
|
798
|
0
|
0
|
|
|
|
|
if( pX->pList ){ |
799
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); |
800
|
0
|
|
|
|
|
|
pLevel->inOp = OP_SetNext; |
801
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
802
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v); |
803
|
|
|
|
|
|
|
}else{ |
804
|
|
|
|
|
|
|
assert( pX->pSelect ); |
805
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); |
806
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); |
807
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); |
808
|
0
|
|
|
|
|
|
pLevel->inOp = OP_Next; |
809
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
810
|
|
|
|
|
|
|
} |
811
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
812
|
0
|
|
|
|
|
|
break; |
813
|
|
|
|
|
|
|
} |
814
|
|
|
|
|
|
|
} |
815
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
816
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
817
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
818
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] |
819
|
|
|
|
|
|
|
){ |
820
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
821
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
822
|
0
|
|
|
|
|
|
break; |
823
|
|
|
|
|
|
|
} |
824
|
|
|
|
|
|
|
} |
825
|
|
|
|
|
|
|
} |
826
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
827
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
828
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3); |
829
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); |
830
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
831
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0); |
832
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
833
|
0
|
0
|
|
|
|
|
if( nColumn==pIdx->nColumn || pLevel->bRev ){ |
|
|
0
|
|
|
|
|
|
834
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); |
835
|
0
|
|
|
|
|
|
testOp = OP_IdxGT; |
836
|
|
|
|
|
|
|
}else{ |
837
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
838
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
839
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
840
|
0
|
|
|
|
|
|
testOp = OP_IdxGE; |
841
|
|
|
|
|
|
|
} |
842
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
843
|
|
|
|
|
|
|
/* Scan in reverse order */ |
844
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
845
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); |
846
|
0
|
|
|
|
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
847
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); |
848
|
0
|
|
|
|
|
|
pLevel->op = OP_Prev; |
849
|
|
|
|
|
|
|
}else{ |
850
|
|
|
|
|
|
|
/* Scan in the forward order */ |
851
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); |
852
|
0
|
|
|
|
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
853
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); |
854
|
0
|
|
|
|
|
|
pLevel->op = OP_Next; |
855
|
|
|
|
|
|
|
} |
856
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); |
857
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont); |
858
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); |
859
|
0
|
0
|
|
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){ |
|
|
0
|
|
|
|
|
|
860
|
0
|
|
|
|
|
|
haveKey = 1; |
861
|
|
|
|
|
|
|
}else{ |
862
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
863
|
0
|
|
|
|
|
|
haveKey = 0; |
864
|
|
|
|
|
|
|
} |
865
|
0
|
|
|
|
|
|
pLevel->p1 = pLevel->iCur; |
866
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
867
|
119
|
50
|
|
|
|
|
}else if( i=0 || iDirectGt[i]>=0) ){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
868
|
|
|
|
|
|
|
/* Case 3: We have an inequality comparison against the ROWID field. |
869
|
|
|
|
|
|
|
*/ |
870
|
0
|
|
|
|
|
|
int testOp = OP_Noop; |
871
|
|
|
|
|
|
|
int start; |
872
|
|
|
|
|
|
|
|
873
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
874
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
875
|
0
|
0
|
|
|
|
|
if( iDirectGt[i]>=0 ){ |
876
|
0
|
|
|
|
|
|
k = iDirectGt[i]; |
877
|
|
|
|
|
|
|
assert( k
|
878
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
879
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
880
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
881
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
882
|
|
|
|
|
|
|
}else{ |
883
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
884
|
|
|
|
|
|
|
} |
885
|
0
|
0
|
|
|
|
|
sqliteVdbeAddOp(v, OP_ForceInt, |
|
|
0
|
|
|
|
|
|
886
|
0
|
|
|
|
|
|
aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk); |
887
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk); |
888
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
889
|
|
|
|
|
|
|
}else{ |
890
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); |
891
|
|
|
|
|
|
|
} |
892
|
0
|
0
|
|
|
|
|
if( iDirectLt[i]>=0 ){ |
893
|
0
|
|
|
|
|
|
k = iDirectLt[i]; |
894
|
|
|
|
|
|
|
assert( k
|
895
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
896
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
897
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
898
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
899
|
|
|
|
|
|
|
}else{ |
900
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
901
|
|
|
|
|
|
|
} |
902
|
|
|
|
|
|
|
/* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */ |
903
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
904
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
905
|
0
|
0
|
|
|
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){ |
|
|
0
|
|
|
|
|
|
906
|
0
|
|
|
|
|
|
testOp = OP_Ge; |
907
|
|
|
|
|
|
|
}else{ |
908
|
0
|
|
|
|
|
|
testOp = OP_Gt; |
909
|
|
|
|
|
|
|
} |
910
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
911
|
|
|
|
|
|
|
} |
912
|
0
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
913
|
0
|
|
|
|
|
|
pLevel->op = OP_Next; |
914
|
0
|
|
|
|
|
|
pLevel->p1 = iCur; |
915
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
916
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
917
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Recno, iCur, 0); |
918
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
919
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, 0, brk); |
920
|
|
|
|
|
|
|
} |
921
|
0
|
|
|
|
|
|
haveKey = 0; |
922
|
119
|
50
|
|
|
|
|
}else if( pIdx==0 ){ |
923
|
|
|
|
|
|
|
/* Case 4: There is no usable index. We must do a complete |
924
|
|
|
|
|
|
|
** scan of the entire database table. |
925
|
|
|
|
|
|
|
*/ |
926
|
|
|
|
|
|
|
int start; |
927
|
|
|
|
|
|
|
|
928
|
119
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
929
|
119
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
930
|
119
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); |
931
|
119
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
932
|
119
|
|
|
|
|
|
pLevel->op = OP_Next; |
933
|
119
|
|
|
|
|
|
pLevel->p1 = iCur; |
934
|
119
|
|
|
|
|
|
pLevel->p2 = start; |
935
|
119
|
|
|
|
|
|
haveKey = 0; |
936
|
|
|
|
|
|
|
}else{ |
937
|
|
|
|
|
|
|
/* Case 5: The WHERE clause term that refers to the right-most |
938
|
|
|
|
|
|
|
** column of the index is an inequality. For example, if |
939
|
|
|
|
|
|
|
** the index is on (x,y,z) and the WHERE clause is of the |
940
|
|
|
|
|
|
|
** form "x=5 AND y<10" then this case is used. Only the |
941
|
|
|
|
|
|
|
** right-most column can be an inequality - the rest must |
942
|
|
|
|
|
|
|
** use the "==" operator. |
943
|
|
|
|
|
|
|
** |
944
|
|
|
|
|
|
|
** This case is also used when there are no WHERE clause |
945
|
|
|
|
|
|
|
** constraints but an index is selected anyway, in order |
946
|
|
|
|
|
|
|
** to force the output order to conform to an ORDER BY. |
947
|
|
|
|
|
|
|
*/ |
948
|
0
|
|
|
|
|
|
int score = pLevel->score; |
949
|
0
|
|
|
|
|
|
int nEqColumn = score/8; |
950
|
|
|
|
|
|
|
int start; |
951
|
|
|
|
|
|
|
int leFlag, geFlag; |
952
|
|
|
|
|
|
|
int testOp; |
953
|
|
|
|
|
|
|
|
954
|
|
|
|
|
|
|
/* Evaluate the equality constraints |
955
|
|
|
|
|
|
|
*/ |
956
|
0
|
0
|
|
|
|
|
for(j=0; j
|
957
|
0
|
0
|
|
|
|
|
for(k=0; k
|
958
|
0
|
0
|
|
|
|
|
if( aExpr[k].p==0 ) continue; |
959
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
960
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
961
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
962
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] |
963
|
|
|
|
|
|
|
){ |
964
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
965
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
966
|
0
|
|
|
|
|
|
break; |
967
|
|
|
|
|
|
|
} |
968
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
969
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
970
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
971
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] |
972
|
|
|
|
|
|
|
){ |
973
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
974
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
975
|
0
|
|
|
|
|
|
break; |
976
|
|
|
|
|
|
|
} |
977
|
|
|
|
|
|
|
} |
978
|
|
|
|
|
|
|
} |
979
|
|
|
|
|
|
|
|
980
|
|
|
|
|
|
|
/* Duplicate the equality term values because they will all be |
981
|
|
|
|
|
|
|
** used twice: once to make the termination key and once to make the |
982
|
|
|
|
|
|
|
** start key. |
983
|
|
|
|
|
|
|
*/ |
984
|
0
|
0
|
|
|
|
|
for(j=0; j
|
985
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0); |
986
|
|
|
|
|
|
|
} |
987
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
/* Labels for the beginning and end of the loop |
989
|
|
|
|
|
|
|
*/ |
990
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
991
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
992
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
/* Generate the termination key. This is the key value that |
994
|
|
|
|
|
|
|
** will end the search. There is no termination key if there |
995
|
|
|
|
|
|
|
** are no equality terms and no "X<..." term. |
996
|
|
|
|
|
|
|
** |
997
|
|
|
|
|
|
|
** 2002-Dec-04: On a reverse-order scan, the so-called "termination" |
998
|
|
|
|
|
|
|
** key computed here really ends up being the start key. |
999
|
|
|
|
|
|
|
*/ |
1000
|
0
|
0
|
|
|
|
|
if( (score & 1)!=0 ){ |
1001
|
0
|
0
|
|
|
|
|
for(k=0; k
|
1002
|
0
|
|
|
|
|
|
Expr *pExpr = aExpr[k].p; |
1003
|
0
|
0
|
|
|
|
|
if( pExpr==0 ) continue; |
1004
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
1005
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE) |
|
|
0
|
|
|
|
|
|
1006
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
1007
|
0
|
0
|
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j] |
1008
|
|
|
|
|
|
|
){ |
1009
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight); |
1010
|
0
|
|
|
|
|
|
leFlag = pExpr->op==TK_LE; |
1011
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
1012
|
0
|
|
|
|
|
|
break; |
1013
|
|
|
|
|
|
|
} |
1014
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
1015
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE) |
|
|
0
|
|
|
|
|
|
1016
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
1017
|
0
|
0
|
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j] |
1018
|
|
|
|
|
|
|
){ |
1019
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft); |
1020
|
0
|
|
|
|
|
|
leFlag = pExpr->op==TK_GE; |
1021
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
1022
|
0
|
|
|
|
|
|
break; |
1023
|
|
|
|
|
|
|
} |
1024
|
|
|
|
|
|
|
} |
1025
|
0
|
|
|
|
|
|
testOp = OP_IdxGE; |
1026
|
|
|
|
|
|
|
}else{ |
1027
|
0
|
0
|
|
|
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; |
1028
|
0
|
|
|
|
|
|
leFlag = 1; |
1029
|
|
|
|
|
|
|
} |
1030
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
1031
|
0
|
|
|
|
|
|
int nCol = nEqColumn + (score & 1); |
1032
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
1033
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); |
1034
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nCol, 0); |
1035
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
1036
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); |
1037
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
1038
|
0
|
0
|
|
|
|
|
if( leFlag ){ |
1039
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
1040
|
|
|
|
|
|
|
} |
1041
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
1042
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); |
1043
|
|
|
|
|
|
|
}else{ |
1044
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
1045
|
|
|
|
|
|
|
} |
1046
|
0
|
0
|
|
|
|
|
}else if( pLevel->bRev ){ |
1047
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk); |
1048
|
|
|
|
|
|
|
} |
1049
|
|
|
|
|
|
|
|
1050
|
|
|
|
|
|
|
/* Generate the start key. This is the key that defines the lower |
1051
|
|
|
|
|
|
|
** bound on the search. There is no start key if there are no |
1052
|
|
|
|
|
|
|
** equality terms and if there is no "X>..." term. In |
1053
|
|
|
|
|
|
|
** that case, generate a "Rewind" instruction in place of the |
1054
|
|
|
|
|
|
|
** start key search. |
1055
|
|
|
|
|
|
|
** |
1056
|
|
|
|
|
|
|
** 2002-Dec-04: In the case of a reverse-order search, the so-called |
1057
|
|
|
|
|
|
|
** "start" key really ends up being used as the termination key. |
1058
|
|
|
|
|
|
|
*/ |
1059
|
0
|
0
|
|
|
|
|
if( (score & 2)!=0 ){ |
1060
|
0
|
0
|
|
|
|
|
for(k=0; k
|
1061
|
0
|
|
|
|
|
|
Expr *pExpr = aExpr[k].p; |
1062
|
0
|
0
|
|
|
|
|
if( pExpr==0 ) continue; |
1063
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
1064
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE) |
|
|
0
|
|
|
|
|
|
1065
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
1066
|
0
|
0
|
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j] |
1067
|
|
|
|
|
|
|
){ |
1068
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight); |
1069
|
0
|
|
|
|
|
|
geFlag = pExpr->op==TK_GE; |
1070
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
1071
|
0
|
|
|
|
|
|
break; |
1072
|
|
|
|
|
|
|
} |
1073
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
1074
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE) |
|
|
0
|
|
|
|
|
|
1075
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
1076
|
0
|
0
|
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j] |
1077
|
|
|
|
|
|
|
){ |
1078
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft); |
1079
|
0
|
|
|
|
|
|
geFlag = pExpr->op==TK_LE; |
1080
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
1081
|
0
|
|
|
|
|
|
break; |
1082
|
|
|
|
|
|
|
} |
1083
|
|
|
|
|
|
|
} |
1084
|
|
|
|
|
|
|
}else{ |
1085
|
0
|
|
|
|
|
|
geFlag = 1; |
1086
|
|
|
|
|
|
|
} |
1087
|
0
|
0
|
|
|
|
|
if( nEqColumn>0 || (score&2)!=0 ){ |
|
|
0
|
|
|
|
|
|
1088
|
0
|
|
|
|
|
|
int nCol = nEqColumn + ((score&2)!=0); |
1089
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); |
1090
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nCol, 0); |
1091
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
1092
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); |
1093
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
1094
|
0
|
0
|
|
|
|
|
if( !geFlag ){ |
1095
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
1096
|
|
|
|
|
|
|
} |
1097
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
1098
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
1099
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
1100
|
0
|
|
|
|
|
|
testOp = OP_IdxLT; |
1101
|
|
|
|
|
|
|
}else{ |
1102
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); |
1103
|
|
|
|
|
|
|
} |
1104
|
0
|
0
|
|
|
|
|
}else if( pLevel->bRev ){ |
1105
|
0
|
|
|
|
|
|
testOp = OP_Noop; |
1106
|
|
|
|
|
|
|
}else{ |
1107
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); |
1108
|
|
|
|
|
|
|
} |
1109
|
|
|
|
|
|
|
|
1110
|
|
|
|
|
|
|
/* Generate the the top of the loop. If there is a termination |
1111
|
|
|
|
|
|
|
** key we have to test for that key and abort at the top of the |
1112
|
|
|
|
|
|
|
** loop. |
1113
|
|
|
|
|
|
|
*/ |
1114
|
0
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
1115
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
1116
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
1117
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); |
1118
|
|
|
|
|
|
|
} |
1119
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); |
1120
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); |
1121
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); |
1122
|
0
|
0
|
|
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){ |
|
|
0
|
|
|
|
|
|
1123
|
0
|
|
|
|
|
|
haveKey = 1; |
1124
|
|
|
|
|
|
|
}else{ |
1125
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
1126
|
0
|
|
|
|
|
|
haveKey = 0; |
1127
|
|
|
|
|
|
|
} |
1128
|
|
|
|
|
|
|
|
1129
|
|
|
|
|
|
|
/* Record the instruction used to terminate the loop. |
1130
|
|
|
|
|
|
|
*/ |
1131
|
0
|
0
|
|
|
|
|
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; |
1132
|
0
|
|
|
|
|
|
pLevel->p1 = pLevel->iCur; |
1133
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
1134
|
|
|
|
|
|
|
} |
1135
|
119
|
|
|
|
|
|
loopMask |= getMask(&maskSet, iCur); |
1136
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
/* Insert code to test every subexpression that can be completely |
1138
|
|
|
|
|
|
|
** computed using the current set of tables. |
1139
|
|
|
|
|
|
|
*/ |
1140
|
156
|
100
|
|
|
|
|
for(j=0; j
|
1141
|
37
|
50
|
|
|
|
|
if( aExpr[j].p==0 ) continue; |
1142
|
37
|
100
|
|
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; |
1143
|
36
|
50
|
|
|
|
|
if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){ |
|
|
0
|
|
|
|
|
|
1144
|
0
|
|
|
|
|
|
continue; |
1145
|
|
|
|
|
|
|
} |
1146
|
36
|
50
|
|
|
|
|
if( haveKey ){ |
1147
|
0
|
|
|
|
|
|
haveKey = 0; |
1148
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
1149
|
|
|
|
|
|
|
} |
1150
|
36
|
|
|
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); |
1151
|
36
|
|
|
|
|
|
aExpr[j].p = 0; |
1152
|
|
|
|
|
|
|
} |
1153
|
119
|
|
|
|
|
|
brk = cont; |
1154
|
|
|
|
|
|
|
|
1155
|
|
|
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that |
1156
|
|
|
|
|
|
|
** at least one row of the right table has matched the left table. |
1157
|
|
|
|
|
|
|
*/ |
1158
|
119
|
50
|
|
|
|
|
if( pLevel->iLeftJoin ){ |
1159
|
0
|
|
|
|
|
|
pLevel->top = sqliteVdbeCurrentAddr(v); |
1160
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
1161
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); |
1162
|
0
|
0
|
|
|
|
|
for(j=0; j
|
1163
|
0
|
0
|
|
|
|
|
if( aExpr[j].p==0 ) continue; |
1164
|
0
|
0
|
|
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; |
1165
|
0
|
0
|
|
|
|
|
if( haveKey ){ |
1166
|
|
|
|
|
|
|
/* Cannot happen. "haveKey" can only be true if pushKey is true |
1167
|
|
|
|
|
|
|
** an pushKey can only be true for DELETE and UPDATE and there are |
1168
|
|
|
|
|
|
|
** no outer joins with DELETE and UPDATE. |
1169
|
|
|
|
|
|
|
*/ |
1170
|
0
|
|
|
|
|
|
haveKey = 0; |
1171
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
1172
|
|
|
|
|
|
|
} |
1173
|
0
|
|
|
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); |
1174
|
0
|
|
|
|
|
|
aExpr[j].p = 0; |
1175
|
|
|
|
|
|
|
} |
1176
|
|
|
|
|
|
|
} |
1177
|
|
|
|
|
|
|
} |
1178
|
141
|
|
|
|
|
|
pWInfo->iContinue = cont; |
1179
|
141
|
100
|
|
|
|
|
if( pushKey && !haveKey ){ |
|
|
50
|
|
|
|
|
|
1180
|
6
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); |
1181
|
|
|
|
|
|
|
} |
1182
|
|
|
|
|
|
|
freeMaskSet(&maskSet); |
1183
|
141
|
|
|
|
|
|
return pWInfo; |
1184
|
|
|
|
|
|
|
} |
1185
|
|
|
|
|
|
|
|
1186
|
|
|
|
|
|
|
/* |
1187
|
|
|
|
|
|
|
** Generate the end of the WHERE loop. See comments on |
1188
|
|
|
|
|
|
|
** sqliteWhereBegin() for additional information. |
1189
|
|
|
|
|
|
|
*/ |
1190
|
141
|
|
|
|
|
|
void sqliteWhereEnd(WhereInfo *pWInfo){ |
1191
|
141
|
|
|
|
|
|
Vdbe *v = pWInfo->pParse->pVdbe; |
1192
|
|
|
|
|
|
|
int i; |
1193
|
|
|
|
|
|
|
WhereLevel *pLevel; |
1194
|
141
|
|
|
|
|
|
SrcList *pTabList = pWInfo->pTabList; |
1195
|
|
|
|
|
|
|
|
1196
|
260
|
100
|
|
|
|
|
for(i=pTabList->nSrc-1; i>=0; i--){ |
1197
|
119
|
|
|
|
|
|
pLevel = &pWInfo->a[i]; |
1198
|
119
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->cont); |
1199
|
119
|
50
|
|
|
|
|
if( pLevel->op!=OP_Noop ){ |
1200
|
119
|
|
|
|
|
|
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); |
1201
|
|
|
|
|
|
|
} |
1202
|
119
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->brk); |
1203
|
119
|
50
|
|
|
|
|
if( pLevel->inOp!=OP_Noop ){ |
1204
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); |
1205
|
|
|
|
|
|
|
} |
1206
|
119
|
50
|
|
|
|
|
if( pLevel->iLeftJoin ){ |
1207
|
|
|
|
|
|
|
int addr; |
1208
|
0
|
|
|
|
|
|
addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); |
1209
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); |
1210
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); |
1211
|
0
|
0
|
|
|
|
|
if( pLevel->iCur>=0 ){ |
1212
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); |
1213
|
|
|
|
|
|
|
} |
1214
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top); |
1215
|
|
|
|
|
|
|
} |
1216
|
|
|
|
|
|
|
} |
1217
|
141
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pWInfo->iBreak); |
1218
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
1219
|
119
|
|
|
|
|
|
Table *pTab = pTabList->a[i].pTab; |
1220
|
|
|
|
|
|
|
assert( pTab!=0 ); |
1221
|
119
|
100
|
|
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue; |
|
|
50
|
|
|
|
|
|
1222
|
116
|
|
|
|
|
|
pLevel = &pWInfo->a[i]; |
1223
|
116
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); |
1224
|
116
|
50
|
|
|
|
|
if( pLevel->pIdx!=0 ){ |
1225
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); |
1226
|
|
|
|
|
|
|
} |
1227
|
|
|
|
|
|
|
} |
1228
|
|
|
|
|
|
|
#if 0 /* Never reuse a cursor */ |
1229
|
|
|
|
|
|
|
if( pWInfo->pParse->nTab==pWInfo->peakNTab ){ |
1230
|
|
|
|
|
|
|
pWInfo->pParse->nTab = pWInfo->savedNTab; |
1231
|
|
|
|
|
|
|
} |
1232
|
|
|
|
|
|
|
#endif |
1233
|
141
|
|
|
|
|
|
sqliteFree(pWInfo); |
1234
|
141
|
|
|
|
|
|
return; |
1235
|
|
|
|
|
|
|
} |