| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
** 2001 September 15 |
|
3
|
|
|
|
|
|
|
** |
|
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
|
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
|
6
|
|
|
|
|
|
|
** |
|
7
|
|
|
|
|
|
|
** May you do good and not evil. |
|
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
|
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
|
10
|
|
|
|
|
|
|
** |
|
11
|
|
|
|
|
|
|
************************************************************************* |
|
12
|
|
|
|
|
|
|
** The code in this file implements execution method of the |
|
13
|
|
|
|
|
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") |
|
14
|
|
|
|
|
|
|
** handles housekeeping details such as creating and deleting |
|
15
|
|
|
|
|
|
|
** VDBE instances. This file is solely interested in executing |
|
16
|
|
|
|
|
|
|
** the VDBE program. |
|
17
|
|
|
|
|
|
|
** |
|
18
|
|
|
|
|
|
|
** In the external interface, an "sqlite_vm*" is an opaque pointer |
|
19
|
|
|
|
|
|
|
** to a VDBE. |
|
20
|
|
|
|
|
|
|
** |
|
21
|
|
|
|
|
|
|
** The SQL parser generates a program which is then executed by |
|
22
|
|
|
|
|
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are |
|
23
|
|
|
|
|
|
|
** similar in form to assembly language. The program consists of |
|
24
|
|
|
|
|
|
|
** a linear sequence of operations. Each operation has an opcode |
|
25
|
|
|
|
|
|
|
** and 3 operands. Operands P1 and P2 are integers. Operand P3 |
|
26
|
|
|
|
|
|
|
** is a null-terminated string. The P2 operand must be non-negative. |
|
27
|
|
|
|
|
|
|
** Opcodes will typically ignore one or more operands. Many opcodes |
|
28
|
|
|
|
|
|
|
** ignore all three operands. |
|
29
|
|
|
|
|
|
|
** |
|
30
|
|
|
|
|
|
|
** Computation results are stored on a stack. Each entry on the |
|
31
|
|
|
|
|
|
|
** stack is either an integer, a null-terminated string, a floating point |
|
32
|
|
|
|
|
|
|
** number, or the SQL "NULL" value. An inplicit conversion from one |
|
33
|
|
|
|
|
|
|
** type to the other occurs as necessary. |
|
34
|
|
|
|
|
|
|
** |
|
35
|
|
|
|
|
|
|
** Most of the code in this file is taken up by the sqliteVdbeExec() |
|
36
|
|
|
|
|
|
|
** function which does the work of interpreting a VDBE program. |
|
37
|
|
|
|
|
|
|
** But other routines are also provided to help in building up |
|
38
|
|
|
|
|
|
|
** a program instruction by instruction. |
|
39
|
|
|
|
|
|
|
** |
|
40
|
|
|
|
|
|
|
** Various scripts scan this source file in order to generate HTML |
|
41
|
|
|
|
|
|
|
** documentation, headers files, or other derived files. The formatting |
|
42
|
|
|
|
|
|
|
** of the code in this file is, therefore, important. See other comments |
|
43
|
|
|
|
|
|
|
** in this file for details. If in doubt, do not deviate from existing |
|
44
|
|
|
|
|
|
|
** commenting and indentation practices when changing or adding code. |
|
45
|
|
|
|
|
|
|
** |
|
46
|
|
|
|
|
|
|
** $Id: vdbe.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $ |
|
47
|
|
|
|
|
|
|
*/ |
|
48
|
|
|
|
|
|
|
#include "sqliteInt.h" |
|
49
|
|
|
|
|
|
|
#include "os.h" |
|
50
|
|
|
|
|
|
|
#include |
|
51
|
|
|
|
|
|
|
#include "vdbeInt.h" |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
/* |
|
54
|
|
|
|
|
|
|
** The following global variable is incremented every time a cursor |
|
55
|
|
|
|
|
|
|
** moves, either by the OP_MoveTo or the OP_Next opcode. The test |
|
56
|
|
|
|
|
|
|
** procedures use this information to make sure that indices are |
|
57
|
|
|
|
|
|
|
** working correctly. This variable has no function other than to |
|
58
|
|
|
|
|
|
|
** help verify the correct operation of the library. |
|
59
|
|
|
|
|
|
|
*/ |
|
60
|
|
|
|
|
|
|
int sqlite_search_count = 0; |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
/* |
|
63
|
|
|
|
|
|
|
** When this global variable is positive, it gets decremented once before |
|
64
|
|
|
|
|
|
|
** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt |
|
65
|
|
|
|
|
|
|
** of the db.flags field is set in order to simulate an interrupt. |
|
66
|
|
|
|
|
|
|
** |
|
67
|
|
|
|
|
|
|
** This facility is used for testing purposes only. It does not function |
|
68
|
|
|
|
|
|
|
** in an ordinary build. |
|
69
|
|
|
|
|
|
|
*/ |
|
70
|
|
|
|
|
|
|
int sqlite_interrupt_count = 0; |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
/* |
|
73
|
|
|
|
|
|
|
** Advance the virtual machine to the next output row. |
|
74
|
|
|
|
|
|
|
** |
|
75
|
|
|
|
|
|
|
** The return vale will be either SQLITE_BUSY, SQLITE_DONE, |
|
76
|
|
|
|
|
|
|
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. |
|
77
|
|
|
|
|
|
|
** |
|
78
|
|
|
|
|
|
|
** SQLITE_BUSY means that the virtual machine attempted to open |
|
79
|
|
|
|
|
|
|
** a locked database and there is no busy callback registered. |
|
80
|
|
|
|
|
|
|
** Call sqlite_step() again to retry the open. *pN is set to 0 |
|
81
|
|
|
|
|
|
|
** and *pazColName and *pazValue are both set to NULL. |
|
82
|
|
|
|
|
|
|
** |
|
83
|
|
|
|
|
|
|
** SQLITE_DONE means that the virtual machine has finished |
|
84
|
|
|
|
|
|
|
** executing. sqlite_step() should not be called again on this |
|
85
|
|
|
|
|
|
|
** virtual machine. *pN and *pazColName are set appropriately |
|
86
|
|
|
|
|
|
|
** but *pazValue is set to NULL. |
|
87
|
|
|
|
|
|
|
** |
|
88
|
|
|
|
|
|
|
** SQLITE_ROW means that the virtual machine has generated another |
|
89
|
|
|
|
|
|
|
** row of the result set. *pN is set to the number of columns in |
|
90
|
|
|
|
|
|
|
** the row. *pazColName is set to the names of the columns followed |
|
91
|
|
|
|
|
|
|
** by the column datatypes. *pazValue is set to the values of each |
|
92
|
|
|
|
|
|
|
** column in the row. The value of the i-th column is (*pazValue)[i]. |
|
93
|
|
|
|
|
|
|
** The name of the i-th column is (*pazColName)[i] and the datatype |
|
94
|
|
|
|
|
|
|
** of the i-th column is (*pazColName)[i+*pN]. |
|
95
|
|
|
|
|
|
|
** |
|
96
|
|
|
|
|
|
|
** SQLITE_ERROR means that a run-time error (such as a constraint |
|
97
|
|
|
|
|
|
|
** violation) has occurred. The details of the error will be returned |
|
98
|
|
|
|
|
|
|
** by the next call to sqlite_finalize(). sqlite_step() should not |
|
99
|
|
|
|
|
|
|
** be called again on the VM. |
|
100
|
|
|
|
|
|
|
** |
|
101
|
|
|
|
|
|
|
** SQLITE_MISUSE means that the this routine was called inappropriately. |
|
102
|
|
|
|
|
|
|
** Perhaps it was called on a virtual machine that had already been |
|
103
|
|
|
|
|
|
|
** finalized or on one that had previously returned SQLITE_ERROR or |
|
104
|
|
|
|
|
|
|
** SQLITE_DONE. Or it could be the case the the same database connection |
|
105
|
|
|
|
|
|
|
** is being used simulataneously by two or more threads. |
|
106
|
|
|
|
|
|
|
*/ |
|
107
|
433
|
|
|
|
|
|
int sqlite_step( |
|
108
|
|
|
|
|
|
|
sqlite_vm *pVm, /* The virtual machine to execute */ |
|
109
|
|
|
|
|
|
|
int *pN, /* OUT: Number of columns in result */ |
|
110
|
|
|
|
|
|
|
const char ***pazValue, /* OUT: Column data */ |
|
111
|
|
|
|
|
|
|
const char ***pazColName /* OUT: Column names and datatypes */ |
|
112
|
|
|
|
|
|
|
){ |
|
113
|
433
|
|
|
|
|
|
Vdbe *p = (Vdbe*)pVm; |
|
114
|
|
|
|
|
|
|
sqlite *db; |
|
115
|
|
|
|
|
|
|
int rc; |
|
116
|
|
|
|
|
|
|
|
|
117
|
433
|
50
|
|
|
|
|
if( p->magic!=VDBE_MAGIC_RUN ){ |
|
118
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
433
|
|
|
|
|
|
db = p->db; |
|
121
|
433
|
50
|
|
|
|
|
if( sqliteSafetyOn(db) ){ |
|
122
|
0
|
|
|
|
|
|
p->rc = SQLITE_MISUSE; |
|
123
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
|
124
|
|
|
|
|
|
|
} |
|
125
|
433
|
50
|
|
|
|
|
if( p->explain ){ |
|
126
|
0
|
|
|
|
|
|
rc = sqliteVdbeList(p); |
|
127
|
|
|
|
|
|
|
}else{ |
|
128
|
433
|
|
|
|
|
|
rc = sqliteVdbeExec(p); |
|
129
|
|
|
|
|
|
|
} |
|
130
|
433
|
100
|
|
|
|
|
if( rc==SQLITE_DONE || rc==SQLITE_ROW ){ |
|
|
|
100
|
|
|
|
|
|
|
131
|
431
|
50
|
|
|
|
|
if( pazColName ) *pazColName = (const char**)p->azColName; |
|
132
|
431
|
50
|
|
|
|
|
if( pN ) *pN = p->nResColumn; |
|
133
|
|
|
|
|
|
|
}else{ |
|
134
|
2
|
50
|
|
|
|
|
if( pazColName) *pazColName = 0; |
|
135
|
2
|
50
|
|
|
|
|
if( pN ) *pN = 0; |
|
136
|
|
|
|
|
|
|
} |
|
137
|
433
|
50
|
|
|
|
|
if( pazValue ){ |
|
138
|
433
|
100
|
|
|
|
|
if( rc==SQLITE_ROW ){ |
|
139
|
95
|
|
|
|
|
|
*pazValue = (const char**)p->azResColumn; |
|
140
|
|
|
|
|
|
|
}else{ |
|
141
|
338
|
|
|
|
|
|
*pazValue = 0; |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
} |
|
144
|
433
|
50
|
|
|
|
|
if( sqliteSafetyOff(db) ){ |
|
145
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
433
|
|
|
|
|
|
return rc; |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
/* |
|
151
|
|
|
|
|
|
|
** Insert a new aggregate element and make it the element that |
|
152
|
|
|
|
|
|
|
** has focus. |
|
153
|
|
|
|
|
|
|
** |
|
154
|
|
|
|
|
|
|
** Return 0 on success and 1 if memory is exhausted. |
|
155
|
|
|
|
|
|
|
*/ |
|
156
|
16
|
|
|
|
|
|
static int AggInsert(Agg *p, char *zKey, int nKey){ |
|
157
|
|
|
|
|
|
|
AggElem *pElem, *pOld; |
|
158
|
|
|
|
|
|
|
int i; |
|
159
|
|
|
|
|
|
|
Mem *pMem; |
|
160
|
16
|
|
|
|
|
|
pElem = sqliteMalloc( sizeof(AggElem) + nKey + |
|
161
|
16
|
|
|
|
|
|
(p->nMem-1)*sizeof(pElem->aMem[0]) ); |
|
162
|
16
|
50
|
|
|
|
|
if( pElem==0 ) return 1; |
|
163
|
16
|
|
|
|
|
|
pElem->zKey = (char*)&pElem->aMem[p->nMem]; |
|
164
|
16
|
|
|
|
|
|
memcpy(pElem->zKey, zKey, nKey); |
|
165
|
16
|
|
|
|
|
|
pElem->nKey = nKey; |
|
166
|
16
|
|
|
|
|
|
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); |
|
167
|
16
|
50
|
|
|
|
|
if( pOld!=0 ){ |
|
168
|
|
|
|
|
|
|
assert( pOld==pElem ); /* Malloc failed on insert */ |
|
169
|
0
|
|
|
|
|
|
sqliteFree(pOld); |
|
170
|
0
|
|
|
|
|
|
return 0; |
|
171
|
|
|
|
|
|
|
} |
|
172
|
35
|
100
|
|
|
|
|
for(i=0, pMem=pElem->aMem; inMem; i++, pMem++){ |
|
173
|
19
|
|
|
|
|
|
pMem->flags = MEM_Null; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
16
|
|
|
|
|
|
p->pCurrent = pElem; |
|
176
|
16
|
|
|
|
|
|
return 0; |
|
177
|
|
|
|
|
|
|
} |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
/* |
|
180
|
|
|
|
|
|
|
** Get the AggElem currently in focus |
|
181
|
|
|
|
|
|
|
*/ |
|
182
|
|
|
|
|
|
|
#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) |
|
183
|
0
|
|
|
|
|
|
static AggElem *_AggInFocus(Agg *p){ |
|
184
|
0
|
|
|
|
|
|
HashElem *pElem = sqliteHashFirst(&p->hash); |
|
185
|
0
|
0
|
|
|
|
|
if( pElem==0 ){ |
|
186
|
0
|
|
|
|
|
|
AggInsert(p,"",1); |
|
187
|
0
|
|
|
|
|
|
pElem = sqliteHashFirst(&p->hash); |
|
188
|
|
|
|
|
|
|
} |
|
189
|
0
|
0
|
|
|
|
|
return pElem ? sqliteHashData(pElem) : 0; |
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
/* |
|
193
|
|
|
|
|
|
|
** Convert the given stack entity into a string if it isn't one |
|
194
|
|
|
|
|
|
|
** already. |
|
195
|
|
|
|
|
|
|
*/ |
|
196
|
|
|
|
|
|
|
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} |
|
197
|
58
|
|
|
|
|
|
static int hardStringify(Mem *pStack){ |
|
198
|
58
|
|
|
|
|
|
int fg = pStack->flags; |
|
199
|
58
|
100
|
|
|
|
|
if( fg & MEM_Real ){ |
|
200
|
2
|
|
|
|
|
|
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); |
|
201
|
56
|
100
|
|
|
|
|
}else if( fg & MEM_Int ){ |
|
202
|
43
|
|
|
|
|
|
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); |
|
203
|
|
|
|
|
|
|
}else{ |
|
204
|
13
|
|
|
|
|
|
pStack->zShort[0] = 0; |
|
205
|
|
|
|
|
|
|
} |
|
206
|
58
|
|
|
|
|
|
pStack->z = pStack->zShort; |
|
207
|
58
|
|
|
|
|
|
pStack->n = strlen(pStack->zShort)+1; |
|
208
|
58
|
|
|
|
|
|
pStack->flags = MEM_Str | MEM_Short; |
|
209
|
58
|
|
|
|
|
|
return 0; |
|
210
|
|
|
|
|
|
|
} |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
/* |
|
213
|
|
|
|
|
|
|
** Convert the given stack entity into a string that has been obtained |
|
214
|
|
|
|
|
|
|
** from sqliteMalloc(). This is different from Stringify() above in that |
|
215
|
|
|
|
|
|
|
** Stringify() will use the NBFS bytes of static string space if the string |
|
216
|
|
|
|
|
|
|
** will fit but this routine always mallocs for space. |
|
217
|
|
|
|
|
|
|
** Return non-zero if we run out of memory. |
|
218
|
|
|
|
|
|
|
*/ |
|
219
|
|
|
|
|
|
|
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) |
|
220
|
0
|
|
|
|
|
|
static int hardDynamicify(Mem *pStack){ |
|
221
|
0
|
|
|
|
|
|
int fg = pStack->flags; |
|
222
|
|
|
|
|
|
|
char *z; |
|
223
|
0
|
0
|
|
|
|
|
if( (fg & MEM_Str)==0 ){ |
|
224
|
0
|
|
|
|
|
|
hardStringify(pStack); |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
assert( (fg & MEM_Dyn)==0 ); |
|
227
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( pStack->n ); |
|
228
|
0
|
0
|
|
|
|
|
if( z==0 ) return 1; |
|
229
|
0
|
|
|
|
|
|
memcpy(z, pStack->z, pStack->n); |
|
230
|
0
|
|
|
|
|
|
pStack->z = z; |
|
231
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Dyn; |
|
232
|
0
|
|
|
|
|
|
return 0; |
|
233
|
|
|
|
|
|
|
} |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
/* |
|
236
|
|
|
|
|
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains |
|
237
|
|
|
|
|
|
|
** a pointer to a dynamically allocated string where some other entity |
|
238
|
|
|
|
|
|
|
** is responsible for deallocating that string. Because the stack entry |
|
239
|
|
|
|
|
|
|
** does not control the string, it might be deleted without the stack |
|
240
|
|
|
|
|
|
|
** entry knowing it. |
|
241
|
|
|
|
|
|
|
** |
|
242
|
|
|
|
|
|
|
** This routine converts an ephemeral string into a dynamically allocated |
|
243
|
|
|
|
|
|
|
** string that the stack entry itself controls. In other words, it |
|
244
|
|
|
|
|
|
|
** converts an MEM_Ephem string into an MEM_Dyn string. |
|
245
|
|
|
|
|
|
|
*/ |
|
246
|
|
|
|
|
|
|
#define Deephemeralize(P) \ |
|
247
|
|
|
|
|
|
|
if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} |
|
248
|
0
|
|
|
|
|
|
static int hardDeephem(Mem *pStack){ |
|
249
|
|
|
|
|
|
|
char *z; |
|
250
|
|
|
|
|
|
|
assert( (pStack->flags & MEM_Ephem)!=0 ); |
|
251
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( pStack->n ); |
|
252
|
0
|
0
|
|
|
|
|
if( z==0 ) return 1; |
|
253
|
0
|
|
|
|
|
|
memcpy(z, pStack->z, pStack->n); |
|
254
|
0
|
|
|
|
|
|
pStack->z = z; |
|
255
|
0
|
|
|
|
|
|
pStack->flags &= ~MEM_Ephem; |
|
256
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Dyn; |
|
257
|
0
|
|
|
|
|
|
return 0; |
|
258
|
|
|
|
|
|
|
} |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
/* |
|
261
|
|
|
|
|
|
|
** Release the memory associated with the given stack level. This |
|
262
|
|
|
|
|
|
|
** leaves the Mem.flags field in an inconsistent state. |
|
263
|
|
|
|
|
|
|
*/ |
|
264
|
|
|
|
|
|
|
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
/* |
|
267
|
|
|
|
|
|
|
** Pop the stack N times. |
|
268
|
|
|
|
|
|
|
*/ |
|
269
|
510
|
|
|
|
|
|
static void popStack(Mem **ppTos, int N){ |
|
270
|
510
|
|
|
|
|
|
Mem *pTos = *ppTos; |
|
271
|
1608
|
100
|
|
|
|
|
while( N>0 ){ |
|
272
|
1098
|
|
|
|
|
|
N--; |
|
273
|
1098
|
100
|
|
|
|
|
Release(pTos); |
|
274
|
1098
|
|
|
|
|
|
pTos--; |
|
275
|
|
|
|
|
|
|
} |
|
276
|
510
|
|
|
|
|
|
*ppTos = pTos; |
|
277
|
510
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
/* |
|
280
|
|
|
|
|
|
|
** Return TRUE if zNum is a 32-bit signed integer and write |
|
281
|
|
|
|
|
|
|
** the value of the integer into *pNum. If zNum is not an integer |
|
282
|
|
|
|
|
|
|
** or is an integer that is too large to be expressed with just 32 |
|
283
|
|
|
|
|
|
|
** bits, then return false. |
|
284
|
|
|
|
|
|
|
** |
|
285
|
|
|
|
|
|
|
** Under Linux (RedHat 7.2) this routine is much faster than atoi() |
|
286
|
|
|
|
|
|
|
** for converting strings into integers. |
|
287
|
|
|
|
|
|
|
*/ |
|
288
|
27
|
|
|
|
|
|
static int toInt(const char *zNum, int *pNum){ |
|
289
|
27
|
|
|
|
|
|
int v = 0; |
|
290
|
|
|
|
|
|
|
int neg; |
|
291
|
|
|
|
|
|
|
int i, c; |
|
292
|
27
|
50
|
|
|
|
|
if( *zNum=='-' ){ |
|
293
|
0
|
|
|
|
|
|
neg = 1; |
|
294
|
0
|
|
|
|
|
|
zNum++; |
|
295
|
27
|
50
|
|
|
|
|
}else if( *zNum=='+' ){ |
|
296
|
0
|
|
|
|
|
|
neg = 0; |
|
297
|
0
|
|
|
|
|
|
zNum++; |
|
298
|
|
|
|
|
|
|
}else{ |
|
299
|
27
|
|
|
|
|
|
neg = 0; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
54
|
100
|
|
|
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
|
|
|
50
|
|
|
|
|
|
|
302
|
27
|
|
|
|
|
|
v = v*10 + c - '0'; |
|
303
|
|
|
|
|
|
|
} |
|
304
|
27
|
50
|
|
|
|
|
*pNum = neg ? -v : v; |
|
305
|
27
|
50
|
|
|
|
|
return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0)); |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
} |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
/* |
|
309
|
|
|
|
|
|
|
** Convert the given stack entity into a integer if it isn't one |
|
310
|
|
|
|
|
|
|
** already. |
|
311
|
|
|
|
|
|
|
** |
|
312
|
|
|
|
|
|
|
** Any prior string or real representation is invalidated. |
|
313
|
|
|
|
|
|
|
** NULLs are converted into 0. |
|
314
|
|
|
|
|
|
|
*/ |
|
315
|
|
|
|
|
|
|
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } |
|
316
|
0
|
|
|
|
|
|
static void hardIntegerify(Mem *pStack){ |
|
317
|
0
|
0
|
|
|
|
|
if( pStack->flags & MEM_Real ){ |
|
318
|
0
|
|
|
|
|
|
pStack->i = (int)pStack->r; |
|
319
|
0
|
0
|
|
|
|
|
Release(pStack); |
|
320
|
0
|
0
|
|
|
|
|
}else if( pStack->flags & MEM_Str ){ |
|
321
|
0
|
|
|
|
|
|
toInt(pStack->z, &pStack->i); |
|
322
|
0
|
0
|
|
|
|
|
Release(pStack); |
|
323
|
|
|
|
|
|
|
}else{ |
|
324
|
0
|
|
|
|
|
|
pStack->i = 0; |
|
325
|
|
|
|
|
|
|
} |
|
326
|
0
|
|
|
|
|
|
pStack->flags = MEM_Int; |
|
327
|
0
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
/* |
|
330
|
|
|
|
|
|
|
** Get a valid Real representation for the given stack element. |
|
331
|
|
|
|
|
|
|
** |
|
332
|
|
|
|
|
|
|
** Any prior string or integer representation is retained. |
|
333
|
|
|
|
|
|
|
** NULLs are converted into 0.0. |
|
334
|
|
|
|
|
|
|
*/ |
|
335
|
|
|
|
|
|
|
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } |
|
336
|
0
|
|
|
|
|
|
static void hardRealify(Mem *pStack){ |
|
337
|
0
|
0
|
|
|
|
|
if( pStack->flags & MEM_Str ){ |
|
338
|
0
|
|
|
|
|
|
pStack->r = sqliteAtoF(pStack->z, 0); |
|
339
|
0
|
0
|
|
|
|
|
}else if( pStack->flags & MEM_Int ){ |
|
340
|
0
|
|
|
|
|
|
pStack->r = pStack->i; |
|
341
|
|
|
|
|
|
|
}else{ |
|
342
|
0
|
|
|
|
|
|
pStack->r = 0.0; |
|
343
|
|
|
|
|
|
|
} |
|
344
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Real; |
|
345
|
0
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
/* |
|
348
|
|
|
|
|
|
|
** The parameters are pointers to the head of two sorted lists |
|
349
|
|
|
|
|
|
|
** of Sorter structures. Merge these two lists together and return |
|
350
|
|
|
|
|
|
|
** a single sorted list. This routine forms the core of the merge-sort |
|
351
|
|
|
|
|
|
|
** algorithm. |
|
352
|
|
|
|
|
|
|
** |
|
353
|
|
|
|
|
|
|
** In the case of a tie, left sorts in front of right. |
|
354
|
|
|
|
|
|
|
*/ |
|
355
|
160
|
|
|
|
|
|
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ |
|
356
|
|
|
|
|
|
|
Sorter sHead; |
|
357
|
|
|
|
|
|
|
Sorter *pTail; |
|
358
|
160
|
|
|
|
|
|
pTail = &sHead; |
|
359
|
160
|
|
|
|
|
|
pTail->pNext = 0; |
|
360
|
181
|
100
|
|
|
|
|
while( pLeft && pRight ){ |
|
|
|
100
|
|
|
|
|
|
|
361
|
21
|
|
|
|
|
|
int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); |
|
362
|
21
|
100
|
|
|
|
|
if( c<=0 ){ |
|
363
|
10
|
|
|
|
|
|
pTail->pNext = pLeft; |
|
364
|
10
|
|
|
|
|
|
pLeft = pLeft->pNext; |
|
365
|
|
|
|
|
|
|
}else{ |
|
366
|
11
|
|
|
|
|
|
pTail->pNext = pRight; |
|
367
|
11
|
|
|
|
|
|
pRight = pRight->pNext; |
|
368
|
|
|
|
|
|
|
} |
|
369
|
21
|
|
|
|
|
|
pTail = pTail->pNext; |
|
370
|
|
|
|
|
|
|
} |
|
371
|
160
|
100
|
|
|
|
|
if( pLeft ){ |
|
372
|
10
|
|
|
|
|
|
pTail->pNext = pLeft; |
|
373
|
150
|
100
|
|
|
|
|
}else if( pRight ){ |
|
374
|
117
|
|
|
|
|
|
pTail->pNext = pRight; |
|
375
|
|
|
|
|
|
|
} |
|
376
|
160
|
|
|
|
|
|
return sHead.pNext; |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
/* |
|
380
|
|
|
|
|
|
|
** The following routine works like a replacement for the standard |
|
381
|
|
|
|
|
|
|
** library routine fgets(). The difference is in how end-of-line (EOL) |
|
382
|
|
|
|
|
|
|
** is handled. Standard fgets() uses LF for EOL under unix, CRLF |
|
383
|
|
|
|
|
|
|
** under windows, and CR under mac. This routine accepts any of these |
|
384
|
|
|
|
|
|
|
** character sequences as an EOL mark. The EOL mark is replaced by |
|
385
|
|
|
|
|
|
|
** a single LF character in zBuf. |
|
386
|
|
|
|
|
|
|
*/ |
|
387
|
0
|
|
|
|
|
|
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ |
|
388
|
|
|
|
|
|
|
int i, c; |
|
389
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
|
0
|
|
|
|
|
|
|
390
|
0
|
|
|
|
|
|
zBuf[i] = c; |
|
391
|
0
|
0
|
|
|
|
|
if( c=='\r' || c=='\n' ){ |
|
|
|
0
|
|
|
|
|
|
|
392
|
0
|
0
|
|
|
|
|
if( c=='\r' ){ |
|
393
|
0
|
|
|
|
|
|
zBuf[i] = '\n'; |
|
394
|
0
|
|
|
|
|
|
c = getc(in); |
|
395
|
0
|
0
|
|
|
|
|
if( c!=EOF && c!='\n' ) ungetc(c, in); |
|
|
|
0
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
} |
|
397
|
0
|
|
|
|
|
|
i++; |
|
398
|
0
|
|
|
|
|
|
break; |
|
399
|
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
} |
|
401
|
0
|
|
|
|
|
|
zBuf[i] = 0; |
|
402
|
0
|
0
|
|
|
|
|
return i>0 ? zBuf : 0; |
|
403
|
|
|
|
|
|
|
} |
|
404
|
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
/* |
|
406
|
|
|
|
|
|
|
** Make sure there is space in the Vdbe structure to hold at least |
|
407
|
|
|
|
|
|
|
** mxCursor cursors. If there is not currently enough space, then |
|
408
|
|
|
|
|
|
|
** allocate more. |
|
409
|
|
|
|
|
|
|
** |
|
410
|
|
|
|
|
|
|
** If a memory allocation error occurs, return 1. Return 0 if |
|
411
|
|
|
|
|
|
|
** everything works. |
|
412
|
|
|
|
|
|
|
*/ |
|
413
|
218
|
|
|
|
|
|
static int expandCursorArraySize(Vdbe *p, int mxCursor){ |
|
414
|
218
|
100
|
|
|
|
|
if( mxCursor>=p->nCursor ){ |
|
415
|
201
|
|
|
|
|
|
Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); |
|
416
|
201
|
50
|
|
|
|
|
if( aCsr==0 ) return 1; |
|
417
|
201
|
|
|
|
|
|
p->aCsr = aCsr; |
|
418
|
201
|
|
|
|
|
|
memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); |
|
419
|
201
|
|
|
|
|
|
p->nCursor = mxCursor+1; |
|
420
|
|
|
|
|
|
|
} |
|
421
|
218
|
|
|
|
|
|
return 0; |
|
422
|
|
|
|
|
|
|
} |
|
423
|
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
|
425
|
|
|
|
|
|
|
/* |
|
426
|
|
|
|
|
|
|
** The following routine only works on pentium-class processors. |
|
427
|
|
|
|
|
|
|
** It uses the RDTSC opcode to read cycle count value out of the |
|
428
|
|
|
|
|
|
|
** processor and returns that value. This can be used for high-res |
|
429
|
|
|
|
|
|
|
** profiling. |
|
430
|
|
|
|
|
|
|
*/ |
|
431
|
|
|
|
|
|
|
__inline__ unsigned long long int hwtime(void){ |
|
432
|
|
|
|
|
|
|
unsigned long long int x; |
|
433
|
|
|
|
|
|
|
__asm__("rdtsc\n\t" |
|
434
|
|
|
|
|
|
|
"mov %%edx, %%ecx\n\t" |
|
435
|
|
|
|
|
|
|
:"=A" (x)); |
|
436
|
|
|
|
|
|
|
return x; |
|
437
|
|
|
|
|
|
|
} |
|
438
|
|
|
|
|
|
|
#endif |
|
439
|
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
/* |
|
441
|
|
|
|
|
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the |
|
442
|
|
|
|
|
|
|
** sqlite_interrupt() routine has been called. If it has been, then |
|
443
|
|
|
|
|
|
|
** processing of the VDBE program is interrupted. |
|
444
|
|
|
|
|
|
|
** |
|
445
|
|
|
|
|
|
|
** This macro added to every instruction that does a jump in order to |
|
446
|
|
|
|
|
|
|
** implement a loop. This test used to be on every single instruction, |
|
447
|
|
|
|
|
|
|
** but that meant we more testing that we needed. By only testing the |
|
448
|
|
|
|
|
|
|
** flag on jump instructions, we get a (small) speed improvement. |
|
449
|
|
|
|
|
|
|
*/ |
|
450
|
|
|
|
|
|
|
#define CHECK_FOR_INTERRUPT \ |
|
451
|
|
|
|
|
|
|
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; |
|
452
|
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
/* |
|
455
|
|
|
|
|
|
|
** Execute as much of a VDBE program as we can then return. |
|
456
|
|
|
|
|
|
|
** |
|
457
|
|
|
|
|
|
|
** sqliteVdbeMakeReady() must be called before this routine in order to |
|
458
|
|
|
|
|
|
|
** close the program with a final OP_Halt and to set up the callbacks |
|
459
|
|
|
|
|
|
|
** and the error message pointer. |
|
460
|
|
|
|
|
|
|
** |
|
461
|
|
|
|
|
|
|
** Whenever a row or result data is available, this routine will either |
|
462
|
|
|
|
|
|
|
** invoke the result callback (if there is one) or return with |
|
463
|
|
|
|
|
|
|
** SQLITE_ROW. |
|
464
|
|
|
|
|
|
|
** |
|
465
|
|
|
|
|
|
|
** If an attempt is made to open a locked database, then this routine |
|
466
|
|
|
|
|
|
|
** will either invoke the busy callback (if there is one) or it will |
|
467
|
|
|
|
|
|
|
** return SQLITE_BUSY. |
|
468
|
|
|
|
|
|
|
** |
|
469
|
|
|
|
|
|
|
** If an error occurs, an error message is written to memory obtained |
|
470
|
|
|
|
|
|
|
** from sqliteMalloc() and p->zErrMsg is made to point to that memory. |
|
471
|
|
|
|
|
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR. |
|
472
|
|
|
|
|
|
|
** |
|
473
|
|
|
|
|
|
|
** If the callback ever returns non-zero, then the program exits |
|
474
|
|
|
|
|
|
|
** immediately. There will be no error message but the p->rc field is |
|
475
|
|
|
|
|
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. |
|
476
|
|
|
|
|
|
|
** |
|
477
|
|
|
|
|
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this |
|
478
|
|
|
|
|
|
|
** routine to return SQLITE_ERROR. |
|
479
|
|
|
|
|
|
|
** |
|
480
|
|
|
|
|
|
|
** Other fatal errors return SQLITE_ERROR. |
|
481
|
|
|
|
|
|
|
** |
|
482
|
|
|
|
|
|
|
** After this routine has finished, sqliteVdbeFinalize() should be |
|
483
|
|
|
|
|
|
|
** used to clean up the mess that was left behind. |
|
484
|
|
|
|
|
|
|
*/ |
|
485
|
433
|
|
|
|
|
|
int sqliteVdbeExec( |
|
486
|
|
|
|
|
|
|
Vdbe *p /* The VDBE */ |
|
487
|
|
|
|
|
|
|
){ |
|
488
|
|
|
|
|
|
|
int pc; /* The program counter */ |
|
489
|
|
|
|
|
|
|
Op *pOp; /* Current operation */ |
|
490
|
433
|
|
|
|
|
|
int rc = SQLITE_OK; /* Value to return */ |
|
491
|
433
|
|
|
|
|
|
sqlite *db = p->db; /* The database */ |
|
492
|
|
|
|
|
|
|
Mem *pTos; /* Top entry in the operand stack */ |
|
493
|
|
|
|
|
|
|
char zBuf[100]; /* Space to sprintf() an integer */ |
|
494
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
|
495
|
|
|
|
|
|
|
unsigned long long start; /* CPU clock count at start of opcode */ |
|
496
|
|
|
|
|
|
|
int origPc; /* Program counter at start of opcode */ |
|
497
|
|
|
|
|
|
|
#endif |
|
498
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
|
499
|
433
|
|
|
|
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */ |
|
500
|
|
|
|
|
|
|
#endif |
|
501
|
|
|
|
|
|
|
|
|
502
|
433
|
50
|
|
|
|
|
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; |
|
503
|
|
|
|
|
|
|
assert( db->magic==SQLITE_MAGIC_BUSY ); |
|
504
|
|
|
|
|
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
|
505
|
433
|
|
|
|
|
|
p->rc = SQLITE_OK; |
|
506
|
|
|
|
|
|
|
assert( p->explain==0 ); |
|
507
|
433
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
|
508
|
433
|
|
|
|
|
|
pTos = p->pTos; |
|
509
|
433
|
100
|
|
|
|
|
if( p->popStack ){ |
|
510
|
91
|
|
|
|
|
|
popStack(&pTos, p->popStack); |
|
511
|
91
|
|
|
|
|
|
p->popStack = 0; |
|
512
|
|
|
|
|
|
|
} |
|
513
|
433
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
514
|
4576
|
100
|
|
|
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){ |
|
515
|
|
|
|
|
|
|
assert( pc>=0 && pcnOp ); |
|
516
|
|
|
|
|
|
|
assert( pTos<=&p->aStack[pc] ); |
|
517
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
|
518
|
|
|
|
|
|
|
origPc = pc; |
|
519
|
|
|
|
|
|
|
start = hwtime(); |
|
520
|
|
|
|
|
|
|
#endif |
|
521
|
4575
|
|
|
|
|
|
pOp = &p->aOp[pc]; |
|
522
|
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
/* Only allow tracing if NDEBUG is not defined. |
|
524
|
|
|
|
|
|
|
*/ |
|
525
|
|
|
|
|
|
|
#ifndef NDEBUG |
|
526
|
|
|
|
|
|
|
if( p->trace ){ |
|
527
|
|
|
|
|
|
|
sqliteVdbePrintOp(p->trace, pc, pOp); |
|
528
|
|
|
|
|
|
|
} |
|
529
|
|
|
|
|
|
|
#endif |
|
530
|
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens |
|
532
|
|
|
|
|
|
|
** if we have a special test build. |
|
533
|
|
|
|
|
|
|
*/ |
|
534
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
|
535
|
|
|
|
|
|
|
if( sqlite_interrupt_count>0 ){ |
|
536
|
|
|
|
|
|
|
sqlite_interrupt_count--; |
|
537
|
|
|
|
|
|
|
if( sqlite_interrupt_count==0 ){ |
|
538
|
|
|
|
|
|
|
sqlite_interrupt(db); |
|
539
|
|
|
|
|
|
|
} |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
#endif |
|
542
|
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
|
544
|
|
|
|
|
|
|
/* Call the progress callback if it is configured and the required number |
|
545
|
|
|
|
|
|
|
** of VDBE ops have been executed (either since this invocation of |
|
546
|
|
|
|
|
|
|
** sqliteVdbeExec() or since last time the progress callback was called). |
|
547
|
|
|
|
|
|
|
** If the progress callback returns non-zero, exit the virtual machine with |
|
548
|
|
|
|
|
|
|
** a return code SQLITE_ABORT. |
|
549
|
|
|
|
|
|
|
*/ |
|
550
|
4575
|
50
|
|
|
|
|
if( db->xProgress ){ |
|
551
|
0
|
0
|
|
|
|
|
if( db->nProgressOps==nProgressOps ){ |
|
552
|
0
|
0
|
|
|
|
|
if( db->xProgress(db->pProgressArg)!=0 ){ |
|
553
|
0
|
|
|
|
|
|
rc = SQLITE_ABORT; |
|
554
|
0
|
|
|
|
|
|
continue; /* skip to the next iteration of the for loop */ |
|
555
|
|
|
|
|
|
|
} |
|
556
|
0
|
|
|
|
|
|
nProgressOps = 0; |
|
557
|
|
|
|
|
|
|
} |
|
558
|
0
|
|
|
|
|
|
nProgressOps++; |
|
559
|
|
|
|
|
|
|
} |
|
560
|
|
|
|
|
|
|
#endif |
|
561
|
|
|
|
|
|
|
|
|
562
|
4575
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
563
|
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
/***************************************************************************** |
|
565
|
|
|
|
|
|
|
** What follows is a massive switch statement where each case implements a |
|
566
|
|
|
|
|
|
|
** separate instruction in the virtual machine. If we follow the usual |
|
567
|
|
|
|
|
|
|
** indentation conventions, each case should be indented by 6 spaces. But |
|
568
|
|
|
|
|
|
|
** that is a lot of wasted space on the left margin. So the code within |
|
569
|
|
|
|
|
|
|
** the switch statement will break with convention and be flush-left. Another |
|
570
|
|
|
|
|
|
|
** big comment (similar to this one) will mark the point in the code where |
|
571
|
|
|
|
|
|
|
** we transition back to normal indentation. |
|
572
|
|
|
|
|
|
|
** |
|
573
|
|
|
|
|
|
|
** The formatting of each case is important. The makefile for SQLite |
|
574
|
|
|
|
|
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
|
575
|
|
|
|
|
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files |
|
576
|
|
|
|
|
|
|
** will be filled with #defines that give unique integer values to each |
|
577
|
|
|
|
|
|
|
** opcode and the opcodes.c file is filled with an array of strings where |
|
578
|
|
|
|
|
|
|
** each string is the symbolic name for the corresponding opcode. |
|
579
|
|
|
|
|
|
|
** |
|
580
|
|
|
|
|
|
|
** Documentation about VDBE opcodes is generated by scanning this file |
|
581
|
|
|
|
|
|
|
** for lines of that contain "Opcode:". That line and all subsequent |
|
582
|
|
|
|
|
|
|
** comment lines are used in the generation of the opcode.html documentation |
|
583
|
|
|
|
|
|
|
** file. |
|
584
|
|
|
|
|
|
|
** |
|
585
|
|
|
|
|
|
|
** SUMMARY: |
|
586
|
|
|
|
|
|
|
** |
|
587
|
|
|
|
|
|
|
** Formatting is important to scripts that scan this file. |
|
588
|
|
|
|
|
|
|
** Do not deviate from the formatting style currently in use. |
|
589
|
|
|
|
|
|
|
** |
|
590
|
|
|
|
|
|
|
*****************************************************************************/ |
|
591
|
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
/* Opcode: Goto * P2 * |
|
593
|
|
|
|
|
|
|
** |
|
594
|
|
|
|
|
|
|
** An unconditional jump to address P2. |
|
595
|
|
|
|
|
|
|
** The next instruction executed will be |
|
596
|
|
|
|
|
|
|
** the one at index P2 from the beginning of |
|
597
|
|
|
|
|
|
|
** the program. |
|
598
|
|
|
|
|
|
|
*/ |
|
599
|
|
|
|
|
|
|
case OP_Goto: { |
|
600
|
37
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
601
|
37
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
602
|
37
|
|
|
|
|
|
break; |
|
603
|
|
|
|
|
|
|
} |
|
604
|
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
/* Opcode: Gosub * P2 * |
|
606
|
|
|
|
|
|
|
** |
|
607
|
|
|
|
|
|
|
** Push the current address plus 1 onto the return address stack |
|
608
|
|
|
|
|
|
|
** and then jump to address P2. |
|
609
|
|
|
|
|
|
|
** |
|
610
|
|
|
|
|
|
|
** The return address stack is of limited depth. If too many |
|
611
|
|
|
|
|
|
|
** OP_Gosub operations occur without intervening OP_Returns, then |
|
612
|
|
|
|
|
|
|
** the return address stack will fill up and processing will abort |
|
613
|
|
|
|
|
|
|
** with a fatal error. |
|
614
|
|
|
|
|
|
|
*/ |
|
615
|
|
|
|
|
|
|
case OP_Gosub: { |
|
616
|
0
|
0
|
|
|
|
|
if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ |
|
617
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0); |
|
618
|
0
|
|
|
|
|
|
p->rc = SQLITE_INTERNAL; |
|
619
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
|
620
|
|
|
|
|
|
|
} |
|
621
|
0
|
|
|
|
|
|
p->returnStack[p->returnDepth++] = pc+1; |
|
622
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
623
|
0
|
|
|
|
|
|
break; |
|
624
|
|
|
|
|
|
|
} |
|
625
|
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
/* Opcode: Return * * * |
|
627
|
|
|
|
|
|
|
** |
|
628
|
|
|
|
|
|
|
** Jump immediately to the next instruction after the last unreturned |
|
629
|
|
|
|
|
|
|
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then |
|
630
|
|
|
|
|
|
|
** processing aborts with a fatal error. |
|
631
|
|
|
|
|
|
|
*/ |
|
632
|
|
|
|
|
|
|
case OP_Return: { |
|
633
|
0
|
0
|
|
|
|
|
if( p->returnDepth<=0 ){ |
|
634
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0); |
|
635
|
0
|
|
|
|
|
|
p->rc = SQLITE_INTERNAL; |
|
636
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
|
637
|
|
|
|
|
|
|
} |
|
638
|
0
|
|
|
|
|
|
p->returnDepth--; |
|
639
|
0
|
|
|
|
|
|
pc = p->returnStack[p->returnDepth] - 1; |
|
640
|
0
|
|
|
|
|
|
break; |
|
641
|
|
|
|
|
|
|
} |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
/* Opcode: Halt P1 P2 * |
|
644
|
|
|
|
|
|
|
** |
|
645
|
|
|
|
|
|
|
** Exit immediately. All open cursors, Lists, Sorts, etc are closed |
|
646
|
|
|
|
|
|
|
** automatically. |
|
647
|
|
|
|
|
|
|
** |
|
648
|
|
|
|
|
|
|
** P1 is the result code returned by sqlite_exec(). For a normal |
|
649
|
|
|
|
|
|
|
** halt, this should be SQLITE_OK (0). For errors, it can be some |
|
650
|
|
|
|
|
|
|
** other value. If P1!=0 then P2 will determine whether or not to |
|
651
|
|
|
|
|
|
|
** rollback the current transaction. Do not rollback if P2==OE_Fail. |
|
652
|
|
|
|
|
|
|
** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back |
|
653
|
|
|
|
|
|
|
** out all changes that have occurred during this execution of the |
|
654
|
|
|
|
|
|
|
** VDBE, but do not rollback the transaction. |
|
655
|
|
|
|
|
|
|
** |
|
656
|
|
|
|
|
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
|
657
|
|
|
|
|
|
|
** every program. So a jump past the last instruction of the program |
|
658
|
|
|
|
|
|
|
** is the same as executing Halt. |
|
659
|
|
|
|
|
|
|
*/ |
|
660
|
|
|
|
|
|
|
case OP_Halt: { |
|
661
|
337
|
|
|
|
|
|
p->magic = VDBE_MAGIC_HALT; |
|
662
|
337
|
|
|
|
|
|
p->pTos = pTos; |
|
663
|
337
|
100
|
|
|
|
|
if( pOp->p1!=SQLITE_OK ){ |
|
664
|
1
|
|
|
|
|
|
p->rc = pOp->p1; |
|
665
|
1
|
|
|
|
|
|
p->errorAction = pOp->p2; |
|
666
|
1
|
50
|
|
|
|
|
if( pOp->p3 ){ |
|
667
|
1
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); |
|
668
|
|
|
|
|
|
|
} |
|
669
|
1
|
|
|
|
|
|
return SQLITE_ERROR; |
|
670
|
|
|
|
|
|
|
}else{ |
|
671
|
336
|
|
|
|
|
|
p->rc = SQLITE_OK; |
|
672
|
336
|
|
|
|
|
|
return SQLITE_DONE; |
|
673
|
|
|
|
|
|
|
} |
|
674
|
|
|
|
|
|
|
} |
|
675
|
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
/* Opcode: Integer P1 * P3 |
|
677
|
|
|
|
|
|
|
** |
|
678
|
|
|
|
|
|
|
** The integer value P1 is pushed onto the stack. If P3 is not zero |
|
679
|
|
|
|
|
|
|
** then it is assumed to be a string representation of the same integer. |
|
680
|
|
|
|
|
|
|
*/ |
|
681
|
|
|
|
|
|
|
case OP_Integer: { |
|
682
|
386
|
|
|
|
|
|
pTos++; |
|
683
|
386
|
|
|
|
|
|
pTos->i = pOp->p1; |
|
684
|
386
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
685
|
386
|
100
|
|
|
|
|
if( pOp->p3 ){ |
|
686
|
94
|
|
|
|
|
|
pTos->z = pOp->p3; |
|
687
|
94
|
|
|
|
|
|
pTos->flags |= MEM_Str | MEM_Static; |
|
688
|
94
|
|
|
|
|
|
pTos->n = strlen(pOp->p3)+1; |
|
689
|
|
|
|
|
|
|
} |
|
690
|
386
|
|
|
|
|
|
break; |
|
691
|
|
|
|
|
|
|
} |
|
692
|
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
/* Opcode: String * * P3 |
|
694
|
|
|
|
|
|
|
** |
|
695
|
|
|
|
|
|
|
** The string value P3 is pushed onto the stack. If P3==0 then a |
|
696
|
|
|
|
|
|
|
** NULL is pushed onto the stack. |
|
697
|
|
|
|
|
|
|
*/ |
|
698
|
|
|
|
|
|
|
case OP_String: { |
|
699
|
309
|
|
|
|
|
|
char *z = pOp->p3; |
|
700
|
309
|
|
|
|
|
|
pTos++; |
|
701
|
309
|
100
|
|
|
|
|
if( z==0 ){ |
|
702
|
94
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
703
|
|
|
|
|
|
|
}else{ |
|
704
|
215
|
|
|
|
|
|
pTos->z = z; |
|
705
|
215
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
|
706
|
215
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
|
707
|
|
|
|
|
|
|
} |
|
708
|
309
|
|
|
|
|
|
break; |
|
709
|
|
|
|
|
|
|
} |
|
710
|
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
/* Opcode: Variable P1 * * |
|
712
|
|
|
|
|
|
|
** |
|
713
|
|
|
|
|
|
|
** Push the value of variable P1 onto the stack. A variable is |
|
714
|
|
|
|
|
|
|
** an unknown in the original SQL string as handed to sqlite_compile(). |
|
715
|
|
|
|
|
|
|
** Any occurance of the '?' character in the original SQL is considered |
|
716
|
|
|
|
|
|
|
** a variable. Variables in the SQL string are number from left to |
|
717
|
|
|
|
|
|
|
** right beginning with 1. The values of variables are set using the |
|
718
|
|
|
|
|
|
|
** sqlite_bind() API. |
|
719
|
|
|
|
|
|
|
*/ |
|
720
|
|
|
|
|
|
|
case OP_Variable: { |
|
721
|
0
|
|
|
|
|
|
int j = pOp->p1 - 1; |
|
722
|
0
|
|
|
|
|
|
pTos++; |
|
723
|
0
|
0
|
|
|
|
|
if( j>=0 && jnVar && p->azVar[j]!=0 ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
724
|
0
|
|
|
|
|
|
pTos->z = p->azVar[j]; |
|
725
|
0
|
|
|
|
|
|
pTos->n = p->anVar[j]; |
|
726
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
|
727
|
|
|
|
|
|
|
}else{ |
|
728
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
729
|
|
|
|
|
|
|
} |
|
730
|
0
|
|
|
|
|
|
break; |
|
731
|
|
|
|
|
|
|
} |
|
732
|
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
/* Opcode: Pop P1 * * |
|
734
|
|
|
|
|
|
|
** |
|
735
|
|
|
|
|
|
|
** P1 elements are popped off of the top of stack and discarded. |
|
736
|
|
|
|
|
|
|
*/ |
|
737
|
|
|
|
|
|
|
case OP_Pop: { |
|
738
|
|
|
|
|
|
|
assert( pOp->p1>=0 ); |
|
739
|
0
|
|
|
|
|
|
popStack(&pTos, pOp->p1); |
|
740
|
|
|
|
|
|
|
assert( pTos>=&p->aStack[-1] ); |
|
741
|
0
|
|
|
|
|
|
break; |
|
742
|
|
|
|
|
|
|
} |
|
743
|
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
/* Opcode: Dup P1 P2 * |
|
745
|
|
|
|
|
|
|
** |
|
746
|
|
|
|
|
|
|
** A copy of the P1-th element of the stack |
|
747
|
|
|
|
|
|
|
** is made and pushed onto the top of the stack. |
|
748
|
|
|
|
|
|
|
** The top of the stack is element 0. So the |
|
749
|
|
|
|
|
|
|
** instruction "Dup 0 0 0" will make a copy of the |
|
750
|
|
|
|
|
|
|
** top of the stack. |
|
751
|
|
|
|
|
|
|
** |
|
752
|
|
|
|
|
|
|
** If the content of the P1-th element is a dynamically |
|
753
|
|
|
|
|
|
|
** allocated string, then a new copy of that string |
|
754
|
|
|
|
|
|
|
** is made if P2==0. If P2!=0, then just a pointer |
|
755
|
|
|
|
|
|
|
** to the string is copied. |
|
756
|
|
|
|
|
|
|
** |
|
757
|
|
|
|
|
|
|
** Also see the Pull instruction. |
|
758
|
|
|
|
|
|
|
*/ |
|
759
|
|
|
|
|
|
|
case OP_Dup: { |
|
760
|
80
|
|
|
|
|
|
Mem *pFrom = &pTos[-pOp->p1]; |
|
761
|
|
|
|
|
|
|
assert( pFrom<=pTos && pFrom>=p->aStack ); |
|
762
|
80
|
|
|
|
|
|
pTos++; |
|
763
|
80
|
|
|
|
|
|
memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); |
|
764
|
80
|
100
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
|
765
|
31
|
50
|
|
|
|
|
if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ |
|
|
|
50
|
|
|
|
|
|
|
766
|
0
|
|
|
|
|
|
pTos->flags &= ~MEM_Dyn; |
|
767
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
|
768
|
31
|
50
|
|
|
|
|
}else if( pTos->flags & MEM_Short ){ |
|
769
|
0
|
|
|
|
|
|
memcpy(pTos->zShort, pFrom->zShort, pTos->n); |
|
770
|
0
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
771
|
31
|
50
|
|
|
|
|
}else if( (pTos->flags & MEM_Static)==0 ){ |
|
772
|
0
|
|
|
|
|
|
pTos->z = sqliteMallocRaw(pFrom->n); |
|
773
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
|
774
|
0
|
|
|
|
|
|
memcpy(pTos->z, pFrom->z, pFrom->n); |
|
775
|
0
|
|
|
|
|
|
pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); |
|
776
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Dyn; |
|
777
|
|
|
|
|
|
|
} |
|
778
|
|
|
|
|
|
|
} |
|
779
|
80
|
|
|
|
|
|
break; |
|
780
|
|
|
|
|
|
|
} |
|
781
|
|
|
|
|
|
|
|
|
782
|
|
|
|
|
|
|
/* Opcode: Pull P1 * * |
|
783
|
|
|
|
|
|
|
** |
|
784
|
|
|
|
|
|
|
** The P1-th element is removed from its current location on |
|
785
|
|
|
|
|
|
|
** the stack and pushed back on top of the stack. The |
|
786
|
|
|
|
|
|
|
** top of the stack is element 0, so "Pull 0 0 0" is |
|
787
|
|
|
|
|
|
|
** a no-op. "Pull 1 0 0" swaps the top two elements of |
|
788
|
|
|
|
|
|
|
** the stack. |
|
789
|
|
|
|
|
|
|
** |
|
790
|
|
|
|
|
|
|
** See also the Dup instruction. |
|
791
|
|
|
|
|
|
|
*/ |
|
792
|
|
|
|
|
|
|
case OP_Pull: { |
|
793
|
48
|
|
|
|
|
|
Mem *pFrom = &pTos[-pOp->p1]; |
|
794
|
|
|
|
|
|
|
int i; |
|
795
|
|
|
|
|
|
|
Mem ts; |
|
796
|
|
|
|
|
|
|
|
|
797
|
48
|
|
|
|
|
|
ts = *pFrom; |
|
798
|
48
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
|
0
|
|
|
|
|
|
|
799
|
96
|
100
|
|
|
|
|
for(i=0; ip1; i++, pFrom++){ |
|
800
|
48
|
50
|
|
|
|
|
Deephemeralize(&pFrom[1]); |
|
|
|
0
|
|
|
|
|
|
|
801
|
48
|
|
|
|
|
|
*pFrom = pFrom[1]; |
|
802
|
|
|
|
|
|
|
assert( (pFrom->flags & MEM_Ephem)==0 ); |
|
803
|
48
|
50
|
|
|
|
|
if( pFrom->flags & MEM_Short ){ |
|
804
|
|
|
|
|
|
|
assert( pFrom->flags & MEM_Str ); |
|
805
|
|
|
|
|
|
|
assert( pFrom->z==pFrom[1].zShort ); |
|
806
|
0
|
|
|
|
|
|
pFrom->z = pFrom->zShort; |
|
807
|
|
|
|
|
|
|
} |
|
808
|
|
|
|
|
|
|
} |
|
809
|
48
|
|
|
|
|
|
*pTos = ts; |
|
810
|
48
|
100
|
|
|
|
|
if( pTos->flags & MEM_Short ){ |
|
811
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
812
|
|
|
|
|
|
|
assert( pTos->z==pTos[-pOp->p1].zShort ); |
|
813
|
3
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
814
|
|
|
|
|
|
|
} |
|
815
|
48
|
|
|
|
|
|
break; |
|
816
|
|
|
|
|
|
|
} |
|
817
|
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
/* Opcode: Push P1 * * |
|
819
|
|
|
|
|
|
|
** |
|
820
|
|
|
|
|
|
|
** Overwrite the value of the P1-th element down on the |
|
821
|
|
|
|
|
|
|
** stack (P1==0 is the top of the stack) with the value |
|
822
|
|
|
|
|
|
|
** of the top of the stack. Then pop the top of the stack. |
|
823
|
|
|
|
|
|
|
*/ |
|
824
|
|
|
|
|
|
|
case OP_Push: { |
|
825
|
0
|
|
|
|
|
|
Mem *pTo = &pTos[-pOp->p1]; |
|
826
|
|
|
|
|
|
|
|
|
827
|
|
|
|
|
|
|
assert( pTo>=p->aStack ); |
|
828
|
0
|
0
|
|
|
|
|
Deephemeralize(pTos); |
|
|
|
0
|
|
|
|
|
|
|
829
|
0
|
0
|
|
|
|
|
Release(pTo); |
|
830
|
0
|
|
|
|
|
|
*pTo = *pTos; |
|
831
|
0
|
0
|
|
|
|
|
if( pTo->flags & MEM_Short ){ |
|
832
|
|
|
|
|
|
|
assert( pTo->z==pTos->zShort ); |
|
833
|
0
|
|
|
|
|
|
pTo->z = pTo->zShort; |
|
834
|
|
|
|
|
|
|
} |
|
835
|
0
|
|
|
|
|
|
pTos--; |
|
836
|
0
|
|
|
|
|
|
break; |
|
837
|
|
|
|
|
|
|
} |
|
838
|
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
|
|
840
|
|
|
|
|
|
|
/* Opcode: ColumnName P1 P2 P3 |
|
841
|
|
|
|
|
|
|
** |
|
842
|
|
|
|
|
|
|
** P3 becomes the P1-th column name (first is 0). An array of pointers |
|
843
|
|
|
|
|
|
|
** to all column names is passed as the 4th parameter to the callback. |
|
844
|
|
|
|
|
|
|
** If P2==1 then this is the last column in the result set and thus the |
|
845
|
|
|
|
|
|
|
** number of columns in the result set will be P1. There must be at least |
|
846
|
|
|
|
|
|
|
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the |
|
847
|
|
|
|
|
|
|
** number of columns specified in OP_Callback must one more than the P1 |
|
848
|
|
|
|
|
|
|
** value of the OP_ColumnName that has P2==1. |
|
849
|
|
|
|
|
|
|
*/ |
|
850
|
|
|
|
|
|
|
case OP_ColumnName: { |
|
851
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nOp ); |
|
852
|
790
|
|
|
|
|
|
p->azColName[pOp->p1] = pOp->p3; |
|
853
|
790
|
|
|
|
|
|
p->nCallback = 0; |
|
854
|
790
|
100
|
|
|
|
|
if( pOp->p2 ) p->nResColumn = pOp->p1+1; |
|
855
|
790
|
|
|
|
|
|
break; |
|
856
|
|
|
|
|
|
|
} |
|
857
|
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
/* Opcode: Callback P1 * * |
|
859
|
|
|
|
|
|
|
** |
|
860
|
|
|
|
|
|
|
** Pop P1 values off the stack and form them into an array. Then |
|
861
|
|
|
|
|
|
|
** invoke the callback function using the newly formed array as the |
|
862
|
|
|
|
|
|
|
** 3rd parameter. |
|
863
|
|
|
|
|
|
|
*/ |
|
864
|
|
|
|
|
|
|
case OP_Callback: { |
|
865
|
|
|
|
|
|
|
int i; |
|
866
|
80
|
|
|
|
|
|
char **azArgv = p->zArgv; |
|
867
|
|
|
|
|
|
|
Mem *pCol; |
|
868
|
|
|
|
|
|
|
|
|
869
|
80
|
|
|
|
|
|
pCol = &pTos[1-pOp->p1]; |
|
870
|
|
|
|
|
|
|
assert( pCol>=p->aStack ); |
|
871
|
265
|
100
|
|
|
|
|
for(i=0; ip1; i++, pCol++){ |
|
872
|
185
|
100
|
|
|
|
|
if( pCol->flags & MEM_Null ){ |
|
873
|
17
|
|
|
|
|
|
azArgv[i] = 0; |
|
874
|
|
|
|
|
|
|
}else{ |
|
875
|
168
|
100
|
|
|
|
|
Stringify(pCol); |
|
876
|
168
|
|
|
|
|
|
azArgv[i] = pCol->z; |
|
877
|
|
|
|
|
|
|
} |
|
878
|
|
|
|
|
|
|
} |
|
879
|
80
|
|
|
|
|
|
azArgv[i] = 0; |
|
880
|
80
|
|
|
|
|
|
p->nCallback++; |
|
881
|
80
|
|
|
|
|
|
p->azResColumn = azArgv; |
|
882
|
|
|
|
|
|
|
assert( p->nResColumn==pOp->p1 ); |
|
883
|
80
|
|
|
|
|
|
p->popStack = pOp->p1; |
|
884
|
80
|
|
|
|
|
|
p->pc = pc + 1; |
|
885
|
80
|
|
|
|
|
|
p->pTos = pTos; |
|
886
|
80
|
|
|
|
|
|
return SQLITE_ROW; |
|
887
|
|
|
|
|
|
|
} |
|
888
|
|
|
|
|
|
|
|
|
889
|
|
|
|
|
|
|
/* Opcode: Concat P1 P2 P3 |
|
890
|
|
|
|
|
|
|
** |
|
891
|
|
|
|
|
|
|
** Look at the first P1 elements of the stack. Append them all |
|
892
|
|
|
|
|
|
|
** together with the lowest element first. Use P3 as a separator. |
|
893
|
|
|
|
|
|
|
** Put the result on the top of the stack. The original P1 elements |
|
894
|
|
|
|
|
|
|
** are popped from the stack if P2==0 and retained if P2==1. If |
|
895
|
|
|
|
|
|
|
** any element of the stack is NULL, then the result is NULL. |
|
896
|
|
|
|
|
|
|
** |
|
897
|
|
|
|
|
|
|
** If P3 is NULL, then use no separator. When P1==1, this routine |
|
898
|
|
|
|
|
|
|
** makes a copy of the top stack element into memory obtained |
|
899
|
|
|
|
|
|
|
** from sqliteMalloc(). |
|
900
|
|
|
|
|
|
|
*/ |
|
901
|
|
|
|
|
|
|
case OP_Concat: { |
|
902
|
|
|
|
|
|
|
char *zNew; |
|
903
|
|
|
|
|
|
|
int nByte; |
|
904
|
|
|
|
|
|
|
int nField; |
|
905
|
|
|
|
|
|
|
int i, j; |
|
906
|
|
|
|
|
|
|
char *zSep; |
|
907
|
|
|
|
|
|
|
int nSep; |
|
908
|
|
|
|
|
|
|
Mem *pTerm; |
|
909
|
|
|
|
|
|
|
|
|
910
|
0
|
|
|
|
|
|
nField = pOp->p1; |
|
911
|
0
|
|
|
|
|
|
zSep = pOp->p3; |
|
912
|
0
|
0
|
|
|
|
|
if( zSep==0 ) zSep = ""; |
|
913
|
0
|
|
|
|
|
|
nSep = strlen(zSep); |
|
914
|
|
|
|
|
|
|
assert( &pTos[1-nField] >= p->aStack ); |
|
915
|
0
|
|
|
|
|
|
nByte = 1 - nSep; |
|
916
|
0
|
|
|
|
|
|
pTerm = &pTos[1-nField]; |
|
917
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
918
|
0
|
0
|
|
|
|
|
if( pTerm->flags & MEM_Null ){ |
|
919
|
0
|
|
|
|
|
|
nByte = -1; |
|
920
|
0
|
|
|
|
|
|
break; |
|
921
|
|
|
|
|
|
|
}else{ |
|
922
|
0
|
0
|
|
|
|
|
Stringify(pTerm); |
|
923
|
0
|
|
|
|
|
|
nByte += pTerm->n - 1 + nSep; |
|
924
|
|
|
|
|
|
|
} |
|
925
|
|
|
|
|
|
|
} |
|
926
|
0
|
0
|
|
|
|
|
if( nByte<0 ){ |
|
927
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
|
928
|
0
|
|
|
|
|
|
popStack(&pTos, nField); |
|
929
|
|
|
|
|
|
|
} |
|
930
|
0
|
|
|
|
|
|
pTos++; |
|
931
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
932
|
0
|
|
|
|
|
|
break; |
|
933
|
|
|
|
|
|
|
} |
|
934
|
0
|
|
|
|
|
|
zNew = sqliteMallocRaw( nByte ); |
|
935
|
0
|
0
|
|
|
|
|
if( zNew==0 ) goto no_mem; |
|
936
|
0
|
|
|
|
|
|
j = 0; |
|
937
|
0
|
|
|
|
|
|
pTerm = &pTos[1-nField]; |
|
938
|
0
|
0
|
|
|
|
|
for(i=j=0; i
|
|
939
|
|
|
|
|
|
|
assert( pTerm->flags & MEM_Str ); |
|
940
|
0
|
|
|
|
|
|
memcpy(&zNew[j], pTerm->z, pTerm->n-1); |
|
941
|
0
|
|
|
|
|
|
j += pTerm->n-1; |
|
942
|
0
|
0
|
|
|
|
|
if( nSep>0 && i
|
|
|
|
0
|
|
|
|
|
|
|
943
|
0
|
|
|
|
|
|
memcpy(&zNew[j], zSep, nSep); |
|
944
|
0
|
|
|
|
|
|
j += nSep; |
|
945
|
|
|
|
|
|
|
} |
|
946
|
|
|
|
|
|
|
} |
|
947
|
0
|
|
|
|
|
|
zNew[j] = 0; |
|
948
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
|
949
|
0
|
|
|
|
|
|
popStack(&pTos, nField); |
|
950
|
|
|
|
|
|
|
} |
|
951
|
0
|
|
|
|
|
|
pTos++; |
|
952
|
0
|
|
|
|
|
|
pTos->n = nByte; |
|
953
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
|
954
|
0
|
|
|
|
|
|
pTos->z = zNew; |
|
955
|
0
|
|
|
|
|
|
break; |
|
956
|
|
|
|
|
|
|
} |
|
957
|
|
|
|
|
|
|
|
|
958
|
|
|
|
|
|
|
/* Opcode: Add * * * |
|
959
|
|
|
|
|
|
|
** |
|
960
|
|
|
|
|
|
|
** Pop the top two elements from the stack, add them together, |
|
961
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
|
962
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
|
963
|
|
|
|
|
|
|
** function before the addition. |
|
964
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
965
|
|
|
|
|
|
|
*/ |
|
966
|
|
|
|
|
|
|
/* Opcode: Multiply * * * |
|
967
|
|
|
|
|
|
|
** |
|
968
|
|
|
|
|
|
|
** Pop the top two elements from the stack, multiply them together, |
|
969
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
|
970
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
|
971
|
|
|
|
|
|
|
** function before the multiplication. |
|
972
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
973
|
|
|
|
|
|
|
*/ |
|
974
|
|
|
|
|
|
|
/* Opcode: Subtract * * * |
|
975
|
|
|
|
|
|
|
** |
|
976
|
|
|
|
|
|
|
** Pop the top two elements from the stack, subtract the |
|
977
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
|
978
|
|
|
|
|
|
|
** next on stack) |
|
979
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
|
980
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
|
981
|
|
|
|
|
|
|
** function before the subtraction. |
|
982
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
983
|
|
|
|
|
|
|
*/ |
|
984
|
|
|
|
|
|
|
/* Opcode: Divide * * * |
|
985
|
|
|
|
|
|
|
** |
|
986
|
|
|
|
|
|
|
** Pop the top two elements from the stack, divide the |
|
987
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
|
988
|
|
|
|
|
|
|
** next on stack) |
|
989
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
|
990
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
|
991
|
|
|
|
|
|
|
** function before the division. Division by zero returns NULL. |
|
992
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
993
|
|
|
|
|
|
|
*/ |
|
994
|
|
|
|
|
|
|
/* Opcode: Remainder * * * |
|
995
|
|
|
|
|
|
|
** |
|
996
|
|
|
|
|
|
|
** Pop the top two elements from the stack, divide the |
|
997
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
|
998
|
|
|
|
|
|
|
** next on stack) |
|
999
|
|
|
|
|
|
|
** and push the remainder after division onto the stack. If either element |
|
1000
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
|
1001
|
|
|
|
|
|
|
** function before the division. Division by zero returns NULL. |
|
1002
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
1003
|
|
|
|
|
|
|
*/ |
|
1004
|
|
|
|
|
|
|
case OP_Add: |
|
1005
|
|
|
|
|
|
|
case OP_Subtract: |
|
1006
|
|
|
|
|
|
|
case OP_Multiply: |
|
1007
|
|
|
|
|
|
|
case OP_Divide: |
|
1008
|
|
|
|
|
|
|
case OP_Remainder: { |
|
1009
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
1010
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
1011
|
0
|
0
|
|
|
|
|
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ |
|
1012
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1013
|
0
|
|
|
|
|
|
pTos--; |
|
1014
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1015
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1016
|
0
|
0
|
|
|
|
|
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ |
|
1017
|
|
|
|
|
|
|
int a, b; |
|
1018
|
0
|
|
|
|
|
|
a = pTos->i; |
|
1019
|
0
|
|
|
|
|
|
b = pNos->i; |
|
1020
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
1021
|
0
|
|
|
|
|
|
case OP_Add: b += a; break; |
|
1022
|
0
|
|
|
|
|
|
case OP_Subtract: b -= a; break; |
|
1023
|
0
|
|
|
|
|
|
case OP_Multiply: b *= a; break; |
|
1024
|
|
|
|
|
|
|
case OP_Divide: { |
|
1025
|
0
|
0
|
|
|
|
|
if( a==0 ) goto divide_by_zero; |
|
1026
|
0
|
|
|
|
|
|
b /= a; |
|
1027
|
0
|
|
|
|
|
|
break; |
|
1028
|
|
|
|
|
|
|
} |
|
1029
|
|
|
|
|
|
|
default: { |
|
1030
|
0
|
0
|
|
|
|
|
if( a==0 ) goto divide_by_zero; |
|
1031
|
0
|
|
|
|
|
|
b %= a; |
|
1032
|
0
|
|
|
|
|
|
break; |
|
1033
|
|
|
|
|
|
|
} |
|
1034
|
|
|
|
|
|
|
} |
|
1035
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1036
|
0
|
|
|
|
|
|
pTos--; |
|
1037
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1038
|
0
|
|
|
|
|
|
pTos->i = b; |
|
1039
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1040
|
|
|
|
|
|
|
}else{ |
|
1041
|
|
|
|
|
|
|
double a, b; |
|
1042
|
0
|
0
|
|
|
|
|
Realify(pTos); |
|
1043
|
0
|
0
|
|
|
|
|
Realify(pNos); |
|
1044
|
0
|
|
|
|
|
|
a = pTos->r; |
|
1045
|
0
|
|
|
|
|
|
b = pNos->r; |
|
1046
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
1047
|
0
|
|
|
|
|
|
case OP_Add: b += a; break; |
|
1048
|
0
|
|
|
|
|
|
case OP_Subtract: b -= a; break; |
|
1049
|
0
|
|
|
|
|
|
case OP_Multiply: b *= a; break; |
|
1050
|
|
|
|
|
|
|
case OP_Divide: { |
|
1051
|
0
|
0
|
|
|
|
|
if( a==0.0 ) goto divide_by_zero; |
|
1052
|
0
|
|
|
|
|
|
b /= a; |
|
1053
|
0
|
|
|
|
|
|
break; |
|
1054
|
|
|
|
|
|
|
} |
|
1055
|
|
|
|
|
|
|
default: { |
|
1056
|
0
|
|
|
|
|
|
int ia = (int)a; |
|
1057
|
0
|
|
|
|
|
|
int ib = (int)b; |
|
1058
|
0
|
0
|
|
|
|
|
if( ia==0.0 ) goto divide_by_zero; |
|
1059
|
0
|
|
|
|
|
|
b = ib % ia; |
|
1060
|
0
|
|
|
|
|
|
break; |
|
1061
|
|
|
|
|
|
|
} |
|
1062
|
|
|
|
|
|
|
} |
|
1063
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1064
|
0
|
|
|
|
|
|
pTos--; |
|
1065
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1066
|
0
|
|
|
|
|
|
pTos->r = b; |
|
1067
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
|
1068
|
|
|
|
|
|
|
} |
|
1069
|
0
|
|
|
|
|
|
break; |
|
1070
|
|
|
|
|
|
|
|
|
1071
|
|
|
|
|
|
|
divide_by_zero: |
|
1072
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1073
|
0
|
|
|
|
|
|
pTos--; |
|
1074
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1075
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1076
|
0
|
|
|
|
|
|
break; |
|
1077
|
|
|
|
|
|
|
} |
|
1078
|
|
|
|
|
|
|
|
|
1079
|
|
|
|
|
|
|
/* Opcode: Function P1 * P3 |
|
1080
|
|
|
|
|
|
|
** |
|
1081
|
|
|
|
|
|
|
** Invoke a user function (P3 is a pointer to a Function structure that |
|
1082
|
|
|
|
|
|
|
** defines the function) with P1 string arguments taken from the stack. |
|
1083
|
|
|
|
|
|
|
** Pop all arguments from the stack and push back the result. |
|
1084
|
|
|
|
|
|
|
** |
|
1085
|
|
|
|
|
|
|
** See also: AggFunc |
|
1086
|
|
|
|
|
|
|
*/ |
|
1087
|
|
|
|
|
|
|
case OP_Function: { |
|
1088
|
|
|
|
|
|
|
int n, i; |
|
1089
|
|
|
|
|
|
|
Mem *pArg; |
|
1090
|
|
|
|
|
|
|
char **azArgv; |
|
1091
|
|
|
|
|
|
|
sqlite_func ctx; |
|
1092
|
|
|
|
|
|
|
|
|
1093
|
65
|
|
|
|
|
|
n = pOp->p1; |
|
1094
|
65
|
|
|
|
|
|
pArg = &pTos[1-n]; |
|
1095
|
65
|
|
|
|
|
|
azArgv = p->zArgv; |
|
1096
|
157
|
100
|
|
|
|
|
for(i=0; i
|
|
1097
|
92
|
100
|
|
|
|
|
if( pArg->flags & MEM_Null ){ |
|
1098
|
2
|
|
|
|
|
|
azArgv[i] = 0; |
|
1099
|
|
|
|
|
|
|
}else{ |
|
1100
|
90
|
50
|
|
|
|
|
Stringify(pArg); |
|
1101
|
90
|
|
|
|
|
|
azArgv[i] = pArg->z; |
|
1102
|
|
|
|
|
|
|
} |
|
1103
|
|
|
|
|
|
|
} |
|
1104
|
65
|
|
|
|
|
|
ctx.pFunc = (FuncDef*)pOp->p3; |
|
1105
|
65
|
|
|
|
|
|
ctx.s.flags = MEM_Null; |
|
1106
|
65
|
|
|
|
|
|
ctx.s.z = 0; |
|
1107
|
65
|
|
|
|
|
|
ctx.isError = 0; |
|
1108
|
65
|
|
|
|
|
|
ctx.isStep = 0; |
|
1109
|
65
|
50
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
|
1110
|
65
|
|
|
|
|
|
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); |
|
1111
|
65
|
50
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
|
1112
|
65
|
|
|
|
|
|
popStack(&pTos, n); |
|
1113
|
65
|
|
|
|
|
|
pTos++; |
|
1114
|
65
|
|
|
|
|
|
*pTos = ctx.s; |
|
1115
|
65
|
100
|
|
|
|
|
if( pTos->flags & MEM_Short ){ |
|
1116
|
24
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
1117
|
|
|
|
|
|
|
} |
|
1118
|
65
|
100
|
|
|
|
|
if( ctx.isError ){ |
|
1119
|
1
|
50
|
|
|
|
|
sqliteSetString(&p->zErrMsg, |
|
1120
|
2
|
|
|
|
|
|
(pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); |
|
1121
|
1
|
|
|
|
|
|
rc = SQLITE_ERROR; |
|
1122
|
|
|
|
|
|
|
} |
|
1123
|
65
|
|
|
|
|
|
break; |
|
1124
|
|
|
|
|
|
|
} |
|
1125
|
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
/* Opcode: BitAnd * * * |
|
1127
|
|
|
|
|
|
|
** |
|
1128
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
|
1129
|
|
|
|
|
|
|
** to integers. Push back onto the stack the bit-wise AND of the |
|
1130
|
|
|
|
|
|
|
** two elements. |
|
1131
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
1132
|
|
|
|
|
|
|
*/ |
|
1133
|
|
|
|
|
|
|
/* Opcode: BitOr * * * |
|
1134
|
|
|
|
|
|
|
** |
|
1135
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
|
1136
|
|
|
|
|
|
|
** to integers. Push back onto the stack the bit-wise OR of the |
|
1137
|
|
|
|
|
|
|
** two elements. |
|
1138
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
1139
|
|
|
|
|
|
|
*/ |
|
1140
|
|
|
|
|
|
|
/* Opcode: ShiftLeft * * * |
|
1141
|
|
|
|
|
|
|
** |
|
1142
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
|
1143
|
|
|
|
|
|
|
** to integers. Push back onto the stack the top element shifted |
|
1144
|
|
|
|
|
|
|
** left by N bits where N is the second element on the stack. |
|
1145
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
1146
|
|
|
|
|
|
|
*/ |
|
1147
|
|
|
|
|
|
|
/* Opcode: ShiftRight * * * |
|
1148
|
|
|
|
|
|
|
** |
|
1149
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
|
1150
|
|
|
|
|
|
|
** to integers. Push back onto the stack the top element shifted |
|
1151
|
|
|
|
|
|
|
** right by N bits where N is the second element on the stack. |
|
1152
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
|
1153
|
|
|
|
|
|
|
*/ |
|
1154
|
|
|
|
|
|
|
case OP_BitAnd: |
|
1155
|
|
|
|
|
|
|
case OP_BitOr: |
|
1156
|
|
|
|
|
|
|
case OP_ShiftLeft: |
|
1157
|
|
|
|
|
|
|
case OP_ShiftRight: { |
|
1158
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
1159
|
|
|
|
|
|
|
int a, b; |
|
1160
|
|
|
|
|
|
|
|
|
1161
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
1162
|
0
|
0
|
|
|
|
|
if( (pTos->flags | pNos->flags) & MEM_Null ){ |
|
1163
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1164
|
0
|
|
|
|
|
|
pTos++; |
|
1165
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1166
|
0
|
|
|
|
|
|
break; |
|
1167
|
|
|
|
|
|
|
} |
|
1168
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
1169
|
0
|
0
|
|
|
|
|
Integerify(pNos); |
|
1170
|
0
|
|
|
|
|
|
a = pTos->i; |
|
1171
|
0
|
|
|
|
|
|
b = pNos->i; |
|
1172
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
1173
|
0
|
|
|
|
|
|
case OP_BitAnd: a &= b; break; |
|
1174
|
0
|
|
|
|
|
|
case OP_BitOr: a |= b; break; |
|
1175
|
0
|
|
|
|
|
|
case OP_ShiftLeft: a <<= b; break; |
|
1176
|
0
|
|
|
|
|
|
case OP_ShiftRight: a >>= b; break; |
|
1177
|
0
|
|
|
|
|
|
default: /* CANT HAPPEN */ break; |
|
1178
|
|
|
|
|
|
|
} |
|
1179
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Dyn)==0 ); |
|
1180
|
|
|
|
|
|
|
assert( (pNos->flags & MEM_Dyn)==0 ); |
|
1181
|
0
|
|
|
|
|
|
pTos--; |
|
1182
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1183
|
0
|
|
|
|
|
|
pTos->i = a; |
|
1184
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1185
|
0
|
|
|
|
|
|
break; |
|
1186
|
|
|
|
|
|
|
} |
|
1187
|
|
|
|
|
|
|
|
|
1188
|
|
|
|
|
|
|
/* Opcode: AddImm P1 * * |
|
1189
|
|
|
|
|
|
|
** |
|
1190
|
|
|
|
|
|
|
** Add the value P1 to whatever is on top of the stack. The result |
|
1191
|
|
|
|
|
|
|
** is always an integer. |
|
1192
|
|
|
|
|
|
|
** |
|
1193
|
|
|
|
|
|
|
** To force the top of the stack to be an integer, just add 0. |
|
1194
|
|
|
|
|
|
|
*/ |
|
1195
|
|
|
|
|
|
|
case OP_AddImm: { |
|
1196
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1197
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
1198
|
0
|
|
|
|
|
|
pTos->i += pOp->p1; |
|
1199
|
0
|
|
|
|
|
|
break; |
|
1200
|
|
|
|
|
|
|
} |
|
1201
|
|
|
|
|
|
|
|
|
1202
|
|
|
|
|
|
|
/* Opcode: ForceInt P1 P2 * |
|
1203
|
|
|
|
|
|
|
** |
|
1204
|
|
|
|
|
|
|
** Convert the top of the stack into an integer. If the current top of |
|
1205
|
|
|
|
|
|
|
** the stack is not numeric (meaning that is is a NULL or a string that |
|
1206
|
|
|
|
|
|
|
** does not look like an integer or floating point number) then pop the |
|
1207
|
|
|
|
|
|
|
** stack and jump to P2. If the top of the stack is numeric then |
|
1208
|
|
|
|
|
|
|
** convert it into the least integer that is greater than or equal to its |
|
1209
|
|
|
|
|
|
|
** current value if P1==0, or to the least integer that is strictly |
|
1210
|
|
|
|
|
|
|
** greater than its current value if P1==1. |
|
1211
|
|
|
|
|
|
|
*/ |
|
1212
|
|
|
|
|
|
|
case OP_ForceInt: { |
|
1213
|
|
|
|
|
|
|
int v; |
|
1214
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1215
|
0
|
0
|
|
|
|
|
if( (pTos->flags & (MEM_Int|MEM_Real))==0 |
|
1216
|
0
|
0
|
|
|
|
|
&& ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ |
|
|
|
0
|
|
|
|
|
|
|
1217
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1218
|
0
|
|
|
|
|
|
pTos--; |
|
1219
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
1220
|
0
|
|
|
|
|
|
break; |
|
1221
|
|
|
|
|
|
|
} |
|
1222
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
|
1223
|
0
|
|
|
|
|
|
v = pTos->i + (pOp->p1!=0); |
|
1224
|
|
|
|
|
|
|
}else{ |
|
1225
|
0
|
0
|
|
|
|
|
Realify(pTos); |
|
1226
|
0
|
|
|
|
|
|
v = (int)pTos->r; |
|
1227
|
0
|
0
|
|
|
|
|
if( pTos->r>(double)v ) v++; |
|
1228
|
0
|
0
|
|
|
|
|
if( pOp->p1 && pTos->r==(double)v ) v++; |
|
|
|
0
|
|
|
|
|
|
|
1229
|
|
|
|
|
|
|
} |
|
1230
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1231
|
0
|
|
|
|
|
|
pTos->i = v; |
|
1232
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1233
|
0
|
|
|
|
|
|
break; |
|
1234
|
|
|
|
|
|
|
} |
|
1235
|
|
|
|
|
|
|
|
|
1236
|
|
|
|
|
|
|
/* Opcode: MustBeInt P1 P2 * |
|
1237
|
|
|
|
|
|
|
** |
|
1238
|
|
|
|
|
|
|
** Force the top of the stack to be an integer. If the top of the |
|
1239
|
|
|
|
|
|
|
** stack is not an integer and cannot be converted into an integer |
|
1240
|
|
|
|
|
|
|
** with out data loss, then jump immediately to P2, or if P2==0 |
|
1241
|
|
|
|
|
|
|
** raise an SQLITE_MISMATCH exception. |
|
1242
|
|
|
|
|
|
|
** |
|
1243
|
|
|
|
|
|
|
** If the top of the stack is not an integer and P2 is not zero and |
|
1244
|
|
|
|
|
|
|
** P1 is 1, then the stack is popped. In all other cases, the depth |
|
1245
|
|
|
|
|
|
|
** of the stack is unchanged. |
|
1246
|
|
|
|
|
|
|
*/ |
|
1247
|
|
|
|
|
|
|
case OP_MustBeInt: { |
|
1248
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1249
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
|
1250
|
|
|
|
|
|
|
/* Do nothing */ |
|
1251
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Real ){ |
|
1252
|
0
|
|
|
|
|
|
int i = (int)pTos->r; |
|
1253
|
0
|
|
|
|
|
|
double r = (double)i; |
|
1254
|
0
|
0
|
|
|
|
|
if( r!=pTos->r ){ |
|
1255
|
0
|
|
|
|
|
|
goto mismatch; |
|
1256
|
|
|
|
|
|
|
} |
|
1257
|
0
|
|
|
|
|
|
pTos->i = i; |
|
1258
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Str ){ |
|
1259
|
|
|
|
|
|
|
int v; |
|
1260
|
0
|
0
|
|
|
|
|
if( !toInt(pTos->z, &v) ){ |
|
1261
|
|
|
|
|
|
|
double r; |
|
1262
|
0
|
0
|
|
|
|
|
if( !sqliteIsNumber(pTos->z) ){ |
|
1263
|
0
|
|
|
|
|
|
goto mismatch; |
|
1264
|
|
|
|
|
|
|
} |
|
1265
|
0
|
0
|
|
|
|
|
Realify(pTos); |
|
1266
|
0
|
|
|
|
|
|
v = (int)pTos->r; |
|
1267
|
0
|
|
|
|
|
|
r = (double)v; |
|
1268
|
0
|
0
|
|
|
|
|
if( r!=pTos->r ){ |
|
1269
|
0
|
|
|
|
|
|
goto mismatch; |
|
1270
|
|
|
|
|
|
|
} |
|
1271
|
|
|
|
|
|
|
} |
|
1272
|
0
|
|
|
|
|
|
pTos->i = v; |
|
1273
|
|
|
|
|
|
|
}else{ |
|
1274
|
0
|
|
|
|
|
|
goto mismatch; |
|
1275
|
|
|
|
|
|
|
} |
|
1276
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1277
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1278
|
0
|
|
|
|
|
|
break; |
|
1279
|
|
|
|
|
|
|
|
|
1280
|
|
|
|
|
|
|
mismatch: |
|
1281
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
|
1282
|
0
|
|
|
|
|
|
rc = SQLITE_MISMATCH; |
|
1283
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
1284
|
|
|
|
|
|
|
}else{ |
|
1285
|
0
|
0
|
|
|
|
|
if( pOp->p1 ) popStack(&pTos, 1); |
|
1286
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
1287
|
|
|
|
|
|
|
} |
|
1288
|
0
|
|
|
|
|
|
break; |
|
1289
|
|
|
|
|
|
|
} |
|
1290
|
|
|
|
|
|
|
|
|
1291
|
|
|
|
|
|
|
/* Opcode: Eq P1 P2 * |
|
1292
|
|
|
|
|
|
|
** |
|
1293
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are equal, then |
|
1294
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1295
|
|
|
|
|
|
|
** |
|
1296
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1297
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1298
|
|
|
|
|
|
|
** |
|
1299
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1300
|
|
|
|
|
|
|
** and compared for equality that way. Otherwise the strcmp() library |
|
1301
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1302
|
|
|
|
|
|
|
** use OP_StrEq. |
|
1303
|
|
|
|
|
|
|
** |
|
1304
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1305
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1306
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1307
|
|
|
|
|
|
|
*/ |
|
1308
|
|
|
|
|
|
|
/* Opcode: Ne P1 P2 * |
|
1309
|
|
|
|
|
|
|
** |
|
1310
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are not equal, then |
|
1311
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1312
|
|
|
|
|
|
|
** |
|
1313
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1314
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1315
|
|
|
|
|
|
|
** |
|
1316
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1317
|
|
|
|
|
|
|
** and compared in that format. Otherwise the strcmp() library |
|
1318
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1319
|
|
|
|
|
|
|
** use OP_StrNe. |
|
1320
|
|
|
|
|
|
|
** |
|
1321
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1322
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1323
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1324
|
|
|
|
|
|
|
*/ |
|
1325
|
|
|
|
|
|
|
/* Opcode: Lt P1 P2 * |
|
1326
|
|
|
|
|
|
|
** |
|
1327
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1328
|
|
|
|
|
|
|
** next on stack) is less than the first (the top of stack), then |
|
1329
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1330
|
|
|
|
|
|
|
** In other words, jump if NOS
|
|
1331
|
|
|
|
|
|
|
** |
|
1332
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1333
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1334
|
|
|
|
|
|
|
** |
|
1335
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1336
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
|
1337
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
|
1338
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1339
|
|
|
|
|
|
|
** use OP_StrLt. |
|
1340
|
|
|
|
|
|
|
** |
|
1341
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1342
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1343
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1344
|
|
|
|
|
|
|
*/ |
|
1345
|
|
|
|
|
|
|
/* Opcode: Le P1 P2 * |
|
1346
|
|
|
|
|
|
|
** |
|
1347
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1348
|
|
|
|
|
|
|
** next on stack) is less than or equal to the first (the top of stack), |
|
1349
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS<=TOS. |
|
1350
|
|
|
|
|
|
|
** |
|
1351
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1352
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1353
|
|
|
|
|
|
|
** |
|
1354
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1355
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
|
1356
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
|
1357
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1358
|
|
|
|
|
|
|
** use OP_StrLe. |
|
1359
|
|
|
|
|
|
|
** |
|
1360
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1361
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1362
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1363
|
|
|
|
|
|
|
*/ |
|
1364
|
|
|
|
|
|
|
/* Opcode: Gt P1 P2 * |
|
1365
|
|
|
|
|
|
|
** |
|
1366
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1367
|
|
|
|
|
|
|
** next on stack) is greater than the first (the top of stack), |
|
1368
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>TOS. |
|
1369
|
|
|
|
|
|
|
** |
|
1370
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1371
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1372
|
|
|
|
|
|
|
** |
|
1373
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1374
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
|
1375
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
|
1376
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1377
|
|
|
|
|
|
|
** use OP_StrGt. |
|
1378
|
|
|
|
|
|
|
** |
|
1379
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1380
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1381
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1382
|
|
|
|
|
|
|
*/ |
|
1383
|
|
|
|
|
|
|
/* Opcode: Ge P1 P2 * |
|
1384
|
|
|
|
|
|
|
** |
|
1385
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the next |
|
1386
|
|
|
|
|
|
|
** on stack) is greater than or equal to the first (the top of stack), |
|
1387
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>=TOS. |
|
1388
|
|
|
|
|
|
|
** |
|
1389
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1390
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1391
|
|
|
|
|
|
|
** |
|
1392
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
|
1393
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
|
1394
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
|
1395
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
|
1396
|
|
|
|
|
|
|
** use OP_StrGe. |
|
1397
|
|
|
|
|
|
|
** |
|
1398
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1399
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1400
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1401
|
|
|
|
|
|
|
*/ |
|
1402
|
|
|
|
|
|
|
case OP_Eq: |
|
1403
|
|
|
|
|
|
|
case OP_Ne: |
|
1404
|
|
|
|
|
|
|
case OP_Lt: |
|
1405
|
|
|
|
|
|
|
case OP_Le: |
|
1406
|
|
|
|
|
|
|
case OP_Gt: |
|
1407
|
|
|
|
|
|
|
case OP_Ge: { |
|
1408
|
46
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
1409
|
|
|
|
|
|
|
int c, v; |
|
1410
|
|
|
|
|
|
|
int ft, fn; |
|
1411
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
1412
|
46
|
|
|
|
|
|
ft = pTos->flags; |
|
1413
|
46
|
|
|
|
|
|
fn = pNos->flags; |
|
1414
|
46
|
100
|
|
|
|
|
if( (ft | fn) & MEM_Null ){ |
|
1415
|
4
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1416
|
4
|
50
|
|
|
|
|
if( pOp->p2 ){ |
|
1417
|
4
|
50
|
|
|
|
|
if( pOp->p1 ) pc = pOp->p2-1; |
|
1418
|
|
|
|
|
|
|
}else{ |
|
1419
|
0
|
|
|
|
|
|
pTos++; |
|
1420
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1421
|
|
|
|
|
|
|
} |
|
1422
|
4
|
|
|
|
|
|
break; |
|
1423
|
42
|
50
|
|
|
|
|
}else if( (ft & fn & MEM_Int)==MEM_Int ){ |
|
1424
|
0
|
|
|
|
|
|
c = pNos->i - pTos->i; |
|
1425
|
42
|
100
|
|
|
|
|
}else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1426
|
27
|
|
|
|
|
|
c = v - pTos->i; |
|
1427
|
15
|
50
|
|
|
|
|
}else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1428
|
0
|
|
|
|
|
|
c = pNos->i - v; |
|
1429
|
|
|
|
|
|
|
}else{ |
|
1430
|
15
|
50
|
|
|
|
|
Stringify(pTos); |
|
1431
|
15
|
50
|
|
|
|
|
Stringify(pNos); |
|
1432
|
15
|
|
|
|
|
|
c = sqliteCompare(pNos->z, pTos->z); |
|
1433
|
|
|
|
|
|
|
} |
|
1434
|
42
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
1435
|
0
|
|
|
|
|
|
case OP_Eq: c = c==0; break; |
|
1436
|
37
|
|
|
|
|
|
case OP_Ne: c = c!=0; break; |
|
1437
|
5
|
|
|
|
|
|
case OP_Lt: c = c<0; break; |
|
1438
|
0
|
|
|
|
|
|
case OP_Le: c = c<=0; break; |
|
1439
|
0
|
|
|
|
|
|
case OP_Gt: c = c>0; break; |
|
1440
|
0
|
|
|
|
|
|
default: c = c>=0; break; |
|
1441
|
|
|
|
|
|
|
} |
|
1442
|
42
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1443
|
42
|
50
|
|
|
|
|
if( pOp->p2 ){ |
|
1444
|
42
|
100
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
|
1445
|
|
|
|
|
|
|
}else{ |
|
1446
|
0
|
|
|
|
|
|
pTos++; |
|
1447
|
0
|
|
|
|
|
|
pTos->i = c; |
|
1448
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1449
|
|
|
|
|
|
|
} |
|
1450
|
46
|
|
|
|
|
|
break; |
|
1451
|
|
|
|
|
|
|
} |
|
1452
|
|
|
|
|
|
|
/* INSERT NO CODE HERE! |
|
1453
|
|
|
|
|
|
|
** |
|
1454
|
|
|
|
|
|
|
** The opcode numbers are extracted from this source file by doing |
|
1455
|
|
|
|
|
|
|
** |
|
1456
|
|
|
|
|
|
|
** grep '^case OP_' vdbe.c | ... >opcodes.h |
|
1457
|
|
|
|
|
|
|
** |
|
1458
|
|
|
|
|
|
|
** The opcodes are numbered in the order that they appear in this file. |
|
1459
|
|
|
|
|
|
|
** But in order for the expression generating code to work right, the |
|
1460
|
|
|
|
|
|
|
** string comparison operators that follow must be numbered exactly 6 |
|
1461
|
|
|
|
|
|
|
** greater than the numeric comparison opcodes above. So no other |
|
1462
|
|
|
|
|
|
|
** cases can appear between the two. |
|
1463
|
|
|
|
|
|
|
*/ |
|
1464
|
|
|
|
|
|
|
/* Opcode: StrEq P1 P2 * |
|
1465
|
|
|
|
|
|
|
** |
|
1466
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are equal, then |
|
1467
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1468
|
|
|
|
|
|
|
** |
|
1469
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1470
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1471
|
|
|
|
|
|
|
** |
|
1472
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1473
|
|
|
|
|
|
|
** numeric comparison, use OP_Eq. |
|
1474
|
|
|
|
|
|
|
** |
|
1475
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1476
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1477
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1478
|
|
|
|
|
|
|
*/ |
|
1479
|
|
|
|
|
|
|
/* Opcode: StrNe P1 P2 * |
|
1480
|
|
|
|
|
|
|
** |
|
1481
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are not equal, then |
|
1482
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1483
|
|
|
|
|
|
|
** |
|
1484
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1485
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1486
|
|
|
|
|
|
|
** |
|
1487
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1488
|
|
|
|
|
|
|
** numeric comparison, use OP_Ne. |
|
1489
|
|
|
|
|
|
|
** |
|
1490
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1491
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1492
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1493
|
|
|
|
|
|
|
*/ |
|
1494
|
|
|
|
|
|
|
/* Opcode: StrLt P1 P2 * |
|
1495
|
|
|
|
|
|
|
** |
|
1496
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1497
|
|
|
|
|
|
|
** next on stack) is less than the first (the top of stack), then |
|
1498
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
|
1499
|
|
|
|
|
|
|
** In other words, jump if NOS
|
|
1500
|
|
|
|
|
|
|
** |
|
1501
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1502
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1503
|
|
|
|
|
|
|
** |
|
1504
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1505
|
|
|
|
|
|
|
** numeric comparison, use OP_Lt. |
|
1506
|
|
|
|
|
|
|
** |
|
1507
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1508
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1509
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1510
|
|
|
|
|
|
|
*/ |
|
1511
|
|
|
|
|
|
|
/* Opcode: StrLe P1 P2 * |
|
1512
|
|
|
|
|
|
|
** |
|
1513
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1514
|
|
|
|
|
|
|
** next on stack) is less than or equal to the first (the top of stack), |
|
1515
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS<=TOS. |
|
1516
|
|
|
|
|
|
|
** |
|
1517
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1518
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1519
|
|
|
|
|
|
|
** |
|
1520
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1521
|
|
|
|
|
|
|
** numeric comparison, use OP_Le. |
|
1522
|
|
|
|
|
|
|
** |
|
1523
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1524
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1525
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1526
|
|
|
|
|
|
|
*/ |
|
1527
|
|
|
|
|
|
|
/* Opcode: StrGt P1 P2 * |
|
1528
|
|
|
|
|
|
|
** |
|
1529
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
|
1530
|
|
|
|
|
|
|
** next on stack) is greater than the first (the top of stack), |
|
1531
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>TOS. |
|
1532
|
|
|
|
|
|
|
** |
|
1533
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1534
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1535
|
|
|
|
|
|
|
** |
|
1536
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1537
|
|
|
|
|
|
|
** numeric comparison, use OP_Gt. |
|
1538
|
|
|
|
|
|
|
** |
|
1539
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1540
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1541
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1542
|
|
|
|
|
|
|
*/ |
|
1543
|
|
|
|
|
|
|
/* Opcode: StrGe P1 P2 * |
|
1544
|
|
|
|
|
|
|
** |
|
1545
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the next |
|
1546
|
|
|
|
|
|
|
** on stack) is greater than or equal to the first (the top of stack), |
|
1547
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>=TOS. |
|
1548
|
|
|
|
|
|
|
** |
|
1549
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
|
1550
|
|
|
|
|
|
|
** take the jump if P1 is true. |
|
1551
|
|
|
|
|
|
|
** |
|
1552
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
|
1553
|
|
|
|
|
|
|
** numeric comparison, use OP_Ge. |
|
1554
|
|
|
|
|
|
|
** |
|
1555
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
|
1556
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
|
1557
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
|
1558
|
|
|
|
|
|
|
*/ |
|
1559
|
|
|
|
|
|
|
case OP_StrEq: |
|
1560
|
|
|
|
|
|
|
case OP_StrNe: |
|
1561
|
|
|
|
|
|
|
case OP_StrLt: |
|
1562
|
|
|
|
|
|
|
case OP_StrLe: |
|
1563
|
|
|
|
|
|
|
case OP_StrGt: |
|
1564
|
|
|
|
|
|
|
case OP_StrGe: { |
|
1565
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
1566
|
|
|
|
|
|
|
int c; |
|
1567
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
1568
|
0
|
0
|
|
|
|
|
if( (pNos->flags | pTos->flags) & MEM_Null ){ |
|
1569
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1570
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
|
1571
|
0
|
0
|
|
|
|
|
if( pOp->p1 ) pc = pOp->p2-1; |
|
1572
|
|
|
|
|
|
|
}else{ |
|
1573
|
0
|
|
|
|
|
|
pTos++; |
|
1574
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1575
|
|
|
|
|
|
|
} |
|
1576
|
0
|
|
|
|
|
|
break; |
|
1577
|
|
|
|
|
|
|
}else{ |
|
1578
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
1579
|
0
|
0
|
|
|
|
|
Stringify(pNos); |
|
1580
|
0
|
|
|
|
|
|
c = strcmp(pNos->z, pTos->z); |
|
1581
|
|
|
|
|
|
|
} |
|
1582
|
|
|
|
|
|
|
/* The asserts on each case of the following switch are there to verify |
|
1583
|
|
|
|
|
|
|
** that string comparison opcodes are always exactly 6 greater than the |
|
1584
|
|
|
|
|
|
|
** corresponding numeric comparison opcodes. The code generator depends |
|
1585
|
|
|
|
|
|
|
** on this fact. |
|
1586
|
|
|
|
|
|
|
*/ |
|
1587
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
|
1588
|
0
|
|
|
|
|
|
case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; |
|
1589
|
0
|
|
|
|
|
|
case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; |
|
1590
|
0
|
|
|
|
|
|
case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; |
|
1591
|
0
|
|
|
|
|
|
case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; |
|
1592
|
0
|
|
|
|
|
|
case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; |
|
1593
|
0
|
|
|
|
|
|
default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; |
|
1594
|
|
|
|
|
|
|
} |
|
1595
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1596
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
|
1597
|
0
|
0
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
|
1598
|
|
|
|
|
|
|
}else{ |
|
1599
|
0
|
|
|
|
|
|
pTos++; |
|
1600
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1601
|
0
|
|
|
|
|
|
pTos->i = c; |
|
1602
|
|
|
|
|
|
|
} |
|
1603
|
0
|
|
|
|
|
|
break; |
|
1604
|
|
|
|
|
|
|
} |
|
1605
|
|
|
|
|
|
|
|
|
1606
|
|
|
|
|
|
|
/* Opcode: And * * * |
|
1607
|
|
|
|
|
|
|
** |
|
1608
|
|
|
|
|
|
|
** Pop two values off the stack. Take the logical AND of the |
|
1609
|
|
|
|
|
|
|
** two values and push the resulting boolean value back onto the |
|
1610
|
|
|
|
|
|
|
** stack. |
|
1611
|
|
|
|
|
|
|
*/ |
|
1612
|
|
|
|
|
|
|
/* Opcode: Or * * * |
|
1613
|
|
|
|
|
|
|
** |
|
1614
|
|
|
|
|
|
|
** Pop two values off the stack. Take the logical OR of the |
|
1615
|
|
|
|
|
|
|
** two values and push the resulting boolean value back onto the |
|
1616
|
|
|
|
|
|
|
** stack. |
|
1617
|
|
|
|
|
|
|
*/ |
|
1618
|
|
|
|
|
|
|
case OP_And: |
|
1619
|
|
|
|
|
|
|
case OP_Or: { |
|
1620
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
1621
|
|
|
|
|
|
|
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ |
|
1622
|
|
|
|
|
|
|
|
|
1623
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
1624
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
|
1625
|
0
|
|
|
|
|
|
v1 = 2; |
|
1626
|
|
|
|
|
|
|
}else{ |
|
1627
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
1628
|
0
|
|
|
|
|
|
v1 = pTos->i==0; |
|
1629
|
|
|
|
|
|
|
} |
|
1630
|
0
|
0
|
|
|
|
|
if( pNos->flags & MEM_Null ){ |
|
1631
|
0
|
|
|
|
|
|
v2 = 2; |
|
1632
|
|
|
|
|
|
|
}else{ |
|
1633
|
0
|
0
|
|
|
|
|
Integerify(pNos); |
|
1634
|
0
|
|
|
|
|
|
v2 = pNos->i==0; |
|
1635
|
|
|
|
|
|
|
} |
|
1636
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_And ){ |
|
1637
|
|
|
|
|
|
|
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
|
1638
|
0
|
|
|
|
|
|
v1 = and_logic[v1*3+v2]; |
|
1639
|
|
|
|
|
|
|
}else{ |
|
1640
|
|
|
|
|
|
|
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
|
1641
|
0
|
|
|
|
|
|
v1 = or_logic[v1*3+v2]; |
|
1642
|
|
|
|
|
|
|
} |
|
1643
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
|
1644
|
0
|
|
|
|
|
|
pTos++; |
|
1645
|
0
|
0
|
|
|
|
|
if( v1==2 ){ |
|
1646
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
1647
|
|
|
|
|
|
|
}else{ |
|
1648
|
0
|
|
|
|
|
|
pTos->i = v1==0; |
|
1649
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1650
|
|
|
|
|
|
|
} |
|
1651
|
0
|
|
|
|
|
|
break; |
|
1652
|
|
|
|
|
|
|
} |
|
1653
|
|
|
|
|
|
|
|
|
1654
|
|
|
|
|
|
|
/* Opcode: Negative * * * |
|
1655
|
|
|
|
|
|
|
** |
|
1656
|
|
|
|
|
|
|
** Treat the top of the stack as a numeric quantity. Replace it |
|
1657
|
|
|
|
|
|
|
** with its additive inverse. If the top of the stack is NULL |
|
1658
|
|
|
|
|
|
|
** its value is unchanged. |
|
1659
|
|
|
|
|
|
|
*/ |
|
1660
|
|
|
|
|
|
|
/* Opcode: AbsValue * * * |
|
1661
|
|
|
|
|
|
|
** |
|
1662
|
|
|
|
|
|
|
** Treat the top of the stack as a numeric quantity. Replace it |
|
1663
|
|
|
|
|
|
|
** with its absolute value. If the top of the stack is NULL |
|
1664
|
|
|
|
|
|
|
** its value is unchanged. |
|
1665
|
|
|
|
|
|
|
*/ |
|
1666
|
|
|
|
|
|
|
case OP_Negative: |
|
1667
|
|
|
|
|
|
|
case OP_AbsValue: { |
|
1668
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1669
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Real ){ |
|
1670
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1671
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ |
|
|
|
0
|
|
|
|
|
|
|
1672
|
0
|
|
|
|
|
|
pTos->r = -pTos->r; |
|
1673
|
|
|
|
|
|
|
} |
|
1674
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
|
1675
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Int ){ |
|
1676
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1677
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->i<0 ){ |
|
|
|
0
|
|
|
|
|
|
|
1678
|
0
|
|
|
|
|
|
pTos->i = -pTos->i; |
|
1679
|
|
|
|
|
|
|
} |
|
1680
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1681
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Null ){ |
|
1682
|
|
|
|
|
|
|
/* Do nothing */ |
|
1683
|
|
|
|
|
|
|
}else{ |
|
1684
|
0
|
0
|
|
|
|
|
Realify(pTos); |
|
1685
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1686
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ |
|
|
|
0
|
|
|
|
|
|
|
1687
|
0
|
|
|
|
|
|
pTos->r = -pTos->r; |
|
1688
|
|
|
|
|
|
|
} |
|
1689
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
|
1690
|
|
|
|
|
|
|
} |
|
1691
|
0
|
|
|
|
|
|
break; |
|
1692
|
|
|
|
|
|
|
} |
|
1693
|
|
|
|
|
|
|
|
|
1694
|
|
|
|
|
|
|
/* Opcode: Not * * * |
|
1695
|
|
|
|
|
|
|
** |
|
1696
|
|
|
|
|
|
|
** Interpret the top of the stack as a boolean value. Replace it |
|
1697
|
|
|
|
|
|
|
** with its complement. If the top of the stack is NULL its value |
|
1698
|
|
|
|
|
|
|
** is unchanged. |
|
1699
|
|
|
|
|
|
|
*/ |
|
1700
|
|
|
|
|
|
|
case OP_Not: { |
|
1701
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1702
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
|
1703
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
1704
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1705
|
0
|
|
|
|
|
|
pTos->i = !pTos->i; |
|
1706
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1707
|
0
|
|
|
|
|
|
break; |
|
1708
|
|
|
|
|
|
|
} |
|
1709
|
|
|
|
|
|
|
|
|
1710
|
|
|
|
|
|
|
/* Opcode: BitNot * * * |
|
1711
|
|
|
|
|
|
|
** |
|
1712
|
|
|
|
|
|
|
** Interpret the top of the stack as an value. Replace it |
|
1713
|
|
|
|
|
|
|
** with its ones-complement. If the top of the stack is NULL its |
|
1714
|
|
|
|
|
|
|
** value is unchanged. |
|
1715
|
|
|
|
|
|
|
*/ |
|
1716
|
|
|
|
|
|
|
case OP_BitNot: { |
|
1717
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1718
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
|
1719
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
1720
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
1721
|
0
|
|
|
|
|
|
pTos->i = ~pTos->i; |
|
1722
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
1723
|
0
|
|
|
|
|
|
break; |
|
1724
|
|
|
|
|
|
|
} |
|
1725
|
|
|
|
|
|
|
|
|
1726
|
|
|
|
|
|
|
/* Opcode: Noop * * * |
|
1727
|
|
|
|
|
|
|
** |
|
1728
|
|
|
|
|
|
|
** Do nothing. This instruction is often useful as a jump |
|
1729
|
|
|
|
|
|
|
** destination. |
|
1730
|
|
|
|
|
|
|
*/ |
|
1731
|
|
|
|
|
|
|
case OP_Noop: { |
|
1732
|
15
|
|
|
|
|
|
break; |
|
1733
|
|
|
|
|
|
|
} |
|
1734
|
|
|
|
|
|
|
|
|
1735
|
|
|
|
|
|
|
/* Opcode: If P1 P2 * |
|
1736
|
|
|
|
|
|
|
** |
|
1737
|
|
|
|
|
|
|
** Pop a single boolean from the stack. If the boolean popped is |
|
1738
|
|
|
|
|
|
|
** true, then jump to p2. Otherwise continue to the next instruction. |
|
1739
|
|
|
|
|
|
|
** An integer is false if zero and true otherwise. A string is |
|
1740
|
|
|
|
|
|
|
** false if it has zero length and true otherwise. |
|
1741
|
|
|
|
|
|
|
** |
|
1742
|
|
|
|
|
|
|
** If the value popped of the stack is NULL, then take the jump if P1 |
|
1743
|
|
|
|
|
|
|
** is true and fall through if P1 is false. |
|
1744
|
|
|
|
|
|
|
*/ |
|
1745
|
|
|
|
|
|
|
/* Opcode: IfNot P1 P2 * |
|
1746
|
|
|
|
|
|
|
** |
|
1747
|
|
|
|
|
|
|
** Pop a single boolean from the stack. If the boolean popped is |
|
1748
|
|
|
|
|
|
|
** false, then jump to p2. Otherwise continue to the next instruction. |
|
1749
|
|
|
|
|
|
|
** An integer is false if zero and true otherwise. A string is |
|
1750
|
|
|
|
|
|
|
** false if it has zero length and true otherwise. |
|
1751
|
|
|
|
|
|
|
** |
|
1752
|
|
|
|
|
|
|
** If the value popped of the stack is NULL, then take the jump if P1 |
|
1753
|
|
|
|
|
|
|
** is true and fall through if P1 is false. |
|
1754
|
|
|
|
|
|
|
*/ |
|
1755
|
|
|
|
|
|
|
case OP_If: |
|
1756
|
|
|
|
|
|
|
case OP_IfNot: { |
|
1757
|
|
|
|
|
|
|
int c; |
|
1758
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
1759
|
26
|
50
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
|
1760
|
0
|
|
|
|
|
|
c = pOp->p1; |
|
1761
|
|
|
|
|
|
|
}else{ |
|
1762
|
26
|
50
|
|
|
|
|
Integerify(pTos); |
|
1763
|
26
|
|
|
|
|
|
c = pTos->i; |
|
1764
|
26
|
50
|
|
|
|
|
if( pOp->opcode==OP_IfNot ) c = !c; |
|
1765
|
|
|
|
|
|
|
} |
|
1766
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Dyn)==0 ); |
|
1767
|
26
|
|
|
|
|
|
pTos--; |
|
1768
|
26
|
100
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
|
1769
|
26
|
|
|
|
|
|
break; |
|
1770
|
|
|
|
|
|
|
} |
|
1771
|
|
|
|
|
|
|
|
|
1772
|
|
|
|
|
|
|
/* Opcode: IsNull P1 P2 * |
|
1773
|
|
|
|
|
|
|
** |
|
1774
|
|
|
|
|
|
|
** If any of the top abs(P1) values on the stack are NULL, then jump |
|
1775
|
|
|
|
|
|
|
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack |
|
1776
|
|
|
|
|
|
|
** unchanged. |
|
1777
|
|
|
|
|
|
|
*/ |
|
1778
|
|
|
|
|
|
|
case OP_IsNull: { |
|
1779
|
|
|
|
|
|
|
int i, cnt; |
|
1780
|
|
|
|
|
|
|
Mem *pTerm; |
|
1781
|
0
|
|
|
|
|
|
cnt = pOp->p1; |
|
1782
|
0
|
0
|
|
|
|
|
if( cnt<0 ) cnt = -cnt; |
|
1783
|
0
|
|
|
|
|
|
pTerm = &pTos[1-cnt]; |
|
1784
|
|
|
|
|
|
|
assert( pTerm>=p->aStack ); |
|
1785
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
1786
|
0
|
0
|
|
|
|
|
if( pTerm->flags & MEM_Null ){ |
|
1787
|
0
|
|
|
|
|
|
pc = pOp->p2-1; |
|
1788
|
0
|
|
|
|
|
|
break; |
|
1789
|
|
|
|
|
|
|
} |
|
1790
|
|
|
|
|
|
|
} |
|
1791
|
0
|
0
|
|
|
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt); |
|
1792
|
0
|
|
|
|
|
|
break; |
|
1793
|
|
|
|
|
|
|
} |
|
1794
|
|
|
|
|
|
|
|
|
1795
|
|
|
|
|
|
|
/* Opcode: NotNull P1 P2 * |
|
1796
|
|
|
|
|
|
|
** |
|
1797
|
|
|
|
|
|
|
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the |
|
1798
|
|
|
|
|
|
|
** stack if P1 times if P1 is greater than zero. If P1 is less than |
|
1799
|
|
|
|
|
|
|
** zero then leave the stack unchanged. |
|
1800
|
|
|
|
|
|
|
*/ |
|
1801
|
|
|
|
|
|
|
case OP_NotNull: { |
|
1802
|
|
|
|
|
|
|
int i, cnt; |
|
1803
|
67
|
|
|
|
|
|
cnt = pOp->p1; |
|
1804
|
67
|
100
|
|
|
|
|
if( cnt<0 ) cnt = -cnt; |
|
1805
|
|
|
|
|
|
|
assert( &pTos[1-cnt] >= p->aStack ); |
|
1806
|
130
|
100
|
|
|
|
|
for(i=0; i
|
|
|
|
100
|
|
|
|
|
|
|
1807
|
67
|
100
|
|
|
|
|
if( i>=cnt ) pc = pOp->p2-1; |
|
1808
|
67
|
100
|
|
|
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt); |
|
1809
|
67
|
|
|
|
|
|
break; |
|
1810
|
|
|
|
|
|
|
} |
|
1811
|
|
|
|
|
|
|
|
|
1812
|
|
|
|
|
|
|
/* Opcode: MakeRecord P1 P2 * |
|
1813
|
|
|
|
|
|
|
** |
|
1814
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry |
|
1815
|
|
|
|
|
|
|
** suitable for use as a data record in a database table. The |
|
1816
|
|
|
|
|
|
|
** details of the format are irrelavant as long as the OP_Column |
|
1817
|
|
|
|
|
|
|
** opcode can decode the record later. Refer to source code |
|
1818
|
|
|
|
|
|
|
** comments for the details of the record format. |
|
1819
|
|
|
|
|
|
|
** |
|
1820
|
|
|
|
|
|
|
** If P2 is true (non-zero) and one or more of the P1 entries |
|
1821
|
|
|
|
|
|
|
** that go into building the record is NULL, then add some extra |
|
1822
|
|
|
|
|
|
|
** bytes to the record to make it distinct for other entries created |
|
1823
|
|
|
|
|
|
|
** during the same run of the VDBE. The extra bytes added are a |
|
1824
|
|
|
|
|
|
|
** counter that is reset with each run of the VDBE, so records |
|
1825
|
|
|
|
|
|
|
** created this way will not necessarily be distinct across runs. |
|
1826
|
|
|
|
|
|
|
** But they should be distinct for transient tables (created using |
|
1827
|
|
|
|
|
|
|
** OP_OpenTemp) which is what they are intended for. |
|
1828
|
|
|
|
|
|
|
** |
|
1829
|
|
|
|
|
|
|
** (Later:) The P2==1 option was intended to make NULLs distinct |
|
1830
|
|
|
|
|
|
|
** for the UNION operator. But I have since discovered that NULLs |
|
1831
|
|
|
|
|
|
|
** are indistinct for UNION. So this option is never used. |
|
1832
|
|
|
|
|
|
|
*/ |
|
1833
|
|
|
|
|
|
|
case OP_MakeRecord: { |
|
1834
|
|
|
|
|
|
|
char *zNewRecord; |
|
1835
|
|
|
|
|
|
|
int nByte; |
|
1836
|
|
|
|
|
|
|
int nField; |
|
1837
|
|
|
|
|
|
|
int i, j; |
|
1838
|
|
|
|
|
|
|
int idxWidth; |
|
1839
|
|
|
|
|
|
|
u32 addr; |
|
1840
|
|
|
|
|
|
|
Mem *pRec; |
|
1841
|
96
|
|
|
|
|
|
int addUnique = 0; /* True to cause bytes to be added to make the |
|
1842
|
|
|
|
|
|
|
** generated record distinct */ |
|
1843
|
|
|
|
|
|
|
char zTemp[NBFS]; /* Temp space for small records */ |
|
1844
|
|
|
|
|
|
|
|
|
1845
|
|
|
|
|
|
|
/* Assuming the record contains N fields, the record format looks |
|
1846
|
|
|
|
|
|
|
** like this: |
|
1847
|
|
|
|
|
|
|
** |
|
1848
|
|
|
|
|
|
|
** ------------------------------------------------------------------- |
|
1849
|
|
|
|
|
|
|
** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | |
|
1850
|
|
|
|
|
|
|
** ------------------------------------------------------------------- |
|
1851
|
|
|
|
|
|
|
** |
|
1852
|
|
|
|
|
|
|
** All data fields are converted to strings before being stored and |
|
1853
|
|
|
|
|
|
|
** are stored with their null terminators. NULL entries omit the |
|
1854
|
|
|
|
|
|
|
** null terminator. Thus an empty string uses 1 byte and a NULL uses |
|
1855
|
|
|
|
|
|
|
** zero bytes. Data(0) is taken from the lowest element of the stack |
|
1856
|
|
|
|
|
|
|
** and data(N-1) is the top of the stack. |
|
1857
|
|
|
|
|
|
|
** |
|
1858
|
|
|
|
|
|
|
** Each of the idx() entries is either 1, 2, or 3 bytes depending on |
|
1859
|
|
|
|
|
|
|
** how big the total record is. Idx(0) contains the offset to the start |
|
1860
|
|
|
|
|
|
|
** of data(0). Idx(k) contains the offset to the start of data(k). |
|
1861
|
|
|
|
|
|
|
** Idx(N) contains the total number of bytes in the record. |
|
1862
|
|
|
|
|
|
|
*/ |
|
1863
|
96
|
|
|
|
|
|
nField = pOp->p1; |
|
1864
|
96
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
|
1865
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
|
1866
|
96
|
|
|
|
|
|
nByte = 0; |
|
1867
|
402
|
100
|
|
|
|
|
for(i=0; i
|
|
1868
|
306
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
1869
|
15
|
|
|
|
|
|
addUnique = pOp->p2; |
|
1870
|
|
|
|
|
|
|
}else{ |
|
1871
|
291
|
100
|
|
|
|
|
Stringify(pRec); |
|
1872
|
291
|
|
|
|
|
|
nByte += pRec->n; |
|
1873
|
|
|
|
|
|
|
} |
|
1874
|
|
|
|
|
|
|
} |
|
1875
|
96
|
50
|
|
|
|
|
if( addUnique ) nByte += sizeof(p->uniqueCnt); |
|
1876
|
96
|
100
|
|
|
|
|
if( nByte + nField + 1 < 256 ){ |
|
1877
|
95
|
|
|
|
|
|
idxWidth = 1; |
|
1878
|
1
|
50
|
|
|
|
|
}else if( nByte + 2*nField + 2 < 65536 ){ |
|
1879
|
1
|
|
|
|
|
|
idxWidth = 2; |
|
1880
|
|
|
|
|
|
|
}else{ |
|
1881
|
0
|
|
|
|
|
|
idxWidth = 3; |
|
1882
|
|
|
|
|
|
|
} |
|
1883
|
96
|
|
|
|
|
|
nByte += idxWidth*(nField + 1); |
|
1884
|
96
|
50
|
|
|
|
|
if( nByte>MAX_BYTES_PER_ROW ){ |
|
1885
|
0
|
|
|
|
|
|
rc = SQLITE_TOOBIG; |
|
1886
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
1887
|
|
|
|
|
|
|
} |
|
1888
|
96
|
100
|
|
|
|
|
if( nByte<=NBFS ){ |
|
1889
|
44
|
|
|
|
|
|
zNewRecord = zTemp; |
|
1890
|
|
|
|
|
|
|
}else{ |
|
1891
|
52
|
|
|
|
|
|
zNewRecord = sqliteMallocRaw( nByte ); |
|
1892
|
52
|
50
|
|
|
|
|
if( zNewRecord==0 ) goto no_mem; |
|
1893
|
|
|
|
|
|
|
} |
|
1894
|
96
|
|
|
|
|
|
j = 0; |
|
1895
|
96
|
|
|
|
|
|
addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); |
|
1896
|
402
|
100
|
|
|
|
|
for(i=0, pRec=&pTos[1-nField]; i
|
|
1897
|
306
|
|
|
|
|
|
zNewRecord[j++] = addr & 0xff; |
|
1898
|
306
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
|
1899
|
2
|
|
|
|
|
|
zNewRecord[j++] = (addr>>8)&0xff; |
|
1900
|
2
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
|
1901
|
0
|
|
|
|
|
|
zNewRecord[j++] = (addr>>16)&0xff; |
|
1902
|
|
|
|
|
|
|
} |
|
1903
|
|
|
|
|
|
|
} |
|
1904
|
306
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
|
1905
|
291
|
|
|
|
|
|
addr += pRec->n; |
|
1906
|
|
|
|
|
|
|
} |
|
1907
|
|
|
|
|
|
|
} |
|
1908
|
96
|
|
|
|
|
|
zNewRecord[j++] = addr & 0xff; |
|
1909
|
96
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
|
1910
|
1
|
|
|
|
|
|
zNewRecord[j++] = (addr>>8)&0xff; |
|
1911
|
1
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
|
1912
|
0
|
|
|
|
|
|
zNewRecord[j++] = (addr>>16)&0xff; |
|
1913
|
|
|
|
|
|
|
} |
|
1914
|
|
|
|
|
|
|
} |
|
1915
|
96
|
50
|
|
|
|
|
if( addUnique ){ |
|
1916
|
0
|
|
|
|
|
|
memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); |
|
1917
|
0
|
|
|
|
|
|
p->uniqueCnt++; |
|
1918
|
0
|
|
|
|
|
|
j += sizeof(p->uniqueCnt); |
|
1919
|
|
|
|
|
|
|
} |
|
1920
|
402
|
100
|
|
|
|
|
for(i=0, pRec=&pTos[1-nField]; i
|
|
1921
|
306
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
|
1922
|
291
|
|
|
|
|
|
memcpy(&zNewRecord[j], pRec->z, pRec->n); |
|
1923
|
291
|
|
|
|
|
|
j += pRec->n; |
|
1924
|
|
|
|
|
|
|
} |
|
1925
|
|
|
|
|
|
|
} |
|
1926
|
96
|
|
|
|
|
|
popStack(&pTos, nField); |
|
1927
|
96
|
|
|
|
|
|
pTos++; |
|
1928
|
96
|
|
|
|
|
|
pTos->n = nByte; |
|
1929
|
96
|
100
|
|
|
|
|
if( nByte<=NBFS ){ |
|
1930
|
|
|
|
|
|
|
assert( zNewRecord==zTemp ); |
|
1931
|
44
|
|
|
|
|
|
memcpy(pTos->zShort, zTemp, nByte); |
|
1932
|
44
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
1933
|
44
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
|
1934
|
|
|
|
|
|
|
}else{ |
|
1935
|
|
|
|
|
|
|
assert( zNewRecord!=zTemp ); |
|
1936
|
52
|
|
|
|
|
|
pTos->z = zNewRecord; |
|
1937
|
52
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
1938
|
|
|
|
|
|
|
} |
|
1939
|
96
|
|
|
|
|
|
break; |
|
1940
|
|
|
|
|
|
|
} |
|
1941
|
|
|
|
|
|
|
|
|
1942
|
|
|
|
|
|
|
/* Opcode: MakeKey P1 P2 P3 |
|
1943
|
|
|
|
|
|
|
** |
|
1944
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry suitable |
|
1945
|
|
|
|
|
|
|
** for use as the key in an index. The top P1 records are |
|
1946
|
|
|
|
|
|
|
** converted to strings and merged. The null-terminators |
|
1947
|
|
|
|
|
|
|
** are retained and used as separators. |
|
1948
|
|
|
|
|
|
|
** The lowest entry in the stack is the first field and the top of the |
|
1949
|
|
|
|
|
|
|
** stack becomes the last. |
|
1950
|
|
|
|
|
|
|
** |
|
1951
|
|
|
|
|
|
|
** If P2 is not zero, then the original entries remain on the stack |
|
1952
|
|
|
|
|
|
|
** and the new key is pushed on top. If P2 is zero, the original |
|
1953
|
|
|
|
|
|
|
** data is popped off the stack first then the new key is pushed |
|
1954
|
|
|
|
|
|
|
** back in its place. |
|
1955
|
|
|
|
|
|
|
** |
|
1956
|
|
|
|
|
|
|
** P3 is a string that is P1 characters long. Each character is either |
|
1957
|
|
|
|
|
|
|
** an 'n' or a 't' to indicates if the argument should be intepreted as |
|
1958
|
|
|
|
|
|
|
** numeric or text type. The first character of P3 corresponds to the |
|
1959
|
|
|
|
|
|
|
** lowest element on the stack. If P3 is NULL then all arguments are |
|
1960
|
|
|
|
|
|
|
** assumed to be of the numeric type. |
|
1961
|
|
|
|
|
|
|
** |
|
1962
|
|
|
|
|
|
|
** The type makes a difference in that text-type fields may not be |
|
1963
|
|
|
|
|
|
|
** introduced by 'b' (as described in the next paragraph). The |
|
1964
|
|
|
|
|
|
|
** first character of a text-type field must be either 'a' (if it is NULL) |
|
1965
|
|
|
|
|
|
|
** or 'c'. Numeric fields will be introduced by 'b' if their content |
|
1966
|
|
|
|
|
|
|
** looks like a well-formed number. Otherwise the 'a' or 'c' will be |
|
1967
|
|
|
|
|
|
|
** used. |
|
1968
|
|
|
|
|
|
|
** |
|
1969
|
|
|
|
|
|
|
** The key is a concatenation of fields. Each field is terminated by |
|
1970
|
|
|
|
|
|
|
** a single 0x00 character. A NULL field is introduced by an 'a' and |
|
1971
|
|
|
|
|
|
|
** is followed immediately by its 0x00 terminator. A numeric field is |
|
1972
|
|
|
|
|
|
|
** introduced by a single character 'b' and is followed by a sequence |
|
1973
|
|
|
|
|
|
|
** of characters that represent the number such that a comparison of |
|
1974
|
|
|
|
|
|
|
** the character string using memcpy() sorts the numbers in numerical |
|
1975
|
|
|
|
|
|
|
** order. The character strings for numbers are generated using the |
|
1976
|
|
|
|
|
|
|
** sqliteRealToSortable() function. A text field is introduced by a |
|
1977
|
|
|
|
|
|
|
** 'c' character and is followed by the exact text of the field. The |
|
1978
|
|
|
|
|
|
|
** use of an 'a', 'b', or 'c' character at the beginning of each field |
|
1979
|
|
|
|
|
|
|
** guarantees that NULLs sort before numbers and that numbers sort |
|
1980
|
|
|
|
|
|
|
** before text. 0x00 characters do not occur except as separators |
|
1981
|
|
|
|
|
|
|
** between fields. |
|
1982
|
|
|
|
|
|
|
** |
|
1983
|
|
|
|
|
|
|
** See also: MakeIdxKey, SortMakeKey |
|
1984
|
|
|
|
|
|
|
*/ |
|
1985
|
|
|
|
|
|
|
/* Opcode: MakeIdxKey P1 P2 P3 |
|
1986
|
|
|
|
|
|
|
** |
|
1987
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry suitable |
|
1988
|
|
|
|
|
|
|
** for use as the key in an index. In addition, take one additional integer |
|
1989
|
|
|
|
|
|
|
** off of the stack, treat that integer as a four-byte record number, and |
|
1990
|
|
|
|
|
|
|
** append the four bytes to the key. Thus a total of P1+1 entries are |
|
1991
|
|
|
|
|
|
|
** popped from the stack for this instruction and a single entry is pushed |
|
1992
|
|
|
|
|
|
|
** back. The first P1 entries that are popped are strings and the last |
|
1993
|
|
|
|
|
|
|
** entry (the lowest on the stack) is an integer record number. |
|
1994
|
|
|
|
|
|
|
** |
|
1995
|
|
|
|
|
|
|
** The converstion of the first P1 string entries occurs just like in |
|
1996
|
|
|
|
|
|
|
** MakeKey. Each entry is separated from the others by a null. |
|
1997
|
|
|
|
|
|
|
** The entire concatenation is null-terminated. The lowest entry |
|
1998
|
|
|
|
|
|
|
** in the stack is the first field and the top of the stack becomes the |
|
1999
|
|
|
|
|
|
|
** last. |
|
2000
|
|
|
|
|
|
|
** |
|
2001
|
|
|
|
|
|
|
** If P2 is not zero and one or more of the P1 entries that go into the |
|
2002
|
|
|
|
|
|
|
** generated key is NULL, then jump to P2 after the new key has been |
|
2003
|
|
|
|
|
|
|
** pushed on the stack. In other words, jump to P2 if the key is |
|
2004
|
|
|
|
|
|
|
** guaranteed to be unique. This jump can be used to skip a subsequent |
|
2005
|
|
|
|
|
|
|
** uniqueness test. |
|
2006
|
|
|
|
|
|
|
** |
|
2007
|
|
|
|
|
|
|
** P3 is a string that is P1 characters long. Each character is either |
|
2008
|
|
|
|
|
|
|
** an 'n' or a 't' to indicates if the argument should be numeric or |
|
2009
|
|
|
|
|
|
|
** text. The first character corresponds to the lowest element on the |
|
2010
|
|
|
|
|
|
|
** stack. If P3 is null then all arguments are assumed to be numeric. |
|
2011
|
|
|
|
|
|
|
** |
|
2012
|
|
|
|
|
|
|
** See also: MakeKey, SortMakeKey |
|
2013
|
|
|
|
|
|
|
*/ |
|
2014
|
|
|
|
|
|
|
case OP_MakeIdxKey: |
|
2015
|
|
|
|
|
|
|
case OP_MakeKey: { |
|
2016
|
|
|
|
|
|
|
char *zNewKey; |
|
2017
|
|
|
|
|
|
|
int nByte; |
|
2018
|
|
|
|
|
|
|
int nField; |
|
2019
|
|
|
|
|
|
|
int addRowid; |
|
2020
|
|
|
|
|
|
|
int i, j; |
|
2021
|
7
|
|
|
|
|
|
int containsNull = 0; |
|
2022
|
|
|
|
|
|
|
Mem *pRec; |
|
2023
|
|
|
|
|
|
|
char zTemp[NBFS]; |
|
2024
|
|
|
|
|
|
|
|
|
2025
|
7
|
|
|
|
|
|
addRowid = pOp->opcode==OP_MakeIdxKey; |
|
2026
|
7
|
|
|
|
|
|
nField = pOp->p1; |
|
2027
|
7
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
|
2028
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
|
2029
|
7
|
|
|
|
|
|
nByte = 0; |
|
2030
|
15
|
100
|
|
|
|
|
for(j=0, i=0; i
|
|
2031
|
8
|
|
|
|
|
|
int flags = pRec->flags; |
|
2032
|
|
|
|
|
|
|
int len; |
|
2033
|
|
|
|
|
|
|
char *z; |
|
2034
|
8
|
100
|
|
|
|
|
if( flags & MEM_Null ){ |
|
2035
|
1
|
|
|
|
|
|
nByte += 2; |
|
2036
|
1
|
|
|
|
|
|
containsNull = 1; |
|
2037
|
7
|
50
|
|
|
|
|
}else if( pOp->p3 && pOp->p3[j]=='t' ){ |
|
|
|
100
|
|
|
|
|
|
|
2038
|
2
|
50
|
|
|
|
|
Stringify(pRec); |
|
2039
|
2
|
|
|
|
|
|
pRec->flags &= ~(MEM_Int|MEM_Real); |
|
2040
|
2
|
|
|
|
|
|
nByte += pRec->n+1; |
|
2041
|
5
|
100
|
|
|
|
|
}else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ |
|
|
|
100
|
|
|
|
|
|
|
2042
|
4
|
100
|
|
|
|
|
if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ |
|
2043
|
1
|
|
|
|
|
|
pRec->r = pRec->i; |
|
2044
|
3
|
50
|
|
|
|
|
}else if( (flags & (MEM_Real|MEM_Int))==0 ){ |
|
2045
|
3
|
|
|
|
|
|
pRec->r = sqliteAtoF(pRec->z, 0); |
|
2046
|
|
|
|
|
|
|
} |
|
2047
|
4
|
50
|
|
|
|
|
Release(pRec); |
|
2048
|
4
|
|
|
|
|
|
z = pRec->zShort; |
|
2049
|
4
|
|
|
|
|
|
sqliteRealToSortable(pRec->r, z); |
|
2050
|
4
|
|
|
|
|
|
len = strlen(z); |
|
2051
|
4
|
|
|
|
|
|
pRec->z = 0; |
|
2052
|
4
|
|
|
|
|
|
pRec->flags = MEM_Real; |
|
2053
|
4
|
|
|
|
|
|
pRec->n = len+1; |
|
2054
|
4
|
|
|
|
|
|
nByte += pRec->n+1; |
|
2055
|
|
|
|
|
|
|
}else{ |
|
2056
|
1
|
|
|
|
|
|
nByte += pRec->n+1; |
|
2057
|
|
|
|
|
|
|
} |
|
2058
|
|
|
|
|
|
|
} |
|
2059
|
7
|
50
|
|
|
|
|
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ |
|
2060
|
0
|
|
|
|
|
|
rc = SQLITE_TOOBIG; |
|
2061
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
2062
|
|
|
|
|
|
|
} |
|
2063
|
7
|
100
|
|
|
|
|
if( addRowid ) nByte += sizeof(u32); |
|
2064
|
7
|
50
|
|
|
|
|
if( nByte<=NBFS ){ |
|
2065
|
7
|
|
|
|
|
|
zNewKey = zTemp; |
|
2066
|
|
|
|
|
|
|
}else{ |
|
2067
|
0
|
|
|
|
|
|
zNewKey = sqliteMallocRaw( nByte ); |
|
2068
|
0
|
0
|
|
|
|
|
if( zNewKey==0 ) goto no_mem; |
|
2069
|
|
|
|
|
|
|
} |
|
2070
|
7
|
|
|
|
|
|
j = 0; |
|
2071
|
7
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
|
2072
|
15
|
100
|
|
|
|
|
for(i=0; i
|
|
2073
|
8
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
2074
|
1
|
|
|
|
|
|
zNewKey[j++] = 'a'; |
|
2075
|
1
|
|
|
|
|
|
zNewKey[j++] = 0; |
|
2076
|
7
|
100
|
|
|
|
|
}else if( pRec->flags==MEM_Real ){ |
|
2077
|
4
|
|
|
|
|
|
zNewKey[j++] = 'b'; |
|
2078
|
4
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->zShort, pRec->n); |
|
2079
|
4
|
|
|
|
|
|
j += pRec->n; |
|
2080
|
|
|
|
|
|
|
}else{ |
|
2081
|
|
|
|
|
|
|
assert( pRec->flags & MEM_Str ); |
|
2082
|
3
|
|
|
|
|
|
zNewKey[j++] = 'c'; |
|
2083
|
3
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->z, pRec->n); |
|
2084
|
3
|
|
|
|
|
|
j += pRec->n; |
|
2085
|
|
|
|
|
|
|
} |
|
2086
|
|
|
|
|
|
|
} |
|
2087
|
7
|
100
|
|
|
|
|
if( addRowid ){ |
|
2088
|
|
|
|
|
|
|
u32 iKey; |
|
2089
|
4
|
|
|
|
|
|
pRec = &pTos[-nField]; |
|
2090
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
|
2091
|
4
|
50
|
|
|
|
|
Integerify(pRec); |
|
2092
|
4
|
|
|
|
|
|
iKey = intToKey(pRec->i); |
|
2093
|
4
|
|
|
|
|
|
memcpy(&zNewKey[j], &iKey, sizeof(u32)); |
|
2094
|
4
|
|
|
|
|
|
popStack(&pTos, nField+1); |
|
2095
|
4
|
100
|
|
|
|
|
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; |
|
|
|
50
|
|
|
|
|
|
|
2096
|
|
|
|
|
|
|
}else{ |
|
2097
|
3
|
50
|
|
|
|
|
if( pOp->p2==0 ) popStack(&pTos, nField); |
|
2098
|
|
|
|
|
|
|
} |
|
2099
|
7
|
|
|
|
|
|
pTos++; |
|
2100
|
7
|
|
|
|
|
|
pTos->n = nByte; |
|
2101
|
7
|
50
|
|
|
|
|
if( nByte<=NBFS ){ |
|
2102
|
|
|
|
|
|
|
assert( zNewKey==zTemp ); |
|
2103
|
7
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
2104
|
7
|
|
|
|
|
|
memcpy(pTos->zShort, zTemp, nByte); |
|
2105
|
7
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
|
2106
|
|
|
|
|
|
|
}else{ |
|
2107
|
0
|
|
|
|
|
|
pTos->z = zNewKey; |
|
2108
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
2109
|
|
|
|
|
|
|
} |
|
2110
|
7
|
|
|
|
|
|
break; |
|
2111
|
|
|
|
|
|
|
} |
|
2112
|
|
|
|
|
|
|
|
|
2113
|
|
|
|
|
|
|
/* Opcode: IncrKey * * * |
|
2114
|
|
|
|
|
|
|
** |
|
2115
|
|
|
|
|
|
|
** The top of the stack should contain an index key generated by |
|
2116
|
|
|
|
|
|
|
** The MakeKey opcode. This routine increases the least significant |
|
2117
|
|
|
|
|
|
|
** byte of that key by one. This is used so that the MoveTo opcode |
|
2118
|
|
|
|
|
|
|
** will move to the first entry greater than the key rather than to |
|
2119
|
|
|
|
|
|
|
** the key itself. |
|
2120
|
|
|
|
|
|
|
*/ |
|
2121
|
|
|
|
|
|
|
case OP_IncrKey: { |
|
2122
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2123
|
|
|
|
|
|
|
/* The IncrKey opcode is only applied to keys generated by |
|
2124
|
|
|
|
|
|
|
** MakeKey or MakeIdxKey and the results of those operands |
|
2125
|
|
|
|
|
|
|
** are always dynamic strings or zShort[] strings. So we |
|
2126
|
|
|
|
|
|
|
** are always free to modify the string in place. |
|
2127
|
|
|
|
|
|
|
*/ |
|
2128
|
|
|
|
|
|
|
assert( pTos->flags & (MEM_Dyn|MEM_Short) ); |
|
2129
|
0
|
|
|
|
|
|
pTos->z[pTos->n-1]++; |
|
2130
|
0
|
|
|
|
|
|
break; |
|
2131
|
|
|
|
|
|
|
} |
|
2132
|
|
|
|
|
|
|
|
|
2133
|
|
|
|
|
|
|
/* Opcode: Checkpoint P1 * * |
|
2134
|
|
|
|
|
|
|
** |
|
2135
|
|
|
|
|
|
|
** Begin a checkpoint. A checkpoint is the beginning of a operation that |
|
2136
|
|
|
|
|
|
|
** is part of a larger transaction but which might need to be rolled back |
|
2137
|
|
|
|
|
|
|
** itself without effecting the containing transaction. A checkpoint will |
|
2138
|
|
|
|
|
|
|
** be automatically committed or rollback when the VDBE halts. |
|
2139
|
|
|
|
|
|
|
** |
|
2140
|
|
|
|
|
|
|
** The checkpoint is begun on the database file with index P1. The main |
|
2141
|
|
|
|
|
|
|
** database file has an index of 0 and the file used for temporary tables |
|
2142
|
|
|
|
|
|
|
** has an index of 1. |
|
2143
|
|
|
|
|
|
|
*/ |
|
2144
|
|
|
|
|
|
|
case OP_Checkpoint: { |
|
2145
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
2146
|
0
|
0
|
|
|
|
|
if( i>=0 && inDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
2147
|
0
|
|
|
|
|
|
rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); |
|
2148
|
0
|
0
|
|
|
|
|
if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2; |
|
2149
|
|
|
|
|
|
|
} |
|
2150
|
0
|
|
|
|
|
|
break; |
|
2151
|
|
|
|
|
|
|
} |
|
2152
|
|
|
|
|
|
|
|
|
2153
|
|
|
|
|
|
|
/* Opcode: Transaction P1 * * |
|
2154
|
|
|
|
|
|
|
** |
|
2155
|
|
|
|
|
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback |
|
2156
|
|
|
|
|
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the |
|
2157
|
|
|
|
|
|
|
** transaction might also be rolled back if an error is encountered. |
|
2158
|
|
|
|
|
|
|
** |
|
2159
|
|
|
|
|
|
|
** P1 is the index of the database file on which the transaction is |
|
2160
|
|
|
|
|
|
|
** started. Index 0 is the main database file and index 1 is the |
|
2161
|
|
|
|
|
|
|
** file used for temporary tables. |
|
2162
|
|
|
|
|
|
|
** |
|
2163
|
|
|
|
|
|
|
** A write lock is obtained on the database file when a transaction is |
|
2164
|
|
|
|
|
|
|
** started. No other process can read or write the file while the |
|
2165
|
|
|
|
|
|
|
** transaction is underway. Starting a transaction also creates a |
|
2166
|
|
|
|
|
|
|
** rollback journal. A transaction must be started before any changes |
|
2167
|
|
|
|
|
|
|
** can be made to the database. |
|
2168
|
|
|
|
|
|
|
*/ |
|
2169
|
|
|
|
|
|
|
case OP_Transaction: { |
|
2170
|
153
|
|
|
|
|
|
int busy = 1; |
|
2171
|
153
|
|
|
|
|
|
int i = pOp->p1; |
|
2172
|
|
|
|
|
|
|
assert( i>=0 && inDb ); |
|
2173
|
153
|
50
|
|
|
|
|
if( db->aDb[i].inTrans ) break; |
|
2174
|
306
|
50
|
|
|
|
|
while( db->aDb[i].pBt!=0 && busy ){ |
|
|
|
100
|
|
|
|
|
|
|
2175
|
153
|
|
|
|
|
|
rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); |
|
2176
|
153
|
|
|
|
|
|
switch( rc ){ |
|
2177
|
|
|
|
|
|
|
case SQLITE_BUSY: { |
|
2178
|
0
|
0
|
|
|
|
|
if( db->xBusyCallback==0 ){ |
|
2179
|
0
|
|
|
|
|
|
p->pc = pc; |
|
2180
|
0
|
|
|
|
|
|
p->undoTransOnError = 1; |
|
2181
|
0
|
|
|
|
|
|
p->rc = SQLITE_BUSY; |
|
2182
|
0
|
|
|
|
|
|
p->pTos = pTos; |
|
2183
|
0
|
|
|
|
|
|
return SQLITE_BUSY; |
|
2184
|
0
|
0
|
|
|
|
|
}else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ |
|
2185
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
|
2186
|
0
|
|
|
|
|
|
busy = 0; |
|
2187
|
|
|
|
|
|
|
} |
|
2188
|
0
|
|
|
|
|
|
break; |
|
2189
|
|
|
|
|
|
|
} |
|
2190
|
|
|
|
|
|
|
case SQLITE_READONLY: { |
|
2191
|
0
|
|
|
|
|
|
rc = SQLITE_OK; |
|
2192
|
|
|
|
|
|
|
/* Fall thru into the next case */ |
|
2193
|
|
|
|
|
|
|
} |
|
2194
|
|
|
|
|
|
|
case SQLITE_OK: { |
|
2195
|
153
|
|
|
|
|
|
p->inTempTrans = 0; |
|
2196
|
153
|
|
|
|
|
|
busy = 0; |
|
2197
|
153
|
|
|
|
|
|
break; |
|
2198
|
|
|
|
|
|
|
} |
|
2199
|
|
|
|
|
|
|
default: { |
|
2200
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
2201
|
|
|
|
|
|
|
} |
|
2202
|
|
|
|
|
|
|
} |
|
2203
|
|
|
|
|
|
|
} |
|
2204
|
153
|
|
|
|
|
|
db->aDb[i].inTrans = 1; |
|
2205
|
153
|
|
|
|
|
|
p->undoTransOnError = 1; |
|
2206
|
153
|
|
|
|
|
|
break; |
|
2207
|
|
|
|
|
|
|
} |
|
2208
|
|
|
|
|
|
|
|
|
2209
|
|
|
|
|
|
|
/* Opcode: Commit * * * |
|
2210
|
|
|
|
|
|
|
** |
|
2211
|
|
|
|
|
|
|
** Cause all modifications to the database that have been made since the |
|
2212
|
|
|
|
|
|
|
** last Transaction to actually take effect. No additional modifications |
|
2213
|
|
|
|
|
|
|
** are allowed until another transaction is started. The Commit instruction |
|
2214
|
|
|
|
|
|
|
** deletes the journal file and releases the write lock on the database. |
|
2215
|
|
|
|
|
|
|
** A read lock continues to be held if there are still cursors open. |
|
2216
|
|
|
|
|
|
|
*/ |
|
2217
|
|
|
|
|
|
|
case OP_Commit: { |
|
2218
|
|
|
|
|
|
|
int i; |
|
2219
|
73
|
50
|
|
|
|
|
if( db->xCommitCallback!=0 ){ |
|
2220
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
|
2221
|
0
|
0
|
|
|
|
|
if( db->xCommitCallback(db->pCommitArg)!=0 ){ |
|
2222
|
0
|
|
|
|
|
|
rc = SQLITE_CONSTRAINT; |
|
2223
|
|
|
|
|
|
|
} |
|
2224
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
|
2225
|
|
|
|
|
|
|
} |
|
2226
|
219
|
50
|
|
|
|
|
for(i=0; rc==SQLITE_OK && inDb; i++){ |
|
|
|
100
|
|
|
|
|
|
|
2227
|
146
|
100
|
|
|
|
|
if( db->aDb[i].inTrans ){ |
|
2228
|
143
|
|
|
|
|
|
rc = sqliteBtreeCommit(db->aDb[i].pBt); |
|
2229
|
143
|
|
|
|
|
|
db->aDb[i].inTrans = 0; |
|
2230
|
|
|
|
|
|
|
} |
|
2231
|
|
|
|
|
|
|
} |
|
2232
|
73
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
2233
|
73
|
|
|
|
|
|
sqliteCommitInternalChanges(db); |
|
2234
|
|
|
|
|
|
|
}else{ |
|
2235
|
0
|
|
|
|
|
|
sqliteRollbackAll(db); |
|
2236
|
|
|
|
|
|
|
} |
|
2237
|
73
|
|
|
|
|
|
break; |
|
2238
|
|
|
|
|
|
|
} |
|
2239
|
|
|
|
|
|
|
|
|
2240
|
|
|
|
|
|
|
/* Opcode: Rollback P1 * * |
|
2241
|
|
|
|
|
|
|
** |
|
2242
|
|
|
|
|
|
|
** Cause all modifications to the database that have been made since the |
|
2243
|
|
|
|
|
|
|
** last Transaction to be undone. The database is restored to its state |
|
2244
|
|
|
|
|
|
|
** before the Transaction opcode was executed. No additional modifications |
|
2245
|
|
|
|
|
|
|
** are allowed until another transaction is started. |
|
2246
|
|
|
|
|
|
|
** |
|
2247
|
|
|
|
|
|
|
** P1 is the index of the database file that is committed. An index of 0 |
|
2248
|
|
|
|
|
|
|
** is used for the main database and an index of 1 is used for the file used |
|
2249
|
|
|
|
|
|
|
** to hold temporary tables. |
|
2250
|
|
|
|
|
|
|
** |
|
2251
|
|
|
|
|
|
|
** This instruction automatically closes all cursors and releases both |
|
2252
|
|
|
|
|
|
|
** the read and write locks on the indicated database. |
|
2253
|
|
|
|
|
|
|
*/ |
|
2254
|
|
|
|
|
|
|
case OP_Rollback: { |
|
2255
|
4
|
|
|
|
|
|
sqliteRollbackAll(db); |
|
2256
|
4
|
|
|
|
|
|
break; |
|
2257
|
|
|
|
|
|
|
} |
|
2258
|
|
|
|
|
|
|
|
|
2259
|
|
|
|
|
|
|
/* Opcode: ReadCookie P1 P2 * |
|
2260
|
|
|
|
|
|
|
** |
|
2261
|
|
|
|
|
|
|
** Read cookie number P2 from database P1 and push it onto the stack. |
|
2262
|
|
|
|
|
|
|
** P2==0 is the schema version. P2==1 is the database format. |
|
2263
|
|
|
|
|
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
|
2264
|
|
|
|
|
|
|
** the main database file and P1==1 is the database file used to store |
|
2265
|
|
|
|
|
|
|
** temporary tables. |
|
2266
|
|
|
|
|
|
|
** |
|
2267
|
|
|
|
|
|
|
** There must be a read-lock on the database (either a transaction |
|
2268
|
|
|
|
|
|
|
** must be started or there must be an open cursor) before |
|
2269
|
|
|
|
|
|
|
** executing this instruction. |
|
2270
|
|
|
|
|
|
|
*/ |
|
2271
|
|
|
|
|
|
|
case OP_ReadCookie: { |
|
2272
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
|
2273
|
|
|
|
|
|
|
assert( pOp->p2
|
|
2274
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
|
2275
|
|
|
|
|
|
|
assert( db->aDb[pOp->p1].pBt!=0 ); |
|
2276
|
0
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
|
2277
|
0
|
|
|
|
|
|
pTos++; |
|
2278
|
0
|
|
|
|
|
|
pTos->i = aMeta[1+pOp->p2]; |
|
2279
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
2280
|
0
|
|
|
|
|
|
break; |
|
2281
|
|
|
|
|
|
|
} |
|
2282
|
|
|
|
|
|
|
|
|
2283
|
|
|
|
|
|
|
/* Opcode: SetCookie P1 P2 * |
|
2284
|
|
|
|
|
|
|
** |
|
2285
|
|
|
|
|
|
|
** Write the top of the stack into cookie number P2 of database P1. |
|
2286
|
|
|
|
|
|
|
** P2==0 is the schema version. P2==1 is the database format. |
|
2287
|
|
|
|
|
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
|
2288
|
|
|
|
|
|
|
** the main database file and P1==1 is the database file used to store |
|
2289
|
|
|
|
|
|
|
** temporary tables. |
|
2290
|
|
|
|
|
|
|
** |
|
2291
|
|
|
|
|
|
|
** A transaction must be started before executing this opcode. |
|
2292
|
|
|
|
|
|
|
*/ |
|
2293
|
|
|
|
|
|
|
case OP_SetCookie: { |
|
2294
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
|
2295
|
|
|
|
|
|
|
assert( pOp->p2
|
|
2296
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
|
2297
|
|
|
|
|
|
|
assert( db->aDb[pOp->p1].pBt!=0 ); |
|
2298
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2299
|
53
|
50
|
|
|
|
|
Integerify(pTos) |
|
2300
|
53
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
|
2301
|
53
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
2302
|
53
|
|
|
|
|
|
aMeta[1+pOp->p2] = pTos->i; |
|
2303
|
53
|
|
|
|
|
|
rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); |
|
2304
|
|
|
|
|
|
|
} |
|
2305
|
53
|
50
|
|
|
|
|
Release(pTos); |
|
2306
|
53
|
|
|
|
|
|
pTos--; |
|
2307
|
53
|
|
|
|
|
|
break; |
|
2308
|
|
|
|
|
|
|
} |
|
2309
|
|
|
|
|
|
|
|
|
2310
|
|
|
|
|
|
|
/* Opcode: VerifyCookie P1 P2 * |
|
2311
|
|
|
|
|
|
|
** |
|
2312
|
|
|
|
|
|
|
** Check the value of global database parameter number 0 (the |
|
2313
|
|
|
|
|
|
|
** schema version) and make sure it is equal to P2. |
|
2314
|
|
|
|
|
|
|
** P1 is the database number which is 0 for the main database file |
|
2315
|
|
|
|
|
|
|
** and 1 for the file holding temporary tables and some higher number |
|
2316
|
|
|
|
|
|
|
** for auxiliary databases. |
|
2317
|
|
|
|
|
|
|
** |
|
2318
|
|
|
|
|
|
|
** The cookie changes its value whenever the database schema changes. |
|
2319
|
|
|
|
|
|
|
** This operation is used to detect when that the cookie has changed |
|
2320
|
|
|
|
|
|
|
** and that the current process needs to reread the schema. |
|
2321
|
|
|
|
|
|
|
** |
|
2322
|
|
|
|
|
|
|
** Either a transaction needs to have been started or an OP_Open needs |
|
2323
|
|
|
|
|
|
|
** to be executed (to establish a read lock) before this opcode is |
|
2324
|
|
|
|
|
|
|
** invoked. |
|
2325
|
|
|
|
|
|
|
*/ |
|
2326
|
|
|
|
|
|
|
case OP_VerifyCookie: { |
|
2327
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
|
2328
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
|
2329
|
147
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
|
2330
|
147
|
50
|
|
|
|
|
if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){ |
|
|
|
50
|
|
|
|
|
|
|
2331
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0); |
|
2332
|
0
|
|
|
|
|
|
rc = SQLITE_SCHEMA; |
|
2333
|
|
|
|
|
|
|
} |
|
2334
|
147
|
|
|
|
|
|
break; |
|
2335
|
|
|
|
|
|
|
} |
|
2336
|
|
|
|
|
|
|
|
|
2337
|
|
|
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 |
|
2338
|
|
|
|
|
|
|
** |
|
2339
|
|
|
|
|
|
|
** Open a read-only cursor for the database table whose root page is |
|
2340
|
|
|
|
|
|
|
** P2 in a database file. The database file is determined by an |
|
2341
|
|
|
|
|
|
|
** integer from the top of the stack. 0 means the main database and |
|
2342
|
|
|
|
|
|
|
** 1 means the database used for temporary tables. Give the new |
|
2343
|
|
|
|
|
|
|
** cursor an identifier of P1. The P1 values need not be contiguous |
|
2344
|
|
|
|
|
|
|
** but all P1 values should be small integers. It is an error for |
|
2345
|
|
|
|
|
|
|
** P1 to be negative. |
|
2346
|
|
|
|
|
|
|
** |
|
2347
|
|
|
|
|
|
|
** If P2==0 then take the root page number from the next of the stack. |
|
2348
|
|
|
|
|
|
|
** |
|
2349
|
|
|
|
|
|
|
** There will be a read lock on the database whenever there is an |
|
2350
|
|
|
|
|
|
|
** open cursor. If the database was unlocked prior to this instruction |
|
2351
|
|
|
|
|
|
|
** then a read lock is acquired as part of this instruction. A read |
|
2352
|
|
|
|
|
|
|
** lock allows other processes to read the database but prohibits |
|
2353
|
|
|
|
|
|
|
** any other process from modifying the database. The read lock is |
|
2354
|
|
|
|
|
|
|
** released when all cursors are closed. If this instruction attempts |
|
2355
|
|
|
|
|
|
|
** to get a read lock but fails, the script terminates with an |
|
2356
|
|
|
|
|
|
|
** SQLITE_BUSY error code. |
|
2357
|
|
|
|
|
|
|
** |
|
2358
|
|
|
|
|
|
|
** The P3 value is the name of the table or index being opened. |
|
2359
|
|
|
|
|
|
|
** The P3 value is not actually used by this opcode and may be |
|
2360
|
|
|
|
|
|
|
** omitted. But the code generator usually inserts the index or |
|
2361
|
|
|
|
|
|
|
** table name into P3 to make the code easier to read. |
|
2362
|
|
|
|
|
|
|
** |
|
2363
|
|
|
|
|
|
|
** See also OpenWrite. |
|
2364
|
|
|
|
|
|
|
*/ |
|
2365
|
|
|
|
|
|
|
/* Opcode: OpenWrite P1 P2 P3 |
|
2366
|
|
|
|
|
|
|
** |
|
2367
|
|
|
|
|
|
|
** Open a read/write cursor named P1 on the table or index whose root |
|
2368
|
|
|
|
|
|
|
** page is P2. If P2==0 then take the root page number from the stack. |
|
2369
|
|
|
|
|
|
|
** |
|
2370
|
|
|
|
|
|
|
** The P3 value is the name of the table or index being opened. |
|
2371
|
|
|
|
|
|
|
** The P3 value is not actually used by this opcode and may be |
|
2372
|
|
|
|
|
|
|
** omitted. But the code generator usually inserts the index or |
|
2373
|
|
|
|
|
|
|
** table name into P3 to make the code easier to read. |
|
2374
|
|
|
|
|
|
|
** |
|
2375
|
|
|
|
|
|
|
** This instruction works just like OpenRead except that it opens the cursor |
|
2376
|
|
|
|
|
|
|
** in read/write mode. For a given table, there can be one or more read-only |
|
2377
|
|
|
|
|
|
|
** cursors or a single read/write cursor but not both. |
|
2378
|
|
|
|
|
|
|
** |
|
2379
|
|
|
|
|
|
|
** See also OpenRead. |
|
2380
|
|
|
|
|
|
|
*/ |
|
2381
|
|
|
|
|
|
|
case OP_OpenRead: |
|
2382
|
|
|
|
|
|
|
case OP_OpenWrite: { |
|
2383
|
215
|
|
|
|
|
|
int busy = 0; |
|
2384
|
215
|
|
|
|
|
|
int i = pOp->p1; |
|
2385
|
215
|
|
|
|
|
|
int p2 = pOp->p2; |
|
2386
|
|
|
|
|
|
|
int wrFlag; |
|
2387
|
|
|
|
|
|
|
Btree *pX; |
|
2388
|
|
|
|
|
|
|
int iDb; |
|
2389
|
|
|
|
|
|
|
|
|
2390
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2391
|
215
|
50
|
|
|
|
|
Integerify(pTos); |
|
2392
|
215
|
|
|
|
|
|
iDb = pTos->i; |
|
2393
|
215
|
|
|
|
|
|
pTos--; |
|
2394
|
|
|
|
|
|
|
assert( iDb>=0 && iDbnDb ); |
|
2395
|
215
|
|
|
|
|
|
pX = db->aDb[iDb].pBt; |
|
2396
|
|
|
|
|
|
|
assert( pX!=0 ); |
|
2397
|
215
|
|
|
|
|
|
wrFlag = pOp->opcode==OP_OpenWrite; |
|
2398
|
215
|
100
|
|
|
|
|
if( p2<=0 ){ |
|
2399
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2400
|
1
|
50
|
|
|
|
|
Integerify(pTos); |
|
2401
|
1
|
|
|
|
|
|
p2 = pTos->i; |
|
2402
|
1
|
|
|
|
|
|
pTos--; |
|
2403
|
1
|
50
|
|
|
|
|
if( p2<2 ){ |
|
2404
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); |
|
2405
|
0
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
|
2406
|
0
|
|
|
|
|
|
break; |
|
2407
|
|
|
|
|
|
|
} |
|
2408
|
|
|
|
|
|
|
} |
|
2409
|
|
|
|
|
|
|
assert( i>=0 ); |
|
2410
|
215
|
50
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
|
2411
|
215
|
|
|
|
|
|
sqliteVdbeCleanupCursor(&p->aCsr[i]); |
|
2412
|
215
|
|
|
|
|
|
memset(&p->aCsr[i], 0, sizeof(Cursor)); |
|
2413
|
215
|
|
|
|
|
|
p->aCsr[i].nullRow = 1; |
|
2414
|
215
|
50
|
|
|
|
|
if( pX==0 ) break; |
|
2415
|
|
|
|
|
|
|
do{ |
|
2416
|
215
|
|
|
|
|
|
rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); |
|
2417
|
215
|
|
|
|
|
|
switch( rc ){ |
|
2418
|
|
|
|
|
|
|
case SQLITE_BUSY: { |
|
2419
|
0
|
0
|
|
|
|
|
if( db->xBusyCallback==0 ){ |
|
2420
|
0
|
|
|
|
|
|
p->pc = pc; |
|
2421
|
0
|
|
|
|
|
|
p->rc = SQLITE_BUSY; |
|
2422
|
0
|
0
|
|
|
|
|
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ |
|
2423
|
0
|
|
|
|
|
|
return SQLITE_BUSY; |
|
2424
|
0
|
0
|
|
|
|
|
}else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ |
|
2425
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
|
2426
|
0
|
|
|
|
|
|
busy = 0; |
|
2427
|
|
|
|
|
|
|
} |
|
2428
|
0
|
|
|
|
|
|
break; |
|
2429
|
|
|
|
|
|
|
} |
|
2430
|
|
|
|
|
|
|
case SQLITE_OK: { |
|
2431
|
215
|
|
|
|
|
|
busy = 0; |
|
2432
|
215
|
|
|
|
|
|
break; |
|
2433
|
|
|
|
|
|
|
} |
|
2434
|
|
|
|
|
|
|
default: { |
|
2435
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
2436
|
|
|
|
|
|
|
} |
|
2437
|
|
|
|
|
|
|
} |
|
2438
|
215
|
50
|
|
|
|
|
}while( busy ); |
|
2439
|
215
|
|
|
|
|
|
break; |
|
2440
|
|
|
|
|
|
|
} |
|
2441
|
|
|
|
|
|
|
|
|
2442
|
|
|
|
|
|
|
/* Opcode: OpenTemp P1 P2 * |
|
2443
|
|
|
|
|
|
|
** |
|
2444
|
|
|
|
|
|
|
** Open a new cursor to a transient table. |
|
2445
|
|
|
|
|
|
|
** The transient cursor is always opened read/write even if |
|
2446
|
|
|
|
|
|
|
** the main database is read-only. The transient table is deleted |
|
2447
|
|
|
|
|
|
|
** automatically when the cursor is closed. |
|
2448
|
|
|
|
|
|
|
** |
|
2449
|
|
|
|
|
|
|
** The cursor points to a BTree table if P2==0 and to a BTree index |
|
2450
|
|
|
|
|
|
|
** if P2==1. A BTree table must have an integer key and can have arbitrary |
|
2451
|
|
|
|
|
|
|
** data. A BTree index has no data but can have an arbitrary key. |
|
2452
|
|
|
|
|
|
|
** |
|
2453
|
|
|
|
|
|
|
** This opcode is used for tables that exist for the duration of a single |
|
2454
|
|
|
|
|
|
|
** SQL statement only. Tables created using CREATE TEMPORARY TABLE |
|
2455
|
|
|
|
|
|
|
** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the |
|
2456
|
|
|
|
|
|
|
** context of this opcode means for the duration of a single SQL statement |
|
2457
|
|
|
|
|
|
|
** whereas "Temporary" in the context of CREATE TABLE means for the duration |
|
2458
|
|
|
|
|
|
|
** of the connection to the database. Same word; different meanings. |
|
2459
|
|
|
|
|
|
|
*/ |
|
2460
|
|
|
|
|
|
|
case OP_OpenTemp: { |
|
2461
|
3
|
|
|
|
|
|
int i = pOp->p1; |
|
2462
|
|
|
|
|
|
|
Cursor *pCx; |
|
2463
|
|
|
|
|
|
|
assert( i>=0 ); |
|
2464
|
3
|
50
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
|
2465
|
3
|
|
|
|
|
|
pCx = &p->aCsr[i]; |
|
2466
|
3
|
|
|
|
|
|
sqliteVdbeCleanupCursor(pCx); |
|
2467
|
3
|
|
|
|
|
|
memset(pCx, 0, sizeof(*pCx)); |
|
2468
|
3
|
|
|
|
|
|
pCx->nullRow = 1; |
|
2469
|
3
|
|
|
|
|
|
rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); |
|
2470
|
|
|
|
|
|
|
|
|
2471
|
3
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
2472
|
3
|
|
|
|
|
|
rc = sqliteBtreeBeginTrans(pCx->pBt); |
|
2473
|
|
|
|
|
|
|
} |
|
2474
|
3
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
2475
|
3
|
50
|
|
|
|
|
if( pOp->p2 ){ |
|
2476
|
|
|
|
|
|
|
int pgno; |
|
2477
|
0
|
|
|
|
|
|
rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); |
|
2478
|
0
|
0
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
2479
|
0
|
|
|
|
|
|
rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); |
|
2480
|
|
|
|
|
|
|
} |
|
2481
|
|
|
|
|
|
|
}else{ |
|
2482
|
3
|
|
|
|
|
|
rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); |
|
2483
|
|
|
|
|
|
|
} |
|
2484
|
|
|
|
|
|
|
} |
|
2485
|
3
|
|
|
|
|
|
break; |
|
2486
|
|
|
|
|
|
|
} |
|
2487
|
|
|
|
|
|
|
|
|
2488
|
|
|
|
|
|
|
/* Opcode: OpenPseudo P1 * * |
|
2489
|
|
|
|
|
|
|
** |
|
2490
|
|
|
|
|
|
|
** Open a new cursor that points to a fake table that contains a single |
|
2491
|
|
|
|
|
|
|
** row of data. Any attempt to write a second row of data causes the |
|
2492
|
|
|
|
|
|
|
** first row to be deleted. All data is deleted when the cursor is |
|
2493
|
|
|
|
|
|
|
** closed. |
|
2494
|
|
|
|
|
|
|
** |
|
2495
|
|
|
|
|
|
|
** A pseudo-table created by this opcode is useful for holding the |
|
2496
|
|
|
|
|
|
|
** NEW or OLD tables in a trigger. |
|
2497
|
|
|
|
|
|
|
*/ |
|
2498
|
|
|
|
|
|
|
case OP_OpenPseudo: { |
|
2499
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
2500
|
|
|
|
|
|
|
Cursor *pCx; |
|
2501
|
|
|
|
|
|
|
assert( i>=0 ); |
|
2502
|
0
|
0
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
|
2503
|
0
|
|
|
|
|
|
pCx = &p->aCsr[i]; |
|
2504
|
0
|
|
|
|
|
|
sqliteVdbeCleanupCursor(pCx); |
|
2505
|
0
|
|
|
|
|
|
memset(pCx, 0, sizeof(*pCx)); |
|
2506
|
0
|
|
|
|
|
|
pCx->nullRow = 1; |
|
2507
|
0
|
|
|
|
|
|
pCx->pseudoTable = 1; |
|
2508
|
0
|
|
|
|
|
|
break; |
|
2509
|
|
|
|
|
|
|
} |
|
2510
|
|
|
|
|
|
|
|
|
2511
|
|
|
|
|
|
|
/* Opcode: Close P1 * * |
|
2512
|
|
|
|
|
|
|
** |
|
2513
|
|
|
|
|
|
|
** Close a cursor previously opened as P1. If P1 is not |
|
2514
|
|
|
|
|
|
|
** currently open, this instruction is a no-op. |
|
2515
|
|
|
|
|
|
|
*/ |
|
2516
|
|
|
|
|
|
|
case OP_Close: { |
|
2517
|
198
|
|
|
|
|
|
int i = pOp->p1; |
|
2518
|
198
|
50
|
|
|
|
|
if( i>=0 && inCursor ){ |
|
|
|
50
|
|
|
|
|
|
|
2519
|
198
|
|
|
|
|
|
sqliteVdbeCleanupCursor(&p->aCsr[i]); |
|
2520
|
|
|
|
|
|
|
} |
|
2521
|
198
|
|
|
|
|
|
break; |
|
2522
|
|
|
|
|
|
|
} |
|
2523
|
|
|
|
|
|
|
|
|
2524
|
|
|
|
|
|
|
/* Opcode: MoveTo P1 P2 * |
|
2525
|
|
|
|
|
|
|
** |
|
2526
|
|
|
|
|
|
|
** Pop the top of the stack and use its value as a key. Reposition |
|
2527
|
|
|
|
|
|
|
** cursor P1 so that it points to an entry with a matching key. If |
|
2528
|
|
|
|
|
|
|
** the table contains no record with a matching key, then the cursor |
|
2529
|
|
|
|
|
|
|
** is left pointing at the first record that is greater than the key. |
|
2530
|
|
|
|
|
|
|
** If there are no records greater than the key and P2 is not zero, |
|
2531
|
|
|
|
|
|
|
** then an immediate jump to P2 is made. |
|
2532
|
|
|
|
|
|
|
** |
|
2533
|
|
|
|
|
|
|
** See also: Found, NotFound, Distinct, MoveLt |
|
2534
|
|
|
|
|
|
|
*/ |
|
2535
|
|
|
|
|
|
|
/* Opcode: MoveLt P1 P2 * |
|
2536
|
|
|
|
|
|
|
** |
|
2537
|
|
|
|
|
|
|
** Pop the top of the stack and use its value as a key. Reposition |
|
2538
|
|
|
|
|
|
|
** cursor P1 so that it points to the entry with the largest key that is |
|
2539
|
|
|
|
|
|
|
** less than the key popped from the stack. |
|
2540
|
|
|
|
|
|
|
** If there are no records less than than the key and P2 |
|
2541
|
|
|
|
|
|
|
** is not zero then an immediate jump to P2 is made. |
|
2542
|
|
|
|
|
|
|
** |
|
2543
|
|
|
|
|
|
|
** See also: MoveTo |
|
2544
|
|
|
|
|
|
|
*/ |
|
2545
|
|
|
|
|
|
|
case OP_MoveLt: |
|
2546
|
|
|
|
|
|
|
case OP_MoveTo: { |
|
2547
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
2548
|
|
|
|
|
|
|
Cursor *pC; |
|
2549
|
|
|
|
|
|
|
|
|
2550
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2551
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2552
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
2553
|
0
|
0
|
|
|
|
|
if( pC->pCursor!=0 ){ |
|
2554
|
|
|
|
|
|
|
int res, oc; |
|
2555
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
|
2556
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
|
2557
|
0
|
|
|
|
|
|
int iKey = intToKey(pTos->i); |
|
2558
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ |
|
|
|
0
|
|
|
|
|
|
|
2559
|
0
|
|
|
|
|
|
pC->movetoTarget = iKey; |
|
2560
|
0
|
|
|
|
|
|
pC->deferredMoveto = 1; |
|
2561
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
2562
|
0
|
|
|
|
|
|
pTos--; |
|
2563
|
0
|
|
|
|
|
|
break; |
|
2564
|
|
|
|
|
|
|
} |
|
2565
|
0
|
|
|
|
|
|
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); |
|
2566
|
0
|
|
|
|
|
|
pC->lastRecno = pTos->i; |
|
2567
|
0
|
|
|
|
|
|
pC->recnoIsValid = res==0; |
|
2568
|
|
|
|
|
|
|
}else{ |
|
2569
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
2570
|
0
|
|
|
|
|
|
sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); |
|
2571
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
2572
|
|
|
|
|
|
|
} |
|
2573
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
2574
|
0
|
|
|
|
|
|
sqlite_search_count++; |
|
2575
|
0
|
|
|
|
|
|
oc = pOp->opcode; |
|
2576
|
0
|
0
|
|
|
|
|
if( oc==OP_MoveTo && res<0 ){ |
|
|
|
0
|
|
|
|
|
|
|
2577
|
0
|
|
|
|
|
|
sqliteBtreeNext(pC->pCursor, &res); |
|
2578
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
2579
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
|
0
|
|
|
|
|
|
|
2580
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2581
|
|
|
|
|
|
|
} |
|
2582
|
0
|
0
|
|
|
|
|
}else if( oc==OP_MoveLt ){ |
|
2583
|
0
|
0
|
|
|
|
|
if( res>=0 ){ |
|
2584
|
0
|
|
|
|
|
|
sqliteBtreePrevious(pC->pCursor, &res); |
|
2585
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
2586
|
|
|
|
|
|
|
}else{ |
|
2587
|
|
|
|
|
|
|
/* res might be negative because the table is empty. Check to |
|
2588
|
|
|
|
|
|
|
** see if this is the case. |
|
2589
|
|
|
|
|
|
|
*/ |
|
2590
|
|
|
|
|
|
|
int keysize; |
|
2591
|
0
|
0
|
|
|
|
|
res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; |
|
|
|
0
|
|
|
|
|
|
|
2592
|
|
|
|
|
|
|
} |
|
2593
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
|
0
|
|
|
|
|
|
|
2594
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2595
|
|
|
|
|
|
|
} |
|
2596
|
|
|
|
|
|
|
} |
|
2597
|
|
|
|
|
|
|
} |
|
2598
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
2599
|
0
|
|
|
|
|
|
pTos--; |
|
2600
|
0
|
|
|
|
|
|
break; |
|
2601
|
|
|
|
|
|
|
} |
|
2602
|
|
|
|
|
|
|
|
|
2603
|
|
|
|
|
|
|
/* Opcode: Distinct P1 P2 * |
|
2604
|
|
|
|
|
|
|
** |
|
2605
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key does |
|
2606
|
|
|
|
|
|
|
** not exist in the table of cursor P1, then jump to P2. If the record |
|
2607
|
|
|
|
|
|
|
** does already exist, then fall thru. The cursor is left pointing |
|
2608
|
|
|
|
|
|
|
** at the record if it exists. The key is not popped from the stack. |
|
2609
|
|
|
|
|
|
|
** |
|
2610
|
|
|
|
|
|
|
** This operation is similar to NotFound except that this operation |
|
2611
|
|
|
|
|
|
|
** does not pop the key from the stack. |
|
2612
|
|
|
|
|
|
|
** |
|
2613
|
|
|
|
|
|
|
** See also: Found, NotFound, MoveTo, IsUnique, NotExists |
|
2614
|
|
|
|
|
|
|
*/ |
|
2615
|
|
|
|
|
|
|
/* Opcode: Found P1 P2 * |
|
2616
|
|
|
|
|
|
|
** |
|
2617
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key |
|
2618
|
|
|
|
|
|
|
** does exist in table of P1, then jump to P2. If the record |
|
2619
|
|
|
|
|
|
|
** does not exist, then fall thru. The cursor is left pointing |
|
2620
|
|
|
|
|
|
|
** to the record if it exists. The key is popped from the stack. |
|
2621
|
|
|
|
|
|
|
** |
|
2622
|
|
|
|
|
|
|
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists |
|
2623
|
|
|
|
|
|
|
*/ |
|
2624
|
|
|
|
|
|
|
/* Opcode: NotFound P1 P2 * |
|
2625
|
|
|
|
|
|
|
** |
|
2626
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key |
|
2627
|
|
|
|
|
|
|
** does not exist in table of P1, then jump to P2. If the record |
|
2628
|
|
|
|
|
|
|
** does exist, then fall thru. The cursor is left pointing to the |
|
2629
|
|
|
|
|
|
|
** record if it exists. The key is popped from the stack. |
|
2630
|
|
|
|
|
|
|
** |
|
2631
|
|
|
|
|
|
|
** The difference between this operation and Distinct is that |
|
2632
|
|
|
|
|
|
|
** Distinct does not pop the key from the stack. |
|
2633
|
|
|
|
|
|
|
** |
|
2634
|
|
|
|
|
|
|
** See also: Distinct, Found, MoveTo, NotExists, IsUnique |
|
2635
|
|
|
|
|
|
|
*/ |
|
2636
|
|
|
|
|
|
|
case OP_Distinct: |
|
2637
|
|
|
|
|
|
|
case OP_NotFound: |
|
2638
|
|
|
|
|
|
|
case OP_Found: { |
|
2639
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
2640
|
0
|
|
|
|
|
|
int alreadyExists = 0; |
|
2641
|
|
|
|
|
|
|
Cursor *pC; |
|
2642
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2643
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2644
|
0
|
0
|
|
|
|
|
if( (pC = &p->aCsr[i])->pCursor!=0 ){ |
|
2645
|
|
|
|
|
|
|
int res, rx; |
|
2646
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
2647
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); |
|
2648
|
0
|
0
|
|
|
|
|
alreadyExists = rx==SQLITE_OK && res==0; |
|
|
|
0
|
|
|
|
|
|
|
2649
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
2650
|
|
|
|
|
|
|
} |
|
2651
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Found ){ |
|
2652
|
0
|
0
|
|
|
|
|
if( alreadyExists ) pc = pOp->p2 - 1; |
|
2653
|
|
|
|
|
|
|
}else{ |
|
2654
|
0
|
0
|
|
|
|
|
if( !alreadyExists ) pc = pOp->p2 - 1; |
|
2655
|
|
|
|
|
|
|
} |
|
2656
|
0
|
0
|
|
|
|
|
if( pOp->opcode!=OP_Distinct ){ |
|
2657
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
2658
|
0
|
|
|
|
|
|
pTos--; |
|
2659
|
|
|
|
|
|
|
} |
|
2660
|
0
|
|
|
|
|
|
break; |
|
2661
|
|
|
|
|
|
|
} |
|
2662
|
|
|
|
|
|
|
|
|
2663
|
|
|
|
|
|
|
/* Opcode: IsUnique P1 P2 * |
|
2664
|
|
|
|
|
|
|
** |
|
2665
|
|
|
|
|
|
|
** The top of the stack is an integer record number. Call this |
|
2666
|
|
|
|
|
|
|
** record number R. The next on the stack is an index key created |
|
2667
|
|
|
|
|
|
|
** using MakeIdxKey. Call it K. This instruction pops R from the |
|
2668
|
|
|
|
|
|
|
** stack but it leaves K unchanged. |
|
2669
|
|
|
|
|
|
|
** |
|
2670
|
|
|
|
|
|
|
** P1 is an index. So all but the last four bytes of K are an |
|
2671
|
|
|
|
|
|
|
** index string. The last four bytes of K are a record number. |
|
2672
|
|
|
|
|
|
|
** |
|
2673
|
|
|
|
|
|
|
** This instruction asks if there is an entry in P1 where the |
|
2674
|
|
|
|
|
|
|
** index string matches K but the record number is different |
|
2675
|
|
|
|
|
|
|
** from R. If there is no such entry, then there is an immediate |
|
2676
|
|
|
|
|
|
|
** jump to P2. If any entry does exist where the index string |
|
2677
|
|
|
|
|
|
|
** matches K but the record number is not R, then the record |
|
2678
|
|
|
|
|
|
|
** number for that entry is pushed onto the stack and control |
|
2679
|
|
|
|
|
|
|
** falls through to the next instruction. |
|
2680
|
|
|
|
|
|
|
** |
|
2681
|
|
|
|
|
|
|
** See also: Distinct, NotFound, NotExists, Found |
|
2682
|
|
|
|
|
|
|
*/ |
|
2683
|
|
|
|
|
|
|
case OP_IsUnique: { |
|
2684
|
2
|
|
|
|
|
|
int i = pOp->p1; |
|
2685
|
2
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
2686
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
2687
|
|
|
|
|
|
|
int R; |
|
2688
|
|
|
|
|
|
|
|
|
2689
|
|
|
|
|
|
|
/* Pop the value R off the top of the stack |
|
2690
|
|
|
|
|
|
|
*/ |
|
2691
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
2692
|
2
|
50
|
|
|
|
|
Integerify(pTos); |
|
2693
|
2
|
|
|
|
|
|
R = pTos->i; |
|
2694
|
2
|
|
|
|
|
|
pTos--; |
|
2695
|
|
|
|
|
|
|
assert( i>=0 && i<=p->nCursor ); |
|
2696
|
2
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
2697
|
|
|
|
|
|
|
int res, rc; |
|
2698
|
|
|
|
|
|
|
int v; /* The record number on the P1 entry that matches K */ |
|
2699
|
|
|
|
|
|
|
char *zKey; /* The value of K */ |
|
2700
|
|
|
|
|
|
|
int nKey; /* Number of bytes in K */ |
|
2701
|
|
|
|
|
|
|
|
|
2702
|
|
|
|
|
|
|
/* Make sure K is a string and make zKey point to K |
|
2703
|
|
|
|
|
|
|
*/ |
|
2704
|
2
|
50
|
|
|
|
|
Stringify(pNos); |
|
2705
|
2
|
|
|
|
|
|
zKey = pNos->z; |
|
2706
|
2
|
|
|
|
|
|
nKey = pNos->n; |
|
2707
|
|
|
|
|
|
|
assert( nKey >= 4 ); |
|
2708
|
|
|
|
|
|
|
|
|
2709
|
|
|
|
|
|
|
/* Search for an entry in P1 where all but the last four bytes match K. |
|
2710
|
|
|
|
|
|
|
** If there is no such entry, jump immediately to P2. |
|
2711
|
|
|
|
|
|
|
*/ |
|
2712
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
|
2713
|
2
|
|
|
|
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); |
|
2714
|
2
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
2715
|
2
|
100
|
|
|
|
|
if( res<0 ){ |
|
2716
|
1
|
|
|
|
|
|
rc = sqliteBtreeNext(pCrsr, &res); |
|
2717
|
1
|
50
|
|
|
|
|
if( res ){ |
|
2718
|
1
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2719
|
1
|
|
|
|
|
|
break; |
|
2720
|
|
|
|
|
|
|
} |
|
2721
|
|
|
|
|
|
|
} |
|
2722
|
1
|
|
|
|
|
|
rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); |
|
2723
|
1
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
2724
|
1
|
50
|
|
|
|
|
if( res>0 ){ |
|
2725
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2726
|
0
|
|
|
|
|
|
break; |
|
2727
|
|
|
|
|
|
|
} |
|
2728
|
|
|
|
|
|
|
|
|
2729
|
|
|
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but |
|
2730
|
|
|
|
|
|
|
** the last for bytes of the key match K. Check to see if the last |
|
2731
|
|
|
|
|
|
|
** four bytes of the key are different from R. If the last four |
|
2732
|
|
|
|
|
|
|
** bytes equal R then jump immediately to P2. |
|
2733
|
|
|
|
|
|
|
*/ |
|
2734
|
1
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); |
|
2735
|
1
|
|
|
|
|
|
v = keyToInt(v); |
|
2736
|
1
|
50
|
|
|
|
|
if( v==R ){ |
|
2737
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2738
|
0
|
|
|
|
|
|
break; |
|
2739
|
|
|
|
|
|
|
} |
|
2740
|
|
|
|
|
|
|
|
|
2741
|
|
|
|
|
|
|
/* The last four bytes of the key are different from R. Convert the |
|
2742
|
|
|
|
|
|
|
** last four bytes of the key into an integer and push it onto the |
|
2743
|
|
|
|
|
|
|
** stack. (These bytes are the record number of an entry that |
|
2744
|
|
|
|
|
|
|
** violates a UNIQUE constraint.) |
|
2745
|
|
|
|
|
|
|
*/ |
|
2746
|
1
|
|
|
|
|
|
pTos++; |
|
2747
|
1
|
|
|
|
|
|
pTos->i = v; |
|
2748
|
1
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
2749
|
|
|
|
|
|
|
} |
|
2750
|
1
|
|
|
|
|
|
break; |
|
2751
|
|
|
|
|
|
|
} |
|
2752
|
|
|
|
|
|
|
|
|
2753
|
|
|
|
|
|
|
/* Opcode: NotExists P1 P2 * |
|
2754
|
|
|
|
|
|
|
** |
|
2755
|
|
|
|
|
|
|
** Use the top of the stack as a integer key. If a record with that key |
|
2756
|
|
|
|
|
|
|
** does not exist in table of P1, then jump to P2. If the record |
|
2757
|
|
|
|
|
|
|
** does exist, then fall thru. The cursor is left pointing to the |
|
2758
|
|
|
|
|
|
|
** record if it exists. The integer key is popped from the stack. |
|
2759
|
|
|
|
|
|
|
** |
|
2760
|
|
|
|
|
|
|
** The difference between this operation and NotFound is that this |
|
2761
|
|
|
|
|
|
|
** operation assumes the key is an integer and NotFound assumes it |
|
2762
|
|
|
|
|
|
|
** is a string. |
|
2763
|
|
|
|
|
|
|
** |
|
2764
|
|
|
|
|
|
|
** See also: Distinct, Found, MoveTo, NotFound, IsUnique |
|
2765
|
|
|
|
|
|
|
*/ |
|
2766
|
|
|
|
|
|
|
case OP_NotExists: { |
|
2767
|
6
|
|
|
|
|
|
int i = pOp->p1; |
|
2768
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
2769
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
2770
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2771
|
6
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
2772
|
|
|
|
|
|
|
int res, rx, iKey; |
|
2773
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Int ); |
|
2774
|
6
|
|
|
|
|
|
iKey = intToKey(pTos->i); |
|
2775
|
6
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); |
|
2776
|
6
|
|
|
|
|
|
p->aCsr[i].lastRecno = pTos->i; |
|
2777
|
6
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = res==0; |
|
2778
|
6
|
|
|
|
|
|
p->aCsr[i].nullRow = 0; |
|
2779
|
6
|
50
|
|
|
|
|
if( rx!=SQLITE_OK || res!=0 ){ |
|
|
|
50
|
|
|
|
|
|
|
2780
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
2781
|
6
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = 0; |
|
2782
|
|
|
|
|
|
|
} |
|
2783
|
|
|
|
|
|
|
} |
|
2784
|
6
|
50
|
|
|
|
|
Release(pTos); |
|
2785
|
6
|
|
|
|
|
|
pTos--; |
|
2786
|
6
|
|
|
|
|
|
break; |
|
2787
|
|
|
|
|
|
|
} |
|
2788
|
|
|
|
|
|
|
|
|
2789
|
|
|
|
|
|
|
/* Opcode: NewRecno P1 * * |
|
2790
|
|
|
|
|
|
|
** |
|
2791
|
|
|
|
|
|
|
** Get a new integer record number used as the key to a table. |
|
2792
|
|
|
|
|
|
|
** The record number is not previously used as a key in the database |
|
2793
|
|
|
|
|
|
|
** table that cursor P1 points to. The new record number is pushed |
|
2794
|
|
|
|
|
|
|
** onto the stack. |
|
2795
|
|
|
|
|
|
|
*/ |
|
2796
|
|
|
|
|
|
|
case OP_NewRecno: { |
|
2797
|
97
|
|
|
|
|
|
int i = pOp->p1; |
|
2798
|
97
|
|
|
|
|
|
int v = 0; |
|
2799
|
|
|
|
|
|
|
Cursor *pC; |
|
2800
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2801
|
97
|
50
|
|
|
|
|
if( (pC = &p->aCsr[i])->pCursor==0 ){ |
|
2802
|
0
|
|
|
|
|
|
v = 0; |
|
2803
|
|
|
|
|
|
|
}else{ |
|
2804
|
|
|
|
|
|
|
/* The next rowid or record number (different terms for the same |
|
2805
|
|
|
|
|
|
|
** thing) is obtained in a two-step algorithm. |
|
2806
|
|
|
|
|
|
|
** |
|
2807
|
|
|
|
|
|
|
** First we attempt to find the largest existing rowid and add one |
|
2808
|
|
|
|
|
|
|
** to that. But if the largest existing rowid is already the maximum |
|
2809
|
|
|
|
|
|
|
** positive integer, we have to fall through to the second |
|
2810
|
|
|
|
|
|
|
** probabilistic algorithm |
|
2811
|
|
|
|
|
|
|
** |
|
2812
|
|
|
|
|
|
|
** The second algorithm is to select a rowid at random and see if |
|
2813
|
|
|
|
|
|
|
** it already exists in the table. If it does not exist, we have |
|
2814
|
|
|
|
|
|
|
** succeeded. If the random rowid does exist, we select a new one |
|
2815
|
|
|
|
|
|
|
** and try again, up to 1000 times. |
|
2816
|
|
|
|
|
|
|
** |
|
2817
|
|
|
|
|
|
|
** For a table with less than 2 billion entries, the probability |
|
2818
|
|
|
|
|
|
|
** of not finding a unused rowid is about 1.0e-300. This is a |
|
2819
|
|
|
|
|
|
|
** non-zero probability, but it is still vanishingly small and should |
|
2820
|
|
|
|
|
|
|
** never cause a problem. You are much, much more likely to have a |
|
2821
|
|
|
|
|
|
|
** hardware failure than for this algorithm to fail. |
|
2822
|
|
|
|
|
|
|
** |
|
2823
|
|
|
|
|
|
|
** The analysis in the previous paragraph assumes that you have a good |
|
2824
|
|
|
|
|
|
|
** source of random numbers. Is a library function like lrand48() |
|
2825
|
|
|
|
|
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there |
|
2826
|
|
|
|
|
|
|
** might be subtle bugs is some implementations of lrand48() that |
|
2827
|
|
|
|
|
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own |
|
2828
|
|
|
|
|
|
|
** random number generator based on the RC4 algorithm. |
|
2829
|
|
|
|
|
|
|
** |
|
2830
|
|
|
|
|
|
|
** To promote locality of reference for repetitive inserts, the |
|
2831
|
|
|
|
|
|
|
** first few attempts at chosing a random rowid pick values just a little |
|
2832
|
|
|
|
|
|
|
** larger than the previous rowid. This has been shown experimentally |
|
2833
|
|
|
|
|
|
|
** to double the speed of the COPY operation. |
|
2834
|
|
|
|
|
|
|
*/ |
|
2835
|
|
|
|
|
|
|
int res, rx, cnt, x; |
|
2836
|
97
|
|
|
|
|
|
cnt = 0; |
|
2837
|
97
|
50
|
|
|
|
|
if( !pC->useRandomRowid ){ |
|
2838
|
97
|
100
|
|
|
|
|
if( pC->nextRowidValid ){ |
|
2839
|
27
|
|
|
|
|
|
v = pC->nextRowid; |
|
2840
|
|
|
|
|
|
|
}else{ |
|
2841
|
70
|
|
|
|
|
|
rx = sqliteBtreeLast(pC->pCursor, &res); |
|
2842
|
70
|
100
|
|
|
|
|
if( res ){ |
|
2843
|
35
|
|
|
|
|
|
v = 1; |
|
2844
|
|
|
|
|
|
|
}else{ |
|
2845
|
35
|
|
|
|
|
|
sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); |
|
2846
|
35
|
|
|
|
|
|
v = keyToInt(v); |
|
2847
|
35
|
50
|
|
|
|
|
if( v==0x7fffffff ){ |
|
2848
|
0
|
|
|
|
|
|
pC->useRandomRowid = 1; |
|
2849
|
|
|
|
|
|
|
}else{ |
|
2850
|
35
|
|
|
|
|
|
v++; |
|
2851
|
|
|
|
|
|
|
} |
|
2852
|
|
|
|
|
|
|
} |
|
2853
|
|
|
|
|
|
|
} |
|
2854
|
97
|
50
|
|
|
|
|
if( v<0x7fffffff ){ |
|
2855
|
97
|
|
|
|
|
|
pC->nextRowidValid = 1; |
|
2856
|
97
|
|
|
|
|
|
pC->nextRowid = v+1; |
|
2857
|
|
|
|
|
|
|
}else{ |
|
2858
|
0
|
|
|
|
|
|
pC->nextRowidValid = 0; |
|
2859
|
|
|
|
|
|
|
} |
|
2860
|
|
|
|
|
|
|
} |
|
2861
|
97
|
50
|
|
|
|
|
if( pC->useRandomRowid ){ |
|
2862
|
0
|
|
|
|
|
|
v = db->priorNewRowid; |
|
2863
|
0
|
|
|
|
|
|
cnt = 0; |
|
2864
|
|
|
|
|
|
|
do{ |
|
2865
|
0
|
0
|
|
|
|
|
if( v==0 || cnt>2 ){ |
|
|
|
0
|
|
|
|
|
|
|
2866
|
0
|
|
|
|
|
|
sqliteRandomness(sizeof(v), &v); |
|
2867
|
0
|
0
|
|
|
|
|
if( cnt<5 ) v &= 0xffffff; |
|
2868
|
|
|
|
|
|
|
}else{ |
|
2869
|
|
|
|
|
|
|
unsigned char r; |
|
2870
|
0
|
|
|
|
|
|
sqliteRandomness(1, &r); |
|
2871
|
0
|
|
|
|
|
|
v += r + 1; |
|
2872
|
|
|
|
|
|
|
} |
|
2873
|
0
|
0
|
|
|
|
|
if( v==0 ) continue; |
|
2874
|
0
|
|
|
|
|
|
x = intToKey(v); |
|
2875
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); |
|
2876
|
0
|
|
|
|
|
|
cnt++; |
|
2877
|
0
|
0
|
|
|
|
|
}while( cnt<1000 && rx==SQLITE_OK && res==0 ); |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
2878
|
0
|
|
|
|
|
|
db->priorNewRowid = v; |
|
2879
|
0
|
0
|
|
|
|
|
if( rx==SQLITE_OK && res==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
2880
|
0
|
|
|
|
|
|
rc = SQLITE_FULL; |
|
2881
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
2882
|
|
|
|
|
|
|
} |
|
2883
|
|
|
|
|
|
|
} |
|
2884
|
97
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
2885
|
97
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
2886
|
|
|
|
|
|
|
} |
|
2887
|
97
|
|
|
|
|
|
pTos++; |
|
2888
|
97
|
|
|
|
|
|
pTos->i = v; |
|
2889
|
97
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
2890
|
97
|
|
|
|
|
|
break; |
|
2891
|
|
|
|
|
|
|
} |
|
2892
|
|
|
|
|
|
|
|
|
2893
|
|
|
|
|
|
|
/* Opcode: PutIntKey P1 P2 * |
|
2894
|
|
|
|
|
|
|
** |
|
2895
|
|
|
|
|
|
|
** Write an entry into the table of cursor P1. A new entry is |
|
2896
|
|
|
|
|
|
|
** created if it doesn't already exist or the data for an existing |
|
2897
|
|
|
|
|
|
|
** entry is overwritten. The data is the value on the top of the |
|
2898
|
|
|
|
|
|
|
** stack. The key is the next value down on the stack. The key must |
|
2899
|
|
|
|
|
|
|
** be an integer. The stack is popped twice by this instruction. |
|
2900
|
|
|
|
|
|
|
** |
|
2901
|
|
|
|
|
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
|
2902
|
|
|
|
|
|
|
** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set, |
|
2903
|
|
|
|
|
|
|
** then the current statement change count is incremented (otherwise not). |
|
2904
|
|
|
|
|
|
|
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is |
|
2905
|
|
|
|
|
|
|
** stored for subsequent return by the sqlite_last_insert_rowid() function |
|
2906
|
|
|
|
|
|
|
** (otherwise it's unmodified). |
|
2907
|
|
|
|
|
|
|
*/ |
|
2908
|
|
|
|
|
|
|
/* Opcode: PutStrKey P1 * * |
|
2909
|
|
|
|
|
|
|
** |
|
2910
|
|
|
|
|
|
|
** Write an entry into the table of cursor P1. A new entry is |
|
2911
|
|
|
|
|
|
|
** created if it doesn't already exist or the data for an existing |
|
2912
|
|
|
|
|
|
|
** entry is overwritten. The data is the value on the top of the |
|
2913
|
|
|
|
|
|
|
** stack. The key is the next value down on the stack. The key must |
|
2914
|
|
|
|
|
|
|
** be a string. The stack is popped twice by this instruction. |
|
2915
|
|
|
|
|
|
|
** |
|
2916
|
|
|
|
|
|
|
** P1 may not be a pseudo-table opened using the OpenPseudo opcode. |
|
2917
|
|
|
|
|
|
|
*/ |
|
2918
|
|
|
|
|
|
|
case OP_PutIntKey: |
|
2919
|
|
|
|
|
|
|
case OP_PutStrKey: { |
|
2920
|
118
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
2921
|
118
|
|
|
|
|
|
int i = pOp->p1; |
|
2922
|
|
|
|
|
|
|
Cursor *pC; |
|
2923
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
2924
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2925
|
118
|
50
|
|
|
|
|
if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ |
|
|
|
0
|
|
|
|
|
|
|
2926
|
|
|
|
|
|
|
char *zKey; |
|
2927
|
|
|
|
|
|
|
int nKey, iKey; |
|
2928
|
118
|
50
|
|
|
|
|
if( pOp->opcode==OP_PutStrKey ){ |
|
2929
|
0
|
0
|
|
|
|
|
Stringify(pNos); |
|
2930
|
0
|
|
|
|
|
|
nKey = pNos->n; |
|
2931
|
0
|
|
|
|
|
|
zKey = pNos->z; |
|
2932
|
|
|
|
|
|
|
}else{ |
|
2933
|
|
|
|
|
|
|
assert( pNos->flags & MEM_Int ); |
|
2934
|
118
|
|
|
|
|
|
nKey = sizeof(int); |
|
2935
|
118
|
|
|
|
|
|
iKey = intToKey(pNos->i); |
|
2936
|
118
|
|
|
|
|
|
zKey = (char*)&iKey; |
|
2937
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; |
|
2938
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; |
|
2939
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; |
|
2940
|
118
|
50
|
|
|
|
|
if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ |
|
|
|
100
|
|
|
|
|
|
|
2941
|
1
|
|
|
|
|
|
pC->nextRowidValid = 0; |
|
2942
|
|
|
|
|
|
|
} |
|
2943
|
|
|
|
|
|
|
} |
|
2944
|
118
|
100
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
|
2945
|
22
|
|
|
|
|
|
pTos->z = 0; |
|
2946
|
22
|
|
|
|
|
|
pTos->n = 0; |
|
2947
|
|
|
|
|
|
|
}else{ |
|
2948
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
2949
|
|
|
|
|
|
|
} |
|
2950
|
118
|
50
|
|
|
|
|
if( pC->pseudoTable ){ |
|
2951
|
|
|
|
|
|
|
/* PutStrKey does not work for pseudo-tables. |
|
2952
|
|
|
|
|
|
|
** The following assert makes sure we are not trying to use |
|
2953
|
|
|
|
|
|
|
** PutStrKey on a pseudo-table |
|
2954
|
|
|
|
|
|
|
*/ |
|
2955
|
|
|
|
|
|
|
assert( pOp->opcode==OP_PutIntKey ); |
|
2956
|
0
|
|
|
|
|
|
sqliteFree(pC->pData); |
|
2957
|
0
|
|
|
|
|
|
pC->iKey = iKey; |
|
2958
|
0
|
|
|
|
|
|
pC->nData = pTos->n; |
|
2959
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Dyn ){ |
|
2960
|
0
|
|
|
|
|
|
pC->pData = pTos->z; |
|
2961
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
2962
|
|
|
|
|
|
|
}else{ |
|
2963
|
0
|
|
|
|
|
|
pC->pData = sqliteMallocRaw( pC->nData ); |
|
2964
|
0
|
0
|
|
|
|
|
if( pC->pData ){ |
|
2965
|
0
|
|
|
|
|
|
memcpy(pC->pData, pTos->z, pC->nData); |
|
2966
|
|
|
|
|
|
|
} |
|
2967
|
|
|
|
|
|
|
} |
|
2968
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
|
2969
|
|
|
|
|
|
|
}else{ |
|
2970
|
118
|
|
|
|
|
|
rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); |
|
2971
|
|
|
|
|
|
|
} |
|
2972
|
118
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
2973
|
118
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
2974
|
|
|
|
|
|
|
} |
|
2975
|
118
|
|
|
|
|
|
popStack(&pTos, 2); |
|
2976
|
118
|
|
|
|
|
|
break; |
|
2977
|
|
|
|
|
|
|
} |
|
2978
|
|
|
|
|
|
|
|
|
2979
|
|
|
|
|
|
|
/* Opcode: Delete P1 P2 * |
|
2980
|
|
|
|
|
|
|
** |
|
2981
|
|
|
|
|
|
|
** Delete the record at which the P1 cursor is currently pointing. |
|
2982
|
|
|
|
|
|
|
** |
|
2983
|
|
|
|
|
|
|
** The cursor will be left pointing at either the next or the previous |
|
2984
|
|
|
|
|
|
|
** record in the table. If it is left pointing at the next record, then |
|
2985
|
|
|
|
|
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete |
|
2986
|
|
|
|
|
|
|
** a record from within an Next loop. |
|
2987
|
|
|
|
|
|
|
** |
|
2988
|
|
|
|
|
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
|
2989
|
|
|
|
|
|
|
** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set, |
|
2990
|
|
|
|
|
|
|
** then the current statement change count is incremented (otherwise not). |
|
2991
|
|
|
|
|
|
|
** |
|
2992
|
|
|
|
|
|
|
** If P1 is a pseudo-table, then this instruction is a no-op. |
|
2993
|
|
|
|
|
|
|
*/ |
|
2994
|
|
|
|
|
|
|
case OP_Delete: { |
|
2995
|
17
|
|
|
|
|
|
int i = pOp->p1; |
|
2996
|
|
|
|
|
|
|
Cursor *pC; |
|
2997
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
2998
|
17
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
2999
|
17
|
50
|
|
|
|
|
if( pC->pCursor!=0 ){ |
|
3000
|
17
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
|
3001
|
17
|
|
|
|
|
|
rc = sqliteBtreeDelete(pC->pCursor); |
|
3002
|
17
|
|
|
|
|
|
pC->nextRowidValid = 0; |
|
3003
|
|
|
|
|
|
|
} |
|
3004
|
17
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; |
|
3005
|
17
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; |
|
3006
|
17
|
|
|
|
|
|
break; |
|
3007
|
|
|
|
|
|
|
} |
|
3008
|
|
|
|
|
|
|
|
|
3009
|
|
|
|
|
|
|
/* Opcode: SetCounts * * * |
|
3010
|
|
|
|
|
|
|
** |
|
3011
|
|
|
|
|
|
|
** Called at end of statement. Updates lsChange (last statement change count) |
|
3012
|
|
|
|
|
|
|
** and resets csChange (current statement change count) to 0. |
|
3013
|
|
|
|
|
|
|
*/ |
|
3014
|
|
|
|
|
|
|
case OP_SetCounts: { |
|
3015
|
49
|
|
|
|
|
|
db->lsChange=db->csChange; |
|
3016
|
49
|
|
|
|
|
|
db->csChange=0; |
|
3017
|
49
|
|
|
|
|
|
break; |
|
3018
|
|
|
|
|
|
|
} |
|
3019
|
|
|
|
|
|
|
|
|
3020
|
|
|
|
|
|
|
/* Opcode: KeyAsData P1 P2 * |
|
3021
|
|
|
|
|
|
|
** |
|
3022
|
|
|
|
|
|
|
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or |
|
3023
|
|
|
|
|
|
|
** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls |
|
3024
|
|
|
|
|
|
|
** data off of the key rather than the data. This is used for |
|
3025
|
|
|
|
|
|
|
** processing compound selects. |
|
3026
|
|
|
|
|
|
|
*/ |
|
3027
|
|
|
|
|
|
|
case OP_KeyAsData: { |
|
3028
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3029
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3030
|
0
|
|
|
|
|
|
p->aCsr[i].keyAsData = pOp->p2; |
|
3031
|
0
|
|
|
|
|
|
break; |
|
3032
|
|
|
|
|
|
|
} |
|
3033
|
|
|
|
|
|
|
|
|
3034
|
|
|
|
|
|
|
/* Opcode: RowData P1 * * |
|
3035
|
|
|
|
|
|
|
** |
|
3036
|
|
|
|
|
|
|
** Push onto the stack the complete row data for cursor P1. |
|
3037
|
|
|
|
|
|
|
** There is no interpretation of the data. It is just copied |
|
3038
|
|
|
|
|
|
|
** onto the stack exactly as it is found in the database file. |
|
3039
|
|
|
|
|
|
|
** |
|
3040
|
|
|
|
|
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed |
|
3041
|
|
|
|
|
|
|
** onto the stack. |
|
3042
|
|
|
|
|
|
|
*/ |
|
3043
|
|
|
|
|
|
|
/* Opcode: RowKey P1 * * |
|
3044
|
|
|
|
|
|
|
** |
|
3045
|
|
|
|
|
|
|
** Push onto the stack the complete row key for cursor P1. |
|
3046
|
|
|
|
|
|
|
** There is no interpretation of the key. It is just copied |
|
3047
|
|
|
|
|
|
|
** onto the stack exactly as it is found in the database file. |
|
3048
|
|
|
|
|
|
|
** |
|
3049
|
|
|
|
|
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed |
|
3050
|
|
|
|
|
|
|
** onto the stack. |
|
3051
|
|
|
|
|
|
|
*/ |
|
3052
|
|
|
|
|
|
|
case OP_RowKey: |
|
3053
|
|
|
|
|
|
|
case OP_RowData: { |
|
3054
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3055
|
|
|
|
|
|
|
Cursor *pC; |
|
3056
|
|
|
|
|
|
|
int n; |
|
3057
|
|
|
|
|
|
|
|
|
3058
|
0
|
|
|
|
|
|
pTos++; |
|
3059
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3060
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
3061
|
0
|
0
|
|
|
|
|
if( pC->nullRow ){ |
|
3062
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3063
|
0
|
0
|
|
|
|
|
}else if( pC->pCursor!=0 ){ |
|
3064
|
0
|
|
|
|
|
|
BtCursor *pCrsr = pC->pCursor; |
|
3065
|
0
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
|
3066
|
0
|
0
|
|
|
|
|
if( pC->nullRow ){ |
|
3067
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3068
|
0
|
|
|
|
|
|
break; |
|
3069
|
0
|
0
|
|
|
|
|
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ |
|
|
|
0
|
|
|
|
|
|
|
3070
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &n); |
|
3071
|
|
|
|
|
|
|
}else{ |
|
3072
|
0
|
|
|
|
|
|
sqliteBtreeDataSize(pCrsr, &n); |
|
3073
|
|
|
|
|
|
|
} |
|
3074
|
0
|
|
|
|
|
|
pTos->n = n; |
|
3075
|
0
|
0
|
|
|
|
|
if( n<=NBFS ){ |
|
3076
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
|
3077
|
0
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
3078
|
|
|
|
|
|
|
}else{ |
|
3079
|
0
|
|
|
|
|
|
char *z = sqliteMallocRaw( n ); |
|
3080
|
0
|
0
|
|
|
|
|
if( z==0 ) goto no_mem; |
|
3081
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
3082
|
0
|
|
|
|
|
|
pTos->z = z; |
|
3083
|
|
|
|
|
|
|
} |
|
3084
|
0
|
0
|
|
|
|
|
if( pC->keyAsData || pOp->opcode==OP_RowKey ){ |
|
|
|
0
|
|
|
|
|
|
|
3085
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, 0, n, pTos->z); |
|
3086
|
|
|
|
|
|
|
}else{ |
|
3087
|
0
|
|
|
|
|
|
sqliteBtreeData(pCrsr, 0, n, pTos->z); |
|
3088
|
|
|
|
|
|
|
} |
|
3089
|
0
|
0
|
|
|
|
|
}else if( pC->pseudoTable ){ |
|
3090
|
0
|
|
|
|
|
|
pTos->n = pC->nData; |
|
3091
|
0
|
|
|
|
|
|
pTos->z = pC->pData; |
|
3092
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Ephem; |
|
3093
|
|
|
|
|
|
|
}else{ |
|
3094
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3095
|
|
|
|
|
|
|
} |
|
3096
|
0
|
|
|
|
|
|
break; |
|
3097
|
|
|
|
|
|
|
} |
|
3098
|
|
|
|
|
|
|
|
|
3099
|
|
|
|
|
|
|
/* Opcode: Column P1 P2 * |
|
3100
|
|
|
|
|
|
|
** |
|
3101
|
|
|
|
|
|
|
** Interpret the data that cursor P1 points to as |
|
3102
|
|
|
|
|
|
|
** a structure built using the MakeRecord instruction. |
|
3103
|
|
|
|
|
|
|
** (See the MakeRecord opcode for additional information about |
|
3104
|
|
|
|
|
|
|
** the format of the data.) |
|
3105
|
|
|
|
|
|
|
** Push onto the stack the value of the P2-th column contained |
|
3106
|
|
|
|
|
|
|
** in the data. |
|
3107
|
|
|
|
|
|
|
** |
|
3108
|
|
|
|
|
|
|
** If the KeyAsData opcode has previously executed on this cursor, |
|
3109
|
|
|
|
|
|
|
** then the field might be extracted from the key rather than the |
|
3110
|
|
|
|
|
|
|
** data. |
|
3111
|
|
|
|
|
|
|
** |
|
3112
|
|
|
|
|
|
|
** If P1 is negative, then the record is stored on the stack rather |
|
3113
|
|
|
|
|
|
|
** than in a table. For P1==-1, the top of the stack is used. |
|
3114
|
|
|
|
|
|
|
** For P1==-2, the next on the stack is used. And so forth. The |
|
3115
|
|
|
|
|
|
|
** value pushed is always just a pointer into the record which is |
|
3116
|
|
|
|
|
|
|
** stored further down on the stack. The column value is not copied. |
|
3117
|
|
|
|
|
|
|
*/ |
|
3118
|
|
|
|
|
|
|
case OP_Column: { |
|
3119
|
|
|
|
|
|
|
int amt, offset, end, payloadSize; |
|
3120
|
386
|
|
|
|
|
|
int i = pOp->p1; |
|
3121
|
386
|
|
|
|
|
|
int p2 = pOp->p2; |
|
3122
|
|
|
|
|
|
|
Cursor *pC; |
|
3123
|
|
|
|
|
|
|
char *zRec; |
|
3124
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3125
|
|
|
|
|
|
|
int idxWidth; |
|
3126
|
|
|
|
|
|
|
unsigned char aHdr[10]; |
|
3127
|
|
|
|
|
|
|
|
|
3128
|
|
|
|
|
|
|
assert( inCursor ); |
|
3129
|
386
|
|
|
|
|
|
pTos++; |
|
3130
|
386
|
50
|
|
|
|
|
if( i<0 ){ |
|
3131
|
|
|
|
|
|
|
assert( &pTos[i]>=p->aStack ); |
|
3132
|
|
|
|
|
|
|
assert( pTos[i].flags & MEM_Str ); |
|
3133
|
0
|
|
|
|
|
|
zRec = pTos[i].z; |
|
3134
|
0
|
|
|
|
|
|
payloadSize = pTos[i].n; |
|
3135
|
386
|
50
|
|
|
|
|
}else if( (pC = &p->aCsr[i])->pCursor!=0 ){ |
|
3136
|
386
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
|
3137
|
386
|
|
|
|
|
|
zRec = 0; |
|
3138
|
386
|
|
|
|
|
|
pCrsr = pC->pCursor; |
|
3139
|
386
|
50
|
|
|
|
|
if( pC->nullRow ){ |
|
3140
|
0
|
|
|
|
|
|
payloadSize = 0; |
|
3141
|
386
|
50
|
|
|
|
|
}else if( pC->keyAsData ){ |
|
3142
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &payloadSize); |
|
3143
|
|
|
|
|
|
|
}else{ |
|
3144
|
386
|
|
|
|
|
|
sqliteBtreeDataSize(pCrsr, &payloadSize); |
|
3145
|
|
|
|
|
|
|
} |
|
3146
|
0
|
0
|
|
|
|
|
}else if( pC->pseudoTable ){ |
|
3147
|
0
|
|
|
|
|
|
payloadSize = pC->nData; |
|
3148
|
0
|
|
|
|
|
|
zRec = pC->pData; |
|
3149
|
|
|
|
|
|
|
assert( payloadSize==0 || zRec!=0 ); |
|
3150
|
|
|
|
|
|
|
}else{ |
|
3151
|
0
|
|
|
|
|
|
payloadSize = 0; |
|
3152
|
|
|
|
|
|
|
} |
|
3153
|
|
|
|
|
|
|
|
|
3154
|
|
|
|
|
|
|
/* Figure out how many bytes in the column data and where the column |
|
3155
|
|
|
|
|
|
|
** data begins. |
|
3156
|
|
|
|
|
|
|
*/ |
|
3157
|
386
|
50
|
|
|
|
|
if( payloadSize==0 ){ |
|
3158
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3159
|
386
|
|
|
|
|
|
break; |
|
3160
|
386
|
100
|
|
|
|
|
}else if( payloadSize<256 ){ |
|
3161
|
383
|
|
|
|
|
|
idxWidth = 1; |
|
3162
|
3
|
50
|
|
|
|
|
}else if( payloadSize<65536 ){ |
|
3163
|
3
|
|
|
|
|
|
idxWidth = 2; |
|
3164
|
|
|
|
|
|
|
}else{ |
|
3165
|
0
|
|
|
|
|
|
idxWidth = 3; |
|
3166
|
|
|
|
|
|
|
} |
|
3167
|
|
|
|
|
|
|
|
|
3168
|
|
|
|
|
|
|
/* Figure out where the requested column is stored and how big it is. |
|
3169
|
|
|
|
|
|
|
*/ |
|
3170
|
386
|
50
|
|
|
|
|
if( payloadSize < idxWidth*(p2+1) ){ |
|
3171
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
|
3172
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
3173
|
|
|
|
|
|
|
} |
|
3174
|
386
|
50
|
|
|
|
|
if( zRec ){ |
|
3175
|
0
|
|
|
|
|
|
memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); |
|
3176
|
386
|
50
|
|
|
|
|
}else if( pC->keyAsData ){ |
|
3177
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); |
|
3178
|
|
|
|
|
|
|
}else{ |
|
3179
|
386
|
|
|
|
|
|
sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); |
|
3180
|
|
|
|
|
|
|
} |
|
3181
|
386
|
|
|
|
|
|
offset = aHdr[0]; |
|
3182
|
386
|
|
|
|
|
|
end = aHdr[idxWidth]; |
|
3183
|
386
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
|
3184
|
3
|
|
|
|
|
|
offset |= aHdr[1]<<8; |
|
3185
|
3
|
|
|
|
|
|
end |= aHdr[idxWidth+1]<<8; |
|
3186
|
3
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
|
3187
|
0
|
|
|
|
|
|
offset |= aHdr[2]<<16; |
|
3188
|
0
|
|
|
|
|
|
end |= aHdr[idxWidth+2]<<16; |
|
3189
|
|
|
|
|
|
|
} |
|
3190
|
|
|
|
|
|
|
} |
|
3191
|
386
|
|
|
|
|
|
amt = end - offset; |
|
3192
|
386
|
50
|
|
|
|
|
if( amt<0 || offset<0 || end>payloadSize ){ |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
3193
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
|
3194
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
3195
|
|
|
|
|
|
|
} |
|
3196
|
|
|
|
|
|
|
|
|
3197
|
|
|
|
|
|
|
/* amt and offset now hold the offset to the start of data and the |
|
3198
|
|
|
|
|
|
|
** amount of data. Go get the data and put it on the stack. |
|
3199
|
|
|
|
|
|
|
*/ |
|
3200
|
386
|
|
|
|
|
|
pTos->n = amt; |
|
3201
|
386
|
100
|
|
|
|
|
if( amt==0 ){ |
|
3202
|
18
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3203
|
368
|
50
|
|
|
|
|
}else if( zRec ){ |
|
3204
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
|
3205
|
0
|
|
|
|
|
|
pTos->z = &zRec[offset]; |
|
3206
|
|
|
|
|
|
|
}else{ |
|
3207
|
368
|
100
|
|
|
|
|
if( amt<=NBFS ){ |
|
3208
|
333
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
|
3209
|
333
|
|
|
|
|
|
pTos->z = pTos->zShort; |
|
3210
|
|
|
|
|
|
|
}else{ |
|
3211
|
35
|
|
|
|
|
|
char *z = sqliteMallocRaw( amt ); |
|
3212
|
35
|
50
|
|
|
|
|
if( z==0 ) goto no_mem; |
|
3213
|
35
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
3214
|
35
|
|
|
|
|
|
pTos->z = z; |
|
3215
|
|
|
|
|
|
|
} |
|
3216
|
368
|
50
|
|
|
|
|
if( pC->keyAsData ){ |
|
3217
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, offset, amt, pTos->z); |
|
3218
|
|
|
|
|
|
|
}else{ |
|
3219
|
368
|
|
|
|
|
|
sqliteBtreeData(pCrsr, offset, amt, pTos->z); |
|
3220
|
|
|
|
|
|
|
} |
|
3221
|
|
|
|
|
|
|
} |
|
3222
|
386
|
|
|
|
|
|
break; |
|
3223
|
|
|
|
|
|
|
} |
|
3224
|
|
|
|
|
|
|
|
|
3225
|
|
|
|
|
|
|
/* Opcode: Recno P1 * * |
|
3226
|
|
|
|
|
|
|
** |
|
3227
|
|
|
|
|
|
|
** Push onto the stack an integer which is the first 4 bytes of the |
|
3228
|
|
|
|
|
|
|
** the key to the current entry in a sequential scan of the database |
|
3229
|
|
|
|
|
|
|
** file P1. The sequential scan should have been started using the |
|
3230
|
|
|
|
|
|
|
** Next opcode. |
|
3231
|
|
|
|
|
|
|
*/ |
|
3232
|
|
|
|
|
|
|
case OP_Recno: { |
|
3233
|
8
|
|
|
|
|
|
int i = pOp->p1; |
|
3234
|
|
|
|
|
|
|
Cursor *pC; |
|
3235
|
|
|
|
|
|
|
int v; |
|
3236
|
|
|
|
|
|
|
|
|
3237
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3238
|
8
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
3239
|
8
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
|
3240
|
8
|
|
|
|
|
|
pTos++; |
|
3241
|
8
|
50
|
|
|
|
|
if( pC->recnoIsValid ){ |
|
3242
|
0
|
|
|
|
|
|
v = pC->lastRecno; |
|
3243
|
8
|
50
|
|
|
|
|
}else if( pC->pseudoTable ){ |
|
3244
|
0
|
|
|
|
|
|
v = keyToInt(pC->iKey); |
|
3245
|
8
|
50
|
|
|
|
|
}else if( pC->nullRow || pC->pCursor==0 ){ |
|
|
|
50
|
|
|
|
|
|
|
3246
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3247
|
0
|
|
|
|
|
|
break; |
|
3248
|
|
|
|
|
|
|
}else{ |
|
3249
|
|
|
|
|
|
|
assert( pC->pCursor!=0 ); |
|
3250
|
8
|
|
|
|
|
|
sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); |
|
3251
|
8
|
|
|
|
|
|
v = keyToInt(v); |
|
3252
|
|
|
|
|
|
|
} |
|
3253
|
8
|
|
|
|
|
|
pTos->i = v; |
|
3254
|
8
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
3255
|
8
|
|
|
|
|
|
break; |
|
3256
|
|
|
|
|
|
|
} |
|
3257
|
|
|
|
|
|
|
|
|
3258
|
|
|
|
|
|
|
/* Opcode: FullKey P1 * * |
|
3259
|
|
|
|
|
|
|
** |
|
3260
|
|
|
|
|
|
|
** Extract the complete key from the record that cursor P1 is currently |
|
3261
|
|
|
|
|
|
|
** pointing to and push the key onto the stack as a string. |
|
3262
|
|
|
|
|
|
|
** |
|
3263
|
|
|
|
|
|
|
** Compare this opcode to Recno. The Recno opcode extracts the first |
|
3264
|
|
|
|
|
|
|
** 4 bytes of the key and pushes those bytes onto the stack as an |
|
3265
|
|
|
|
|
|
|
** integer. This instruction pushes the entire key as a string. |
|
3266
|
|
|
|
|
|
|
** |
|
3267
|
|
|
|
|
|
|
** This opcode may not be used on a pseudo-table. |
|
3268
|
|
|
|
|
|
|
*/ |
|
3269
|
|
|
|
|
|
|
case OP_FullKey: { |
|
3270
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3271
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3272
|
|
|
|
|
|
|
|
|
3273
|
|
|
|
|
|
|
assert( p->aCsr[i].keyAsData ); |
|
3274
|
|
|
|
|
|
|
assert( !p->aCsr[i].pseudoTable ); |
|
3275
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3276
|
0
|
|
|
|
|
|
pTos++; |
|
3277
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
3278
|
|
|
|
|
|
|
int amt; |
|
3279
|
|
|
|
|
|
|
char *z; |
|
3280
|
|
|
|
|
|
|
|
|
3281
|
0
|
|
|
|
|
|
sqliteVdbeCursorMoveto(&p->aCsr[i]); |
|
3282
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &amt); |
|
3283
|
0
|
0
|
|
|
|
|
if( amt<=0 ){ |
|
3284
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
|
3285
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
3286
|
|
|
|
|
|
|
} |
|
3287
|
0
|
0
|
|
|
|
|
if( amt>NBFS ){ |
|
3288
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( amt ); |
|
3289
|
0
|
0
|
|
|
|
|
if( z==0 ) goto no_mem; |
|
3290
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
3291
|
|
|
|
|
|
|
}else{ |
|
3292
|
0
|
|
|
|
|
|
z = pTos->zShort; |
|
3293
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
|
3294
|
|
|
|
|
|
|
} |
|
3295
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, 0, amt, z); |
|
3296
|
0
|
|
|
|
|
|
pTos->z = z; |
|
3297
|
0
|
|
|
|
|
|
pTos->n = amt; |
|
3298
|
|
|
|
|
|
|
} |
|
3299
|
0
|
|
|
|
|
|
break; |
|
3300
|
|
|
|
|
|
|
} |
|
3301
|
|
|
|
|
|
|
|
|
3302
|
|
|
|
|
|
|
/* Opcode: NullRow P1 * * |
|
3303
|
|
|
|
|
|
|
** |
|
3304
|
|
|
|
|
|
|
** Move the cursor P1 to a null row. Any OP_Column operations |
|
3305
|
|
|
|
|
|
|
** that occur while the cursor is on the null row will always push |
|
3306
|
|
|
|
|
|
|
** a NULL onto the stack. |
|
3307
|
|
|
|
|
|
|
*/ |
|
3308
|
|
|
|
|
|
|
case OP_NullRow: { |
|
3309
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3310
|
|
|
|
|
|
|
|
|
3311
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3312
|
0
|
|
|
|
|
|
p->aCsr[i].nullRow = 1; |
|
3313
|
0
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = 0; |
|
3314
|
0
|
|
|
|
|
|
break; |
|
3315
|
|
|
|
|
|
|
} |
|
3316
|
|
|
|
|
|
|
|
|
3317
|
|
|
|
|
|
|
/* Opcode: Last P1 P2 * |
|
3318
|
|
|
|
|
|
|
** |
|
3319
|
|
|
|
|
|
|
** The next use of the Recno or Column or Next instruction for P1 |
|
3320
|
|
|
|
|
|
|
** will refer to the last entry in the database table or index. |
|
3321
|
|
|
|
|
|
|
** If the table or index is empty and P2>0, then jump immediately to P2. |
|
3322
|
|
|
|
|
|
|
** If P2 is 0 or if the table or index is not empty, fall through |
|
3323
|
|
|
|
|
|
|
** to the following instruction. |
|
3324
|
|
|
|
|
|
|
*/ |
|
3325
|
|
|
|
|
|
|
case OP_Last: { |
|
3326
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3327
|
|
|
|
|
|
|
Cursor *pC; |
|
3328
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3329
|
|
|
|
|
|
|
|
|
3330
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3331
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
3332
|
0
|
0
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
|
3333
|
|
|
|
|
|
|
int res; |
|
3334
|
0
|
|
|
|
|
|
rc = sqliteBtreeLast(pCrsr, &res); |
|
3335
|
0
|
|
|
|
|
|
pC->nullRow = res; |
|
3336
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
3337
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
|
0
|
|
|
|
|
|
|
3338
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
3339
|
|
|
|
|
|
|
} |
|
3340
|
|
|
|
|
|
|
}else{ |
|
3341
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
|
3342
|
|
|
|
|
|
|
} |
|
3343
|
0
|
|
|
|
|
|
break; |
|
3344
|
|
|
|
|
|
|
} |
|
3345
|
|
|
|
|
|
|
|
|
3346
|
|
|
|
|
|
|
/* Opcode: Rewind P1 P2 * |
|
3347
|
|
|
|
|
|
|
** |
|
3348
|
|
|
|
|
|
|
** The next use of the Recno or Column or Next instruction for P1 |
|
3349
|
|
|
|
|
|
|
** will refer to the first entry in the database table or index. |
|
3350
|
|
|
|
|
|
|
** If the table or index is empty and P2>0, then jump immediately to P2. |
|
3351
|
|
|
|
|
|
|
** If P2 is 0 or if the table or index is not empty, fall through |
|
3352
|
|
|
|
|
|
|
** to the following instruction. |
|
3353
|
|
|
|
|
|
|
*/ |
|
3354
|
|
|
|
|
|
|
case OP_Rewind: { |
|
3355
|
141
|
|
|
|
|
|
int i = pOp->p1; |
|
3356
|
|
|
|
|
|
|
Cursor *pC; |
|
3357
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3358
|
|
|
|
|
|
|
|
|
3359
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3360
|
141
|
|
|
|
|
|
pC = &p->aCsr[i]; |
|
3361
|
141
|
50
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
|
3362
|
|
|
|
|
|
|
int res; |
|
3363
|
141
|
|
|
|
|
|
rc = sqliteBtreeFirst(pCrsr, &res); |
|
3364
|
141
|
|
|
|
|
|
pC->atFirst = res==0; |
|
3365
|
141
|
|
|
|
|
|
pC->nullRow = res; |
|
3366
|
141
|
|
|
|
|
|
pC->deferredMoveto = 0; |
|
3367
|
141
|
100
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
|
50
|
|
|
|
|
|
|
3368
|
141
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
3369
|
|
|
|
|
|
|
} |
|
3370
|
|
|
|
|
|
|
}else{ |
|
3371
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
|
3372
|
|
|
|
|
|
|
} |
|
3373
|
141
|
|
|
|
|
|
break; |
|
3374
|
|
|
|
|
|
|
} |
|
3375
|
|
|
|
|
|
|
|
|
3376
|
|
|
|
|
|
|
/* Opcode: Next P1 P2 * |
|
3377
|
|
|
|
|
|
|
** |
|
3378
|
|
|
|
|
|
|
** Advance cursor P1 so that it points to the next key/data pair in its |
|
3379
|
|
|
|
|
|
|
** table or index. If there are no more key/value pairs then fall through |
|
3380
|
|
|
|
|
|
|
** to the following instruction. But if the cursor advance was successful, |
|
3381
|
|
|
|
|
|
|
** jump immediately to P2. |
|
3382
|
|
|
|
|
|
|
** |
|
3383
|
|
|
|
|
|
|
** See also: Prev |
|
3384
|
|
|
|
|
|
|
*/ |
|
3385
|
|
|
|
|
|
|
/* Opcode: Prev P1 P2 * |
|
3386
|
|
|
|
|
|
|
** |
|
3387
|
|
|
|
|
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its |
|
3388
|
|
|
|
|
|
|
** table or index. If there is no previous key/value pairs then fall through |
|
3389
|
|
|
|
|
|
|
** to the following instruction. But if the cursor backup was successful, |
|
3390
|
|
|
|
|
|
|
** jump immediately to P2. |
|
3391
|
|
|
|
|
|
|
*/ |
|
3392
|
|
|
|
|
|
|
case OP_Prev: |
|
3393
|
|
|
|
|
|
|
case OP_Next: { |
|
3394
|
|
|
|
|
|
|
Cursor *pC; |
|
3395
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3396
|
|
|
|
|
|
|
|
|
3397
|
167
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
3398
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nCursor ); |
|
3399
|
167
|
|
|
|
|
|
pC = &p->aCsr[pOp->p1]; |
|
3400
|
167
|
50
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
|
3401
|
|
|
|
|
|
|
int res; |
|
3402
|
167
|
50
|
|
|
|
|
if( pC->nullRow ){ |
|
3403
|
0
|
|
|
|
|
|
res = 1; |
|
3404
|
|
|
|
|
|
|
}else{ |
|
3405
|
|
|
|
|
|
|
assert( pC->deferredMoveto==0 ); |
|
3406
|
167
|
50
|
|
|
|
|
rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : |
|
3407
|
0
|
|
|
|
|
|
sqliteBtreePrevious(pCrsr, &res); |
|
3408
|
167
|
|
|
|
|
|
pC->nullRow = res; |
|
3409
|
|
|
|
|
|
|
} |
|
3410
|
167
|
100
|
|
|
|
|
if( res==0 ){ |
|
3411
|
102
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
3412
|
167
|
|
|
|
|
|
sqlite_search_count++; |
|
3413
|
|
|
|
|
|
|
} |
|
3414
|
|
|
|
|
|
|
}else{ |
|
3415
|
0
|
|
|
|
|
|
pC->nullRow = 1; |
|
3416
|
|
|
|
|
|
|
} |
|
3417
|
167
|
|
|
|
|
|
pC->recnoIsValid = 0; |
|
3418
|
167
|
|
|
|
|
|
break; |
|
3419
|
|
|
|
|
|
|
} |
|
3420
|
|
|
|
|
|
|
|
|
3421
|
|
|
|
|
|
|
/* Opcode: IdxPut P1 P2 P3 |
|
3422
|
|
|
|
|
|
|
** |
|
3423
|
|
|
|
|
|
|
** The top of the stack holds a SQL index key made using the |
|
3424
|
|
|
|
|
|
|
** MakeIdxKey instruction. This opcode writes that key into the |
|
3425
|
|
|
|
|
|
|
** index P1. Data for the entry is nil. |
|
3426
|
|
|
|
|
|
|
** |
|
3427
|
|
|
|
|
|
|
** If P2==1, then the key must be unique. If the key is not unique, |
|
3428
|
|
|
|
|
|
|
** the program aborts with a SQLITE_CONSTRAINT error and the database |
|
3429
|
|
|
|
|
|
|
** is rolled back. If P3 is not null, then it becomes part of the |
|
3430
|
|
|
|
|
|
|
** error message returned with the SQLITE_CONSTRAINT. |
|
3431
|
|
|
|
|
|
|
*/ |
|
3432
|
|
|
|
|
|
|
case OP_IdxPut: { |
|
3433
|
3
|
|
|
|
|
|
int i = pOp->p1; |
|
3434
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3435
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
3436
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3437
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
3438
|
3
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
3439
|
3
|
|
|
|
|
|
int nKey = pTos->n; |
|
3440
|
3
|
|
|
|
|
|
const char *zKey = pTos->z; |
|
3441
|
3
|
100
|
|
|
|
|
if( pOp->p2 ){ |
|
3442
|
|
|
|
|
|
|
int res, n; |
|
3443
|
|
|
|
|
|
|
assert( nKey >= 4 ); |
|
3444
|
2
|
|
|
|
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); |
|
3445
|
2
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
|
3446
|
6
|
50
|
|
|
|
|
while( res!=0 ){ |
|
3447
|
|
|
|
|
|
|
int c; |
|
3448
|
4
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &n); |
|
3449
|
4
|
100
|
|
|
|
|
if( n==nKey |
|
3450
|
1
|
50
|
|
|
|
|
&& sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK |
|
3451
|
1
|
50
|
|
|
|
|
&& c==0 |
|
3452
|
|
|
|
|
|
|
){ |
|
3453
|
0
|
|
|
|
|
|
rc = SQLITE_CONSTRAINT; |
|
3454
|
0
|
0
|
|
|
|
|
if( pOp->p3 && pOp->p3[0] ){ |
|
|
|
0
|
|
|
|
|
|
|
3455
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); |
|
3456
|
|
|
|
|
|
|
} |
|
3457
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
|
3458
|
|
|
|
|
|
|
} |
|
3459
|
4
|
100
|
|
|
|
|
if( res<0 ){ |
|
3460
|
2
|
|
|
|
|
|
sqliteBtreeNext(pCrsr, &res); |
|
3461
|
2
|
|
|
|
|
|
res = +1; |
|
3462
|
|
|
|
|
|
|
}else{ |
|
3463
|
2
|
|
|
|
|
|
break; |
|
3464
|
|
|
|
|
|
|
} |
|
3465
|
|
|
|
|
|
|
} |
|
3466
|
|
|
|
|
|
|
} |
|
3467
|
3
|
|
|
|
|
|
rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); |
|
3468
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
|
3469
|
|
|
|
|
|
|
} |
|
3470
|
3
|
50
|
|
|
|
|
Release(pTos); |
|
3471
|
3
|
|
|
|
|
|
pTos--; |
|
3472
|
3
|
|
|
|
|
|
break; |
|
3473
|
|
|
|
|
|
|
} |
|
3474
|
|
|
|
|
|
|
|
|
3475
|
|
|
|
|
|
|
/* Opcode: IdxDelete P1 * * |
|
3476
|
|
|
|
|
|
|
** |
|
3477
|
|
|
|
|
|
|
** The top of the stack is an index key built using the MakeIdxKey opcode. |
|
3478
|
|
|
|
|
|
|
** This opcode removes that entry from the index. |
|
3479
|
|
|
|
|
|
|
*/ |
|
3480
|
|
|
|
|
|
|
case OP_IdxDelete: { |
|
3481
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3482
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3483
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
3484
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
3485
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3486
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
3487
|
|
|
|
|
|
|
int rx, res; |
|
3488
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); |
|
3489
|
0
|
0
|
|
|
|
|
if( rx==SQLITE_OK && res==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
3490
|
0
|
|
|
|
|
|
rc = sqliteBtreeDelete(pCrsr); |
|
3491
|
|
|
|
|
|
|
} |
|
3492
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
|
3493
|
|
|
|
|
|
|
} |
|
3494
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
3495
|
0
|
|
|
|
|
|
pTos--; |
|
3496
|
0
|
|
|
|
|
|
break; |
|
3497
|
|
|
|
|
|
|
} |
|
3498
|
|
|
|
|
|
|
|
|
3499
|
|
|
|
|
|
|
/* Opcode: IdxRecno P1 * * |
|
3500
|
|
|
|
|
|
|
** |
|
3501
|
|
|
|
|
|
|
** Push onto the stack an integer which is the last 4 bytes of the |
|
3502
|
|
|
|
|
|
|
** the key to the current entry in index P1. These 4 bytes should |
|
3503
|
|
|
|
|
|
|
** be the record number of the table entry to which this index entry |
|
3504
|
|
|
|
|
|
|
** points. |
|
3505
|
|
|
|
|
|
|
** |
|
3506
|
|
|
|
|
|
|
** See also: Recno, MakeIdxKey. |
|
3507
|
|
|
|
|
|
|
*/ |
|
3508
|
|
|
|
|
|
|
case OP_IdxRecno: { |
|
3509
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3510
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3511
|
|
|
|
|
|
|
|
|
3512
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3513
|
0
|
|
|
|
|
|
pTos++; |
|
3514
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
3515
|
|
|
|
|
|
|
int v; |
|
3516
|
|
|
|
|
|
|
int sz; |
|
3517
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
|
3518
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &sz); |
|
3519
|
0
|
0
|
|
|
|
|
if( sz
|
|
3520
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3521
|
|
|
|
|
|
|
}else{ |
|
3522
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); |
|
3523
|
0
|
|
|
|
|
|
v = keyToInt(v); |
|
3524
|
0
|
|
|
|
|
|
pTos->i = v; |
|
3525
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
3526
|
|
|
|
|
|
|
} |
|
3527
|
|
|
|
|
|
|
}else{ |
|
3528
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3529
|
|
|
|
|
|
|
} |
|
3530
|
0
|
|
|
|
|
|
break; |
|
3531
|
|
|
|
|
|
|
} |
|
3532
|
|
|
|
|
|
|
|
|
3533
|
|
|
|
|
|
|
/* Opcode: IdxGT P1 P2 * |
|
3534
|
|
|
|
|
|
|
** |
|
3535
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
|
3536
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
|
3537
|
|
|
|
|
|
|
** index entry. If the index entry is greater than the top of the stack |
|
3538
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
|
3539
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
|
3540
|
|
|
|
|
|
|
*/ |
|
3541
|
|
|
|
|
|
|
/* Opcode: IdxGE P1 P2 * |
|
3542
|
|
|
|
|
|
|
** |
|
3543
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
|
3544
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
|
3545
|
|
|
|
|
|
|
** index entry. If the index entry is greater than or equal to |
|
3546
|
|
|
|
|
|
|
** the top of the stack |
|
3547
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
|
3548
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
|
3549
|
|
|
|
|
|
|
*/ |
|
3550
|
|
|
|
|
|
|
/* Opcode: IdxLT P1 P2 * |
|
3551
|
|
|
|
|
|
|
** |
|
3552
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
|
3553
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
|
3554
|
|
|
|
|
|
|
** index entry. If the index entry is less than the top of the stack |
|
3555
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
|
3556
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
|
3557
|
|
|
|
|
|
|
*/ |
|
3558
|
|
|
|
|
|
|
case OP_IdxLT: |
|
3559
|
|
|
|
|
|
|
case OP_IdxGT: |
|
3560
|
|
|
|
|
|
|
case OP_IdxGE: { |
|
3561
|
0
|
|
|
|
|
|
int i= pOp->p1; |
|
3562
|
|
|
|
|
|
|
BtCursor *pCrsr; |
|
3563
|
|
|
|
|
|
|
|
|
3564
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
|
3565
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
3566
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
|
3567
|
|
|
|
|
|
|
int res, rc; |
|
3568
|
|
|
|
|
|
|
|
|
3569
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
3570
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
|
3571
|
0
|
|
|
|
|
|
rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); |
|
3572
|
0
|
0
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
|
3573
|
0
|
|
|
|
|
|
break; |
|
3574
|
|
|
|
|
|
|
} |
|
3575
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_IdxLT ){ |
|
3576
|
0
|
|
|
|
|
|
res = -res; |
|
3577
|
0
|
0
|
|
|
|
|
}else if( pOp->opcode==OP_IdxGE ){ |
|
3578
|
0
|
|
|
|
|
|
res++; |
|
3579
|
|
|
|
|
|
|
} |
|
3580
|
0
|
0
|
|
|
|
|
if( res>0 ){ |
|
3581
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1 ; |
|
3582
|
|
|
|
|
|
|
} |
|
3583
|
|
|
|
|
|
|
} |
|
3584
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
3585
|
0
|
|
|
|
|
|
pTos--; |
|
3586
|
0
|
|
|
|
|
|
break; |
|
3587
|
|
|
|
|
|
|
} |
|
3588
|
|
|
|
|
|
|
|
|
3589
|
|
|
|
|
|
|
/* Opcode: IdxIsNull P1 P2 * |
|
3590
|
|
|
|
|
|
|
** |
|
3591
|
|
|
|
|
|
|
** The top of the stack contains an index entry such as might be generated |
|
3592
|
|
|
|
|
|
|
** by the MakeIdxKey opcode. This routine looks at the first P1 fields of |
|
3593
|
|
|
|
|
|
|
** that key. If any of the first P1 fields are NULL, then a jump is made |
|
3594
|
|
|
|
|
|
|
** to address P2. Otherwise we fall straight through. |
|
3595
|
|
|
|
|
|
|
** |
|
3596
|
|
|
|
|
|
|
** The index entry is always popped from the stack. |
|
3597
|
|
|
|
|
|
|
*/ |
|
3598
|
|
|
|
|
|
|
case OP_IdxIsNull: { |
|
3599
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
3600
|
|
|
|
|
|
|
int k, n; |
|
3601
|
|
|
|
|
|
|
const char *z; |
|
3602
|
|
|
|
|
|
|
|
|
3603
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
3604
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
3605
|
0
|
|
|
|
|
|
z = pTos->z; |
|
3606
|
0
|
|
|
|
|
|
n = pTos->n; |
|
3607
|
0
|
0
|
|
|
|
|
for(k=0; k0; i--){ |
|
|
|
0
|
|
|
|
|
|
|
3608
|
0
|
0
|
|
|
|
|
if( z[k]=='a' ){ |
|
3609
|
0
|
|
|
|
|
|
pc = pOp->p2-1; |
|
3610
|
0
|
|
|
|
|
|
break; |
|
3611
|
|
|
|
|
|
|
} |
|
3612
|
0
|
0
|
|
|
|
|
while( k
|
|
|
|
0
|
|
|
|
|
|
|
3613
|
0
|
|
|
|
|
|
k++; |
|
3614
|
|
|
|
|
|
|
} |
|
3615
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
3616
|
0
|
|
|
|
|
|
pTos--; |
|
3617
|
0
|
|
|
|
|
|
break; |
|
3618
|
|
|
|
|
|
|
} |
|
3619
|
|
|
|
|
|
|
|
|
3620
|
|
|
|
|
|
|
/* Opcode: Destroy P1 P2 * |
|
3621
|
|
|
|
|
|
|
** |
|
3622
|
|
|
|
|
|
|
** Delete an entire database table or index whose root page in the database |
|
3623
|
|
|
|
|
|
|
** file is given by P1. |
|
3624
|
|
|
|
|
|
|
** |
|
3625
|
|
|
|
|
|
|
** The table being destroyed is in the main database file if P2==0. If |
|
3626
|
|
|
|
|
|
|
** P2==1 then the table to be clear is in the auxiliary database file |
|
3627
|
|
|
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE. |
|
3628
|
|
|
|
|
|
|
** |
|
3629
|
|
|
|
|
|
|
** See also: Clear |
|
3630
|
|
|
|
|
|
|
*/ |
|
3631
|
|
|
|
|
|
|
case OP_Destroy: { |
|
3632
|
11
|
|
|
|
|
|
rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); |
|
3633
|
11
|
|
|
|
|
|
break; |
|
3634
|
|
|
|
|
|
|
} |
|
3635
|
|
|
|
|
|
|
|
|
3636
|
|
|
|
|
|
|
/* Opcode: Clear P1 P2 * |
|
3637
|
|
|
|
|
|
|
** |
|
3638
|
|
|
|
|
|
|
** Delete all contents of the database table or index whose root page |
|
3639
|
|
|
|
|
|
|
** in the database file is given by P1. But, unlike Destroy, do not |
|
3640
|
|
|
|
|
|
|
** remove the table or index from the database file. |
|
3641
|
|
|
|
|
|
|
** |
|
3642
|
|
|
|
|
|
|
** The table being clear is in the main database file if P2==0. If |
|
3643
|
|
|
|
|
|
|
** P2==1 then the table to be clear is in the auxiliary database file |
|
3644
|
|
|
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE. |
|
3645
|
|
|
|
|
|
|
** |
|
3646
|
|
|
|
|
|
|
** See also: Destroy |
|
3647
|
|
|
|
|
|
|
*/ |
|
3648
|
|
|
|
|
|
|
case OP_Clear: { |
|
3649
|
0
|
|
|
|
|
|
rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); |
|
3650
|
0
|
|
|
|
|
|
break; |
|
3651
|
|
|
|
|
|
|
} |
|
3652
|
|
|
|
|
|
|
|
|
3653
|
|
|
|
|
|
|
/* Opcode: CreateTable * P2 P3 |
|
3654
|
|
|
|
|
|
|
** |
|
3655
|
|
|
|
|
|
|
** Allocate a new table in the main database file if P2==0 or in the |
|
3656
|
|
|
|
|
|
|
** auxiliary database file if P2==1. Push the page number |
|
3657
|
|
|
|
|
|
|
** for the root page of the new table onto the stack. |
|
3658
|
|
|
|
|
|
|
** |
|
3659
|
|
|
|
|
|
|
** The root page number is also written to a memory location that P3 |
|
3660
|
|
|
|
|
|
|
** points to. This is the mechanism is used to write the root page |
|
3661
|
|
|
|
|
|
|
** number into the parser's internal data structures that describe the |
|
3662
|
|
|
|
|
|
|
** new table. |
|
3663
|
|
|
|
|
|
|
** |
|
3664
|
|
|
|
|
|
|
** The difference between a table and an index is this: A table must |
|
3665
|
|
|
|
|
|
|
** have a 4-byte integer key and can have arbitrary data. An index |
|
3666
|
|
|
|
|
|
|
** has an arbitrary key but no data. |
|
3667
|
|
|
|
|
|
|
** |
|
3668
|
|
|
|
|
|
|
** See also: CreateIndex |
|
3669
|
|
|
|
|
|
|
*/ |
|
3670
|
|
|
|
|
|
|
/* Opcode: CreateIndex * P2 P3 |
|
3671
|
|
|
|
|
|
|
** |
|
3672
|
|
|
|
|
|
|
** Allocate a new index in the main database file if P2==0 or in the |
|
3673
|
|
|
|
|
|
|
** auxiliary database file if P2==1. Push the page number of the |
|
3674
|
|
|
|
|
|
|
** root page of the new index onto the stack. |
|
3675
|
|
|
|
|
|
|
** |
|
3676
|
|
|
|
|
|
|
** See documentation on OP_CreateTable for additional information. |
|
3677
|
|
|
|
|
|
|
*/ |
|
3678
|
|
|
|
|
|
|
case OP_CreateIndex: |
|
3679
|
|
|
|
|
|
|
case OP_CreateTable: { |
|
3680
|
|
|
|
|
|
|
int pgno; |
|
3681
|
|
|
|
|
|
|
assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); |
|
3682
|
|
|
|
|
|
|
assert( pOp->p2>=0 && pOp->p2nDb ); |
|
3683
|
|
|
|
|
|
|
assert( db->aDb[pOp->p2].pBt!=0 ); |
|
3684
|
27
|
100
|
|
|
|
|
if( pOp->opcode==OP_CreateTable ){ |
|
3685
|
22
|
|
|
|
|
|
rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); |
|
3686
|
|
|
|
|
|
|
}else{ |
|
3687
|
5
|
|
|
|
|
|
rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); |
|
3688
|
|
|
|
|
|
|
} |
|
3689
|
27
|
|
|
|
|
|
pTos++; |
|
3690
|
27
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
|
3691
|
27
|
|
|
|
|
|
pTos->i = pgno; |
|
3692
|
27
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
3693
|
27
|
|
|
|
|
|
*(u32*)pOp->p3 = pgno; |
|
3694
|
27
|
|
|
|
|
|
pOp->p3 = 0; |
|
3695
|
|
|
|
|
|
|
}else{ |
|
3696
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
3697
|
|
|
|
|
|
|
} |
|
3698
|
27
|
|
|
|
|
|
break; |
|
3699
|
|
|
|
|
|
|
} |
|
3700
|
|
|
|
|
|
|
|
|
3701
|
|
|
|
|
|
|
/* Opcode: IntegrityCk P1 P2 * |
|
3702
|
|
|
|
|
|
|
** |
|
3703
|
|
|
|
|
|
|
** Do an analysis of the currently open database. Push onto the |
|
3704
|
|
|
|
|
|
|
** stack the text of an error message describing any problems. |
|
3705
|
|
|
|
|
|
|
** If there are no errors, push a "ok" onto the stack. |
|
3706
|
|
|
|
|
|
|
** |
|
3707
|
|
|
|
|
|
|
** P1 is the index of a set that contains the root page numbers |
|
3708
|
|
|
|
|
|
|
** for all tables and indices in the main database file. The set |
|
3709
|
|
|
|
|
|
|
** is cleared by this opcode. In other words, after this opcode |
|
3710
|
|
|
|
|
|
|
** has executed, the set will be empty. |
|
3711
|
|
|
|
|
|
|
** |
|
3712
|
|
|
|
|
|
|
** If P2 is not zero, the check is done on the auxiliary database |
|
3713
|
|
|
|
|
|
|
** file, not the main database file. |
|
3714
|
|
|
|
|
|
|
** |
|
3715
|
|
|
|
|
|
|
** This opcode is used for testing purposes only. |
|
3716
|
|
|
|
|
|
|
*/ |
|
3717
|
|
|
|
|
|
|
case OP_IntegrityCk: { |
|
3718
|
|
|
|
|
|
|
int nRoot; |
|
3719
|
|
|
|
|
|
|
int *aRoot; |
|
3720
|
0
|
|
|
|
|
|
int iSet = pOp->p1; |
|
3721
|
|
|
|
|
|
|
Set *pSet; |
|
3722
|
|
|
|
|
|
|
int j; |
|
3723
|
|
|
|
|
|
|
HashElem *i; |
|
3724
|
|
|
|
|
|
|
char *z; |
|
3725
|
|
|
|
|
|
|
|
|
3726
|
|
|
|
|
|
|
assert( iSet>=0 && iSetnSet ); |
|
3727
|
0
|
|
|
|
|
|
pTos++; |
|
3728
|
0
|
|
|
|
|
|
pSet = &p->aSet[iSet]; |
|
3729
|
0
|
|
|
|
|
|
nRoot = sqliteHashCount(&pSet->hash); |
|
3730
|
0
|
|
|
|
|
|
aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); |
|
3731
|
0
|
0
|
|
|
|
|
if( aRoot==0 ) goto no_mem; |
|
3732
|
0
|
0
|
|
|
|
|
for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ |
|
3733
|
0
|
|
|
|
|
|
toInt((char*)sqliteHashKey(i), &aRoot[j]); |
|
3734
|
|
|
|
|
|
|
} |
|
3735
|
0
|
|
|
|
|
|
aRoot[j] = 0; |
|
3736
|
0
|
|
|
|
|
|
sqliteHashClear(&pSet->hash); |
|
3737
|
0
|
|
|
|
|
|
pSet->prev = 0; |
|
3738
|
0
|
|
|
|
|
|
z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); |
|
3739
|
0
|
0
|
|
|
|
|
if( z==0 || z[0]==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
3740
|
0
|
0
|
|
|
|
|
if( z ) sqliteFree(z); |
|
3741
|
0
|
|
|
|
|
|
pTos->z = "ok"; |
|
3742
|
0
|
|
|
|
|
|
pTos->n = 3; |
|
3743
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
|
3744
|
|
|
|
|
|
|
}else{ |
|
3745
|
0
|
|
|
|
|
|
pTos->z = z; |
|
3746
|
0
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
|
3747
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
3748
|
|
|
|
|
|
|
} |
|
3749
|
0
|
|
|
|
|
|
sqliteFree(aRoot); |
|
3750
|
0
|
|
|
|
|
|
break; |
|
3751
|
|
|
|
|
|
|
} |
|
3752
|
|
|
|
|
|
|
|
|
3753
|
|
|
|
|
|
|
/* Opcode: ListWrite * * * |
|
3754
|
|
|
|
|
|
|
** |
|
3755
|
|
|
|
|
|
|
** Write the integer on the top of the stack |
|
3756
|
|
|
|
|
|
|
** into the temporary storage list. |
|
3757
|
|
|
|
|
|
|
*/ |
|
3758
|
|
|
|
|
|
|
case OP_ListWrite: { |
|
3759
|
|
|
|
|
|
|
Keylist *pKeylist; |
|
3760
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
3761
|
6
|
|
|
|
|
|
pKeylist = p->pList; |
|
3762
|
6
|
100
|
|
|
|
|
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ |
|
|
|
50
|
|
|
|
|
|
|
3763
|
4
|
|
|
|
|
|
pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); |
|
3764
|
4
|
50
|
|
|
|
|
if( pKeylist==0 ) goto no_mem; |
|
3765
|
4
|
|
|
|
|
|
pKeylist->nKey = 1000; |
|
3766
|
4
|
|
|
|
|
|
pKeylist->nRead = 0; |
|
3767
|
4
|
|
|
|
|
|
pKeylist->nUsed = 0; |
|
3768
|
4
|
|
|
|
|
|
pKeylist->pNext = p->pList; |
|
3769
|
4
|
|
|
|
|
|
p->pList = pKeylist; |
|
3770
|
|
|
|
|
|
|
} |
|
3771
|
6
|
50
|
|
|
|
|
Integerify(pTos); |
|
3772
|
6
|
|
|
|
|
|
pKeylist->aKey[pKeylist->nUsed++] = pTos->i; |
|
3773
|
6
|
50
|
|
|
|
|
Release(pTos); |
|
3774
|
6
|
|
|
|
|
|
pTos--; |
|
3775
|
6
|
|
|
|
|
|
break; |
|
3776
|
|
|
|
|
|
|
} |
|
3777
|
|
|
|
|
|
|
|
|
3778
|
|
|
|
|
|
|
/* Opcode: ListRewind * * * |
|
3779
|
|
|
|
|
|
|
** |
|
3780
|
|
|
|
|
|
|
** Rewind the temporary buffer back to the beginning. |
|
3781
|
|
|
|
|
|
|
*/ |
|
3782
|
|
|
|
|
|
|
case OP_ListRewind: { |
|
3783
|
|
|
|
|
|
|
/* What this opcode codes, really, is reverse the order of the |
|
3784
|
|
|
|
|
|
|
** linked list of Keylist structures so that they are read out |
|
3785
|
|
|
|
|
|
|
** in the same order that they were read in. */ |
|
3786
|
|
|
|
|
|
|
Keylist *pRev, *pTop; |
|
3787
|
6
|
|
|
|
|
|
pRev = 0; |
|
3788
|
10
|
100
|
|
|
|
|
while( p->pList ){ |
|
3789
|
4
|
|
|
|
|
|
pTop = p->pList; |
|
3790
|
4
|
|
|
|
|
|
p->pList = pTop->pNext; |
|
3791
|
4
|
|
|
|
|
|
pTop->pNext = pRev; |
|
3792
|
4
|
|
|
|
|
|
pRev = pTop; |
|
3793
|
|
|
|
|
|
|
} |
|
3794
|
6
|
|
|
|
|
|
p->pList = pRev; |
|
3795
|
6
|
|
|
|
|
|
break; |
|
3796
|
|
|
|
|
|
|
} |
|
3797
|
|
|
|
|
|
|
|
|
3798
|
|
|
|
|
|
|
/* Opcode: ListRead * P2 * |
|
3799
|
|
|
|
|
|
|
** |
|
3800
|
|
|
|
|
|
|
** Attempt to read an integer from the temporary storage buffer |
|
3801
|
|
|
|
|
|
|
** and push it onto the stack. If the storage buffer is empty, |
|
3802
|
|
|
|
|
|
|
** push nothing but instead jump to P2. |
|
3803
|
|
|
|
|
|
|
*/ |
|
3804
|
|
|
|
|
|
|
case OP_ListRead: { |
|
3805
|
|
|
|
|
|
|
Keylist *pKeylist; |
|
3806
|
12
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
3807
|
12
|
|
|
|
|
|
pKeylist = p->pList; |
|
3808
|
12
|
100
|
|
|
|
|
if( pKeylist!=0 ){ |
|
3809
|
|
|
|
|
|
|
assert( pKeylist->nRead>=0 ); |
|
3810
|
|
|
|
|
|
|
assert( pKeylist->nReadnUsed ); |
|
3811
|
|
|
|
|
|
|
assert( pKeylist->nReadnKey ); |
|
3812
|
6
|
|
|
|
|
|
pTos++; |
|
3813
|
6
|
|
|
|
|
|
pTos->i = pKeylist->aKey[pKeylist->nRead++]; |
|
3814
|
6
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
3815
|
6
|
100
|
|
|
|
|
if( pKeylist->nRead>=pKeylist->nUsed ){ |
|
3816
|
4
|
|
|
|
|
|
p->pList = pKeylist->pNext; |
|
3817
|
6
|
|
|
|
|
|
sqliteFree(pKeylist); |
|
3818
|
|
|
|
|
|
|
} |
|
3819
|
|
|
|
|
|
|
}else{ |
|
3820
|
6
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
3821
|
|
|
|
|
|
|
} |
|
3822
|
12
|
|
|
|
|
|
break; |
|
3823
|
|
|
|
|
|
|
} |
|
3824
|
|
|
|
|
|
|
|
|
3825
|
|
|
|
|
|
|
/* Opcode: ListReset * * * |
|
3826
|
|
|
|
|
|
|
** |
|
3827
|
|
|
|
|
|
|
** Reset the temporary storage buffer so that it holds nothing. |
|
3828
|
|
|
|
|
|
|
*/ |
|
3829
|
|
|
|
|
|
|
case OP_ListReset: { |
|
3830
|
6
|
50
|
|
|
|
|
if( p->pList ){ |
|
3831
|
0
|
|
|
|
|
|
sqliteVdbeKeylistFree(p->pList); |
|
3832
|
0
|
|
|
|
|
|
p->pList = 0; |
|
3833
|
|
|
|
|
|
|
} |
|
3834
|
6
|
|
|
|
|
|
break; |
|
3835
|
|
|
|
|
|
|
} |
|
3836
|
|
|
|
|
|
|
|
|
3837
|
|
|
|
|
|
|
/* Opcode: ListPush * * * |
|
3838
|
|
|
|
|
|
|
** |
|
3839
|
|
|
|
|
|
|
** Save the current Vdbe list such that it can be restored by a ListPop |
|
3840
|
|
|
|
|
|
|
** opcode. The list is empty after this is executed. |
|
3841
|
|
|
|
|
|
|
*/ |
|
3842
|
|
|
|
|
|
|
case OP_ListPush: { |
|
3843
|
0
|
|
|
|
|
|
p->keylistStackDepth++; |
|
3844
|
|
|
|
|
|
|
assert(p->keylistStackDepth > 0); |
|
3845
|
0
|
|
|
|
|
|
p->keylistStack = sqliteRealloc(p->keylistStack, |
|
3846
|
0
|
|
|
|
|
|
sizeof(Keylist *) * p->keylistStackDepth); |
|
3847
|
0
|
0
|
|
|
|
|
if( p->keylistStack==0 ) goto no_mem; |
|
3848
|
0
|
|
|
|
|
|
p->keylistStack[p->keylistStackDepth - 1] = p->pList; |
|
3849
|
0
|
|
|
|
|
|
p->pList = 0; |
|
3850
|
0
|
|
|
|
|
|
break; |
|
3851
|
|
|
|
|
|
|
} |
|
3852
|
|
|
|
|
|
|
|
|
3853
|
|
|
|
|
|
|
/* Opcode: ListPop * * * |
|
3854
|
|
|
|
|
|
|
** |
|
3855
|
|
|
|
|
|
|
** Restore the Vdbe list to the state it was in when ListPush was last |
|
3856
|
|
|
|
|
|
|
** executed. |
|
3857
|
|
|
|
|
|
|
*/ |
|
3858
|
|
|
|
|
|
|
case OP_ListPop: { |
|
3859
|
|
|
|
|
|
|
assert(p->keylistStackDepth > 0); |
|
3860
|
0
|
|
|
|
|
|
p->keylistStackDepth--; |
|
3861
|
0
|
|
|
|
|
|
sqliteVdbeKeylistFree(p->pList); |
|
3862
|
0
|
|
|
|
|
|
p->pList = p->keylistStack[p->keylistStackDepth]; |
|
3863
|
0
|
|
|
|
|
|
p->keylistStack[p->keylistStackDepth] = 0; |
|
3864
|
0
|
0
|
|
|
|
|
if( p->keylistStackDepth == 0 ){ |
|
3865
|
0
|
|
|
|
|
|
sqliteFree(p->keylistStack); |
|
3866
|
0
|
|
|
|
|
|
p->keylistStack = 0; |
|
3867
|
|
|
|
|
|
|
} |
|
3868
|
0
|
|
|
|
|
|
break; |
|
3869
|
|
|
|
|
|
|
} |
|
3870
|
|
|
|
|
|
|
|
|
3871
|
|
|
|
|
|
|
/* Opcode: ContextPush * * * |
|
3872
|
|
|
|
|
|
|
** |
|
3873
|
|
|
|
|
|
|
** Save the current Vdbe context such that it can be restored by a ContextPop |
|
3874
|
|
|
|
|
|
|
** opcode. The context stores the last insert row id, the last statement change |
|
3875
|
|
|
|
|
|
|
** count, and the current statement change count. |
|
3876
|
|
|
|
|
|
|
*/ |
|
3877
|
|
|
|
|
|
|
case OP_ContextPush: { |
|
3878
|
0
|
|
|
|
|
|
p->contextStackDepth++; |
|
3879
|
|
|
|
|
|
|
assert(p->contextStackDepth > 0); |
|
3880
|
0
|
|
|
|
|
|
p->contextStack = sqliteRealloc(p->contextStack, |
|
3881
|
0
|
|
|
|
|
|
sizeof(Context) * p->contextStackDepth); |
|
3882
|
0
|
0
|
|
|
|
|
if( p->contextStack==0 ) goto no_mem; |
|
3883
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid; |
|
3884
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange; |
|
3885
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange; |
|
3886
|
0
|
|
|
|
|
|
break; |
|
3887
|
|
|
|
|
|
|
} |
|
3888
|
|
|
|
|
|
|
|
|
3889
|
|
|
|
|
|
|
/* Opcode: ContextPop * * * |
|
3890
|
|
|
|
|
|
|
** |
|
3891
|
|
|
|
|
|
|
** Restore the Vdbe context to the state it was in when contextPush was last |
|
3892
|
|
|
|
|
|
|
** executed. The context stores the last insert row id, the last statement |
|
3893
|
|
|
|
|
|
|
** change count, and the current statement change count. |
|
3894
|
|
|
|
|
|
|
*/ |
|
3895
|
|
|
|
|
|
|
case OP_ContextPop: { |
|
3896
|
|
|
|
|
|
|
assert(p->contextStackDepth > 0); |
|
3897
|
0
|
|
|
|
|
|
p->contextStackDepth--; |
|
3898
|
0
|
|
|
|
|
|
p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid; |
|
3899
|
0
|
|
|
|
|
|
p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange; |
|
3900
|
0
|
|
|
|
|
|
p->db->csChange = p->contextStack[p->contextStackDepth].csChange; |
|
3901
|
0
|
0
|
|
|
|
|
if( p->contextStackDepth == 0 ){ |
|
3902
|
0
|
|
|
|
|
|
sqliteFree(p->contextStack); |
|
3903
|
0
|
|
|
|
|
|
p->contextStack = 0; |
|
3904
|
|
|
|
|
|
|
} |
|
3905
|
0
|
|
|
|
|
|
break; |
|
3906
|
|
|
|
|
|
|
} |
|
3907
|
|
|
|
|
|
|
|
|
3908
|
|
|
|
|
|
|
/* Opcode: SortPut * * * |
|
3909
|
|
|
|
|
|
|
** |
|
3910
|
|
|
|
|
|
|
** The TOS is the key and the NOS is the data. Pop both from the stack |
|
3911
|
|
|
|
|
|
|
** and put them on the sorter. The key and data should have been |
|
3912
|
|
|
|
|
|
|
** made using SortMakeKey and SortMakeRec, respectively. |
|
3913
|
|
|
|
|
|
|
*/ |
|
3914
|
|
|
|
|
|
|
case OP_SortPut: { |
|
3915
|
15
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
|
3916
|
|
|
|
|
|
|
Sorter *pSorter; |
|
3917
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
|
3918
|
15
|
50
|
|
|
|
|
if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; |
|
|
|
0
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
3919
|
15
|
|
|
|
|
|
pSorter = sqliteMallocRaw( sizeof(Sorter) ); |
|
3920
|
15
|
50
|
|
|
|
|
if( pSorter==0 ) goto no_mem; |
|
3921
|
15
|
|
|
|
|
|
pSorter->pNext = p->pSort; |
|
3922
|
15
|
|
|
|
|
|
p->pSort = pSorter; |
|
3923
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Dyn ); |
|
3924
|
15
|
|
|
|
|
|
pSorter->nKey = pTos->n; |
|
3925
|
15
|
|
|
|
|
|
pSorter->zKey = pTos->z; |
|
3926
|
|
|
|
|
|
|
assert( pNos->flags & MEM_Dyn ); |
|
3927
|
15
|
|
|
|
|
|
pSorter->nData = pNos->n; |
|
3928
|
15
|
|
|
|
|
|
pSorter->pData = pNos->z; |
|
3929
|
15
|
|
|
|
|
|
pTos -= 2; |
|
3930
|
15
|
|
|
|
|
|
break; |
|
3931
|
|
|
|
|
|
|
} |
|
3932
|
|
|
|
|
|
|
|
|
3933
|
|
|
|
|
|
|
/* Opcode: SortMakeRec P1 * * |
|
3934
|
|
|
|
|
|
|
** |
|
3935
|
|
|
|
|
|
|
** The top P1 elements are the arguments to a callback. Form these |
|
3936
|
|
|
|
|
|
|
** elements into a single data entry that can be stored on a sorter |
|
3937
|
|
|
|
|
|
|
** using SortPut and later fed to a callback using SortCallback. |
|
3938
|
|
|
|
|
|
|
*/ |
|
3939
|
|
|
|
|
|
|
case OP_SortMakeRec: { |
|
3940
|
|
|
|
|
|
|
char *z; |
|
3941
|
|
|
|
|
|
|
char **azArg; |
|
3942
|
|
|
|
|
|
|
int nByte; |
|
3943
|
|
|
|
|
|
|
int nField; |
|
3944
|
|
|
|
|
|
|
int i; |
|
3945
|
|
|
|
|
|
|
Mem *pRec; |
|
3946
|
|
|
|
|
|
|
|
|
3947
|
15
|
|
|
|
|
|
nField = pOp->p1; |
|
3948
|
15
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
|
3949
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
|
3950
|
15
|
|
|
|
|
|
nByte = 0; |
|
3951
|
85
|
100
|
|
|
|
|
for(i=0; i
|
|
3952
|
70
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
|
3953
|
37
|
50
|
|
|
|
|
Stringify(pRec); |
|
3954
|
37
|
|
|
|
|
|
nByte += pRec->n; |
|
3955
|
|
|
|
|
|
|
} |
|
3956
|
|
|
|
|
|
|
} |
|
3957
|
15
|
|
|
|
|
|
nByte += sizeof(char*)*(nField+1); |
|
3958
|
15
|
|
|
|
|
|
azArg = sqliteMallocRaw( nByte ); |
|
3959
|
15
|
50
|
|
|
|
|
if( azArg==0 ) goto no_mem; |
|
3960
|
15
|
|
|
|
|
|
z = (char*)&azArg[nField+1]; |
|
3961
|
85
|
100
|
|
|
|
|
for(pRec=&pTos[1-nField], i=0; i
|
|
3962
|
70
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
3963
|
33
|
|
|
|
|
|
azArg[i] = 0; |
|
3964
|
|
|
|
|
|
|
}else{ |
|
3965
|
37
|
|
|
|
|
|
azArg[i] = z; |
|
3966
|
37
|
|
|
|
|
|
memcpy(z, pRec->z, pRec->n); |
|
3967
|
37
|
|
|
|
|
|
z += pRec->n; |
|
3968
|
|
|
|
|
|
|
} |
|
3969
|
|
|
|
|
|
|
} |
|
3970
|
15
|
|
|
|
|
|
popStack(&pTos, nField); |
|
3971
|
15
|
|
|
|
|
|
pTos++; |
|
3972
|
15
|
|
|
|
|
|
pTos->n = nByte; |
|
3973
|
15
|
|
|
|
|
|
pTos->z = (char*)azArg; |
|
3974
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
|
3975
|
15
|
|
|
|
|
|
break; |
|
3976
|
|
|
|
|
|
|
} |
|
3977
|
|
|
|
|
|
|
|
|
3978
|
|
|
|
|
|
|
/* Opcode: SortMakeKey * * P3 |
|
3979
|
|
|
|
|
|
|
** |
|
3980
|
|
|
|
|
|
|
** Convert the top few entries of the stack into a sort key. The |
|
3981
|
|
|
|
|
|
|
** number of stack entries consumed is the number of characters in |
|
3982
|
|
|
|
|
|
|
** the string P3. One character from P3 is prepended to each entry. |
|
3983
|
|
|
|
|
|
|
** The first character of P3 is prepended to the element lowest in |
|
3984
|
|
|
|
|
|
|
** the stack and the last character of P3 is prepended to the top of |
|
3985
|
|
|
|
|
|
|
** the stack. All stack entries are separated by a \000 character |
|
3986
|
|
|
|
|
|
|
** in the result. The whole key is terminated by two \000 characters |
|
3987
|
|
|
|
|
|
|
** in a row. |
|
3988
|
|
|
|
|
|
|
** |
|
3989
|
|
|
|
|
|
|
** "N" is substituted in place of the P3 character for NULL values. |
|
3990
|
|
|
|
|
|
|
** |
|
3991
|
|
|
|
|
|
|
** See also the MakeKey and MakeIdxKey opcodes. |
|
3992
|
|
|
|
|
|
|
*/ |
|
3993
|
|
|
|
|
|
|
case OP_SortMakeKey: { |
|
3994
|
|
|
|
|
|
|
char *zNewKey; |
|
3995
|
|
|
|
|
|
|
int nByte; |
|
3996
|
|
|
|
|
|
|
int nField; |
|
3997
|
|
|
|
|
|
|
int i, j, k; |
|
3998
|
|
|
|
|
|
|
Mem *pRec; |
|
3999
|
|
|
|
|
|
|
|
|
4000
|
15
|
|
|
|
|
|
nField = strlen(pOp->p3); |
|
4001
|
15
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
|
4002
|
15
|
|
|
|
|
|
nByte = 1; |
|
4003
|
50
|
100
|
|
|
|
|
for(i=0; i
|
|
4004
|
35
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
4005
|
10
|
|
|
|
|
|
nByte += 2; |
|
4006
|
|
|
|
|
|
|
}else{ |
|
4007
|
25
|
50
|
|
|
|
|
Stringify(pRec); |
|
4008
|
25
|
|
|
|
|
|
nByte += pRec->n+2; |
|
4009
|
|
|
|
|
|
|
} |
|
4010
|
|
|
|
|
|
|
} |
|
4011
|
15
|
|
|
|
|
|
zNewKey = sqliteMallocRaw( nByte ); |
|
4012
|
15
|
50
|
|
|
|
|
if( zNewKey==0 ) goto no_mem; |
|
4013
|
15
|
|
|
|
|
|
j = 0; |
|
4014
|
15
|
|
|
|
|
|
k = 0; |
|
4015
|
50
|
100
|
|
|
|
|
for(pRec=&pTos[1-nField], i=0; i
|
|
4016
|
35
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
4017
|
10
|
|
|
|
|
|
zNewKey[j++] = 'N'; |
|
4018
|
10
|
|
|
|
|
|
zNewKey[j++] = 0; |
|
4019
|
10
|
|
|
|
|
|
k++; |
|
4020
|
|
|
|
|
|
|
}else{ |
|
4021
|
25
|
|
|
|
|
|
zNewKey[j++] = pOp->p3[k++]; |
|
4022
|
25
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->z, pRec->n-1); |
|
4023
|
25
|
|
|
|
|
|
j += pRec->n-1; |
|
4024
|
25
|
|
|
|
|
|
zNewKey[j++] = 0; |
|
4025
|
|
|
|
|
|
|
} |
|
4026
|
|
|
|
|
|
|
} |
|
4027
|
15
|
|
|
|
|
|
zNewKey[j] = 0; |
|
4028
|
|
|
|
|
|
|
assert( j
|
|
4029
|
15
|
|
|
|
|
|
popStack(&pTos, nField); |
|
4030
|
15
|
|
|
|
|
|
pTos++; |
|
4031
|
15
|
|
|
|
|
|
pTos->n = nByte; |
|
4032
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
|
4033
|
15
|
|
|
|
|
|
pTos->z = zNewKey; |
|
4034
|
15
|
|
|
|
|
|
break; |
|
4035
|
|
|
|
|
|
|
} |
|
4036
|
|
|
|
|
|
|
|
|
4037
|
|
|
|
|
|
|
/* Opcode: Sort * * * |
|
4038
|
|
|
|
|
|
|
** |
|
4039
|
|
|
|
|
|
|
** Sort all elements on the sorter. The algorithm is a |
|
4040
|
|
|
|
|
|
|
** mergesort. |
|
4041
|
|
|
|
|
|
|
*/ |
|
4042
|
|
|
|
|
|
|
case OP_Sort: { |
|
4043
|
|
|
|
|
|
|
int i; |
|
4044
|
|
|
|
|
|
|
Sorter *pElem; |
|
4045
|
|
|
|
|
|
|
Sorter *apSorter[NSORT]; |
|
4046
|
155
|
100
|
|
|
|
|
for(i=0; i
|
|
4047
|
150
|
|
|
|
|
|
apSorter[i] = 0; |
|
4048
|
|
|
|
|
|
|
} |
|
4049
|
20
|
100
|
|
|
|
|
while( p->pSort ){ |
|
4050
|
15
|
|
|
|
|
|
pElem = p->pSort; |
|
4051
|
15
|
|
|
|
|
|
p->pSort = pElem->pNext; |
|
4052
|
15
|
|
|
|
|
|
pElem->pNext = 0; |
|
4053
|
25
|
50
|
|
|
|
|
for(i=0; i
|
|
4054
|
25
|
100
|
|
|
|
|
if( apSorter[i]==0 ){ |
|
4055
|
15
|
|
|
|
|
|
apSorter[i] = pElem; |
|
4056
|
15
|
|
|
|
|
|
break; |
|
4057
|
|
|
|
|
|
|
}else{ |
|
4058
|
10
|
|
|
|
|
|
pElem = Merge(apSorter[i], pElem); |
|
4059
|
10
|
|
|
|
|
|
apSorter[i] = 0; |
|
4060
|
|
|
|
|
|
|
} |
|
4061
|
|
|
|
|
|
|
} |
|
4062
|
15
|
50
|
|
|
|
|
if( i>=NSORT-1 ){ |
|
4063
|
0
|
|
|
|
|
|
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); |
|
4064
|
|
|
|
|
|
|
} |
|
4065
|
|
|
|
|
|
|
} |
|
4066
|
5
|
|
|
|
|
|
pElem = 0; |
|
4067
|
155
|
100
|
|
|
|
|
for(i=0; i
|
|
4068
|
150
|
|
|
|
|
|
pElem = Merge(apSorter[i], pElem); |
|
4069
|
|
|
|
|
|
|
} |
|
4070
|
5
|
|
|
|
|
|
p->pSort = pElem; |
|
4071
|
5
|
|
|
|
|
|
break; |
|
4072
|
|
|
|
|
|
|
} |
|
4073
|
|
|
|
|
|
|
|
|
4074
|
|
|
|
|
|
|
/* Opcode: SortNext * P2 * |
|
4075
|
|
|
|
|
|
|
** |
|
4076
|
|
|
|
|
|
|
** Push the data for the topmost element in the sorter onto the |
|
4077
|
|
|
|
|
|
|
** stack, then remove the element from the sorter. If the sorter |
|
4078
|
|
|
|
|
|
|
** is empty, push nothing on the stack and instead jump immediately |
|
4079
|
|
|
|
|
|
|
** to instruction P2. |
|
4080
|
|
|
|
|
|
|
*/ |
|
4081
|
|
|
|
|
|
|
case OP_SortNext: { |
|
4082
|
20
|
|
|
|
|
|
Sorter *pSorter = p->pSort; |
|
4083
|
20
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
4084
|
20
|
100
|
|
|
|
|
if( pSorter!=0 ){ |
|
4085
|
15
|
|
|
|
|
|
p->pSort = pSorter->pNext; |
|
4086
|
15
|
|
|
|
|
|
pTos++; |
|
4087
|
15
|
|
|
|
|
|
pTos->z = pSorter->pData; |
|
4088
|
15
|
|
|
|
|
|
pTos->n = pSorter->nData; |
|
4089
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
|
4090
|
15
|
|
|
|
|
|
sqliteFree(pSorter->zKey); |
|
4091
|
15
|
|
|
|
|
|
sqliteFree(pSorter); |
|
4092
|
|
|
|
|
|
|
}else{ |
|
4093
|
5
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4094
|
|
|
|
|
|
|
} |
|
4095
|
20
|
|
|
|
|
|
break; |
|
4096
|
|
|
|
|
|
|
} |
|
4097
|
|
|
|
|
|
|
|
|
4098
|
|
|
|
|
|
|
/* Opcode: SortCallback P1 * * |
|
4099
|
|
|
|
|
|
|
** |
|
4100
|
|
|
|
|
|
|
** The top of the stack contains a callback record built using |
|
4101
|
|
|
|
|
|
|
** the SortMakeRec operation with the same P1 value as this |
|
4102
|
|
|
|
|
|
|
** instruction. Pop this record from the stack and invoke the |
|
4103
|
|
|
|
|
|
|
** callback on it. |
|
4104
|
|
|
|
|
|
|
*/ |
|
4105
|
|
|
|
|
|
|
case OP_SortCallback: { |
|
4106
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4107
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
|
4108
|
15
|
|
|
|
|
|
p->nCallback++; |
|
4109
|
15
|
|
|
|
|
|
p->pc = pc+1; |
|
4110
|
15
|
|
|
|
|
|
p->azResColumn = (char**)pTos->z; |
|
4111
|
|
|
|
|
|
|
assert( p->nResColumn==pOp->p1 ); |
|
4112
|
15
|
|
|
|
|
|
p->popStack = 1; |
|
4113
|
15
|
|
|
|
|
|
p->pTos = pTos; |
|
4114
|
15
|
|
|
|
|
|
return SQLITE_ROW; |
|
4115
|
|
|
|
|
|
|
} |
|
4116
|
|
|
|
|
|
|
|
|
4117
|
|
|
|
|
|
|
/* Opcode: SortReset * * * |
|
4118
|
|
|
|
|
|
|
** |
|
4119
|
|
|
|
|
|
|
** Remove any elements that remain on the sorter. |
|
4120
|
|
|
|
|
|
|
*/ |
|
4121
|
|
|
|
|
|
|
case OP_SortReset: { |
|
4122
|
5
|
|
|
|
|
|
sqliteVdbeSorterReset(p); |
|
4123
|
5
|
|
|
|
|
|
break; |
|
4124
|
|
|
|
|
|
|
} |
|
4125
|
|
|
|
|
|
|
|
|
4126
|
|
|
|
|
|
|
/* Opcode: FileOpen * * P3 |
|
4127
|
|
|
|
|
|
|
** |
|
4128
|
|
|
|
|
|
|
** Open the file named by P3 for reading using the FileRead opcode. |
|
4129
|
|
|
|
|
|
|
** If P3 is "stdin" then open standard input for reading. |
|
4130
|
|
|
|
|
|
|
*/ |
|
4131
|
|
|
|
|
|
|
case OP_FileOpen: { |
|
4132
|
|
|
|
|
|
|
assert( pOp->p3!=0 ); |
|
4133
|
0
|
0
|
|
|
|
|
if( p->pFile ){ |
|
4134
|
0
|
0
|
|
|
|
|
if( p->pFile!=stdin ) fclose(p->pFile); |
|
4135
|
0
|
|
|
|
|
|
p->pFile = 0; |
|
4136
|
|
|
|
|
|
|
} |
|
4137
|
0
|
0
|
|
|
|
|
if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ |
|
4138
|
0
|
|
|
|
|
|
p->pFile = stdin; |
|
4139
|
|
|
|
|
|
|
}else{ |
|
4140
|
0
|
|
|
|
|
|
p->pFile = fopen(pOp->p3, "r"); |
|
4141
|
|
|
|
|
|
|
} |
|
4142
|
0
|
0
|
|
|
|
|
if( p->pFile==0 ){ |
|
4143
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0); |
|
4144
|
0
|
|
|
|
|
|
rc = SQLITE_ERROR; |
|
4145
|
|
|
|
|
|
|
} |
|
4146
|
0
|
|
|
|
|
|
break; |
|
4147
|
|
|
|
|
|
|
} |
|
4148
|
|
|
|
|
|
|
|
|
4149
|
|
|
|
|
|
|
/* Opcode: FileRead P1 P2 P3 |
|
4150
|
|
|
|
|
|
|
** |
|
4151
|
|
|
|
|
|
|
** Read a single line of input from the open file (the file opened using |
|
4152
|
|
|
|
|
|
|
** FileOpen). If we reach end-of-file, jump immediately to P2. If |
|
4153
|
|
|
|
|
|
|
** we are able to get another line, split the line apart using P3 as |
|
4154
|
|
|
|
|
|
|
** a delimiter. There should be P1 fields. If the input line contains |
|
4155
|
|
|
|
|
|
|
** more than P1 fields, ignore the excess. If the input line contains |
|
4156
|
|
|
|
|
|
|
** fewer than P1 fields, assume the remaining fields contain NULLs. |
|
4157
|
|
|
|
|
|
|
** |
|
4158
|
|
|
|
|
|
|
** Input ends if a line consists of just "\.". A field containing only |
|
4159
|
|
|
|
|
|
|
** "\N" is a null field. The backslash \ character can be used be used |
|
4160
|
|
|
|
|
|
|
** to escape newlines or the delimiter. |
|
4161
|
|
|
|
|
|
|
*/ |
|
4162
|
|
|
|
|
|
|
case OP_FileRead: { |
|
4163
|
|
|
|
|
|
|
int n, eol, nField, i, c, nDelim; |
|
4164
|
|
|
|
|
|
|
char *zDelim, *z; |
|
4165
|
0
|
0
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
4166
|
0
|
0
|
|
|
|
|
if( p->pFile==0 ) goto fileread_jump; |
|
4167
|
0
|
|
|
|
|
|
nField = pOp->p1; |
|
4168
|
0
|
0
|
|
|
|
|
if( nField<=0 ) goto fileread_jump; |
|
4169
|
0
|
0
|
|
|
|
|
if( nField!=p->nField || p->azField==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
4170
|
0
|
|
|
|
|
|
char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); |
|
4171
|
0
|
0
|
|
|
|
|
if( azField==0 ){ goto no_mem; } |
|
4172
|
0
|
|
|
|
|
|
p->azField = azField; |
|
4173
|
0
|
|
|
|
|
|
p->nField = nField; |
|
4174
|
|
|
|
|
|
|
} |
|
4175
|
0
|
|
|
|
|
|
n = 0; |
|
4176
|
0
|
|
|
|
|
|
eol = 0; |
|
4177
|
0
|
0
|
|
|
|
|
while( eol==0 ){ |
|
4178
|
0
|
0
|
|
|
|
|
if( p->zLine==0 || n+200>p->nLineAlloc ){ |
|
|
|
0
|
|
|
|
|
|
|
4179
|
|
|
|
|
|
|
char *zLine; |
|
4180
|
0
|
|
|
|
|
|
p->nLineAlloc = p->nLineAlloc*2 + 300; |
|
4181
|
0
|
|
|
|
|
|
zLine = sqliteRealloc(p->zLine, p->nLineAlloc); |
|
4182
|
0
|
0
|
|
|
|
|
if( zLine==0 ){ |
|
4183
|
0
|
|
|
|
|
|
p->nLineAlloc = 0; |
|
4184
|
0
|
|
|
|
|
|
sqliteFree(p->zLine); |
|
4185
|
0
|
|
|
|
|
|
p->zLine = 0; |
|
4186
|
0
|
|
|
|
|
|
goto no_mem; |
|
4187
|
|
|
|
|
|
|
} |
|
4188
|
0
|
|
|
|
|
|
p->zLine = zLine; |
|
4189
|
|
|
|
|
|
|
} |
|
4190
|
0
|
0
|
|
|
|
|
if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ |
|
4191
|
0
|
|
|
|
|
|
eol = 1; |
|
4192
|
0
|
|
|
|
|
|
p->zLine[n] = 0; |
|
4193
|
|
|
|
|
|
|
}else{ |
|
4194
|
|
|
|
|
|
|
int c; |
|
4195
|
0
|
0
|
|
|
|
|
while( (c = p->zLine[n])!=0 ){ |
|
4196
|
0
|
0
|
|
|
|
|
if( c=='\\' ){ |
|
4197
|
0
|
0
|
|
|
|
|
if( p->zLine[n+1]==0 ) break; |
|
4198
|
0
|
|
|
|
|
|
n += 2; |
|
4199
|
0
|
0
|
|
|
|
|
}else if( c=='\n' ){ |
|
4200
|
0
|
|
|
|
|
|
p->zLine[n] = 0; |
|
4201
|
0
|
|
|
|
|
|
eol = 1; |
|
4202
|
0
|
|
|
|
|
|
break; |
|
4203
|
|
|
|
|
|
|
}else{ |
|
4204
|
0
|
|
|
|
|
|
n++; |
|
4205
|
|
|
|
|
|
|
} |
|
4206
|
|
|
|
|
|
|
} |
|
4207
|
|
|
|
|
|
|
} |
|
4208
|
|
|
|
|
|
|
} |
|
4209
|
0
|
0
|
|
|
|
|
if( n==0 ) goto fileread_jump; |
|
4210
|
0
|
|
|
|
|
|
z = p->zLine; |
|
4211
|
0
|
0
|
|
|
|
|
if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
4212
|
0
|
|
|
|
|
|
goto fileread_jump; |
|
4213
|
|
|
|
|
|
|
} |
|
4214
|
0
|
|
|
|
|
|
zDelim = pOp->p3; |
|
4215
|
0
|
0
|
|
|
|
|
if( zDelim==0 ) zDelim = "\t"; |
|
4216
|
0
|
|
|
|
|
|
c = zDelim[0]; |
|
4217
|
0
|
|
|
|
|
|
nDelim = strlen(zDelim); |
|
4218
|
0
|
|
|
|
|
|
p->azField[0] = z; |
|
4219
|
0
|
0
|
|
|
|
|
for(i=1; *z!=0 && i<=nField; i++){ |
|
|
|
0
|
|
|
|
|
|
|
4220
|
|
|
|
|
|
|
int from, to; |
|
4221
|
0
|
|
|
|
|
|
from = to = 0; |
|
4222
|
0
|
0
|
|
|
|
|
if( z[0]=='\\' && z[1]=='N' |
|
|
|
0
|
|
|
|
|
|
|
4223
|
0
|
0
|
|
|
|
|
&& (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ |
|
|
|
0
|
|
|
|
|
|
|
4224
|
0
|
0
|
|
|
|
|
if( i<=nField ) p->azField[i-1] = 0; |
|
4225
|
0
|
|
|
|
|
|
z += 2 + nDelim; |
|
4226
|
0
|
0
|
|
|
|
|
if( iazField[i] = z; |
|
4227
|
0
|
|
|
|
|
|
continue; |
|
4228
|
|
|
|
|
|
|
} |
|
4229
|
0
|
0
|
|
|
|
|
while( z[from] ){ |
|
4230
|
0
|
0
|
|
|
|
|
if( z[from]=='\\' && z[from+1]!=0 ){ |
|
|
|
0
|
|
|
|
|
|
|
4231
|
0
|
|
|
|
|
|
int tx = z[from+1]; |
|
4232
|
0
|
|
|
|
|
|
switch( tx ){ |
|
4233
|
0
|
|
|
|
|
|
case 'b': tx = '\b'; break; |
|
4234
|
0
|
|
|
|
|
|
case 'f': tx = '\f'; break; |
|
4235
|
0
|
|
|
|
|
|
case 'n': tx = '\n'; break; |
|
4236
|
0
|
|
|
|
|
|
case 'r': tx = '\r'; break; |
|
4237
|
0
|
|
|
|
|
|
case 't': tx = '\t'; break; |
|
4238
|
0
|
|
|
|
|
|
case 'v': tx = '\v'; break; |
|
4239
|
0
|
|
|
|
|
|
default: break; |
|
4240
|
|
|
|
|
|
|
} |
|
4241
|
0
|
|
|
|
|
|
z[to++] = tx; |
|
4242
|
0
|
|
|
|
|
|
from += 2; |
|
4243
|
0
|
|
|
|
|
|
continue; |
|
4244
|
|
|
|
|
|
|
} |
|
4245
|
0
|
0
|
|
|
|
|
if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; |
|
|
|
0
|
|
|
|
|
|
|
4246
|
0
|
|
|
|
|
|
z[to++] = z[from++]; |
|
4247
|
|
|
|
|
|
|
} |
|
4248
|
0
|
0
|
|
|
|
|
if( z[from] ){ |
|
4249
|
0
|
|
|
|
|
|
z[to] = 0; |
|
4250
|
0
|
|
|
|
|
|
z += from + nDelim; |
|
4251
|
0
|
0
|
|
|
|
|
if( iazField[i] = z; |
|
4252
|
|
|
|
|
|
|
}else{ |
|
4253
|
0
|
|
|
|
|
|
z[to] = 0; |
|
4254
|
0
|
|
|
|
|
|
z = ""; |
|
4255
|
|
|
|
|
|
|
} |
|
4256
|
|
|
|
|
|
|
} |
|
4257
|
0
|
0
|
|
|
|
|
while( i
|
|
4258
|
0
|
|
|
|
|
|
p->azField[i++] = 0; |
|
4259
|
|
|
|
|
|
|
} |
|
4260
|
0
|
|
|
|
|
|
break; |
|
4261
|
|
|
|
|
|
|
|
|
4262
|
|
|
|
|
|
|
/* If we reach end-of-file, or if anything goes wrong, jump here. |
|
4263
|
|
|
|
|
|
|
** This code will cause a jump to P2 */ |
|
4264
|
|
|
|
|
|
|
fileread_jump: |
|
4265
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4266
|
0
|
|
|
|
|
|
break; |
|
4267
|
|
|
|
|
|
|
} |
|
4268
|
|
|
|
|
|
|
|
|
4269
|
|
|
|
|
|
|
/* Opcode: FileColumn P1 * * |
|
4270
|
|
|
|
|
|
|
** |
|
4271
|
|
|
|
|
|
|
** Push onto the stack the P1-th column of the most recently read line |
|
4272
|
|
|
|
|
|
|
** from the input file. |
|
4273
|
|
|
|
|
|
|
*/ |
|
4274
|
|
|
|
|
|
|
case OP_FileColumn: { |
|
4275
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
4276
|
|
|
|
|
|
|
char *z; |
|
4277
|
|
|
|
|
|
|
assert( i>=0 && inField ); |
|
4278
|
0
|
0
|
|
|
|
|
if( p->azField ){ |
|
4279
|
0
|
|
|
|
|
|
z = p->azField[i]; |
|
4280
|
|
|
|
|
|
|
}else{ |
|
4281
|
0
|
|
|
|
|
|
z = 0; |
|
4282
|
|
|
|
|
|
|
} |
|
4283
|
0
|
|
|
|
|
|
pTos++; |
|
4284
|
0
|
0
|
|
|
|
|
if( z ){ |
|
4285
|
0
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
|
4286
|
0
|
|
|
|
|
|
pTos->z = z; |
|
4287
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
|
4288
|
|
|
|
|
|
|
}else{ |
|
4289
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
4290
|
|
|
|
|
|
|
} |
|
4291
|
0
|
|
|
|
|
|
break; |
|
4292
|
|
|
|
|
|
|
} |
|
4293
|
|
|
|
|
|
|
|
|
4294
|
|
|
|
|
|
|
/* Opcode: MemStore P1 P2 * |
|
4295
|
|
|
|
|
|
|
** |
|
4296
|
|
|
|
|
|
|
** Write the top of the stack into memory location P1. |
|
4297
|
|
|
|
|
|
|
** P1 should be a small integer since space is allocated |
|
4298
|
|
|
|
|
|
|
** for all memory locations between 0 and P1 inclusive. |
|
4299
|
|
|
|
|
|
|
** |
|
4300
|
|
|
|
|
|
|
** After the data is stored in the memory location, the |
|
4301
|
|
|
|
|
|
|
** stack is popped once if P2 is 1. If P2 is zero, then |
|
4302
|
|
|
|
|
|
|
** the original data remains on the stack. |
|
4303
|
|
|
|
|
|
|
*/ |
|
4304
|
|
|
|
|
|
|
case OP_MemStore: { |
|
4305
|
11
|
|
|
|
|
|
int i = pOp->p1; |
|
4306
|
|
|
|
|
|
|
Mem *pMem; |
|
4307
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4308
|
11
|
50
|
|
|
|
|
if( i>=p->nMem ){ |
|
4309
|
11
|
|
|
|
|
|
int nOld = p->nMem; |
|
4310
|
|
|
|
|
|
|
Mem *aMem; |
|
4311
|
11
|
|
|
|
|
|
p->nMem = i + 5; |
|
4312
|
11
|
|
|
|
|
|
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); |
|
4313
|
11
|
50
|
|
|
|
|
if( aMem==0 ) goto no_mem; |
|
4314
|
11
|
50
|
|
|
|
|
if( aMem!=p->aMem ){ |
|
4315
|
|
|
|
|
|
|
int j; |
|
4316
|
11
|
50
|
|
|
|
|
for(j=0; j
|
|
4317
|
0
|
0
|
|
|
|
|
if( aMem[j].flags & MEM_Short ){ |
|
4318
|
0
|
|
|
|
|
|
aMem[j].z = aMem[j].zShort; |
|
4319
|
|
|
|
|
|
|
} |
|
4320
|
|
|
|
|
|
|
} |
|
4321
|
|
|
|
|
|
|
} |
|
4322
|
11
|
|
|
|
|
|
p->aMem = aMem; |
|
4323
|
11
|
50
|
|
|
|
|
if( nOldnMem ){ |
|
4324
|
11
|
|
|
|
|
|
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); |
|
4325
|
|
|
|
|
|
|
} |
|
4326
|
|
|
|
|
|
|
} |
|
4327
|
11
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
|
0
|
|
|
|
|
|
|
4328
|
11
|
|
|
|
|
|
pMem = &p->aMem[i]; |
|
4329
|
11
|
50
|
|
|
|
|
Release(pMem); |
|
4330
|
11
|
|
|
|
|
|
*pMem = *pTos; |
|
4331
|
11
|
50
|
|
|
|
|
if( pMem->flags & MEM_Dyn ){ |
|
4332
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
|
4333
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
4334
|
|
|
|
|
|
|
}else{ |
|
4335
|
0
|
|
|
|
|
|
pMem->z = sqliteMallocRaw( pMem->n ); |
|
4336
|
0
|
0
|
|
|
|
|
if( pMem->z==0 ) goto no_mem; |
|
4337
|
0
|
|
|
|
|
|
memcpy(pMem->z, pTos->z, pMem->n); |
|
4338
|
|
|
|
|
|
|
} |
|
4339
|
11
|
50
|
|
|
|
|
}else if( pMem->flags & MEM_Short ){ |
|
4340
|
0
|
|
|
|
|
|
pMem->z = pMem->zShort; |
|
4341
|
|
|
|
|
|
|
} |
|
4342
|
11
|
50
|
|
|
|
|
if( pOp->p2 ){ |
|
4343
|
11
|
50
|
|
|
|
|
Release(pTos); |
|
4344
|
11
|
|
|
|
|
|
pTos--; |
|
4345
|
|
|
|
|
|
|
} |
|
4346
|
11
|
|
|
|
|
|
break; |
|
4347
|
|
|
|
|
|
|
} |
|
4348
|
|
|
|
|
|
|
|
|
4349
|
|
|
|
|
|
|
/* Opcode: MemLoad P1 * * |
|
4350
|
|
|
|
|
|
|
** |
|
4351
|
|
|
|
|
|
|
** Push a copy of the value in memory location P1 onto the stack. |
|
4352
|
|
|
|
|
|
|
** |
|
4353
|
|
|
|
|
|
|
** If the value is a string, then the value pushed is a pointer to |
|
4354
|
|
|
|
|
|
|
** the string that is stored in the memory location. If the memory |
|
4355
|
|
|
|
|
|
|
** location is subsequently changed (using OP_MemStore) then the |
|
4356
|
|
|
|
|
|
|
** value pushed onto the stack will change too. |
|
4357
|
|
|
|
|
|
|
*/ |
|
4358
|
|
|
|
|
|
|
case OP_MemLoad: { |
|
4359
|
11
|
|
|
|
|
|
int i = pOp->p1; |
|
4360
|
|
|
|
|
|
|
assert( i>=0 && inMem ); |
|
4361
|
11
|
|
|
|
|
|
pTos++; |
|
4362
|
11
|
|
|
|
|
|
memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; |
|
4363
|
11
|
50
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
|
4364
|
11
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
|
4365
|
11
|
|
|
|
|
|
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); |
|
4366
|
|
|
|
|
|
|
} |
|
4367
|
11
|
|
|
|
|
|
break; |
|
4368
|
|
|
|
|
|
|
} |
|
4369
|
|
|
|
|
|
|
|
|
4370
|
|
|
|
|
|
|
/* Opcode: MemIncr P1 P2 * |
|
4371
|
|
|
|
|
|
|
** |
|
4372
|
|
|
|
|
|
|
** Increment the integer valued memory cell P1 by 1. If P2 is not zero |
|
4373
|
|
|
|
|
|
|
** and the result after the increment is greater than zero, then jump |
|
4374
|
|
|
|
|
|
|
** to P2. |
|
4375
|
|
|
|
|
|
|
** |
|
4376
|
|
|
|
|
|
|
** This instruction throws an error if the memory cell is not initially |
|
4377
|
|
|
|
|
|
|
** an integer. |
|
4378
|
|
|
|
|
|
|
*/ |
|
4379
|
|
|
|
|
|
|
case OP_MemIncr: { |
|
4380
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
4381
|
|
|
|
|
|
|
Mem *pMem; |
|
4382
|
|
|
|
|
|
|
assert( i>=0 && inMem ); |
|
4383
|
0
|
|
|
|
|
|
pMem = &p->aMem[i]; |
|
4384
|
|
|
|
|
|
|
assert( pMem->flags==MEM_Int ); |
|
4385
|
0
|
|
|
|
|
|
pMem->i++; |
|
4386
|
0
|
0
|
|
|
|
|
if( pOp->p2>0 && pMem->i>0 ){ |
|
|
|
0
|
|
|
|
|
|
|
4387
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4388
|
|
|
|
|
|
|
} |
|
4389
|
0
|
|
|
|
|
|
break; |
|
4390
|
|
|
|
|
|
|
} |
|
4391
|
|
|
|
|
|
|
|
|
4392
|
|
|
|
|
|
|
/* Opcode: AggReset * P2 * |
|
4393
|
|
|
|
|
|
|
** |
|
4394
|
|
|
|
|
|
|
** Reset the aggregator so that it no longer contains any data. |
|
4395
|
|
|
|
|
|
|
** Future aggregator elements will contain P2 values each. |
|
4396
|
|
|
|
|
|
|
*/ |
|
4397
|
|
|
|
|
|
|
case OP_AggReset: { |
|
4398
|
15
|
|
|
|
|
|
sqliteVdbeAggReset(&p->agg); |
|
4399
|
15
|
|
|
|
|
|
p->agg.nMem = pOp->p2; |
|
4400
|
15
|
|
|
|
|
|
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); |
|
4401
|
15
|
50
|
|
|
|
|
if( p->agg.apFunc==0 ) goto no_mem; |
|
4402
|
15
|
|
|
|
|
|
break; |
|
4403
|
|
|
|
|
|
|
} |
|
4404
|
|
|
|
|
|
|
|
|
4405
|
|
|
|
|
|
|
/* Opcode: AggInit * P2 P3 |
|
4406
|
|
|
|
|
|
|
** |
|
4407
|
|
|
|
|
|
|
** Initialize the function parameters for an aggregate function. |
|
4408
|
|
|
|
|
|
|
** The aggregate will operate out of aggregate column P2. |
|
4409
|
|
|
|
|
|
|
** P3 is a pointer to the FuncDef structure for the function. |
|
4410
|
|
|
|
|
|
|
*/ |
|
4411
|
|
|
|
|
|
|
case OP_AggInit: { |
|
4412
|
15
|
|
|
|
|
|
int i = pOp->p2; |
|
4413
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
|
4414
|
15
|
|
|
|
|
|
p->agg.apFunc[i] = (FuncDef*)pOp->p3; |
|
4415
|
15
|
|
|
|
|
|
break; |
|
4416
|
|
|
|
|
|
|
} |
|
4417
|
|
|
|
|
|
|
|
|
4418
|
|
|
|
|
|
|
/* Opcode: AggFunc * P2 P3 |
|
4419
|
|
|
|
|
|
|
** |
|
4420
|
|
|
|
|
|
|
** Execute the step function for an aggregate. The |
|
4421
|
|
|
|
|
|
|
** function has P2 arguments. P3 is a pointer to the FuncDef |
|
4422
|
|
|
|
|
|
|
** structure that specifies the function. |
|
4423
|
|
|
|
|
|
|
** |
|
4424
|
|
|
|
|
|
|
** The top of the stack must be an integer which is the index of |
|
4425
|
|
|
|
|
|
|
** the aggregate column that corresponds to this aggregate function. |
|
4426
|
|
|
|
|
|
|
** Ideally, this index would be another parameter, but there are |
|
4427
|
|
|
|
|
|
|
** no free parameters left. The integer is popped from the stack. |
|
4428
|
|
|
|
|
|
|
*/ |
|
4429
|
|
|
|
|
|
|
case OP_AggFunc: { |
|
4430
|
24
|
|
|
|
|
|
int n = pOp->p2; |
|
4431
|
|
|
|
|
|
|
int i; |
|
4432
|
|
|
|
|
|
|
Mem *pMem, *pRec; |
|
4433
|
24
|
|
|
|
|
|
char **azArgv = p->zArgv; |
|
4434
|
|
|
|
|
|
|
sqlite_func ctx; |
|
4435
|
|
|
|
|
|
|
|
|
4436
|
|
|
|
|
|
|
assert( n>=0 ); |
|
4437
|
|
|
|
|
|
|
assert( pTos->flags==MEM_Int ); |
|
4438
|
24
|
|
|
|
|
|
pRec = &pTos[-n]; |
|
4439
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
|
4440
|
30
|
100
|
|
|
|
|
for(i=0; i
|
|
4441
|
6
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
|
4442
|
2
|
|
|
|
|
|
azArgv[i] = 0; |
|
4443
|
|
|
|
|
|
|
}else{ |
|
4444
|
4
|
50
|
|
|
|
|
Stringify(pRec); |
|
4445
|
4
|
|
|
|
|
|
azArgv[i] = pRec->z; |
|
4446
|
|
|
|
|
|
|
} |
|
4447
|
|
|
|
|
|
|
} |
|
4448
|
24
|
|
|
|
|
|
i = pTos->i; |
|
4449
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
|
4450
|
24
|
|
|
|
|
|
ctx.pFunc = (FuncDef*)pOp->p3; |
|
4451
|
24
|
|
|
|
|
|
pMem = &p->agg.pCurrent->aMem[i]; |
|
4452
|
24
|
|
|
|
|
|
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ |
|
4453
|
24
|
|
|
|
|
|
ctx.pAgg = pMem->z; |
|
4454
|
24
|
|
|
|
|
|
ctx.cnt = ++pMem->i; |
|
4455
|
24
|
|
|
|
|
|
ctx.isError = 0; |
|
4456
|
24
|
|
|
|
|
|
ctx.isStep = 1; |
|
4457
|
24
|
|
|
|
|
|
(ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); |
|
4458
|
24
|
|
|
|
|
|
pMem->z = ctx.pAgg; |
|
4459
|
24
|
|
|
|
|
|
pMem->flags = MEM_AggCtx; |
|
4460
|
24
|
|
|
|
|
|
popStack(&pTos, n+1); |
|
4461
|
24
|
50
|
|
|
|
|
if( ctx.isError ){ |
|
4462
|
0
|
|
|
|
|
|
rc = SQLITE_ERROR; |
|
4463
|
|
|
|
|
|
|
} |
|
4464
|
24
|
|
|
|
|
|
break; |
|
4465
|
|
|
|
|
|
|
} |
|
4466
|
|
|
|
|
|
|
|
|
4467
|
|
|
|
|
|
|
/* Opcode: AggFocus * P2 * |
|
4468
|
|
|
|
|
|
|
** |
|
4469
|
|
|
|
|
|
|
** Pop the top of the stack and use that as an aggregator key. If |
|
4470
|
|
|
|
|
|
|
** an aggregator with that same key already exists, then make the |
|
4471
|
|
|
|
|
|
|
** aggregator the current aggregator and jump to P2. If no aggregator |
|
4472
|
|
|
|
|
|
|
** with the given key exists, create one and make it current but |
|
4473
|
|
|
|
|
|
|
** do not jump. |
|
4474
|
|
|
|
|
|
|
** |
|
4475
|
|
|
|
|
|
|
** The order of aggregator opcodes is important. The order is: |
|
4476
|
|
|
|
|
|
|
** AggReset AggFocus AggNext. In other words, you must execute |
|
4477
|
|
|
|
|
|
|
** AggReset first, then zero or more AggFocus operations, then |
|
4478
|
|
|
|
|
|
|
** zero or more AggNext operations. You must not execute an AggFocus |
|
4479
|
|
|
|
|
|
|
** in between an AggNext and an AggReset. |
|
4480
|
|
|
|
|
|
|
*/ |
|
4481
|
|
|
|
|
|
|
case OP_AggFocus: { |
|
4482
|
|
|
|
|
|
|
AggElem *pElem; |
|
4483
|
|
|
|
|
|
|
char *zKey; |
|
4484
|
|
|
|
|
|
|
int nKey; |
|
4485
|
|
|
|
|
|
|
|
|
4486
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4487
|
16
|
100
|
|
|
|
|
Stringify(pTos); |
|
4488
|
16
|
|
|
|
|
|
zKey = pTos->z; |
|
4489
|
16
|
|
|
|
|
|
nKey = pTos->n; |
|
4490
|
16
|
|
|
|
|
|
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); |
|
4491
|
16
|
50
|
|
|
|
|
if( pElem ){ |
|
4492
|
0
|
|
|
|
|
|
p->agg.pCurrent = pElem; |
|
4493
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4494
|
|
|
|
|
|
|
}else{ |
|
4495
|
16
|
|
|
|
|
|
AggInsert(&p->agg, zKey, nKey); |
|
4496
|
16
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
|
4497
|
|
|
|
|
|
|
} |
|
4498
|
16
|
50
|
|
|
|
|
Release(pTos); |
|
4499
|
16
|
|
|
|
|
|
pTos--; |
|
4500
|
16
|
|
|
|
|
|
break; |
|
4501
|
|
|
|
|
|
|
} |
|
4502
|
|
|
|
|
|
|
|
|
4503
|
|
|
|
|
|
|
/* Opcode: AggSet * P2 * |
|
4504
|
|
|
|
|
|
|
** |
|
4505
|
|
|
|
|
|
|
** Move the top of the stack into the P2-th field of the current |
|
4506
|
|
|
|
|
|
|
** aggregate. String values are duplicated into new memory. |
|
4507
|
|
|
|
|
|
|
*/ |
|
4508
|
|
|
|
|
|
|
case OP_AggSet: { |
|
4509
|
3
|
50
|
|
|
|
|
AggElem *pFocus = AggInFocus(p->agg); |
|
4510
|
|
|
|
|
|
|
Mem *pMem; |
|
4511
|
3
|
|
|
|
|
|
int i = pOp->p2; |
|
4512
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4513
|
3
|
50
|
|
|
|
|
if( pFocus==0 ) goto no_mem; |
|
4514
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
|
4515
|
3
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
|
0
|
|
|
|
|
|
|
4516
|
3
|
|
|
|
|
|
pMem = &pFocus->aMem[i]; |
|
4517
|
3
|
50
|
|
|
|
|
Release(pMem); |
|
4518
|
3
|
|
|
|
|
|
*pMem = *pTos; |
|
4519
|
3
|
50
|
|
|
|
|
if( pMem->flags & MEM_Dyn ){ |
|
4520
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
|
4521
|
3
|
100
|
|
|
|
|
}else if( pMem->flags & MEM_Short ){ |
|
4522
|
2
|
|
|
|
|
|
pMem->z = pMem->zShort; |
|
4523
|
|
|
|
|
|
|
} |
|
4524
|
3
|
50
|
|
|
|
|
Release(pTos); |
|
4525
|
3
|
|
|
|
|
|
pTos--; |
|
4526
|
3
|
|
|
|
|
|
break; |
|
4527
|
|
|
|
|
|
|
} |
|
4528
|
|
|
|
|
|
|
|
|
4529
|
|
|
|
|
|
|
/* Opcode: AggGet * P2 * |
|
4530
|
|
|
|
|
|
|
** |
|
4531
|
|
|
|
|
|
|
** Push a new entry onto the stack which is a copy of the P2-th field |
|
4532
|
|
|
|
|
|
|
** of the current aggregate. Strings are not duplicated so |
|
4533
|
|
|
|
|
|
|
** string values will be ephemeral. |
|
4534
|
|
|
|
|
|
|
*/ |
|
4535
|
|
|
|
|
|
|
case OP_AggGet: { |
|
4536
|
16
|
50
|
|
|
|
|
AggElem *pFocus = AggInFocus(p->agg); |
|
4537
|
|
|
|
|
|
|
Mem *pMem; |
|
4538
|
16
|
|
|
|
|
|
int i = pOp->p2; |
|
4539
|
16
|
50
|
|
|
|
|
if( pFocus==0 ) goto no_mem; |
|
4540
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
|
4541
|
16
|
|
|
|
|
|
pTos++; |
|
4542
|
16
|
|
|
|
|
|
pMem = &pFocus->aMem[i]; |
|
4543
|
16
|
|
|
|
|
|
*pTos = *pMem; |
|
4544
|
16
|
50
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
|
4545
|
0
|
|
|
|
|
|
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); |
|
4546
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
|
4547
|
|
|
|
|
|
|
} |
|
4548
|
16
|
|
|
|
|
|
break; |
|
4549
|
|
|
|
|
|
|
} |
|
4550
|
|
|
|
|
|
|
|
|
4551
|
|
|
|
|
|
|
/* Opcode: AggNext * P2 * |
|
4552
|
|
|
|
|
|
|
** |
|
4553
|
|
|
|
|
|
|
** Make the next aggregate value the current aggregate. The prior |
|
4554
|
|
|
|
|
|
|
** aggregate is deleted. If all aggregate values have been consumed, |
|
4555
|
|
|
|
|
|
|
** jump to P2. |
|
4556
|
|
|
|
|
|
|
** |
|
4557
|
|
|
|
|
|
|
** The order of aggregator opcodes is important. The order is: |
|
4558
|
|
|
|
|
|
|
** AggReset AggFocus AggNext. In other words, you must execute |
|
4559
|
|
|
|
|
|
|
** AggReset first, then zero or more AggFocus operations, then |
|
4560
|
|
|
|
|
|
|
** zero or more AggNext operations. You must not execute an AggFocus |
|
4561
|
|
|
|
|
|
|
** in between an AggNext and an AggReset. |
|
4562
|
|
|
|
|
|
|
*/ |
|
4563
|
|
|
|
|
|
|
case OP_AggNext: { |
|
4564
|
31
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
4565
|
31
|
100
|
|
|
|
|
if( p->agg.pSearch==0 ){ |
|
4566
|
15
|
|
|
|
|
|
p->agg.pSearch = sqliteHashFirst(&p->agg.hash); |
|
4567
|
|
|
|
|
|
|
}else{ |
|
4568
|
16
|
|
|
|
|
|
p->agg.pSearch = sqliteHashNext(p->agg.pSearch); |
|
4569
|
|
|
|
|
|
|
} |
|
4570
|
31
|
100
|
|
|
|
|
if( p->agg.pSearch==0 ){ |
|
4571
|
15
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4572
|
|
|
|
|
|
|
} else { |
|
4573
|
|
|
|
|
|
|
int i; |
|
4574
|
|
|
|
|
|
|
sqlite_func ctx; |
|
4575
|
|
|
|
|
|
|
Mem *aMem; |
|
4576
|
16
|
|
|
|
|
|
p->agg.pCurrent = sqliteHashData(p->agg.pSearch); |
|
4577
|
16
|
|
|
|
|
|
aMem = p->agg.pCurrent->aMem; |
|
4578
|
35
|
100
|
|
|
|
|
for(i=0; iagg.nMem; i++){ |
|
4579
|
|
|
|
|
|
|
int freeCtx; |
|
4580
|
19
|
100
|
|
|
|
|
if( p->agg.apFunc[i]==0 ) continue; |
|
4581
|
16
|
50
|
|
|
|
|
if( p->agg.apFunc[i]->xFinalize==0 ) continue; |
|
4582
|
16
|
|
|
|
|
|
ctx.s.flags = MEM_Null; |
|
4583
|
16
|
|
|
|
|
|
ctx.s.z = aMem[i].zShort; |
|
4584
|
16
|
|
|
|
|
|
ctx.pAgg = (void*)aMem[i].z; |
|
4585
|
16
|
100
|
|
|
|
|
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; |
|
|
|
50
|
|
|
|
|
|
|
4586
|
16
|
|
|
|
|
|
ctx.cnt = aMem[i].i; |
|
4587
|
16
|
|
|
|
|
|
ctx.isStep = 0; |
|
4588
|
16
|
|
|
|
|
|
ctx.pFunc = p->agg.apFunc[i]; |
|
4589
|
16
|
|
|
|
|
|
(*p->agg.apFunc[i]->xFinalize)(&ctx); |
|
4590
|
16
|
50
|
|
|
|
|
if( freeCtx ){ |
|
4591
|
0
|
|
|
|
|
|
sqliteFree( aMem[i].z ); |
|
4592
|
|
|
|
|
|
|
} |
|
4593
|
16
|
|
|
|
|
|
aMem[i] = ctx.s; |
|
4594
|
16
|
50
|
|
|
|
|
if( aMem[i].flags & MEM_Short ){ |
|
4595
|
0
|
|
|
|
|
|
aMem[i].z = aMem[i].zShort; |
|
4596
|
|
|
|
|
|
|
} |
|
4597
|
|
|
|
|
|
|
} |
|
4598
|
|
|
|
|
|
|
} |
|
4599
|
31
|
|
|
|
|
|
break; |
|
4600
|
|
|
|
|
|
|
} |
|
4601
|
|
|
|
|
|
|
|
|
4602
|
|
|
|
|
|
|
/* Opcode: SetInsert P1 * P3 |
|
4603
|
|
|
|
|
|
|
** |
|
4604
|
|
|
|
|
|
|
** If Set P1 does not exist then create it. Then insert value |
|
4605
|
|
|
|
|
|
|
** P3 into that set. If P3 is NULL, then insert the top of the |
|
4606
|
|
|
|
|
|
|
** stack into the set. |
|
4607
|
|
|
|
|
|
|
*/ |
|
4608
|
|
|
|
|
|
|
case OP_SetInsert: { |
|
4609
|
12
|
|
|
|
|
|
int i = pOp->p1; |
|
4610
|
12
|
100
|
|
|
|
|
if( p->nSet<=i ){ |
|
4611
|
|
|
|
|
|
|
int k; |
|
4612
|
6
|
|
|
|
|
|
Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); |
|
4613
|
6
|
50
|
|
|
|
|
if( aSet==0 ) goto no_mem; |
|
4614
|
6
|
|
|
|
|
|
p->aSet = aSet; |
|
4615
|
12
|
100
|
|
|
|
|
for(k=p->nSet; k<=i; k++){ |
|
4616
|
6
|
|
|
|
|
|
sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); |
|
4617
|
|
|
|
|
|
|
} |
|
4618
|
6
|
|
|
|
|
|
p->nSet = i+1; |
|
4619
|
|
|
|
|
|
|
} |
|
4620
|
12
|
50
|
|
|
|
|
if( pOp->p3 ){ |
|
4621
|
12
|
|
|
|
|
|
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); |
|
4622
|
|
|
|
|
|
|
}else{ |
|
4623
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4624
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
4625
|
0
|
|
|
|
|
|
sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); |
|
4626
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
4627
|
0
|
|
|
|
|
|
pTos--; |
|
4628
|
|
|
|
|
|
|
} |
|
4629
|
12
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
|
4630
|
12
|
|
|
|
|
|
break; |
|
4631
|
|
|
|
|
|
|
} |
|
4632
|
|
|
|
|
|
|
|
|
4633
|
|
|
|
|
|
|
/* Opcode: SetFound P1 P2 * |
|
4634
|
|
|
|
|
|
|
** |
|
4635
|
|
|
|
|
|
|
** Pop the stack once and compare the value popped off with the |
|
4636
|
|
|
|
|
|
|
** contents of set P1. If the element popped exists in set P1, |
|
4637
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through. |
|
4638
|
|
|
|
|
|
|
*/ |
|
4639
|
|
|
|
|
|
|
case OP_SetFound: { |
|
4640
|
0
|
|
|
|
|
|
int i = pOp->p1; |
|
4641
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4642
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
|
4643
|
0
|
0
|
|
|
|
|
if( i>=0 && inSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
4644
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4645
|
|
|
|
|
|
|
} |
|
4646
|
0
|
0
|
|
|
|
|
Release(pTos); |
|
4647
|
0
|
|
|
|
|
|
pTos--; |
|
4648
|
0
|
|
|
|
|
|
break; |
|
4649
|
|
|
|
|
|
|
} |
|
4650
|
|
|
|
|
|
|
|
|
4651
|
|
|
|
|
|
|
/* Opcode: SetNotFound P1 P2 * |
|
4652
|
|
|
|
|
|
|
** |
|
4653
|
|
|
|
|
|
|
** Pop the stack once and compare the value popped off with the |
|
4654
|
|
|
|
|
|
|
** contents of set P1. If the element popped does not exists in |
|
4655
|
|
|
|
|
|
|
** set P1, then jump to P2. Otherwise fall through. |
|
4656
|
|
|
|
|
|
|
*/ |
|
4657
|
|
|
|
|
|
|
case OP_SetNotFound: { |
|
4658
|
34
|
|
|
|
|
|
int i = pOp->p1; |
|
4659
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4660
|
34
|
50
|
|
|
|
|
Stringify(pTos); |
|
4661
|
68
|
50
|
|
|
|
|
if( i<0 || i>=p->nSet || |
|
4662
|
34
|
|
|
|
|
|
sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ |
|
4663
|
14
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4664
|
|
|
|
|
|
|
} |
|
4665
|
34
|
50
|
|
|
|
|
Release(pTos); |
|
4666
|
34
|
|
|
|
|
|
pTos--; |
|
4667
|
34
|
|
|
|
|
|
break; |
|
4668
|
|
|
|
|
|
|
} |
|
4669
|
|
|
|
|
|
|
|
|
4670
|
|
|
|
|
|
|
/* Opcode: SetFirst P1 P2 * |
|
4671
|
|
|
|
|
|
|
** |
|
4672
|
|
|
|
|
|
|
** Read the first element from set P1 and push it onto the stack. If the |
|
4673
|
|
|
|
|
|
|
** set is empty, push nothing and jump immediately to P2. This opcode is |
|
4674
|
|
|
|
|
|
|
** used in combination with OP_SetNext to loop over all elements of a set. |
|
4675
|
|
|
|
|
|
|
*/ |
|
4676
|
|
|
|
|
|
|
/* Opcode: SetNext P1 P2 * |
|
4677
|
|
|
|
|
|
|
** |
|
4678
|
|
|
|
|
|
|
** Read the next element from set P1 and push it onto the stack. If there |
|
4679
|
|
|
|
|
|
|
** are no more elements in the set, do not do the push and fall through. |
|
4680
|
|
|
|
|
|
|
** Otherwise, jump to P2 after pushing the next set element. |
|
4681
|
|
|
|
|
|
|
*/ |
|
4682
|
|
|
|
|
|
|
case OP_SetFirst: |
|
4683
|
|
|
|
|
|
|
case OP_SetNext: { |
|
4684
|
|
|
|
|
|
|
Set *pSet; |
|
4685
|
0
|
0
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
|
4686
|
0
|
0
|
|
|
|
|
if( pOp->p1<0 || pOp->p1>=p->nSet ){ |
|
|
|
0
|
|
|
|
|
|
|
4687
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; |
|
4688
|
0
|
|
|
|
|
|
break; |
|
4689
|
|
|
|
|
|
|
} |
|
4690
|
0
|
|
|
|
|
|
pSet = &p->aSet[pOp->p1]; |
|
4691
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_SetFirst ){ |
|
4692
|
0
|
|
|
|
|
|
pSet->prev = sqliteHashFirst(&pSet->hash); |
|
4693
|
0
|
0
|
|
|
|
|
if( pSet->prev==0 ){ |
|
4694
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4695
|
0
|
|
|
|
|
|
break; |
|
4696
|
|
|
|
|
|
|
} |
|
4697
|
|
|
|
|
|
|
}else{ |
|
4698
|
0
|
0
|
|
|
|
|
if( pSet->prev ){ |
|
4699
|
0
|
|
|
|
|
|
pSet->prev = sqliteHashNext(pSet->prev); |
|
4700
|
|
|
|
|
|
|
} |
|
4701
|
0
|
0
|
|
|
|
|
if( pSet->prev==0 ){ |
|
4702
|
0
|
|
|
|
|
|
break; |
|
4703
|
|
|
|
|
|
|
}else{ |
|
4704
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
|
4705
|
|
|
|
|
|
|
} |
|
4706
|
|
|
|
|
|
|
} |
|
4707
|
0
|
|
|
|
|
|
pTos++; |
|
4708
|
0
|
|
|
|
|
|
pTos->z = sqliteHashKey(pSet->prev); |
|
4709
|
0
|
|
|
|
|
|
pTos->n = sqliteHashKeysize(pSet->prev); |
|
4710
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
|
4711
|
0
|
|
|
|
|
|
break; |
|
4712
|
|
|
|
|
|
|
} |
|
4713
|
|
|
|
|
|
|
|
|
4714
|
|
|
|
|
|
|
/* Opcode: Vacuum * * * |
|
4715
|
|
|
|
|
|
|
** |
|
4716
|
|
|
|
|
|
|
** Vacuum the entire database. This opcode will cause other virtual |
|
4717
|
|
|
|
|
|
|
** machines to be created and run. It may not be called from within |
|
4718
|
|
|
|
|
|
|
** a transaction. |
|
4719
|
|
|
|
|
|
|
*/ |
|
4720
|
|
|
|
|
|
|
case OP_Vacuum: { |
|
4721
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
|
4722
|
0
|
|
|
|
|
|
rc = sqliteRunVacuum(&p->zErrMsg, db); |
|
4723
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
|
4724
|
0
|
|
|
|
|
|
break; |
|
4725
|
|
|
|
|
|
|
} |
|
4726
|
|
|
|
|
|
|
|
|
4727
|
|
|
|
|
|
|
/* Opcode: StackDepth * * * |
|
4728
|
|
|
|
|
|
|
** |
|
4729
|
|
|
|
|
|
|
** Push an integer onto the stack which is the depth of the stack prior |
|
4730
|
|
|
|
|
|
|
** to that integer being pushed. |
|
4731
|
|
|
|
|
|
|
*/ |
|
4732
|
|
|
|
|
|
|
case OP_StackDepth: { |
|
4733
|
0
|
|
|
|
|
|
int depth = (&pTos[1]) - p->aStack; |
|
4734
|
0
|
|
|
|
|
|
pTos++; |
|
4735
|
0
|
|
|
|
|
|
pTos->i = depth; |
|
4736
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
|
4737
|
0
|
|
|
|
|
|
break; |
|
4738
|
|
|
|
|
|
|
} |
|
4739
|
|
|
|
|
|
|
|
|
4740
|
|
|
|
|
|
|
/* Opcode: StackReset * * * |
|
4741
|
|
|
|
|
|
|
** |
|
4742
|
|
|
|
|
|
|
** Pop a single integer off of the stack. Then pop the stack |
|
4743
|
|
|
|
|
|
|
** as many times as necessary to get the depth of the stack down |
|
4744
|
|
|
|
|
|
|
** to the value of the integer that was popped. |
|
4745
|
|
|
|
|
|
|
*/ |
|
4746
|
|
|
|
|
|
|
case OP_StackReset: { |
|
4747
|
|
|
|
|
|
|
int depth, goal; |
|
4748
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
|
4749
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
|
4750
|
0
|
|
|
|
|
|
goal = pTos->i; |
|
4751
|
0
|
|
|
|
|
|
depth = (&pTos[1]) - p->aStack; |
|
4752
|
|
|
|
|
|
|
assert( goal
|
|
4753
|
0
|
|
|
|
|
|
popStack(&pTos, depth-goal); |
|
4754
|
0
|
|
|
|
|
|
break; |
|
4755
|
|
|
|
|
|
|
} |
|
4756
|
|
|
|
|
|
|
|
|
4757
|
|
|
|
|
|
|
/* An other opcode is illegal... |
|
4758
|
|
|
|
|
|
|
*/ |
|
4759
|
|
|
|
|
|
|
default: { |
|
4760
|
0
|
|
|
|
|
|
sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); |
|
4761
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); |
|
4762
|
0
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
|
4763
|
0
|
|
|
|
|
|
break; |
|
4764
|
|
|
|
|
|
|
} |
|
4765
|
|
|
|
|
|
|
|
|
4766
|
|
|
|
|
|
|
/***************************************************************************** |
|
4767
|
|
|
|
|
|
|
** The cases of the switch statement above this line should all be indented |
|
4768
|
|
|
|
|
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
|
4769
|
|
|
|
|
|
|
** readability. From this point on down, the normal indentation rules are |
|
4770
|
|
|
|
|
|
|
** restored. |
|
4771
|
|
|
|
|
|
|
*****************************************************************************/ |
|
4772
|
|
|
|
|
|
|
} |
|
4773
|
|
|
|
|
|
|
|
|
4774
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
|
4775
|
|
|
|
|
|
|
{ |
|
4776
|
|
|
|
|
|
|
long long elapse = hwtime() - start; |
|
4777
|
|
|
|
|
|
|
pOp->cycles += elapse; |
|
4778
|
|
|
|
|
|
|
pOp->cnt++; |
|
4779
|
|
|
|
|
|
|
#if 0 |
|
4780
|
|
|
|
|
|
|
fprintf(stdout, "%10lld ", elapse); |
|
4781
|
|
|
|
|
|
|
sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]); |
|
4782
|
|
|
|
|
|
|
#endif |
|
4783
|
|
|
|
|
|
|
} |
|
4784
|
|
|
|
|
|
|
#endif |
|
4785
|
|
|
|
|
|
|
|
|
4786
|
|
|
|
|
|
|
/* The following code adds nothing to the actual functionality |
|
4787
|
|
|
|
|
|
|
** of the program. It is only here for testing and debugging. |
|
4788
|
|
|
|
|
|
|
** On the other hand, it does burn CPU cycles every time through |
|
4789
|
|
|
|
|
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined. |
|
4790
|
|
|
|
|
|
|
*/ |
|
4791
|
|
|
|
|
|
|
#ifndef NDEBUG |
|
4792
|
|
|
|
|
|
|
/* Sanity checking on the top element of the stack */ |
|
4793
|
|
|
|
|
|
|
if( pTos>=p->aStack ){ |
|
4794
|
|
|
|
|
|
|
assert( pTos->flags!=0 ); /* Must define some type */ |
|
4795
|
|
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
|
4796
|
|
|
|
|
|
|
int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
|
4797
|
|
|
|
|
|
|
assert( x!=0 ); /* Strings must define a string subtype */ |
|
4798
|
|
|
|
|
|
|
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ |
|
4799
|
|
|
|
|
|
|
assert( pTos->z!=0 ); /* Strings must have a value */ |
|
4800
|
|
|
|
|
|
|
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ |
|
4801
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); |
|
4802
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); |
|
4803
|
|
|
|
|
|
|
}else{ |
|
4804
|
|
|
|
|
|
|
/* Cannot define a string subtype for non-string objects */ |
|
4805
|
|
|
|
|
|
|
assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); |
|
4806
|
|
|
|
|
|
|
} |
|
4807
|
|
|
|
|
|
|
/* MEM_Null excludes all other types */ |
|
4808
|
|
|
|
|
|
|
assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 ); |
|
4809
|
|
|
|
|
|
|
} |
|
4810
|
|
|
|
|
|
|
if( pc<-1 || pc>=p->nOp ){ |
|
4811
|
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); |
|
4812
|
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
|
4813
|
|
|
|
|
|
|
} |
|
4814
|
|
|
|
|
|
|
if( p->trace && pTos>=p->aStack ){ |
|
4815
|
|
|
|
|
|
|
int i; |
|
4816
|
|
|
|
|
|
|
fprintf(p->trace, "Stack:"); |
|
4817
|
|
|
|
|
|
|
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ |
|
4818
|
|
|
|
|
|
|
if( pTos[i].flags & MEM_Null ){ |
|
4819
|
|
|
|
|
|
|
fprintf(p->trace, " NULL"); |
|
4820
|
|
|
|
|
|
|
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
|
4821
|
|
|
|
|
|
|
fprintf(p->trace, " si:%d", pTos[i].i); |
|
4822
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Int ){ |
|
4823
|
|
|
|
|
|
|
fprintf(p->trace, " i:%d", pTos[i].i); |
|
4824
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Real ){ |
|
4825
|
|
|
|
|
|
|
fprintf(p->trace, " r:%g", pTos[i].r); |
|
4826
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Str ){ |
|
4827
|
|
|
|
|
|
|
int j, k; |
|
4828
|
|
|
|
|
|
|
char zBuf[100]; |
|
4829
|
|
|
|
|
|
|
zBuf[0] = ' '; |
|
4830
|
|
|
|
|
|
|
if( pTos[i].flags & MEM_Dyn ){ |
|
4831
|
|
|
|
|
|
|
zBuf[1] = 'z'; |
|
4832
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); |
|
4833
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Static ){ |
|
4834
|
|
|
|
|
|
|
zBuf[1] = 't'; |
|
4835
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); |
|
4836
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Ephem ){ |
|
4837
|
|
|
|
|
|
|
zBuf[1] = 'e'; |
|
4838
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); |
|
4839
|
|
|
|
|
|
|
}else{ |
|
4840
|
|
|
|
|
|
|
zBuf[1] = 's'; |
|
4841
|
|
|
|
|
|
|
} |
|
4842
|
|
|
|
|
|
|
zBuf[2] = '['; |
|
4843
|
|
|
|
|
|
|
k = 3; |
|
4844
|
|
|
|
|
|
|
for(j=0; j<20 && j
|
|
4845
|
|
|
|
|
|
|
int c = pTos[i].z[j]; |
|
4846
|
|
|
|
|
|
|
if( c==0 && j==pTos[i].n-1 ) break; |
|
4847
|
|
|
|
|
|
|
if( isprint(c) && !isspace(c) ){ |
|
4848
|
|
|
|
|
|
|
zBuf[k++] = c; |
|
4849
|
|
|
|
|
|
|
}else{ |
|
4850
|
|
|
|
|
|
|
zBuf[k++] = '.'; |
|
4851
|
|
|
|
|
|
|
} |
|
4852
|
|
|
|
|
|
|
} |
|
4853
|
|
|
|
|
|
|
zBuf[k++] = ']'; |
|
4854
|
|
|
|
|
|
|
zBuf[k++] = 0; |
|
4855
|
|
|
|
|
|
|
fprintf(p->trace, "%s", zBuf); |
|
4856
|
|
|
|
|
|
|
}else{ |
|
4857
|
|
|
|
|
|
|
fprintf(p->trace, " ???"); |
|
4858
|
|
|
|
|
|
|
} |
|
4859
|
|
|
|
|
|
|
} |
|
4860
|
|
|
|
|
|
|
if( rc!=0 ) fprintf(p->trace," rc=%d",rc); |
|
4861
|
|
|
|
|
|
|
fprintf(p->trace,"\n"); |
|
4862
|
|
|
|
|
|
|
} |
|
4863
|
|
|
|
|
|
|
#endif |
|
4864
|
|
|
|
|
|
|
} /* The end of the for(;;) loop the loops through opcodes */ |
|
4865
|
|
|
|
|
|
|
|
|
4866
|
|
|
|
|
|
|
/* If we reach this point, it means that execution is finished. |
|
4867
|
|
|
|
|
|
|
*/ |
|
4868
|
|
|
|
|
|
|
vdbe_halt: |
|
4869
|
1
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT |
|
4870
|
1
|
50
|
|
|
|
|
if( rc ){ |
|
4871
|
1
|
|
|
|
|
|
p->rc = rc; |
|
4872
|
1
|
|
|
|
|
|
rc = SQLITE_ERROR; |
|
4873
|
|
|
|
|
|
|
}else{ |
|
4874
|
0
|
|
|
|
|
|
rc = SQLITE_DONE; |
|
4875
|
|
|
|
|
|
|
} |
|
4876
|
1
|
|
|
|
|
|
p->magic = VDBE_MAGIC_HALT; |
|
4877
|
1
|
|
|
|
|
|
p->pTos = pTos; |
|
4878
|
1
|
|
|
|
|
|
return rc; |
|
4879
|
|
|
|
|
|
|
|
|
4880
|
|
|
|
|
|
|
/* Jump to here if a malloc() fails. It's hard to get a malloc() |
|
4881
|
|
|
|
|
|
|
** to fail on a modern VM computer, so this code is untested. |
|
4882
|
|
|
|
|
|
|
*/ |
|
4883
|
|
|
|
|
|
|
no_mem: |
|
4884
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); |
|
4885
|
0
|
|
|
|
|
|
rc = SQLITE_NOMEM; |
|
4886
|
0
|
|
|
|
|
|
goto vdbe_halt; |
|
4887
|
|
|
|
|
|
|
|
|
4888
|
|
|
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error. |
|
4889
|
|
|
|
|
|
|
*/ |
|
4890
|
|
|
|
|
|
|
abort_due_to_misuse: |
|
4891
|
0
|
|
|
|
|
|
rc = SQLITE_MISUSE; |
|
4892
|
|
|
|
|
|
|
/* Fall thru into abort_due_to_error */ |
|
4893
|
|
|
|
|
|
|
|
|
4894
|
|
|
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable |
|
4895
|
|
|
|
|
|
|
** should hold the error number. |
|
4896
|
|
|
|
|
|
|
*/ |
|
4897
|
|
|
|
|
|
|
abort_due_to_error: |
|
4898
|
0
|
0
|
|
|
|
|
if( p->zErrMsg==0 ){ |
|
4899
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) rc = SQLITE_NOMEM; |
|
4900
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
|
4901
|
|
|
|
|
|
|
} |
|
4902
|
0
|
|
|
|
|
|
goto vdbe_halt; |
|
4903
|
|
|
|
|
|
|
|
|
4904
|
|
|
|
|
|
|
/* Jump to here if the sqlite_interrupt() API sets the interrupt |
|
4905
|
|
|
|
|
|
|
** flag. |
|
4906
|
|
|
|
|
|
|
*/ |
|
4907
|
|
|
|
|
|
|
abort_due_to_interrupt: |
|
4908
|
|
|
|
|
|
|
assert( db->flags & SQLITE_Interrupt ); |
|
4909
|
0
|
|
|
|
|
|
db->flags &= ~SQLITE_Interrupt; |
|
4910
|
0
|
0
|
|
|
|
|
if( db->magic!=SQLITE_MAGIC_BUSY ){ |
|
4911
|
0
|
|
|
|
|
|
rc = SQLITE_MISUSE; |
|
4912
|
|
|
|
|
|
|
}else{ |
|
4913
|
0
|
|
|
|
|
|
rc = SQLITE_INTERRUPT; |
|
4914
|
|
|
|
|
|
|
} |
|
4915
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
|
4916
|
433
|
|
|
|
|
|
goto vdbe_halt; |
|
4917
|
|
|
|
|
|
|
} |