line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
** 2001 September 15 |
3
|
|
|
|
|
|
|
** |
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
6
|
|
|
|
|
|
|
** |
7
|
|
|
|
|
|
|
** May you do good and not evil. |
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
10
|
|
|
|
|
|
|
** |
11
|
|
|
|
|
|
|
************************************************************************* |
12
|
|
|
|
|
|
|
** The code in this file implements execution method of the |
13
|
|
|
|
|
|
|
** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") |
14
|
|
|
|
|
|
|
** handles housekeeping details such as creating and deleting |
15
|
|
|
|
|
|
|
** VDBE instances. This file is solely interested in executing |
16
|
|
|
|
|
|
|
** the VDBE program. |
17
|
|
|
|
|
|
|
** |
18
|
|
|
|
|
|
|
** In the external interface, an "sqlite_vm*" is an opaque pointer |
19
|
|
|
|
|
|
|
** to a VDBE. |
20
|
|
|
|
|
|
|
** |
21
|
|
|
|
|
|
|
** The SQL parser generates a program which is then executed by |
22
|
|
|
|
|
|
|
** the VDBE to do the work of the SQL statement. VDBE programs are |
23
|
|
|
|
|
|
|
** similar in form to assembly language. The program consists of |
24
|
|
|
|
|
|
|
** a linear sequence of operations. Each operation has an opcode |
25
|
|
|
|
|
|
|
** and 3 operands. Operands P1 and P2 are integers. Operand P3 |
26
|
|
|
|
|
|
|
** is a null-terminated string. The P2 operand must be non-negative. |
27
|
|
|
|
|
|
|
** Opcodes will typically ignore one or more operands. Many opcodes |
28
|
|
|
|
|
|
|
** ignore all three operands. |
29
|
|
|
|
|
|
|
** |
30
|
|
|
|
|
|
|
** Computation results are stored on a stack. Each entry on the |
31
|
|
|
|
|
|
|
** stack is either an integer, a null-terminated string, a floating point |
32
|
|
|
|
|
|
|
** number, or the SQL "NULL" value. An inplicit conversion from one |
33
|
|
|
|
|
|
|
** type to the other occurs as necessary. |
34
|
|
|
|
|
|
|
** |
35
|
|
|
|
|
|
|
** Most of the code in this file is taken up by the sqliteVdbeExec() |
36
|
|
|
|
|
|
|
** function which does the work of interpreting a VDBE program. |
37
|
|
|
|
|
|
|
** But other routines are also provided to help in building up |
38
|
|
|
|
|
|
|
** a program instruction by instruction. |
39
|
|
|
|
|
|
|
** |
40
|
|
|
|
|
|
|
** Various scripts scan this source file in order to generate HTML |
41
|
|
|
|
|
|
|
** documentation, headers files, or other derived files. The formatting |
42
|
|
|
|
|
|
|
** of the code in this file is, therefore, important. See other comments |
43
|
|
|
|
|
|
|
** in this file for details. If in doubt, do not deviate from existing |
44
|
|
|
|
|
|
|
** commenting and indentation practices when changing or adding code. |
45
|
|
|
|
|
|
|
** |
46
|
|
|
|
|
|
|
** $Id: vdbe.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $ |
47
|
|
|
|
|
|
|
*/ |
48
|
|
|
|
|
|
|
#include "sqliteInt.h" |
49
|
|
|
|
|
|
|
#include "os.h" |
50
|
|
|
|
|
|
|
#include |
51
|
|
|
|
|
|
|
#include "vdbeInt.h" |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
/* |
54
|
|
|
|
|
|
|
** The following global variable is incremented every time a cursor |
55
|
|
|
|
|
|
|
** moves, either by the OP_MoveTo or the OP_Next opcode. The test |
56
|
|
|
|
|
|
|
** procedures use this information to make sure that indices are |
57
|
|
|
|
|
|
|
** working correctly. This variable has no function other than to |
58
|
|
|
|
|
|
|
** help verify the correct operation of the library. |
59
|
|
|
|
|
|
|
*/ |
60
|
|
|
|
|
|
|
int sqlite_search_count = 0; |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
/* |
63
|
|
|
|
|
|
|
** When this global variable is positive, it gets decremented once before |
64
|
|
|
|
|
|
|
** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt |
65
|
|
|
|
|
|
|
** of the db.flags field is set in order to simulate an interrupt. |
66
|
|
|
|
|
|
|
** |
67
|
|
|
|
|
|
|
** This facility is used for testing purposes only. It does not function |
68
|
|
|
|
|
|
|
** in an ordinary build. |
69
|
|
|
|
|
|
|
*/ |
70
|
|
|
|
|
|
|
int sqlite_interrupt_count = 0; |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
/* |
73
|
|
|
|
|
|
|
** Advance the virtual machine to the next output row. |
74
|
|
|
|
|
|
|
** |
75
|
|
|
|
|
|
|
** The return vale will be either SQLITE_BUSY, SQLITE_DONE, |
76
|
|
|
|
|
|
|
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE. |
77
|
|
|
|
|
|
|
** |
78
|
|
|
|
|
|
|
** SQLITE_BUSY means that the virtual machine attempted to open |
79
|
|
|
|
|
|
|
** a locked database and there is no busy callback registered. |
80
|
|
|
|
|
|
|
** Call sqlite_step() again to retry the open. *pN is set to 0 |
81
|
|
|
|
|
|
|
** and *pazColName and *pazValue are both set to NULL. |
82
|
|
|
|
|
|
|
** |
83
|
|
|
|
|
|
|
** SQLITE_DONE means that the virtual machine has finished |
84
|
|
|
|
|
|
|
** executing. sqlite_step() should not be called again on this |
85
|
|
|
|
|
|
|
** virtual machine. *pN and *pazColName are set appropriately |
86
|
|
|
|
|
|
|
** but *pazValue is set to NULL. |
87
|
|
|
|
|
|
|
** |
88
|
|
|
|
|
|
|
** SQLITE_ROW means that the virtual machine has generated another |
89
|
|
|
|
|
|
|
** row of the result set. *pN is set to the number of columns in |
90
|
|
|
|
|
|
|
** the row. *pazColName is set to the names of the columns followed |
91
|
|
|
|
|
|
|
** by the column datatypes. *pazValue is set to the values of each |
92
|
|
|
|
|
|
|
** column in the row. The value of the i-th column is (*pazValue)[i]. |
93
|
|
|
|
|
|
|
** The name of the i-th column is (*pazColName)[i] and the datatype |
94
|
|
|
|
|
|
|
** of the i-th column is (*pazColName)[i+*pN]. |
95
|
|
|
|
|
|
|
** |
96
|
|
|
|
|
|
|
** SQLITE_ERROR means that a run-time error (such as a constraint |
97
|
|
|
|
|
|
|
** violation) has occurred. The details of the error will be returned |
98
|
|
|
|
|
|
|
** by the next call to sqlite_finalize(). sqlite_step() should not |
99
|
|
|
|
|
|
|
** be called again on the VM. |
100
|
|
|
|
|
|
|
** |
101
|
|
|
|
|
|
|
** SQLITE_MISUSE means that the this routine was called inappropriately. |
102
|
|
|
|
|
|
|
** Perhaps it was called on a virtual machine that had already been |
103
|
|
|
|
|
|
|
** finalized or on one that had previously returned SQLITE_ERROR or |
104
|
|
|
|
|
|
|
** SQLITE_DONE. Or it could be the case the the same database connection |
105
|
|
|
|
|
|
|
** is being used simulataneously by two or more threads. |
106
|
|
|
|
|
|
|
*/ |
107
|
433
|
|
|
|
|
|
int sqlite_step( |
108
|
|
|
|
|
|
|
sqlite_vm *pVm, /* The virtual machine to execute */ |
109
|
|
|
|
|
|
|
int *pN, /* OUT: Number of columns in result */ |
110
|
|
|
|
|
|
|
const char ***pazValue, /* OUT: Column data */ |
111
|
|
|
|
|
|
|
const char ***pazColName /* OUT: Column names and datatypes */ |
112
|
|
|
|
|
|
|
){ |
113
|
433
|
|
|
|
|
|
Vdbe *p = (Vdbe*)pVm; |
114
|
|
|
|
|
|
|
sqlite *db; |
115
|
|
|
|
|
|
|
int rc; |
116
|
|
|
|
|
|
|
|
117
|
433
|
50
|
|
|
|
|
if( p->magic!=VDBE_MAGIC_RUN ){ |
118
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
119
|
|
|
|
|
|
|
} |
120
|
433
|
|
|
|
|
|
db = p->db; |
121
|
433
|
50
|
|
|
|
|
if( sqliteSafetyOn(db) ){ |
122
|
0
|
|
|
|
|
|
p->rc = SQLITE_MISUSE; |
123
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
124
|
|
|
|
|
|
|
} |
125
|
433
|
50
|
|
|
|
|
if( p->explain ){ |
126
|
0
|
|
|
|
|
|
rc = sqliteVdbeList(p); |
127
|
|
|
|
|
|
|
}else{ |
128
|
433
|
|
|
|
|
|
rc = sqliteVdbeExec(p); |
129
|
|
|
|
|
|
|
} |
130
|
433
|
100
|
|
|
|
|
if( rc==SQLITE_DONE || rc==SQLITE_ROW ){ |
|
|
100
|
|
|
|
|
|
131
|
431
|
50
|
|
|
|
|
if( pazColName ) *pazColName = (const char**)p->azColName; |
132
|
431
|
50
|
|
|
|
|
if( pN ) *pN = p->nResColumn; |
133
|
|
|
|
|
|
|
}else{ |
134
|
2
|
50
|
|
|
|
|
if( pazColName) *pazColName = 0; |
135
|
2
|
50
|
|
|
|
|
if( pN ) *pN = 0; |
136
|
|
|
|
|
|
|
} |
137
|
433
|
50
|
|
|
|
|
if( pazValue ){ |
138
|
433
|
100
|
|
|
|
|
if( rc==SQLITE_ROW ){ |
139
|
95
|
|
|
|
|
|
*pazValue = (const char**)p->azResColumn; |
140
|
|
|
|
|
|
|
}else{ |
141
|
338
|
|
|
|
|
|
*pazValue = 0; |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
} |
144
|
433
|
50
|
|
|
|
|
if( sqliteSafetyOff(db) ){ |
145
|
0
|
|
|
|
|
|
return SQLITE_MISUSE; |
146
|
|
|
|
|
|
|
} |
147
|
433
|
|
|
|
|
|
return rc; |
148
|
|
|
|
|
|
|
} |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
/* |
151
|
|
|
|
|
|
|
** Insert a new aggregate element and make it the element that |
152
|
|
|
|
|
|
|
** has focus. |
153
|
|
|
|
|
|
|
** |
154
|
|
|
|
|
|
|
** Return 0 on success and 1 if memory is exhausted. |
155
|
|
|
|
|
|
|
*/ |
156
|
16
|
|
|
|
|
|
static int AggInsert(Agg *p, char *zKey, int nKey){ |
157
|
|
|
|
|
|
|
AggElem *pElem, *pOld; |
158
|
|
|
|
|
|
|
int i; |
159
|
|
|
|
|
|
|
Mem *pMem; |
160
|
16
|
|
|
|
|
|
pElem = sqliteMalloc( sizeof(AggElem) + nKey + |
161
|
16
|
|
|
|
|
|
(p->nMem-1)*sizeof(pElem->aMem[0]) ); |
162
|
16
|
50
|
|
|
|
|
if( pElem==0 ) return 1; |
163
|
16
|
|
|
|
|
|
pElem->zKey = (char*)&pElem->aMem[p->nMem]; |
164
|
16
|
|
|
|
|
|
memcpy(pElem->zKey, zKey, nKey); |
165
|
16
|
|
|
|
|
|
pElem->nKey = nKey; |
166
|
16
|
|
|
|
|
|
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem); |
167
|
16
|
50
|
|
|
|
|
if( pOld!=0 ){ |
168
|
|
|
|
|
|
|
assert( pOld==pElem ); /* Malloc failed on insert */ |
169
|
0
|
|
|
|
|
|
sqliteFree(pOld); |
170
|
0
|
|
|
|
|
|
return 0; |
171
|
|
|
|
|
|
|
} |
172
|
35
|
100
|
|
|
|
|
for(i=0, pMem=pElem->aMem; inMem; i++, pMem++){ |
173
|
19
|
|
|
|
|
|
pMem->flags = MEM_Null; |
174
|
|
|
|
|
|
|
} |
175
|
16
|
|
|
|
|
|
p->pCurrent = pElem; |
176
|
16
|
|
|
|
|
|
return 0; |
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
/* |
180
|
|
|
|
|
|
|
** Get the AggElem currently in focus |
181
|
|
|
|
|
|
|
*/ |
182
|
|
|
|
|
|
|
#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P))) |
183
|
0
|
|
|
|
|
|
static AggElem *_AggInFocus(Agg *p){ |
184
|
0
|
|
|
|
|
|
HashElem *pElem = sqliteHashFirst(&p->hash); |
185
|
0
|
0
|
|
|
|
|
if( pElem==0 ){ |
186
|
0
|
|
|
|
|
|
AggInsert(p,"",1); |
187
|
0
|
|
|
|
|
|
pElem = sqliteHashFirst(&p->hash); |
188
|
|
|
|
|
|
|
} |
189
|
0
|
0
|
|
|
|
|
return pElem ? sqliteHashData(pElem) : 0; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
/* |
193
|
|
|
|
|
|
|
** Convert the given stack entity into a string if it isn't one |
194
|
|
|
|
|
|
|
** already. |
195
|
|
|
|
|
|
|
*/ |
196
|
|
|
|
|
|
|
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} |
197
|
58
|
|
|
|
|
|
static int hardStringify(Mem *pStack){ |
198
|
58
|
|
|
|
|
|
int fg = pStack->flags; |
199
|
58
|
100
|
|
|
|
|
if( fg & MEM_Real ){ |
200
|
2
|
|
|
|
|
|
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r); |
201
|
56
|
100
|
|
|
|
|
}else if( fg & MEM_Int ){ |
202
|
43
|
|
|
|
|
|
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i); |
203
|
|
|
|
|
|
|
}else{ |
204
|
13
|
|
|
|
|
|
pStack->zShort[0] = 0; |
205
|
|
|
|
|
|
|
} |
206
|
58
|
|
|
|
|
|
pStack->z = pStack->zShort; |
207
|
58
|
|
|
|
|
|
pStack->n = strlen(pStack->zShort)+1; |
208
|
58
|
|
|
|
|
|
pStack->flags = MEM_Str | MEM_Short; |
209
|
58
|
|
|
|
|
|
return 0; |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
/* |
213
|
|
|
|
|
|
|
** Convert the given stack entity into a string that has been obtained |
214
|
|
|
|
|
|
|
** from sqliteMalloc(). This is different from Stringify() above in that |
215
|
|
|
|
|
|
|
** Stringify() will use the NBFS bytes of static string space if the string |
216
|
|
|
|
|
|
|
** will fit but this routine always mallocs for space. |
217
|
|
|
|
|
|
|
** Return non-zero if we run out of memory. |
218
|
|
|
|
|
|
|
*/ |
219
|
|
|
|
|
|
|
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0) |
220
|
0
|
|
|
|
|
|
static int hardDynamicify(Mem *pStack){ |
221
|
0
|
|
|
|
|
|
int fg = pStack->flags; |
222
|
|
|
|
|
|
|
char *z; |
223
|
0
|
0
|
|
|
|
|
if( (fg & MEM_Str)==0 ){ |
224
|
0
|
|
|
|
|
|
hardStringify(pStack); |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
assert( (fg & MEM_Dyn)==0 ); |
227
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( pStack->n ); |
228
|
0
|
0
|
|
|
|
|
if( z==0 ) return 1; |
229
|
0
|
|
|
|
|
|
memcpy(z, pStack->z, pStack->n); |
230
|
0
|
|
|
|
|
|
pStack->z = z; |
231
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Dyn; |
232
|
0
|
|
|
|
|
|
return 0; |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
/* |
236
|
|
|
|
|
|
|
** An ephemeral string value (signified by the MEM_Ephem flag) contains |
237
|
|
|
|
|
|
|
** a pointer to a dynamically allocated string where some other entity |
238
|
|
|
|
|
|
|
** is responsible for deallocating that string. Because the stack entry |
239
|
|
|
|
|
|
|
** does not control the string, it might be deleted without the stack |
240
|
|
|
|
|
|
|
** entry knowing it. |
241
|
|
|
|
|
|
|
** |
242
|
|
|
|
|
|
|
** This routine converts an ephemeral string into a dynamically allocated |
243
|
|
|
|
|
|
|
** string that the stack entry itself controls. In other words, it |
244
|
|
|
|
|
|
|
** converts an MEM_Ephem string into an MEM_Dyn string. |
245
|
|
|
|
|
|
|
*/ |
246
|
|
|
|
|
|
|
#define Deephemeralize(P) \ |
247
|
|
|
|
|
|
|
if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;} |
248
|
0
|
|
|
|
|
|
static int hardDeephem(Mem *pStack){ |
249
|
|
|
|
|
|
|
char *z; |
250
|
|
|
|
|
|
|
assert( (pStack->flags & MEM_Ephem)!=0 ); |
251
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( pStack->n ); |
252
|
0
|
0
|
|
|
|
|
if( z==0 ) return 1; |
253
|
0
|
|
|
|
|
|
memcpy(z, pStack->z, pStack->n); |
254
|
0
|
|
|
|
|
|
pStack->z = z; |
255
|
0
|
|
|
|
|
|
pStack->flags &= ~MEM_Ephem; |
256
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Dyn; |
257
|
0
|
|
|
|
|
|
return 0; |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
/* |
261
|
|
|
|
|
|
|
** Release the memory associated with the given stack level. This |
262
|
|
|
|
|
|
|
** leaves the Mem.flags field in an inconsistent state. |
263
|
|
|
|
|
|
|
*/ |
264
|
|
|
|
|
|
|
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); } |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
/* |
267
|
|
|
|
|
|
|
** Pop the stack N times. |
268
|
|
|
|
|
|
|
*/ |
269
|
510
|
|
|
|
|
|
static void popStack(Mem **ppTos, int N){ |
270
|
510
|
|
|
|
|
|
Mem *pTos = *ppTos; |
271
|
1608
|
100
|
|
|
|
|
while( N>0 ){ |
272
|
1098
|
|
|
|
|
|
N--; |
273
|
1098
|
100
|
|
|
|
|
Release(pTos); |
274
|
1098
|
|
|
|
|
|
pTos--; |
275
|
|
|
|
|
|
|
} |
276
|
510
|
|
|
|
|
|
*ppTos = pTos; |
277
|
510
|
|
|
|
|
|
} |
278
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
/* |
280
|
|
|
|
|
|
|
** Return TRUE if zNum is a 32-bit signed integer and write |
281
|
|
|
|
|
|
|
** the value of the integer into *pNum. If zNum is not an integer |
282
|
|
|
|
|
|
|
** or is an integer that is too large to be expressed with just 32 |
283
|
|
|
|
|
|
|
** bits, then return false. |
284
|
|
|
|
|
|
|
** |
285
|
|
|
|
|
|
|
** Under Linux (RedHat 7.2) this routine is much faster than atoi() |
286
|
|
|
|
|
|
|
** for converting strings into integers. |
287
|
|
|
|
|
|
|
*/ |
288
|
27
|
|
|
|
|
|
static int toInt(const char *zNum, int *pNum){ |
289
|
27
|
|
|
|
|
|
int v = 0; |
290
|
|
|
|
|
|
|
int neg; |
291
|
|
|
|
|
|
|
int i, c; |
292
|
27
|
50
|
|
|
|
|
if( *zNum=='-' ){ |
293
|
0
|
|
|
|
|
|
neg = 1; |
294
|
0
|
|
|
|
|
|
zNum++; |
295
|
27
|
50
|
|
|
|
|
}else if( *zNum=='+' ){ |
296
|
0
|
|
|
|
|
|
neg = 0; |
297
|
0
|
|
|
|
|
|
zNum++; |
298
|
|
|
|
|
|
|
}else{ |
299
|
27
|
|
|
|
|
|
neg = 0; |
300
|
|
|
|
|
|
|
} |
301
|
54
|
100
|
|
|
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
|
|
50
|
|
|
|
|
|
302
|
27
|
|
|
|
|
|
v = v*10 + c - '0'; |
303
|
|
|
|
|
|
|
} |
304
|
27
|
50
|
|
|
|
|
*pNum = neg ? -v : v; |
305
|
27
|
50
|
|
|
|
|
return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0)); |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
306
|
|
|
|
|
|
|
} |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
/* |
309
|
|
|
|
|
|
|
** Convert the given stack entity into a integer if it isn't one |
310
|
|
|
|
|
|
|
** already. |
311
|
|
|
|
|
|
|
** |
312
|
|
|
|
|
|
|
** Any prior string or real representation is invalidated. |
313
|
|
|
|
|
|
|
** NULLs are converted into 0. |
314
|
|
|
|
|
|
|
*/ |
315
|
|
|
|
|
|
|
#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); } |
316
|
0
|
|
|
|
|
|
static void hardIntegerify(Mem *pStack){ |
317
|
0
|
0
|
|
|
|
|
if( pStack->flags & MEM_Real ){ |
318
|
0
|
|
|
|
|
|
pStack->i = (int)pStack->r; |
319
|
0
|
0
|
|
|
|
|
Release(pStack); |
320
|
0
|
0
|
|
|
|
|
}else if( pStack->flags & MEM_Str ){ |
321
|
0
|
|
|
|
|
|
toInt(pStack->z, &pStack->i); |
322
|
0
|
0
|
|
|
|
|
Release(pStack); |
323
|
|
|
|
|
|
|
}else{ |
324
|
0
|
|
|
|
|
|
pStack->i = 0; |
325
|
|
|
|
|
|
|
} |
326
|
0
|
|
|
|
|
|
pStack->flags = MEM_Int; |
327
|
0
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
/* |
330
|
|
|
|
|
|
|
** Get a valid Real representation for the given stack element. |
331
|
|
|
|
|
|
|
** |
332
|
|
|
|
|
|
|
** Any prior string or integer representation is retained. |
333
|
|
|
|
|
|
|
** NULLs are converted into 0.0. |
334
|
|
|
|
|
|
|
*/ |
335
|
|
|
|
|
|
|
#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); } |
336
|
0
|
|
|
|
|
|
static void hardRealify(Mem *pStack){ |
337
|
0
|
0
|
|
|
|
|
if( pStack->flags & MEM_Str ){ |
338
|
0
|
|
|
|
|
|
pStack->r = sqliteAtoF(pStack->z, 0); |
339
|
0
|
0
|
|
|
|
|
}else if( pStack->flags & MEM_Int ){ |
340
|
0
|
|
|
|
|
|
pStack->r = pStack->i; |
341
|
|
|
|
|
|
|
}else{ |
342
|
0
|
|
|
|
|
|
pStack->r = 0.0; |
343
|
|
|
|
|
|
|
} |
344
|
0
|
|
|
|
|
|
pStack->flags |= MEM_Real; |
345
|
0
|
|
|
|
|
|
} |
346
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
/* |
348
|
|
|
|
|
|
|
** The parameters are pointers to the head of two sorted lists |
349
|
|
|
|
|
|
|
** of Sorter structures. Merge these two lists together and return |
350
|
|
|
|
|
|
|
** a single sorted list. This routine forms the core of the merge-sort |
351
|
|
|
|
|
|
|
** algorithm. |
352
|
|
|
|
|
|
|
** |
353
|
|
|
|
|
|
|
** In the case of a tie, left sorts in front of right. |
354
|
|
|
|
|
|
|
*/ |
355
|
160
|
|
|
|
|
|
static Sorter *Merge(Sorter *pLeft, Sorter *pRight){ |
356
|
|
|
|
|
|
|
Sorter sHead; |
357
|
|
|
|
|
|
|
Sorter *pTail; |
358
|
160
|
|
|
|
|
|
pTail = &sHead; |
359
|
160
|
|
|
|
|
|
pTail->pNext = 0; |
360
|
181
|
100
|
|
|
|
|
while( pLeft && pRight ){ |
|
|
100
|
|
|
|
|
|
361
|
21
|
|
|
|
|
|
int c = sqliteSortCompare(pLeft->zKey, pRight->zKey); |
362
|
21
|
100
|
|
|
|
|
if( c<=0 ){ |
363
|
10
|
|
|
|
|
|
pTail->pNext = pLeft; |
364
|
10
|
|
|
|
|
|
pLeft = pLeft->pNext; |
365
|
|
|
|
|
|
|
}else{ |
366
|
11
|
|
|
|
|
|
pTail->pNext = pRight; |
367
|
11
|
|
|
|
|
|
pRight = pRight->pNext; |
368
|
|
|
|
|
|
|
} |
369
|
21
|
|
|
|
|
|
pTail = pTail->pNext; |
370
|
|
|
|
|
|
|
} |
371
|
160
|
100
|
|
|
|
|
if( pLeft ){ |
372
|
10
|
|
|
|
|
|
pTail->pNext = pLeft; |
373
|
150
|
100
|
|
|
|
|
}else if( pRight ){ |
374
|
117
|
|
|
|
|
|
pTail->pNext = pRight; |
375
|
|
|
|
|
|
|
} |
376
|
160
|
|
|
|
|
|
return sHead.pNext; |
377
|
|
|
|
|
|
|
} |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
/* |
380
|
|
|
|
|
|
|
** The following routine works like a replacement for the standard |
381
|
|
|
|
|
|
|
** library routine fgets(). The difference is in how end-of-line (EOL) |
382
|
|
|
|
|
|
|
** is handled. Standard fgets() uses LF for EOL under unix, CRLF |
383
|
|
|
|
|
|
|
** under windows, and CR under mac. This routine accepts any of these |
384
|
|
|
|
|
|
|
** character sequences as an EOL mark. The EOL mark is replaced by |
385
|
|
|
|
|
|
|
** a single LF character in zBuf. |
386
|
|
|
|
|
|
|
*/ |
387
|
0
|
|
|
|
|
|
static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){ |
388
|
|
|
|
|
|
|
int i, c; |
389
|
0
|
0
|
|
|
|
|
for(i=0; i
|
|
|
0
|
|
|
|
|
|
390
|
0
|
|
|
|
|
|
zBuf[i] = c; |
391
|
0
|
0
|
|
|
|
|
if( c=='\r' || c=='\n' ){ |
|
|
0
|
|
|
|
|
|
392
|
0
|
0
|
|
|
|
|
if( c=='\r' ){ |
393
|
0
|
|
|
|
|
|
zBuf[i] = '\n'; |
394
|
0
|
|
|
|
|
|
c = getc(in); |
395
|
0
|
0
|
|
|
|
|
if( c!=EOF && c!='\n' ) ungetc(c, in); |
|
|
0
|
|
|
|
|
|
396
|
|
|
|
|
|
|
} |
397
|
0
|
|
|
|
|
|
i++; |
398
|
0
|
|
|
|
|
|
break; |
399
|
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
} |
401
|
0
|
|
|
|
|
|
zBuf[i] = 0; |
402
|
0
|
0
|
|
|
|
|
return i>0 ? zBuf : 0; |
403
|
|
|
|
|
|
|
} |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
/* |
406
|
|
|
|
|
|
|
** Make sure there is space in the Vdbe structure to hold at least |
407
|
|
|
|
|
|
|
** mxCursor cursors. If there is not currently enough space, then |
408
|
|
|
|
|
|
|
** allocate more. |
409
|
|
|
|
|
|
|
** |
410
|
|
|
|
|
|
|
** If a memory allocation error occurs, return 1. Return 0 if |
411
|
|
|
|
|
|
|
** everything works. |
412
|
|
|
|
|
|
|
*/ |
413
|
218
|
|
|
|
|
|
static int expandCursorArraySize(Vdbe *p, int mxCursor){ |
414
|
218
|
100
|
|
|
|
|
if( mxCursor>=p->nCursor ){ |
415
|
201
|
|
|
|
|
|
Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) ); |
416
|
201
|
50
|
|
|
|
|
if( aCsr==0 ) return 1; |
417
|
201
|
|
|
|
|
|
p->aCsr = aCsr; |
418
|
201
|
|
|
|
|
|
memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor)); |
419
|
201
|
|
|
|
|
|
p->nCursor = mxCursor+1; |
420
|
|
|
|
|
|
|
} |
421
|
218
|
|
|
|
|
|
return 0; |
422
|
|
|
|
|
|
|
} |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
425
|
|
|
|
|
|
|
/* |
426
|
|
|
|
|
|
|
** The following routine only works on pentium-class processors. |
427
|
|
|
|
|
|
|
** It uses the RDTSC opcode to read cycle count value out of the |
428
|
|
|
|
|
|
|
** processor and returns that value. This can be used for high-res |
429
|
|
|
|
|
|
|
** profiling. |
430
|
|
|
|
|
|
|
*/ |
431
|
|
|
|
|
|
|
__inline__ unsigned long long int hwtime(void){ |
432
|
|
|
|
|
|
|
unsigned long long int x; |
433
|
|
|
|
|
|
|
__asm__("rdtsc\n\t" |
434
|
|
|
|
|
|
|
"mov %%edx, %%ecx\n\t" |
435
|
|
|
|
|
|
|
:"=A" (x)); |
436
|
|
|
|
|
|
|
return x; |
437
|
|
|
|
|
|
|
} |
438
|
|
|
|
|
|
|
#endif |
439
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
/* |
441
|
|
|
|
|
|
|
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the |
442
|
|
|
|
|
|
|
** sqlite_interrupt() routine has been called. If it has been, then |
443
|
|
|
|
|
|
|
** processing of the VDBE program is interrupted. |
444
|
|
|
|
|
|
|
** |
445
|
|
|
|
|
|
|
** This macro added to every instruction that does a jump in order to |
446
|
|
|
|
|
|
|
** implement a loop. This test used to be on every single instruction, |
447
|
|
|
|
|
|
|
** but that meant we more testing that we needed. By only testing the |
448
|
|
|
|
|
|
|
** flag on jump instructions, we get a (small) speed improvement. |
449
|
|
|
|
|
|
|
*/ |
450
|
|
|
|
|
|
|
#define CHECK_FOR_INTERRUPT \ |
451
|
|
|
|
|
|
|
if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt; |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
/* |
455
|
|
|
|
|
|
|
** Execute as much of a VDBE program as we can then return. |
456
|
|
|
|
|
|
|
** |
457
|
|
|
|
|
|
|
** sqliteVdbeMakeReady() must be called before this routine in order to |
458
|
|
|
|
|
|
|
** close the program with a final OP_Halt and to set up the callbacks |
459
|
|
|
|
|
|
|
** and the error message pointer. |
460
|
|
|
|
|
|
|
** |
461
|
|
|
|
|
|
|
** Whenever a row or result data is available, this routine will either |
462
|
|
|
|
|
|
|
** invoke the result callback (if there is one) or return with |
463
|
|
|
|
|
|
|
** SQLITE_ROW. |
464
|
|
|
|
|
|
|
** |
465
|
|
|
|
|
|
|
** If an attempt is made to open a locked database, then this routine |
466
|
|
|
|
|
|
|
** will either invoke the busy callback (if there is one) or it will |
467
|
|
|
|
|
|
|
** return SQLITE_BUSY. |
468
|
|
|
|
|
|
|
** |
469
|
|
|
|
|
|
|
** If an error occurs, an error message is written to memory obtained |
470
|
|
|
|
|
|
|
** from sqliteMalloc() and p->zErrMsg is made to point to that memory. |
471
|
|
|
|
|
|
|
** The error code is stored in p->rc and this routine returns SQLITE_ERROR. |
472
|
|
|
|
|
|
|
** |
473
|
|
|
|
|
|
|
** If the callback ever returns non-zero, then the program exits |
474
|
|
|
|
|
|
|
** immediately. There will be no error message but the p->rc field is |
475
|
|
|
|
|
|
|
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. |
476
|
|
|
|
|
|
|
** |
477
|
|
|
|
|
|
|
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this |
478
|
|
|
|
|
|
|
** routine to return SQLITE_ERROR. |
479
|
|
|
|
|
|
|
** |
480
|
|
|
|
|
|
|
** Other fatal errors return SQLITE_ERROR. |
481
|
|
|
|
|
|
|
** |
482
|
|
|
|
|
|
|
** After this routine has finished, sqliteVdbeFinalize() should be |
483
|
|
|
|
|
|
|
** used to clean up the mess that was left behind. |
484
|
|
|
|
|
|
|
*/ |
485
|
433
|
|
|
|
|
|
int sqliteVdbeExec( |
486
|
|
|
|
|
|
|
Vdbe *p /* The VDBE */ |
487
|
|
|
|
|
|
|
){ |
488
|
|
|
|
|
|
|
int pc; /* The program counter */ |
489
|
|
|
|
|
|
|
Op *pOp; /* Current operation */ |
490
|
433
|
|
|
|
|
|
int rc = SQLITE_OK; /* Value to return */ |
491
|
433
|
|
|
|
|
|
sqlite *db = p->db; /* The database */ |
492
|
|
|
|
|
|
|
Mem *pTos; /* Top entry in the operand stack */ |
493
|
|
|
|
|
|
|
char zBuf[100]; /* Space to sprintf() an integer */ |
494
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
495
|
|
|
|
|
|
|
unsigned long long start; /* CPU clock count at start of opcode */ |
496
|
|
|
|
|
|
|
int origPc; /* Program counter at start of opcode */ |
497
|
|
|
|
|
|
|
#endif |
498
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
499
|
433
|
|
|
|
|
|
int nProgressOps = 0; /* Opcodes executed since progress callback. */ |
500
|
|
|
|
|
|
|
#endif |
501
|
|
|
|
|
|
|
|
502
|
433
|
50
|
|
|
|
|
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; |
503
|
|
|
|
|
|
|
assert( db->magic==SQLITE_MAGIC_BUSY ); |
504
|
|
|
|
|
|
|
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
505
|
433
|
|
|
|
|
|
p->rc = SQLITE_OK; |
506
|
|
|
|
|
|
|
assert( p->explain==0 ); |
507
|
433
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
508
|
433
|
|
|
|
|
|
pTos = p->pTos; |
509
|
433
|
100
|
|
|
|
|
if( p->popStack ){ |
510
|
91
|
|
|
|
|
|
popStack(&pTos, p->popStack); |
511
|
91
|
|
|
|
|
|
p->popStack = 0; |
512
|
|
|
|
|
|
|
} |
513
|
433
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
514
|
4576
|
100
|
|
|
|
|
for(pc=p->pc; rc==SQLITE_OK; pc++){ |
515
|
|
|
|
|
|
|
assert( pc>=0 && pcnOp ); |
516
|
|
|
|
|
|
|
assert( pTos<=&p->aStack[pc] ); |
517
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
518
|
|
|
|
|
|
|
origPc = pc; |
519
|
|
|
|
|
|
|
start = hwtime(); |
520
|
|
|
|
|
|
|
#endif |
521
|
4575
|
|
|
|
|
|
pOp = &p->aOp[pc]; |
522
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
/* Only allow tracing if NDEBUG is not defined. |
524
|
|
|
|
|
|
|
*/ |
525
|
|
|
|
|
|
|
#ifndef NDEBUG |
526
|
|
|
|
|
|
|
if( p->trace ){ |
527
|
|
|
|
|
|
|
sqliteVdbePrintOp(p->trace, pc, pOp); |
528
|
|
|
|
|
|
|
} |
529
|
|
|
|
|
|
|
#endif |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
/* Check to see if we need to simulate an interrupt. This only happens |
532
|
|
|
|
|
|
|
** if we have a special test build. |
533
|
|
|
|
|
|
|
*/ |
534
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
535
|
|
|
|
|
|
|
if( sqlite_interrupt_count>0 ){ |
536
|
|
|
|
|
|
|
sqlite_interrupt_count--; |
537
|
|
|
|
|
|
|
if( sqlite_interrupt_count==0 ){ |
538
|
|
|
|
|
|
|
sqlite_interrupt(db); |
539
|
|
|
|
|
|
|
} |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
#endif |
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
544
|
|
|
|
|
|
|
/* Call the progress callback if it is configured and the required number |
545
|
|
|
|
|
|
|
** of VDBE ops have been executed (either since this invocation of |
546
|
|
|
|
|
|
|
** sqliteVdbeExec() or since last time the progress callback was called). |
547
|
|
|
|
|
|
|
** If the progress callback returns non-zero, exit the virtual machine with |
548
|
|
|
|
|
|
|
** a return code SQLITE_ABORT. |
549
|
|
|
|
|
|
|
*/ |
550
|
4575
|
50
|
|
|
|
|
if( db->xProgress ){ |
551
|
0
|
0
|
|
|
|
|
if( db->nProgressOps==nProgressOps ){ |
552
|
0
|
0
|
|
|
|
|
if( db->xProgress(db->pProgressArg)!=0 ){ |
553
|
0
|
|
|
|
|
|
rc = SQLITE_ABORT; |
554
|
0
|
|
|
|
|
|
continue; /* skip to the next iteration of the for loop */ |
555
|
|
|
|
|
|
|
} |
556
|
0
|
|
|
|
|
|
nProgressOps = 0; |
557
|
|
|
|
|
|
|
} |
558
|
0
|
|
|
|
|
|
nProgressOps++; |
559
|
|
|
|
|
|
|
} |
560
|
|
|
|
|
|
|
#endif |
561
|
|
|
|
|
|
|
|
562
|
4575
|
|
|
|
|
|
switch( pOp->opcode ){ |
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
/***************************************************************************** |
565
|
|
|
|
|
|
|
** What follows is a massive switch statement where each case implements a |
566
|
|
|
|
|
|
|
** separate instruction in the virtual machine. If we follow the usual |
567
|
|
|
|
|
|
|
** indentation conventions, each case should be indented by 6 spaces. But |
568
|
|
|
|
|
|
|
** that is a lot of wasted space on the left margin. So the code within |
569
|
|
|
|
|
|
|
** the switch statement will break with convention and be flush-left. Another |
570
|
|
|
|
|
|
|
** big comment (similar to this one) will mark the point in the code where |
571
|
|
|
|
|
|
|
** we transition back to normal indentation. |
572
|
|
|
|
|
|
|
** |
573
|
|
|
|
|
|
|
** The formatting of each case is important. The makefile for SQLite |
574
|
|
|
|
|
|
|
** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
575
|
|
|
|
|
|
|
** file looking for lines that begin with "case OP_". The opcodes.h files |
576
|
|
|
|
|
|
|
** will be filled with #defines that give unique integer values to each |
577
|
|
|
|
|
|
|
** opcode and the opcodes.c file is filled with an array of strings where |
578
|
|
|
|
|
|
|
** each string is the symbolic name for the corresponding opcode. |
579
|
|
|
|
|
|
|
** |
580
|
|
|
|
|
|
|
** Documentation about VDBE opcodes is generated by scanning this file |
581
|
|
|
|
|
|
|
** for lines of that contain "Opcode:". That line and all subsequent |
582
|
|
|
|
|
|
|
** comment lines are used in the generation of the opcode.html documentation |
583
|
|
|
|
|
|
|
** file. |
584
|
|
|
|
|
|
|
** |
585
|
|
|
|
|
|
|
** SUMMARY: |
586
|
|
|
|
|
|
|
** |
587
|
|
|
|
|
|
|
** Formatting is important to scripts that scan this file. |
588
|
|
|
|
|
|
|
** Do not deviate from the formatting style currently in use. |
589
|
|
|
|
|
|
|
** |
590
|
|
|
|
|
|
|
*****************************************************************************/ |
591
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
/* Opcode: Goto * P2 * |
593
|
|
|
|
|
|
|
** |
594
|
|
|
|
|
|
|
** An unconditional jump to address P2. |
595
|
|
|
|
|
|
|
** The next instruction executed will be |
596
|
|
|
|
|
|
|
** the one at index P2 from the beginning of |
597
|
|
|
|
|
|
|
** the program. |
598
|
|
|
|
|
|
|
*/ |
599
|
|
|
|
|
|
|
case OP_Goto: { |
600
|
37
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
601
|
37
|
|
|
|
|
|
pc = pOp->p2 - 1; |
602
|
37
|
|
|
|
|
|
break; |
603
|
|
|
|
|
|
|
} |
604
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
/* Opcode: Gosub * P2 * |
606
|
|
|
|
|
|
|
** |
607
|
|
|
|
|
|
|
** Push the current address plus 1 onto the return address stack |
608
|
|
|
|
|
|
|
** and then jump to address P2. |
609
|
|
|
|
|
|
|
** |
610
|
|
|
|
|
|
|
** The return address stack is of limited depth. If too many |
611
|
|
|
|
|
|
|
** OP_Gosub operations occur without intervening OP_Returns, then |
612
|
|
|
|
|
|
|
** the return address stack will fill up and processing will abort |
613
|
|
|
|
|
|
|
** with a fatal error. |
614
|
|
|
|
|
|
|
*/ |
615
|
|
|
|
|
|
|
case OP_Gosub: { |
616
|
0
|
0
|
|
|
|
|
if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){ |
617
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0); |
618
|
0
|
|
|
|
|
|
p->rc = SQLITE_INTERNAL; |
619
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
620
|
|
|
|
|
|
|
} |
621
|
0
|
|
|
|
|
|
p->returnStack[p->returnDepth++] = pc+1; |
622
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
623
|
0
|
|
|
|
|
|
break; |
624
|
|
|
|
|
|
|
} |
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
/* Opcode: Return * * * |
627
|
|
|
|
|
|
|
** |
628
|
|
|
|
|
|
|
** Jump immediately to the next instruction after the last unreturned |
629
|
|
|
|
|
|
|
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then |
630
|
|
|
|
|
|
|
** processing aborts with a fatal error. |
631
|
|
|
|
|
|
|
*/ |
632
|
|
|
|
|
|
|
case OP_Return: { |
633
|
0
|
0
|
|
|
|
|
if( p->returnDepth<=0 ){ |
634
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0); |
635
|
0
|
|
|
|
|
|
p->rc = SQLITE_INTERNAL; |
636
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
637
|
|
|
|
|
|
|
} |
638
|
0
|
|
|
|
|
|
p->returnDepth--; |
639
|
0
|
|
|
|
|
|
pc = p->returnStack[p->returnDepth] - 1; |
640
|
0
|
|
|
|
|
|
break; |
641
|
|
|
|
|
|
|
} |
642
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
/* Opcode: Halt P1 P2 * |
644
|
|
|
|
|
|
|
** |
645
|
|
|
|
|
|
|
** Exit immediately. All open cursors, Lists, Sorts, etc are closed |
646
|
|
|
|
|
|
|
** automatically. |
647
|
|
|
|
|
|
|
** |
648
|
|
|
|
|
|
|
** P1 is the result code returned by sqlite_exec(). For a normal |
649
|
|
|
|
|
|
|
** halt, this should be SQLITE_OK (0). For errors, it can be some |
650
|
|
|
|
|
|
|
** other value. If P1!=0 then P2 will determine whether or not to |
651
|
|
|
|
|
|
|
** rollback the current transaction. Do not rollback if P2==OE_Fail. |
652
|
|
|
|
|
|
|
** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back |
653
|
|
|
|
|
|
|
** out all changes that have occurred during this execution of the |
654
|
|
|
|
|
|
|
** VDBE, but do not rollback the transaction. |
655
|
|
|
|
|
|
|
** |
656
|
|
|
|
|
|
|
** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
657
|
|
|
|
|
|
|
** every program. So a jump past the last instruction of the program |
658
|
|
|
|
|
|
|
** is the same as executing Halt. |
659
|
|
|
|
|
|
|
*/ |
660
|
|
|
|
|
|
|
case OP_Halt: { |
661
|
337
|
|
|
|
|
|
p->magic = VDBE_MAGIC_HALT; |
662
|
337
|
|
|
|
|
|
p->pTos = pTos; |
663
|
337
|
100
|
|
|
|
|
if( pOp->p1!=SQLITE_OK ){ |
664
|
1
|
|
|
|
|
|
p->rc = pOp->p1; |
665
|
1
|
|
|
|
|
|
p->errorAction = pOp->p2; |
666
|
1
|
50
|
|
|
|
|
if( pOp->p3 ){ |
667
|
1
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); |
668
|
|
|
|
|
|
|
} |
669
|
1
|
|
|
|
|
|
return SQLITE_ERROR; |
670
|
|
|
|
|
|
|
}else{ |
671
|
336
|
|
|
|
|
|
p->rc = SQLITE_OK; |
672
|
336
|
|
|
|
|
|
return SQLITE_DONE; |
673
|
|
|
|
|
|
|
} |
674
|
|
|
|
|
|
|
} |
675
|
|
|
|
|
|
|
|
676
|
|
|
|
|
|
|
/* Opcode: Integer P1 * P3 |
677
|
|
|
|
|
|
|
** |
678
|
|
|
|
|
|
|
** The integer value P1 is pushed onto the stack. If P3 is not zero |
679
|
|
|
|
|
|
|
** then it is assumed to be a string representation of the same integer. |
680
|
|
|
|
|
|
|
*/ |
681
|
|
|
|
|
|
|
case OP_Integer: { |
682
|
386
|
|
|
|
|
|
pTos++; |
683
|
386
|
|
|
|
|
|
pTos->i = pOp->p1; |
684
|
386
|
|
|
|
|
|
pTos->flags = MEM_Int; |
685
|
386
|
100
|
|
|
|
|
if( pOp->p3 ){ |
686
|
94
|
|
|
|
|
|
pTos->z = pOp->p3; |
687
|
94
|
|
|
|
|
|
pTos->flags |= MEM_Str | MEM_Static; |
688
|
94
|
|
|
|
|
|
pTos->n = strlen(pOp->p3)+1; |
689
|
|
|
|
|
|
|
} |
690
|
386
|
|
|
|
|
|
break; |
691
|
|
|
|
|
|
|
} |
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
/* Opcode: String * * P3 |
694
|
|
|
|
|
|
|
** |
695
|
|
|
|
|
|
|
** The string value P3 is pushed onto the stack. If P3==0 then a |
696
|
|
|
|
|
|
|
** NULL is pushed onto the stack. |
697
|
|
|
|
|
|
|
*/ |
698
|
|
|
|
|
|
|
case OP_String: { |
699
|
309
|
|
|
|
|
|
char *z = pOp->p3; |
700
|
309
|
|
|
|
|
|
pTos++; |
701
|
309
|
100
|
|
|
|
|
if( z==0 ){ |
702
|
94
|
|
|
|
|
|
pTos->flags = MEM_Null; |
703
|
|
|
|
|
|
|
}else{ |
704
|
215
|
|
|
|
|
|
pTos->z = z; |
705
|
215
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
706
|
215
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
707
|
|
|
|
|
|
|
} |
708
|
309
|
|
|
|
|
|
break; |
709
|
|
|
|
|
|
|
} |
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
/* Opcode: Variable P1 * * |
712
|
|
|
|
|
|
|
** |
713
|
|
|
|
|
|
|
** Push the value of variable P1 onto the stack. A variable is |
714
|
|
|
|
|
|
|
** an unknown in the original SQL string as handed to sqlite_compile(). |
715
|
|
|
|
|
|
|
** Any occurance of the '?' character in the original SQL is considered |
716
|
|
|
|
|
|
|
** a variable. Variables in the SQL string are number from left to |
717
|
|
|
|
|
|
|
** right beginning with 1. The values of variables are set using the |
718
|
|
|
|
|
|
|
** sqlite_bind() API. |
719
|
|
|
|
|
|
|
*/ |
720
|
|
|
|
|
|
|
case OP_Variable: { |
721
|
0
|
|
|
|
|
|
int j = pOp->p1 - 1; |
722
|
0
|
|
|
|
|
|
pTos++; |
723
|
0
|
0
|
|
|
|
|
if( j>=0 && jnVar && p->azVar[j]!=0 ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
724
|
0
|
|
|
|
|
|
pTos->z = p->azVar[j]; |
725
|
0
|
|
|
|
|
|
pTos->n = p->anVar[j]; |
726
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
727
|
|
|
|
|
|
|
}else{ |
728
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
729
|
|
|
|
|
|
|
} |
730
|
0
|
|
|
|
|
|
break; |
731
|
|
|
|
|
|
|
} |
732
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
/* Opcode: Pop P1 * * |
734
|
|
|
|
|
|
|
** |
735
|
|
|
|
|
|
|
** P1 elements are popped off of the top of stack and discarded. |
736
|
|
|
|
|
|
|
*/ |
737
|
|
|
|
|
|
|
case OP_Pop: { |
738
|
|
|
|
|
|
|
assert( pOp->p1>=0 ); |
739
|
0
|
|
|
|
|
|
popStack(&pTos, pOp->p1); |
740
|
|
|
|
|
|
|
assert( pTos>=&p->aStack[-1] ); |
741
|
0
|
|
|
|
|
|
break; |
742
|
|
|
|
|
|
|
} |
743
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
/* Opcode: Dup P1 P2 * |
745
|
|
|
|
|
|
|
** |
746
|
|
|
|
|
|
|
** A copy of the P1-th element of the stack |
747
|
|
|
|
|
|
|
** is made and pushed onto the top of the stack. |
748
|
|
|
|
|
|
|
** The top of the stack is element 0. So the |
749
|
|
|
|
|
|
|
** instruction "Dup 0 0 0" will make a copy of the |
750
|
|
|
|
|
|
|
** top of the stack. |
751
|
|
|
|
|
|
|
** |
752
|
|
|
|
|
|
|
** If the content of the P1-th element is a dynamically |
753
|
|
|
|
|
|
|
** allocated string, then a new copy of that string |
754
|
|
|
|
|
|
|
** is made if P2==0. If P2!=0, then just a pointer |
755
|
|
|
|
|
|
|
** to the string is copied. |
756
|
|
|
|
|
|
|
** |
757
|
|
|
|
|
|
|
** Also see the Pull instruction. |
758
|
|
|
|
|
|
|
*/ |
759
|
|
|
|
|
|
|
case OP_Dup: { |
760
|
80
|
|
|
|
|
|
Mem *pFrom = &pTos[-pOp->p1]; |
761
|
|
|
|
|
|
|
assert( pFrom<=pTos && pFrom>=p->aStack ); |
762
|
80
|
|
|
|
|
|
pTos++; |
763
|
80
|
|
|
|
|
|
memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS); |
764
|
80
|
100
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
765
|
31
|
50
|
|
|
|
|
if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){ |
|
|
50
|
|
|
|
|
|
766
|
0
|
|
|
|
|
|
pTos->flags &= ~MEM_Dyn; |
767
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
768
|
31
|
50
|
|
|
|
|
}else if( pTos->flags & MEM_Short ){ |
769
|
0
|
|
|
|
|
|
memcpy(pTos->zShort, pFrom->zShort, pTos->n); |
770
|
0
|
|
|
|
|
|
pTos->z = pTos->zShort; |
771
|
31
|
50
|
|
|
|
|
}else if( (pTos->flags & MEM_Static)==0 ){ |
772
|
0
|
|
|
|
|
|
pTos->z = sqliteMallocRaw(pFrom->n); |
773
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
774
|
0
|
|
|
|
|
|
memcpy(pTos->z, pFrom->z, pFrom->n); |
775
|
0
|
|
|
|
|
|
pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short); |
776
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Dyn; |
777
|
|
|
|
|
|
|
} |
778
|
|
|
|
|
|
|
} |
779
|
80
|
|
|
|
|
|
break; |
780
|
|
|
|
|
|
|
} |
781
|
|
|
|
|
|
|
|
782
|
|
|
|
|
|
|
/* Opcode: Pull P1 * * |
783
|
|
|
|
|
|
|
** |
784
|
|
|
|
|
|
|
** The P1-th element is removed from its current location on |
785
|
|
|
|
|
|
|
** the stack and pushed back on top of the stack. The |
786
|
|
|
|
|
|
|
** top of the stack is element 0, so "Pull 0 0 0" is |
787
|
|
|
|
|
|
|
** a no-op. "Pull 1 0 0" swaps the top two elements of |
788
|
|
|
|
|
|
|
** the stack. |
789
|
|
|
|
|
|
|
** |
790
|
|
|
|
|
|
|
** See also the Dup instruction. |
791
|
|
|
|
|
|
|
*/ |
792
|
|
|
|
|
|
|
case OP_Pull: { |
793
|
48
|
|
|
|
|
|
Mem *pFrom = &pTos[-pOp->p1]; |
794
|
|
|
|
|
|
|
int i; |
795
|
|
|
|
|
|
|
Mem ts; |
796
|
|
|
|
|
|
|
|
797
|
48
|
|
|
|
|
|
ts = *pFrom; |
798
|
48
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
0
|
|
|
|
|
|
799
|
96
|
100
|
|
|
|
|
for(i=0; ip1; i++, pFrom++){ |
800
|
48
|
50
|
|
|
|
|
Deephemeralize(&pFrom[1]); |
|
|
0
|
|
|
|
|
|
801
|
48
|
|
|
|
|
|
*pFrom = pFrom[1]; |
802
|
|
|
|
|
|
|
assert( (pFrom->flags & MEM_Ephem)==0 ); |
803
|
48
|
50
|
|
|
|
|
if( pFrom->flags & MEM_Short ){ |
804
|
|
|
|
|
|
|
assert( pFrom->flags & MEM_Str ); |
805
|
|
|
|
|
|
|
assert( pFrom->z==pFrom[1].zShort ); |
806
|
0
|
|
|
|
|
|
pFrom->z = pFrom->zShort; |
807
|
|
|
|
|
|
|
} |
808
|
|
|
|
|
|
|
} |
809
|
48
|
|
|
|
|
|
*pTos = ts; |
810
|
48
|
100
|
|
|
|
|
if( pTos->flags & MEM_Short ){ |
811
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
812
|
|
|
|
|
|
|
assert( pTos->z==pTos[-pOp->p1].zShort ); |
813
|
3
|
|
|
|
|
|
pTos->z = pTos->zShort; |
814
|
|
|
|
|
|
|
} |
815
|
48
|
|
|
|
|
|
break; |
816
|
|
|
|
|
|
|
} |
817
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
/* Opcode: Push P1 * * |
819
|
|
|
|
|
|
|
** |
820
|
|
|
|
|
|
|
** Overwrite the value of the P1-th element down on the |
821
|
|
|
|
|
|
|
** stack (P1==0 is the top of the stack) with the value |
822
|
|
|
|
|
|
|
** of the top of the stack. Then pop the top of the stack. |
823
|
|
|
|
|
|
|
*/ |
824
|
|
|
|
|
|
|
case OP_Push: { |
825
|
0
|
|
|
|
|
|
Mem *pTo = &pTos[-pOp->p1]; |
826
|
|
|
|
|
|
|
|
827
|
|
|
|
|
|
|
assert( pTo>=p->aStack ); |
828
|
0
|
0
|
|
|
|
|
Deephemeralize(pTos); |
|
|
0
|
|
|
|
|
|
829
|
0
|
0
|
|
|
|
|
Release(pTo); |
830
|
0
|
|
|
|
|
|
*pTo = *pTos; |
831
|
0
|
0
|
|
|
|
|
if( pTo->flags & MEM_Short ){ |
832
|
|
|
|
|
|
|
assert( pTo->z==pTos->zShort ); |
833
|
0
|
|
|
|
|
|
pTo->z = pTo->zShort; |
834
|
|
|
|
|
|
|
} |
835
|
0
|
|
|
|
|
|
pTos--; |
836
|
0
|
|
|
|
|
|
break; |
837
|
|
|
|
|
|
|
} |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
|
840
|
|
|
|
|
|
|
/* Opcode: ColumnName P1 P2 P3 |
841
|
|
|
|
|
|
|
** |
842
|
|
|
|
|
|
|
** P3 becomes the P1-th column name (first is 0). An array of pointers |
843
|
|
|
|
|
|
|
** to all column names is passed as the 4th parameter to the callback. |
844
|
|
|
|
|
|
|
** If P2==1 then this is the last column in the result set and thus the |
845
|
|
|
|
|
|
|
** number of columns in the result set will be P1. There must be at least |
846
|
|
|
|
|
|
|
** one OP_ColumnName with a P2==1 before invoking OP_Callback and the |
847
|
|
|
|
|
|
|
** number of columns specified in OP_Callback must one more than the P1 |
848
|
|
|
|
|
|
|
** value of the OP_ColumnName that has P2==1. |
849
|
|
|
|
|
|
|
*/ |
850
|
|
|
|
|
|
|
case OP_ColumnName: { |
851
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nOp ); |
852
|
790
|
|
|
|
|
|
p->azColName[pOp->p1] = pOp->p3; |
853
|
790
|
|
|
|
|
|
p->nCallback = 0; |
854
|
790
|
100
|
|
|
|
|
if( pOp->p2 ) p->nResColumn = pOp->p1+1; |
855
|
790
|
|
|
|
|
|
break; |
856
|
|
|
|
|
|
|
} |
857
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
/* Opcode: Callback P1 * * |
859
|
|
|
|
|
|
|
** |
860
|
|
|
|
|
|
|
** Pop P1 values off the stack and form them into an array. Then |
861
|
|
|
|
|
|
|
** invoke the callback function using the newly formed array as the |
862
|
|
|
|
|
|
|
** 3rd parameter. |
863
|
|
|
|
|
|
|
*/ |
864
|
|
|
|
|
|
|
case OP_Callback: { |
865
|
|
|
|
|
|
|
int i; |
866
|
80
|
|
|
|
|
|
char **azArgv = p->zArgv; |
867
|
|
|
|
|
|
|
Mem *pCol; |
868
|
|
|
|
|
|
|
|
869
|
80
|
|
|
|
|
|
pCol = &pTos[1-pOp->p1]; |
870
|
|
|
|
|
|
|
assert( pCol>=p->aStack ); |
871
|
265
|
100
|
|
|
|
|
for(i=0; ip1; i++, pCol++){ |
872
|
185
|
100
|
|
|
|
|
if( pCol->flags & MEM_Null ){ |
873
|
17
|
|
|
|
|
|
azArgv[i] = 0; |
874
|
|
|
|
|
|
|
}else{ |
875
|
168
|
100
|
|
|
|
|
Stringify(pCol); |
876
|
168
|
|
|
|
|
|
azArgv[i] = pCol->z; |
877
|
|
|
|
|
|
|
} |
878
|
|
|
|
|
|
|
} |
879
|
80
|
|
|
|
|
|
azArgv[i] = 0; |
880
|
80
|
|
|
|
|
|
p->nCallback++; |
881
|
80
|
|
|
|
|
|
p->azResColumn = azArgv; |
882
|
|
|
|
|
|
|
assert( p->nResColumn==pOp->p1 ); |
883
|
80
|
|
|
|
|
|
p->popStack = pOp->p1; |
884
|
80
|
|
|
|
|
|
p->pc = pc + 1; |
885
|
80
|
|
|
|
|
|
p->pTos = pTos; |
886
|
80
|
|
|
|
|
|
return SQLITE_ROW; |
887
|
|
|
|
|
|
|
} |
888
|
|
|
|
|
|
|
|
889
|
|
|
|
|
|
|
/* Opcode: Concat P1 P2 P3 |
890
|
|
|
|
|
|
|
** |
891
|
|
|
|
|
|
|
** Look at the first P1 elements of the stack. Append them all |
892
|
|
|
|
|
|
|
** together with the lowest element first. Use P3 as a separator. |
893
|
|
|
|
|
|
|
** Put the result on the top of the stack. The original P1 elements |
894
|
|
|
|
|
|
|
** are popped from the stack if P2==0 and retained if P2==1. If |
895
|
|
|
|
|
|
|
** any element of the stack is NULL, then the result is NULL. |
896
|
|
|
|
|
|
|
** |
897
|
|
|
|
|
|
|
** If P3 is NULL, then use no separator. When P1==1, this routine |
898
|
|
|
|
|
|
|
** makes a copy of the top stack element into memory obtained |
899
|
|
|
|
|
|
|
** from sqliteMalloc(). |
900
|
|
|
|
|
|
|
*/ |
901
|
|
|
|
|
|
|
case OP_Concat: { |
902
|
|
|
|
|
|
|
char *zNew; |
903
|
|
|
|
|
|
|
int nByte; |
904
|
|
|
|
|
|
|
int nField; |
905
|
|
|
|
|
|
|
int i, j; |
906
|
|
|
|
|
|
|
char *zSep; |
907
|
|
|
|
|
|
|
int nSep; |
908
|
|
|
|
|
|
|
Mem *pTerm; |
909
|
|
|
|
|
|
|
|
910
|
0
|
|
|
|
|
|
nField = pOp->p1; |
911
|
0
|
|
|
|
|
|
zSep = pOp->p3; |
912
|
0
|
0
|
|
|
|
|
if( zSep==0 ) zSep = ""; |
913
|
0
|
|
|
|
|
|
nSep = strlen(zSep); |
914
|
|
|
|
|
|
|
assert( &pTos[1-nField] >= p->aStack ); |
915
|
0
|
|
|
|
|
|
nByte = 1 - nSep; |
916
|
0
|
|
|
|
|
|
pTerm = &pTos[1-nField]; |
917
|
0
|
0
|
|
|
|
|
for(i=0; i
|
918
|
0
|
0
|
|
|
|
|
if( pTerm->flags & MEM_Null ){ |
919
|
0
|
|
|
|
|
|
nByte = -1; |
920
|
0
|
|
|
|
|
|
break; |
921
|
|
|
|
|
|
|
}else{ |
922
|
0
|
0
|
|
|
|
|
Stringify(pTerm); |
923
|
0
|
|
|
|
|
|
nByte += pTerm->n - 1 + nSep; |
924
|
|
|
|
|
|
|
} |
925
|
|
|
|
|
|
|
} |
926
|
0
|
0
|
|
|
|
|
if( nByte<0 ){ |
927
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
928
|
0
|
|
|
|
|
|
popStack(&pTos, nField); |
929
|
|
|
|
|
|
|
} |
930
|
0
|
|
|
|
|
|
pTos++; |
931
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
932
|
0
|
|
|
|
|
|
break; |
933
|
|
|
|
|
|
|
} |
934
|
0
|
|
|
|
|
|
zNew = sqliteMallocRaw( nByte ); |
935
|
0
|
0
|
|
|
|
|
if( zNew==0 ) goto no_mem; |
936
|
0
|
|
|
|
|
|
j = 0; |
937
|
0
|
|
|
|
|
|
pTerm = &pTos[1-nField]; |
938
|
0
|
0
|
|
|
|
|
for(i=j=0; i
|
939
|
|
|
|
|
|
|
assert( pTerm->flags & MEM_Str ); |
940
|
0
|
|
|
|
|
|
memcpy(&zNew[j], pTerm->z, pTerm->n-1); |
941
|
0
|
|
|
|
|
|
j += pTerm->n-1; |
942
|
0
|
0
|
|
|
|
|
if( nSep>0 && i
|
|
|
0
|
|
|
|
|
|
943
|
0
|
|
|
|
|
|
memcpy(&zNew[j], zSep, nSep); |
944
|
0
|
|
|
|
|
|
j += nSep; |
945
|
|
|
|
|
|
|
} |
946
|
|
|
|
|
|
|
} |
947
|
0
|
|
|
|
|
|
zNew[j] = 0; |
948
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
949
|
0
|
|
|
|
|
|
popStack(&pTos, nField); |
950
|
|
|
|
|
|
|
} |
951
|
0
|
|
|
|
|
|
pTos++; |
952
|
0
|
|
|
|
|
|
pTos->n = nByte; |
953
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
954
|
0
|
|
|
|
|
|
pTos->z = zNew; |
955
|
0
|
|
|
|
|
|
break; |
956
|
|
|
|
|
|
|
} |
957
|
|
|
|
|
|
|
|
958
|
|
|
|
|
|
|
/* Opcode: Add * * * |
959
|
|
|
|
|
|
|
** |
960
|
|
|
|
|
|
|
** Pop the top two elements from the stack, add them together, |
961
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
962
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
963
|
|
|
|
|
|
|
** function before the addition. |
964
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
965
|
|
|
|
|
|
|
*/ |
966
|
|
|
|
|
|
|
/* Opcode: Multiply * * * |
967
|
|
|
|
|
|
|
** |
968
|
|
|
|
|
|
|
** Pop the top two elements from the stack, multiply them together, |
969
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
970
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
971
|
|
|
|
|
|
|
** function before the multiplication. |
972
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
973
|
|
|
|
|
|
|
*/ |
974
|
|
|
|
|
|
|
/* Opcode: Subtract * * * |
975
|
|
|
|
|
|
|
** |
976
|
|
|
|
|
|
|
** Pop the top two elements from the stack, subtract the |
977
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
978
|
|
|
|
|
|
|
** next on stack) |
979
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
980
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
981
|
|
|
|
|
|
|
** function before the subtraction. |
982
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
983
|
|
|
|
|
|
|
*/ |
984
|
|
|
|
|
|
|
/* Opcode: Divide * * * |
985
|
|
|
|
|
|
|
** |
986
|
|
|
|
|
|
|
** Pop the top two elements from the stack, divide the |
987
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
988
|
|
|
|
|
|
|
** next on stack) |
989
|
|
|
|
|
|
|
** and push the result back onto the stack. If either element |
990
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
991
|
|
|
|
|
|
|
** function before the division. Division by zero returns NULL. |
992
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
993
|
|
|
|
|
|
|
*/ |
994
|
|
|
|
|
|
|
/* Opcode: Remainder * * * |
995
|
|
|
|
|
|
|
** |
996
|
|
|
|
|
|
|
** Pop the top two elements from the stack, divide the |
997
|
|
|
|
|
|
|
** first (what was on top of the stack) from the second (the |
998
|
|
|
|
|
|
|
** next on stack) |
999
|
|
|
|
|
|
|
** and push the remainder after division onto the stack. If either element |
1000
|
|
|
|
|
|
|
** is a string then it is converted to a double using the atof() |
1001
|
|
|
|
|
|
|
** function before the division. Division by zero returns NULL. |
1002
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
1003
|
|
|
|
|
|
|
*/ |
1004
|
|
|
|
|
|
|
case OP_Add: |
1005
|
|
|
|
|
|
|
case OP_Subtract: |
1006
|
|
|
|
|
|
|
case OP_Multiply: |
1007
|
|
|
|
|
|
|
case OP_Divide: |
1008
|
|
|
|
|
|
|
case OP_Remainder: { |
1009
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
1010
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
1011
|
0
|
0
|
|
|
|
|
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){ |
1012
|
0
|
0
|
|
|
|
|
Release(pTos); |
1013
|
0
|
|
|
|
|
|
pTos--; |
1014
|
0
|
0
|
|
|
|
|
Release(pTos); |
1015
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1016
|
0
|
0
|
|
|
|
|
}else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){ |
1017
|
|
|
|
|
|
|
int a, b; |
1018
|
0
|
|
|
|
|
|
a = pTos->i; |
1019
|
0
|
|
|
|
|
|
b = pNos->i; |
1020
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
1021
|
0
|
|
|
|
|
|
case OP_Add: b += a; break; |
1022
|
0
|
|
|
|
|
|
case OP_Subtract: b -= a; break; |
1023
|
0
|
|
|
|
|
|
case OP_Multiply: b *= a; break; |
1024
|
|
|
|
|
|
|
case OP_Divide: { |
1025
|
0
|
0
|
|
|
|
|
if( a==0 ) goto divide_by_zero; |
1026
|
0
|
|
|
|
|
|
b /= a; |
1027
|
0
|
|
|
|
|
|
break; |
1028
|
|
|
|
|
|
|
} |
1029
|
|
|
|
|
|
|
default: { |
1030
|
0
|
0
|
|
|
|
|
if( a==0 ) goto divide_by_zero; |
1031
|
0
|
|
|
|
|
|
b %= a; |
1032
|
0
|
|
|
|
|
|
break; |
1033
|
|
|
|
|
|
|
} |
1034
|
|
|
|
|
|
|
} |
1035
|
0
|
0
|
|
|
|
|
Release(pTos); |
1036
|
0
|
|
|
|
|
|
pTos--; |
1037
|
0
|
0
|
|
|
|
|
Release(pTos); |
1038
|
0
|
|
|
|
|
|
pTos->i = b; |
1039
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1040
|
|
|
|
|
|
|
}else{ |
1041
|
|
|
|
|
|
|
double a, b; |
1042
|
0
|
0
|
|
|
|
|
Realify(pTos); |
1043
|
0
|
0
|
|
|
|
|
Realify(pNos); |
1044
|
0
|
|
|
|
|
|
a = pTos->r; |
1045
|
0
|
|
|
|
|
|
b = pNos->r; |
1046
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
1047
|
0
|
|
|
|
|
|
case OP_Add: b += a; break; |
1048
|
0
|
|
|
|
|
|
case OP_Subtract: b -= a; break; |
1049
|
0
|
|
|
|
|
|
case OP_Multiply: b *= a; break; |
1050
|
|
|
|
|
|
|
case OP_Divide: { |
1051
|
0
|
0
|
|
|
|
|
if( a==0.0 ) goto divide_by_zero; |
1052
|
0
|
|
|
|
|
|
b /= a; |
1053
|
0
|
|
|
|
|
|
break; |
1054
|
|
|
|
|
|
|
} |
1055
|
|
|
|
|
|
|
default: { |
1056
|
0
|
|
|
|
|
|
int ia = (int)a; |
1057
|
0
|
|
|
|
|
|
int ib = (int)b; |
1058
|
0
|
0
|
|
|
|
|
if( ia==0.0 ) goto divide_by_zero; |
1059
|
0
|
|
|
|
|
|
b = ib % ia; |
1060
|
0
|
|
|
|
|
|
break; |
1061
|
|
|
|
|
|
|
} |
1062
|
|
|
|
|
|
|
} |
1063
|
0
|
0
|
|
|
|
|
Release(pTos); |
1064
|
0
|
|
|
|
|
|
pTos--; |
1065
|
0
|
0
|
|
|
|
|
Release(pTos); |
1066
|
0
|
|
|
|
|
|
pTos->r = b; |
1067
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
1068
|
|
|
|
|
|
|
} |
1069
|
0
|
|
|
|
|
|
break; |
1070
|
|
|
|
|
|
|
|
1071
|
|
|
|
|
|
|
divide_by_zero: |
1072
|
0
|
0
|
|
|
|
|
Release(pTos); |
1073
|
0
|
|
|
|
|
|
pTos--; |
1074
|
0
|
0
|
|
|
|
|
Release(pTos); |
1075
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1076
|
0
|
|
|
|
|
|
break; |
1077
|
|
|
|
|
|
|
} |
1078
|
|
|
|
|
|
|
|
1079
|
|
|
|
|
|
|
/* Opcode: Function P1 * P3 |
1080
|
|
|
|
|
|
|
** |
1081
|
|
|
|
|
|
|
** Invoke a user function (P3 is a pointer to a Function structure that |
1082
|
|
|
|
|
|
|
** defines the function) with P1 string arguments taken from the stack. |
1083
|
|
|
|
|
|
|
** Pop all arguments from the stack and push back the result. |
1084
|
|
|
|
|
|
|
** |
1085
|
|
|
|
|
|
|
** See also: AggFunc |
1086
|
|
|
|
|
|
|
*/ |
1087
|
|
|
|
|
|
|
case OP_Function: { |
1088
|
|
|
|
|
|
|
int n, i; |
1089
|
|
|
|
|
|
|
Mem *pArg; |
1090
|
|
|
|
|
|
|
char **azArgv; |
1091
|
|
|
|
|
|
|
sqlite_func ctx; |
1092
|
|
|
|
|
|
|
|
1093
|
65
|
|
|
|
|
|
n = pOp->p1; |
1094
|
65
|
|
|
|
|
|
pArg = &pTos[1-n]; |
1095
|
65
|
|
|
|
|
|
azArgv = p->zArgv; |
1096
|
157
|
100
|
|
|
|
|
for(i=0; i
|
1097
|
92
|
100
|
|
|
|
|
if( pArg->flags & MEM_Null ){ |
1098
|
2
|
|
|
|
|
|
azArgv[i] = 0; |
1099
|
|
|
|
|
|
|
}else{ |
1100
|
90
|
50
|
|
|
|
|
Stringify(pArg); |
1101
|
90
|
|
|
|
|
|
azArgv[i] = pArg->z; |
1102
|
|
|
|
|
|
|
} |
1103
|
|
|
|
|
|
|
} |
1104
|
65
|
|
|
|
|
|
ctx.pFunc = (FuncDef*)pOp->p3; |
1105
|
65
|
|
|
|
|
|
ctx.s.flags = MEM_Null; |
1106
|
65
|
|
|
|
|
|
ctx.s.z = 0; |
1107
|
65
|
|
|
|
|
|
ctx.isError = 0; |
1108
|
65
|
|
|
|
|
|
ctx.isStep = 0; |
1109
|
65
|
50
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
1110
|
65
|
|
|
|
|
|
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv); |
1111
|
65
|
50
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
1112
|
65
|
|
|
|
|
|
popStack(&pTos, n); |
1113
|
65
|
|
|
|
|
|
pTos++; |
1114
|
65
|
|
|
|
|
|
*pTos = ctx.s; |
1115
|
65
|
100
|
|
|
|
|
if( pTos->flags & MEM_Short ){ |
1116
|
24
|
|
|
|
|
|
pTos->z = pTos->zShort; |
1117
|
|
|
|
|
|
|
} |
1118
|
65
|
100
|
|
|
|
|
if( ctx.isError ){ |
1119
|
1
|
50
|
|
|
|
|
sqliteSetString(&p->zErrMsg, |
1120
|
2
|
|
|
|
|
|
(pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0); |
1121
|
1
|
|
|
|
|
|
rc = SQLITE_ERROR; |
1122
|
|
|
|
|
|
|
} |
1123
|
65
|
|
|
|
|
|
break; |
1124
|
|
|
|
|
|
|
} |
1125
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
/* Opcode: BitAnd * * * |
1127
|
|
|
|
|
|
|
** |
1128
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
1129
|
|
|
|
|
|
|
** to integers. Push back onto the stack the bit-wise AND of the |
1130
|
|
|
|
|
|
|
** two elements. |
1131
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
1132
|
|
|
|
|
|
|
*/ |
1133
|
|
|
|
|
|
|
/* Opcode: BitOr * * * |
1134
|
|
|
|
|
|
|
** |
1135
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
1136
|
|
|
|
|
|
|
** to integers. Push back onto the stack the bit-wise OR of the |
1137
|
|
|
|
|
|
|
** two elements. |
1138
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
1139
|
|
|
|
|
|
|
*/ |
1140
|
|
|
|
|
|
|
/* Opcode: ShiftLeft * * * |
1141
|
|
|
|
|
|
|
** |
1142
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
1143
|
|
|
|
|
|
|
** to integers. Push back onto the stack the top element shifted |
1144
|
|
|
|
|
|
|
** left by N bits where N is the second element on the stack. |
1145
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
1146
|
|
|
|
|
|
|
*/ |
1147
|
|
|
|
|
|
|
/* Opcode: ShiftRight * * * |
1148
|
|
|
|
|
|
|
** |
1149
|
|
|
|
|
|
|
** Pop the top two elements from the stack. Convert both elements |
1150
|
|
|
|
|
|
|
** to integers. Push back onto the stack the top element shifted |
1151
|
|
|
|
|
|
|
** right by N bits where N is the second element on the stack. |
1152
|
|
|
|
|
|
|
** If either operand is NULL, the result is NULL. |
1153
|
|
|
|
|
|
|
*/ |
1154
|
|
|
|
|
|
|
case OP_BitAnd: |
1155
|
|
|
|
|
|
|
case OP_BitOr: |
1156
|
|
|
|
|
|
|
case OP_ShiftLeft: |
1157
|
|
|
|
|
|
|
case OP_ShiftRight: { |
1158
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
1159
|
|
|
|
|
|
|
int a, b; |
1160
|
|
|
|
|
|
|
|
1161
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
1162
|
0
|
0
|
|
|
|
|
if( (pTos->flags | pNos->flags) & MEM_Null ){ |
1163
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
1164
|
0
|
|
|
|
|
|
pTos++; |
1165
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1166
|
0
|
|
|
|
|
|
break; |
1167
|
|
|
|
|
|
|
} |
1168
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
1169
|
0
|
0
|
|
|
|
|
Integerify(pNos); |
1170
|
0
|
|
|
|
|
|
a = pTos->i; |
1171
|
0
|
|
|
|
|
|
b = pNos->i; |
1172
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
1173
|
0
|
|
|
|
|
|
case OP_BitAnd: a &= b; break; |
1174
|
0
|
|
|
|
|
|
case OP_BitOr: a |= b; break; |
1175
|
0
|
|
|
|
|
|
case OP_ShiftLeft: a <<= b; break; |
1176
|
0
|
|
|
|
|
|
case OP_ShiftRight: a >>= b; break; |
1177
|
0
|
|
|
|
|
|
default: /* CANT HAPPEN */ break; |
1178
|
|
|
|
|
|
|
} |
1179
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Dyn)==0 ); |
1180
|
|
|
|
|
|
|
assert( (pNos->flags & MEM_Dyn)==0 ); |
1181
|
0
|
|
|
|
|
|
pTos--; |
1182
|
0
|
0
|
|
|
|
|
Release(pTos); |
1183
|
0
|
|
|
|
|
|
pTos->i = a; |
1184
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1185
|
0
|
|
|
|
|
|
break; |
1186
|
|
|
|
|
|
|
} |
1187
|
|
|
|
|
|
|
|
1188
|
|
|
|
|
|
|
/* Opcode: AddImm P1 * * |
1189
|
|
|
|
|
|
|
** |
1190
|
|
|
|
|
|
|
** Add the value P1 to whatever is on top of the stack. The result |
1191
|
|
|
|
|
|
|
** is always an integer. |
1192
|
|
|
|
|
|
|
** |
1193
|
|
|
|
|
|
|
** To force the top of the stack to be an integer, just add 0. |
1194
|
|
|
|
|
|
|
*/ |
1195
|
|
|
|
|
|
|
case OP_AddImm: { |
1196
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1197
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
1198
|
0
|
|
|
|
|
|
pTos->i += pOp->p1; |
1199
|
0
|
|
|
|
|
|
break; |
1200
|
|
|
|
|
|
|
} |
1201
|
|
|
|
|
|
|
|
1202
|
|
|
|
|
|
|
/* Opcode: ForceInt P1 P2 * |
1203
|
|
|
|
|
|
|
** |
1204
|
|
|
|
|
|
|
** Convert the top of the stack into an integer. If the current top of |
1205
|
|
|
|
|
|
|
** the stack is not numeric (meaning that is is a NULL or a string that |
1206
|
|
|
|
|
|
|
** does not look like an integer or floating point number) then pop the |
1207
|
|
|
|
|
|
|
** stack and jump to P2. If the top of the stack is numeric then |
1208
|
|
|
|
|
|
|
** convert it into the least integer that is greater than or equal to its |
1209
|
|
|
|
|
|
|
** current value if P1==0, or to the least integer that is strictly |
1210
|
|
|
|
|
|
|
** greater than its current value if P1==1. |
1211
|
|
|
|
|
|
|
*/ |
1212
|
|
|
|
|
|
|
case OP_ForceInt: { |
1213
|
|
|
|
|
|
|
int v; |
1214
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1215
|
0
|
0
|
|
|
|
|
if( (pTos->flags & (MEM_Int|MEM_Real))==0 |
1216
|
0
|
0
|
|
|
|
|
&& ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){ |
|
|
0
|
|
|
|
|
|
1217
|
0
|
0
|
|
|
|
|
Release(pTos); |
1218
|
0
|
|
|
|
|
|
pTos--; |
1219
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
1220
|
0
|
|
|
|
|
|
break; |
1221
|
|
|
|
|
|
|
} |
1222
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
1223
|
0
|
|
|
|
|
|
v = pTos->i + (pOp->p1!=0); |
1224
|
|
|
|
|
|
|
}else{ |
1225
|
0
|
0
|
|
|
|
|
Realify(pTos); |
1226
|
0
|
|
|
|
|
|
v = (int)pTos->r; |
1227
|
0
|
0
|
|
|
|
|
if( pTos->r>(double)v ) v++; |
1228
|
0
|
0
|
|
|
|
|
if( pOp->p1 && pTos->r==(double)v ) v++; |
|
|
0
|
|
|
|
|
|
1229
|
|
|
|
|
|
|
} |
1230
|
0
|
0
|
|
|
|
|
Release(pTos); |
1231
|
0
|
|
|
|
|
|
pTos->i = v; |
1232
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1233
|
0
|
|
|
|
|
|
break; |
1234
|
|
|
|
|
|
|
} |
1235
|
|
|
|
|
|
|
|
1236
|
|
|
|
|
|
|
/* Opcode: MustBeInt P1 P2 * |
1237
|
|
|
|
|
|
|
** |
1238
|
|
|
|
|
|
|
** Force the top of the stack to be an integer. If the top of the |
1239
|
|
|
|
|
|
|
** stack is not an integer and cannot be converted into an integer |
1240
|
|
|
|
|
|
|
** with out data loss, then jump immediately to P2, or if P2==0 |
1241
|
|
|
|
|
|
|
** raise an SQLITE_MISMATCH exception. |
1242
|
|
|
|
|
|
|
** |
1243
|
|
|
|
|
|
|
** If the top of the stack is not an integer and P2 is not zero and |
1244
|
|
|
|
|
|
|
** P1 is 1, then the stack is popped. In all other cases, the depth |
1245
|
|
|
|
|
|
|
** of the stack is unchanged. |
1246
|
|
|
|
|
|
|
*/ |
1247
|
|
|
|
|
|
|
case OP_MustBeInt: { |
1248
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1249
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
1250
|
|
|
|
|
|
|
/* Do nothing */ |
1251
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Real ){ |
1252
|
0
|
|
|
|
|
|
int i = (int)pTos->r; |
1253
|
0
|
|
|
|
|
|
double r = (double)i; |
1254
|
0
|
0
|
|
|
|
|
if( r!=pTos->r ){ |
1255
|
0
|
|
|
|
|
|
goto mismatch; |
1256
|
|
|
|
|
|
|
} |
1257
|
0
|
|
|
|
|
|
pTos->i = i; |
1258
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Str ){ |
1259
|
|
|
|
|
|
|
int v; |
1260
|
0
|
0
|
|
|
|
|
if( !toInt(pTos->z, &v) ){ |
1261
|
|
|
|
|
|
|
double r; |
1262
|
0
|
0
|
|
|
|
|
if( !sqliteIsNumber(pTos->z) ){ |
1263
|
0
|
|
|
|
|
|
goto mismatch; |
1264
|
|
|
|
|
|
|
} |
1265
|
0
|
0
|
|
|
|
|
Realify(pTos); |
1266
|
0
|
|
|
|
|
|
v = (int)pTos->r; |
1267
|
0
|
|
|
|
|
|
r = (double)v; |
1268
|
0
|
0
|
|
|
|
|
if( r!=pTos->r ){ |
1269
|
0
|
|
|
|
|
|
goto mismatch; |
1270
|
|
|
|
|
|
|
} |
1271
|
|
|
|
|
|
|
} |
1272
|
0
|
|
|
|
|
|
pTos->i = v; |
1273
|
|
|
|
|
|
|
}else{ |
1274
|
0
|
|
|
|
|
|
goto mismatch; |
1275
|
|
|
|
|
|
|
} |
1276
|
0
|
0
|
|
|
|
|
Release(pTos); |
1277
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1278
|
0
|
|
|
|
|
|
break; |
1279
|
|
|
|
|
|
|
|
1280
|
|
|
|
|
|
|
mismatch: |
1281
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 ){ |
1282
|
0
|
|
|
|
|
|
rc = SQLITE_MISMATCH; |
1283
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
1284
|
|
|
|
|
|
|
}else{ |
1285
|
0
|
0
|
|
|
|
|
if( pOp->p1 ) popStack(&pTos, 1); |
1286
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
1287
|
|
|
|
|
|
|
} |
1288
|
0
|
|
|
|
|
|
break; |
1289
|
|
|
|
|
|
|
} |
1290
|
|
|
|
|
|
|
|
1291
|
|
|
|
|
|
|
/* Opcode: Eq P1 P2 * |
1292
|
|
|
|
|
|
|
** |
1293
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are equal, then |
1294
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1295
|
|
|
|
|
|
|
** |
1296
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1297
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1298
|
|
|
|
|
|
|
** |
1299
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1300
|
|
|
|
|
|
|
** and compared for equality that way. Otherwise the strcmp() library |
1301
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1302
|
|
|
|
|
|
|
** use OP_StrEq. |
1303
|
|
|
|
|
|
|
** |
1304
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1305
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1306
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1307
|
|
|
|
|
|
|
*/ |
1308
|
|
|
|
|
|
|
/* Opcode: Ne P1 P2 * |
1309
|
|
|
|
|
|
|
** |
1310
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are not equal, then |
1311
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1312
|
|
|
|
|
|
|
** |
1313
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1314
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1315
|
|
|
|
|
|
|
** |
1316
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1317
|
|
|
|
|
|
|
** and compared in that format. Otherwise the strcmp() library |
1318
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1319
|
|
|
|
|
|
|
** use OP_StrNe. |
1320
|
|
|
|
|
|
|
** |
1321
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1322
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1323
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1324
|
|
|
|
|
|
|
*/ |
1325
|
|
|
|
|
|
|
/* Opcode: Lt P1 P2 * |
1326
|
|
|
|
|
|
|
** |
1327
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1328
|
|
|
|
|
|
|
** next on stack) is less than the first (the top of stack), then |
1329
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1330
|
|
|
|
|
|
|
** In other words, jump if NOS
|
1331
|
|
|
|
|
|
|
** |
1332
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1333
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1334
|
|
|
|
|
|
|
** |
1335
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1336
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
1337
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
1338
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1339
|
|
|
|
|
|
|
** use OP_StrLt. |
1340
|
|
|
|
|
|
|
** |
1341
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1342
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1343
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1344
|
|
|
|
|
|
|
*/ |
1345
|
|
|
|
|
|
|
/* Opcode: Le P1 P2 * |
1346
|
|
|
|
|
|
|
** |
1347
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1348
|
|
|
|
|
|
|
** next on stack) is less than or equal to the first (the top of stack), |
1349
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS<=TOS. |
1350
|
|
|
|
|
|
|
** |
1351
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1352
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1353
|
|
|
|
|
|
|
** |
1354
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1355
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
1356
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
1357
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1358
|
|
|
|
|
|
|
** use OP_StrLe. |
1359
|
|
|
|
|
|
|
** |
1360
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1361
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1362
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1363
|
|
|
|
|
|
|
*/ |
1364
|
|
|
|
|
|
|
/* Opcode: Gt P1 P2 * |
1365
|
|
|
|
|
|
|
** |
1366
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1367
|
|
|
|
|
|
|
** next on stack) is greater than the first (the top of stack), |
1368
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>TOS. |
1369
|
|
|
|
|
|
|
** |
1370
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1371
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1372
|
|
|
|
|
|
|
** |
1373
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1374
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
1375
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
1376
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1377
|
|
|
|
|
|
|
** use OP_StrGt. |
1378
|
|
|
|
|
|
|
** |
1379
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1380
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1381
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1382
|
|
|
|
|
|
|
*/ |
1383
|
|
|
|
|
|
|
/* Opcode: Ge P1 P2 * |
1384
|
|
|
|
|
|
|
** |
1385
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the next |
1386
|
|
|
|
|
|
|
** on stack) is greater than or equal to the first (the top of stack), |
1387
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>=TOS. |
1388
|
|
|
|
|
|
|
** |
1389
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1390
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1391
|
|
|
|
|
|
|
** |
1392
|
|
|
|
|
|
|
** If both values are numeric, they are converted to doubles using atof() |
1393
|
|
|
|
|
|
|
** and compared in that format. Numeric values are always less than |
1394
|
|
|
|
|
|
|
** non-numeric values. If both operands are non-numeric, the strcmp() library |
1395
|
|
|
|
|
|
|
** routine is used for the comparison. For a pure text comparison |
1396
|
|
|
|
|
|
|
** use OP_StrGe. |
1397
|
|
|
|
|
|
|
** |
1398
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1399
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1400
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1401
|
|
|
|
|
|
|
*/ |
1402
|
|
|
|
|
|
|
case OP_Eq: |
1403
|
|
|
|
|
|
|
case OP_Ne: |
1404
|
|
|
|
|
|
|
case OP_Lt: |
1405
|
|
|
|
|
|
|
case OP_Le: |
1406
|
|
|
|
|
|
|
case OP_Gt: |
1407
|
|
|
|
|
|
|
case OP_Ge: { |
1408
|
46
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
1409
|
|
|
|
|
|
|
int c, v; |
1410
|
|
|
|
|
|
|
int ft, fn; |
1411
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
1412
|
46
|
|
|
|
|
|
ft = pTos->flags; |
1413
|
46
|
|
|
|
|
|
fn = pNos->flags; |
1414
|
46
|
100
|
|
|
|
|
if( (ft | fn) & MEM_Null ){ |
1415
|
4
|
|
|
|
|
|
popStack(&pTos, 2); |
1416
|
4
|
50
|
|
|
|
|
if( pOp->p2 ){ |
1417
|
4
|
50
|
|
|
|
|
if( pOp->p1 ) pc = pOp->p2-1; |
1418
|
|
|
|
|
|
|
}else{ |
1419
|
0
|
|
|
|
|
|
pTos++; |
1420
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1421
|
|
|
|
|
|
|
} |
1422
|
4
|
|
|
|
|
|
break; |
1423
|
42
|
50
|
|
|
|
|
}else if( (ft & fn & MEM_Int)==MEM_Int ){ |
1424
|
0
|
|
|
|
|
|
c = pNos->i - pTos->i; |
1425
|
42
|
100
|
|
|
|
|
}else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
1426
|
27
|
|
|
|
|
|
c = v - pTos->i; |
1427
|
15
|
50
|
|
|
|
|
}else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
1428
|
0
|
|
|
|
|
|
c = pNos->i - v; |
1429
|
|
|
|
|
|
|
}else{ |
1430
|
15
|
50
|
|
|
|
|
Stringify(pTos); |
1431
|
15
|
50
|
|
|
|
|
Stringify(pNos); |
1432
|
15
|
|
|
|
|
|
c = sqliteCompare(pNos->z, pTos->z); |
1433
|
|
|
|
|
|
|
} |
1434
|
42
|
|
|
|
|
|
switch( pOp->opcode ){ |
1435
|
0
|
|
|
|
|
|
case OP_Eq: c = c==0; break; |
1436
|
37
|
|
|
|
|
|
case OP_Ne: c = c!=0; break; |
1437
|
5
|
|
|
|
|
|
case OP_Lt: c = c<0; break; |
1438
|
0
|
|
|
|
|
|
case OP_Le: c = c<=0; break; |
1439
|
0
|
|
|
|
|
|
case OP_Gt: c = c>0; break; |
1440
|
0
|
|
|
|
|
|
default: c = c>=0; break; |
1441
|
|
|
|
|
|
|
} |
1442
|
42
|
|
|
|
|
|
popStack(&pTos, 2); |
1443
|
42
|
50
|
|
|
|
|
if( pOp->p2 ){ |
1444
|
42
|
100
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
1445
|
|
|
|
|
|
|
}else{ |
1446
|
0
|
|
|
|
|
|
pTos++; |
1447
|
0
|
|
|
|
|
|
pTos->i = c; |
1448
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1449
|
|
|
|
|
|
|
} |
1450
|
46
|
|
|
|
|
|
break; |
1451
|
|
|
|
|
|
|
} |
1452
|
|
|
|
|
|
|
/* INSERT NO CODE HERE! |
1453
|
|
|
|
|
|
|
** |
1454
|
|
|
|
|
|
|
** The opcode numbers are extracted from this source file by doing |
1455
|
|
|
|
|
|
|
** |
1456
|
|
|
|
|
|
|
** grep '^case OP_' vdbe.c | ... >opcodes.h |
1457
|
|
|
|
|
|
|
** |
1458
|
|
|
|
|
|
|
** The opcodes are numbered in the order that they appear in this file. |
1459
|
|
|
|
|
|
|
** But in order for the expression generating code to work right, the |
1460
|
|
|
|
|
|
|
** string comparison operators that follow must be numbered exactly 6 |
1461
|
|
|
|
|
|
|
** greater than the numeric comparison opcodes above. So no other |
1462
|
|
|
|
|
|
|
** cases can appear between the two. |
1463
|
|
|
|
|
|
|
*/ |
1464
|
|
|
|
|
|
|
/* Opcode: StrEq P1 P2 * |
1465
|
|
|
|
|
|
|
** |
1466
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are equal, then |
1467
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1468
|
|
|
|
|
|
|
** |
1469
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1470
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1471
|
|
|
|
|
|
|
** |
1472
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1473
|
|
|
|
|
|
|
** numeric comparison, use OP_Eq. |
1474
|
|
|
|
|
|
|
** |
1475
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1476
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1477
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1478
|
|
|
|
|
|
|
*/ |
1479
|
|
|
|
|
|
|
/* Opcode: StrNe P1 P2 * |
1480
|
|
|
|
|
|
|
** |
1481
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If they are not equal, then |
1482
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1483
|
|
|
|
|
|
|
** |
1484
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1485
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1486
|
|
|
|
|
|
|
** |
1487
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1488
|
|
|
|
|
|
|
** numeric comparison, use OP_Ne. |
1489
|
|
|
|
|
|
|
** |
1490
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1491
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1492
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1493
|
|
|
|
|
|
|
*/ |
1494
|
|
|
|
|
|
|
/* Opcode: StrLt P1 P2 * |
1495
|
|
|
|
|
|
|
** |
1496
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1497
|
|
|
|
|
|
|
** next on stack) is less than the first (the top of stack), then |
1498
|
|
|
|
|
|
|
** jump to instruction P2. Otherwise, continue to the next instruction. |
1499
|
|
|
|
|
|
|
** In other words, jump if NOS
|
1500
|
|
|
|
|
|
|
** |
1501
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1502
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1503
|
|
|
|
|
|
|
** |
1504
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1505
|
|
|
|
|
|
|
** numeric comparison, use OP_Lt. |
1506
|
|
|
|
|
|
|
** |
1507
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1508
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1509
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1510
|
|
|
|
|
|
|
*/ |
1511
|
|
|
|
|
|
|
/* Opcode: StrLe P1 P2 * |
1512
|
|
|
|
|
|
|
** |
1513
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1514
|
|
|
|
|
|
|
** next on stack) is less than or equal to the first (the top of stack), |
1515
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS<=TOS. |
1516
|
|
|
|
|
|
|
** |
1517
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1518
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1519
|
|
|
|
|
|
|
** |
1520
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1521
|
|
|
|
|
|
|
** numeric comparison, use OP_Le. |
1522
|
|
|
|
|
|
|
** |
1523
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1524
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1525
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1526
|
|
|
|
|
|
|
*/ |
1527
|
|
|
|
|
|
|
/* Opcode: StrGt P1 P2 * |
1528
|
|
|
|
|
|
|
** |
1529
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the |
1530
|
|
|
|
|
|
|
** next on stack) is greater than the first (the top of stack), |
1531
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>TOS. |
1532
|
|
|
|
|
|
|
** |
1533
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1534
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1535
|
|
|
|
|
|
|
** |
1536
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1537
|
|
|
|
|
|
|
** numeric comparison, use OP_Gt. |
1538
|
|
|
|
|
|
|
** |
1539
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1540
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1541
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1542
|
|
|
|
|
|
|
*/ |
1543
|
|
|
|
|
|
|
/* Opcode: StrGe P1 P2 * |
1544
|
|
|
|
|
|
|
** |
1545
|
|
|
|
|
|
|
** Pop the top two elements from the stack. If second element (the next |
1546
|
|
|
|
|
|
|
** on stack) is greater than or equal to the first (the top of stack), |
1547
|
|
|
|
|
|
|
** then jump to instruction P2. In other words, jump if NOS>=TOS. |
1548
|
|
|
|
|
|
|
** |
1549
|
|
|
|
|
|
|
** If either operand is NULL (and thus if the result is unknown) then |
1550
|
|
|
|
|
|
|
** take the jump if P1 is true. |
1551
|
|
|
|
|
|
|
** |
1552
|
|
|
|
|
|
|
** The strcmp() library routine is used for the comparison. For a |
1553
|
|
|
|
|
|
|
** numeric comparison, use OP_Ge. |
1554
|
|
|
|
|
|
|
** |
1555
|
|
|
|
|
|
|
** If P2 is zero, do not jump. Instead, push an integer 1 onto the |
1556
|
|
|
|
|
|
|
** stack if the jump would have been taken, or a 0 if not. Push a |
1557
|
|
|
|
|
|
|
** NULL if either operand was NULL. |
1558
|
|
|
|
|
|
|
*/ |
1559
|
|
|
|
|
|
|
case OP_StrEq: |
1560
|
|
|
|
|
|
|
case OP_StrNe: |
1561
|
|
|
|
|
|
|
case OP_StrLt: |
1562
|
|
|
|
|
|
|
case OP_StrLe: |
1563
|
|
|
|
|
|
|
case OP_StrGt: |
1564
|
|
|
|
|
|
|
case OP_StrGe: { |
1565
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
1566
|
|
|
|
|
|
|
int c; |
1567
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
1568
|
0
|
0
|
|
|
|
|
if( (pNos->flags | pTos->flags) & MEM_Null ){ |
1569
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
1570
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
1571
|
0
|
0
|
|
|
|
|
if( pOp->p1 ) pc = pOp->p2-1; |
1572
|
|
|
|
|
|
|
}else{ |
1573
|
0
|
|
|
|
|
|
pTos++; |
1574
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1575
|
|
|
|
|
|
|
} |
1576
|
0
|
|
|
|
|
|
break; |
1577
|
|
|
|
|
|
|
}else{ |
1578
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
1579
|
0
|
0
|
|
|
|
|
Stringify(pNos); |
1580
|
0
|
|
|
|
|
|
c = strcmp(pNos->z, pTos->z); |
1581
|
|
|
|
|
|
|
} |
1582
|
|
|
|
|
|
|
/* The asserts on each case of the following switch are there to verify |
1583
|
|
|
|
|
|
|
** that string comparison opcodes are always exactly 6 greater than the |
1584
|
|
|
|
|
|
|
** corresponding numeric comparison opcodes. The code generator depends |
1585
|
|
|
|
|
|
|
** on this fact. |
1586
|
|
|
|
|
|
|
*/ |
1587
|
0
|
|
|
|
|
|
switch( pOp->opcode ){ |
1588
|
0
|
|
|
|
|
|
case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break; |
1589
|
0
|
|
|
|
|
|
case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break; |
1590
|
0
|
|
|
|
|
|
case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break; |
1591
|
0
|
|
|
|
|
|
case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break; |
1592
|
0
|
|
|
|
|
|
case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break; |
1593
|
0
|
|
|
|
|
|
default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break; |
1594
|
|
|
|
|
|
|
} |
1595
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
1596
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
1597
|
0
|
0
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
1598
|
|
|
|
|
|
|
}else{ |
1599
|
0
|
|
|
|
|
|
pTos++; |
1600
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1601
|
0
|
|
|
|
|
|
pTos->i = c; |
1602
|
|
|
|
|
|
|
} |
1603
|
0
|
|
|
|
|
|
break; |
1604
|
|
|
|
|
|
|
} |
1605
|
|
|
|
|
|
|
|
1606
|
|
|
|
|
|
|
/* Opcode: And * * * |
1607
|
|
|
|
|
|
|
** |
1608
|
|
|
|
|
|
|
** Pop two values off the stack. Take the logical AND of the |
1609
|
|
|
|
|
|
|
** two values and push the resulting boolean value back onto the |
1610
|
|
|
|
|
|
|
** stack. |
1611
|
|
|
|
|
|
|
*/ |
1612
|
|
|
|
|
|
|
/* Opcode: Or * * * |
1613
|
|
|
|
|
|
|
** |
1614
|
|
|
|
|
|
|
** Pop two values off the stack. Take the logical OR of the |
1615
|
|
|
|
|
|
|
** two values and push the resulting boolean value back onto the |
1616
|
|
|
|
|
|
|
** stack. |
1617
|
|
|
|
|
|
|
*/ |
1618
|
|
|
|
|
|
|
case OP_And: |
1619
|
|
|
|
|
|
|
case OP_Or: { |
1620
|
0
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
1621
|
|
|
|
|
|
|
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */ |
1622
|
|
|
|
|
|
|
|
1623
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
1624
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
1625
|
0
|
|
|
|
|
|
v1 = 2; |
1626
|
|
|
|
|
|
|
}else{ |
1627
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
1628
|
0
|
|
|
|
|
|
v1 = pTos->i==0; |
1629
|
|
|
|
|
|
|
} |
1630
|
0
|
0
|
|
|
|
|
if( pNos->flags & MEM_Null ){ |
1631
|
0
|
|
|
|
|
|
v2 = 2; |
1632
|
|
|
|
|
|
|
}else{ |
1633
|
0
|
0
|
|
|
|
|
Integerify(pNos); |
1634
|
0
|
|
|
|
|
|
v2 = pNos->i==0; |
1635
|
|
|
|
|
|
|
} |
1636
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_And ){ |
1637
|
|
|
|
|
|
|
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
1638
|
0
|
|
|
|
|
|
v1 = and_logic[v1*3+v2]; |
1639
|
|
|
|
|
|
|
}else{ |
1640
|
|
|
|
|
|
|
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
1641
|
0
|
|
|
|
|
|
v1 = or_logic[v1*3+v2]; |
1642
|
|
|
|
|
|
|
} |
1643
|
0
|
|
|
|
|
|
popStack(&pTos, 2); |
1644
|
0
|
|
|
|
|
|
pTos++; |
1645
|
0
|
0
|
|
|
|
|
if( v1==2 ){ |
1646
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
1647
|
|
|
|
|
|
|
}else{ |
1648
|
0
|
|
|
|
|
|
pTos->i = v1==0; |
1649
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1650
|
|
|
|
|
|
|
} |
1651
|
0
|
|
|
|
|
|
break; |
1652
|
|
|
|
|
|
|
} |
1653
|
|
|
|
|
|
|
|
1654
|
|
|
|
|
|
|
/* Opcode: Negative * * * |
1655
|
|
|
|
|
|
|
** |
1656
|
|
|
|
|
|
|
** Treat the top of the stack as a numeric quantity. Replace it |
1657
|
|
|
|
|
|
|
** with its additive inverse. If the top of the stack is NULL |
1658
|
|
|
|
|
|
|
** its value is unchanged. |
1659
|
|
|
|
|
|
|
*/ |
1660
|
|
|
|
|
|
|
/* Opcode: AbsValue * * * |
1661
|
|
|
|
|
|
|
** |
1662
|
|
|
|
|
|
|
** Treat the top of the stack as a numeric quantity. Replace it |
1663
|
|
|
|
|
|
|
** with its absolute value. If the top of the stack is NULL |
1664
|
|
|
|
|
|
|
** its value is unchanged. |
1665
|
|
|
|
|
|
|
*/ |
1666
|
|
|
|
|
|
|
case OP_Negative: |
1667
|
|
|
|
|
|
|
case OP_AbsValue: { |
1668
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1669
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Real ){ |
1670
|
0
|
0
|
|
|
|
|
Release(pTos); |
1671
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ |
|
|
0
|
|
|
|
|
|
1672
|
0
|
|
|
|
|
|
pTos->r = -pTos->r; |
1673
|
|
|
|
|
|
|
} |
1674
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
1675
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Int ){ |
1676
|
0
|
0
|
|
|
|
|
Release(pTos); |
1677
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->i<0 ){ |
|
|
0
|
|
|
|
|
|
1678
|
0
|
|
|
|
|
|
pTos->i = -pTos->i; |
1679
|
|
|
|
|
|
|
} |
1680
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1681
|
0
|
0
|
|
|
|
|
}else if( pTos->flags & MEM_Null ){ |
1682
|
|
|
|
|
|
|
/* Do nothing */ |
1683
|
|
|
|
|
|
|
}else{ |
1684
|
0
|
0
|
|
|
|
|
Realify(pTos); |
1685
|
0
|
0
|
|
|
|
|
Release(pTos); |
1686
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){ |
|
|
0
|
|
|
|
|
|
1687
|
0
|
|
|
|
|
|
pTos->r = -pTos->r; |
1688
|
|
|
|
|
|
|
} |
1689
|
0
|
|
|
|
|
|
pTos->flags = MEM_Real; |
1690
|
|
|
|
|
|
|
} |
1691
|
0
|
|
|
|
|
|
break; |
1692
|
|
|
|
|
|
|
} |
1693
|
|
|
|
|
|
|
|
1694
|
|
|
|
|
|
|
/* Opcode: Not * * * |
1695
|
|
|
|
|
|
|
** |
1696
|
|
|
|
|
|
|
** Interpret the top of the stack as a boolean value. Replace it |
1697
|
|
|
|
|
|
|
** with its complement. If the top of the stack is NULL its value |
1698
|
|
|
|
|
|
|
** is unchanged. |
1699
|
|
|
|
|
|
|
*/ |
1700
|
|
|
|
|
|
|
case OP_Not: { |
1701
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1702
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
1703
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
1704
|
0
|
0
|
|
|
|
|
Release(pTos); |
1705
|
0
|
|
|
|
|
|
pTos->i = !pTos->i; |
1706
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1707
|
0
|
|
|
|
|
|
break; |
1708
|
|
|
|
|
|
|
} |
1709
|
|
|
|
|
|
|
|
1710
|
|
|
|
|
|
|
/* Opcode: BitNot * * * |
1711
|
|
|
|
|
|
|
** |
1712
|
|
|
|
|
|
|
** Interpret the top of the stack as an value. Replace it |
1713
|
|
|
|
|
|
|
** with its ones-complement. If the top of the stack is NULL its |
1714
|
|
|
|
|
|
|
** value is unchanged. |
1715
|
|
|
|
|
|
|
*/ |
1716
|
|
|
|
|
|
|
case OP_BitNot: { |
1717
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1718
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */ |
1719
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
1720
|
0
|
0
|
|
|
|
|
Release(pTos); |
1721
|
0
|
|
|
|
|
|
pTos->i = ~pTos->i; |
1722
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
1723
|
0
|
|
|
|
|
|
break; |
1724
|
|
|
|
|
|
|
} |
1725
|
|
|
|
|
|
|
|
1726
|
|
|
|
|
|
|
/* Opcode: Noop * * * |
1727
|
|
|
|
|
|
|
** |
1728
|
|
|
|
|
|
|
** Do nothing. This instruction is often useful as a jump |
1729
|
|
|
|
|
|
|
** destination. |
1730
|
|
|
|
|
|
|
*/ |
1731
|
|
|
|
|
|
|
case OP_Noop: { |
1732
|
15
|
|
|
|
|
|
break; |
1733
|
|
|
|
|
|
|
} |
1734
|
|
|
|
|
|
|
|
1735
|
|
|
|
|
|
|
/* Opcode: If P1 P2 * |
1736
|
|
|
|
|
|
|
** |
1737
|
|
|
|
|
|
|
** Pop a single boolean from the stack. If the boolean popped is |
1738
|
|
|
|
|
|
|
** true, then jump to p2. Otherwise continue to the next instruction. |
1739
|
|
|
|
|
|
|
** An integer is false if zero and true otherwise. A string is |
1740
|
|
|
|
|
|
|
** false if it has zero length and true otherwise. |
1741
|
|
|
|
|
|
|
** |
1742
|
|
|
|
|
|
|
** If the value popped of the stack is NULL, then take the jump if P1 |
1743
|
|
|
|
|
|
|
** is true and fall through if P1 is false. |
1744
|
|
|
|
|
|
|
*/ |
1745
|
|
|
|
|
|
|
/* Opcode: IfNot P1 P2 * |
1746
|
|
|
|
|
|
|
** |
1747
|
|
|
|
|
|
|
** Pop a single boolean from the stack. If the boolean popped is |
1748
|
|
|
|
|
|
|
** false, then jump to p2. Otherwise continue to the next instruction. |
1749
|
|
|
|
|
|
|
** An integer is false if zero and true otherwise. A string is |
1750
|
|
|
|
|
|
|
** false if it has zero length and true otherwise. |
1751
|
|
|
|
|
|
|
** |
1752
|
|
|
|
|
|
|
** If the value popped of the stack is NULL, then take the jump if P1 |
1753
|
|
|
|
|
|
|
** is true and fall through if P1 is false. |
1754
|
|
|
|
|
|
|
*/ |
1755
|
|
|
|
|
|
|
case OP_If: |
1756
|
|
|
|
|
|
|
case OP_IfNot: { |
1757
|
|
|
|
|
|
|
int c; |
1758
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
1759
|
26
|
50
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
1760
|
0
|
|
|
|
|
|
c = pOp->p1; |
1761
|
|
|
|
|
|
|
}else{ |
1762
|
26
|
50
|
|
|
|
|
Integerify(pTos); |
1763
|
26
|
|
|
|
|
|
c = pTos->i; |
1764
|
26
|
50
|
|
|
|
|
if( pOp->opcode==OP_IfNot ) c = !c; |
1765
|
|
|
|
|
|
|
} |
1766
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Dyn)==0 ); |
1767
|
26
|
|
|
|
|
|
pTos--; |
1768
|
26
|
100
|
|
|
|
|
if( c ) pc = pOp->p2-1; |
1769
|
26
|
|
|
|
|
|
break; |
1770
|
|
|
|
|
|
|
} |
1771
|
|
|
|
|
|
|
|
1772
|
|
|
|
|
|
|
/* Opcode: IsNull P1 P2 * |
1773
|
|
|
|
|
|
|
** |
1774
|
|
|
|
|
|
|
** If any of the top abs(P1) values on the stack are NULL, then jump |
1775
|
|
|
|
|
|
|
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack |
1776
|
|
|
|
|
|
|
** unchanged. |
1777
|
|
|
|
|
|
|
*/ |
1778
|
|
|
|
|
|
|
case OP_IsNull: { |
1779
|
|
|
|
|
|
|
int i, cnt; |
1780
|
|
|
|
|
|
|
Mem *pTerm; |
1781
|
0
|
|
|
|
|
|
cnt = pOp->p1; |
1782
|
0
|
0
|
|
|
|
|
if( cnt<0 ) cnt = -cnt; |
1783
|
0
|
|
|
|
|
|
pTerm = &pTos[1-cnt]; |
1784
|
|
|
|
|
|
|
assert( pTerm>=p->aStack ); |
1785
|
0
|
0
|
|
|
|
|
for(i=0; i
|
1786
|
0
|
0
|
|
|
|
|
if( pTerm->flags & MEM_Null ){ |
1787
|
0
|
|
|
|
|
|
pc = pOp->p2-1; |
1788
|
0
|
|
|
|
|
|
break; |
1789
|
|
|
|
|
|
|
} |
1790
|
|
|
|
|
|
|
} |
1791
|
0
|
0
|
|
|
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt); |
1792
|
0
|
|
|
|
|
|
break; |
1793
|
|
|
|
|
|
|
} |
1794
|
|
|
|
|
|
|
|
1795
|
|
|
|
|
|
|
/* Opcode: NotNull P1 P2 * |
1796
|
|
|
|
|
|
|
** |
1797
|
|
|
|
|
|
|
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the |
1798
|
|
|
|
|
|
|
** stack if P1 times if P1 is greater than zero. If P1 is less than |
1799
|
|
|
|
|
|
|
** zero then leave the stack unchanged. |
1800
|
|
|
|
|
|
|
*/ |
1801
|
|
|
|
|
|
|
case OP_NotNull: { |
1802
|
|
|
|
|
|
|
int i, cnt; |
1803
|
67
|
|
|
|
|
|
cnt = pOp->p1; |
1804
|
67
|
100
|
|
|
|
|
if( cnt<0 ) cnt = -cnt; |
1805
|
|
|
|
|
|
|
assert( &pTos[1-cnt] >= p->aStack ); |
1806
|
130
|
100
|
|
|
|
|
for(i=0; i
|
|
|
100
|
|
|
|
|
|
1807
|
67
|
100
|
|
|
|
|
if( i>=cnt ) pc = pOp->p2-1; |
1808
|
67
|
100
|
|
|
|
|
if( pOp->p1>0 ) popStack(&pTos, cnt); |
1809
|
67
|
|
|
|
|
|
break; |
1810
|
|
|
|
|
|
|
} |
1811
|
|
|
|
|
|
|
|
1812
|
|
|
|
|
|
|
/* Opcode: MakeRecord P1 P2 * |
1813
|
|
|
|
|
|
|
** |
1814
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry |
1815
|
|
|
|
|
|
|
** suitable for use as a data record in a database table. The |
1816
|
|
|
|
|
|
|
** details of the format are irrelavant as long as the OP_Column |
1817
|
|
|
|
|
|
|
** opcode can decode the record later. Refer to source code |
1818
|
|
|
|
|
|
|
** comments for the details of the record format. |
1819
|
|
|
|
|
|
|
** |
1820
|
|
|
|
|
|
|
** If P2 is true (non-zero) and one or more of the P1 entries |
1821
|
|
|
|
|
|
|
** that go into building the record is NULL, then add some extra |
1822
|
|
|
|
|
|
|
** bytes to the record to make it distinct for other entries created |
1823
|
|
|
|
|
|
|
** during the same run of the VDBE. The extra bytes added are a |
1824
|
|
|
|
|
|
|
** counter that is reset with each run of the VDBE, so records |
1825
|
|
|
|
|
|
|
** created this way will not necessarily be distinct across runs. |
1826
|
|
|
|
|
|
|
** But they should be distinct for transient tables (created using |
1827
|
|
|
|
|
|
|
** OP_OpenTemp) which is what they are intended for. |
1828
|
|
|
|
|
|
|
** |
1829
|
|
|
|
|
|
|
** (Later:) The P2==1 option was intended to make NULLs distinct |
1830
|
|
|
|
|
|
|
** for the UNION operator. But I have since discovered that NULLs |
1831
|
|
|
|
|
|
|
** are indistinct for UNION. So this option is never used. |
1832
|
|
|
|
|
|
|
*/ |
1833
|
|
|
|
|
|
|
case OP_MakeRecord: { |
1834
|
|
|
|
|
|
|
char *zNewRecord; |
1835
|
|
|
|
|
|
|
int nByte; |
1836
|
|
|
|
|
|
|
int nField; |
1837
|
|
|
|
|
|
|
int i, j; |
1838
|
|
|
|
|
|
|
int idxWidth; |
1839
|
|
|
|
|
|
|
u32 addr; |
1840
|
|
|
|
|
|
|
Mem *pRec; |
1841
|
96
|
|
|
|
|
|
int addUnique = 0; /* True to cause bytes to be added to make the |
1842
|
|
|
|
|
|
|
** generated record distinct */ |
1843
|
|
|
|
|
|
|
char zTemp[NBFS]; /* Temp space for small records */ |
1844
|
|
|
|
|
|
|
|
1845
|
|
|
|
|
|
|
/* Assuming the record contains N fields, the record format looks |
1846
|
|
|
|
|
|
|
** like this: |
1847
|
|
|
|
|
|
|
** |
1848
|
|
|
|
|
|
|
** ------------------------------------------------------------------- |
1849
|
|
|
|
|
|
|
** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) | |
1850
|
|
|
|
|
|
|
** ------------------------------------------------------------------- |
1851
|
|
|
|
|
|
|
** |
1852
|
|
|
|
|
|
|
** All data fields are converted to strings before being stored and |
1853
|
|
|
|
|
|
|
** are stored with their null terminators. NULL entries omit the |
1854
|
|
|
|
|
|
|
** null terminator. Thus an empty string uses 1 byte and a NULL uses |
1855
|
|
|
|
|
|
|
** zero bytes. Data(0) is taken from the lowest element of the stack |
1856
|
|
|
|
|
|
|
** and data(N-1) is the top of the stack. |
1857
|
|
|
|
|
|
|
** |
1858
|
|
|
|
|
|
|
** Each of the idx() entries is either 1, 2, or 3 bytes depending on |
1859
|
|
|
|
|
|
|
** how big the total record is. Idx(0) contains the offset to the start |
1860
|
|
|
|
|
|
|
** of data(0). Idx(k) contains the offset to the start of data(k). |
1861
|
|
|
|
|
|
|
** Idx(N) contains the total number of bytes in the record. |
1862
|
|
|
|
|
|
|
*/ |
1863
|
96
|
|
|
|
|
|
nField = pOp->p1; |
1864
|
96
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
1865
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
1866
|
96
|
|
|
|
|
|
nByte = 0; |
1867
|
402
|
100
|
|
|
|
|
for(i=0; i
|
1868
|
306
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
1869
|
15
|
|
|
|
|
|
addUnique = pOp->p2; |
1870
|
|
|
|
|
|
|
}else{ |
1871
|
291
|
100
|
|
|
|
|
Stringify(pRec); |
1872
|
291
|
|
|
|
|
|
nByte += pRec->n; |
1873
|
|
|
|
|
|
|
} |
1874
|
|
|
|
|
|
|
} |
1875
|
96
|
50
|
|
|
|
|
if( addUnique ) nByte += sizeof(p->uniqueCnt); |
1876
|
96
|
100
|
|
|
|
|
if( nByte + nField + 1 < 256 ){ |
1877
|
95
|
|
|
|
|
|
idxWidth = 1; |
1878
|
1
|
50
|
|
|
|
|
}else if( nByte + 2*nField + 2 < 65536 ){ |
1879
|
1
|
|
|
|
|
|
idxWidth = 2; |
1880
|
|
|
|
|
|
|
}else{ |
1881
|
0
|
|
|
|
|
|
idxWidth = 3; |
1882
|
|
|
|
|
|
|
} |
1883
|
96
|
|
|
|
|
|
nByte += idxWidth*(nField + 1); |
1884
|
96
|
50
|
|
|
|
|
if( nByte>MAX_BYTES_PER_ROW ){ |
1885
|
0
|
|
|
|
|
|
rc = SQLITE_TOOBIG; |
1886
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
1887
|
|
|
|
|
|
|
} |
1888
|
96
|
100
|
|
|
|
|
if( nByte<=NBFS ){ |
1889
|
44
|
|
|
|
|
|
zNewRecord = zTemp; |
1890
|
|
|
|
|
|
|
}else{ |
1891
|
52
|
|
|
|
|
|
zNewRecord = sqliteMallocRaw( nByte ); |
1892
|
52
|
50
|
|
|
|
|
if( zNewRecord==0 ) goto no_mem; |
1893
|
|
|
|
|
|
|
} |
1894
|
96
|
|
|
|
|
|
j = 0; |
1895
|
96
|
|
|
|
|
|
addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt); |
1896
|
402
|
100
|
|
|
|
|
for(i=0, pRec=&pTos[1-nField]; i
|
1897
|
306
|
|
|
|
|
|
zNewRecord[j++] = addr & 0xff; |
1898
|
306
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
1899
|
2
|
|
|
|
|
|
zNewRecord[j++] = (addr>>8)&0xff; |
1900
|
2
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
1901
|
0
|
|
|
|
|
|
zNewRecord[j++] = (addr>>16)&0xff; |
1902
|
|
|
|
|
|
|
} |
1903
|
|
|
|
|
|
|
} |
1904
|
306
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
1905
|
291
|
|
|
|
|
|
addr += pRec->n; |
1906
|
|
|
|
|
|
|
} |
1907
|
|
|
|
|
|
|
} |
1908
|
96
|
|
|
|
|
|
zNewRecord[j++] = addr & 0xff; |
1909
|
96
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
1910
|
1
|
|
|
|
|
|
zNewRecord[j++] = (addr>>8)&0xff; |
1911
|
1
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
1912
|
0
|
|
|
|
|
|
zNewRecord[j++] = (addr>>16)&0xff; |
1913
|
|
|
|
|
|
|
} |
1914
|
|
|
|
|
|
|
} |
1915
|
96
|
50
|
|
|
|
|
if( addUnique ){ |
1916
|
0
|
|
|
|
|
|
memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt)); |
1917
|
0
|
|
|
|
|
|
p->uniqueCnt++; |
1918
|
0
|
|
|
|
|
|
j += sizeof(p->uniqueCnt); |
1919
|
|
|
|
|
|
|
} |
1920
|
402
|
100
|
|
|
|
|
for(i=0, pRec=&pTos[1-nField]; i
|
1921
|
306
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
1922
|
291
|
|
|
|
|
|
memcpy(&zNewRecord[j], pRec->z, pRec->n); |
1923
|
291
|
|
|
|
|
|
j += pRec->n; |
1924
|
|
|
|
|
|
|
} |
1925
|
|
|
|
|
|
|
} |
1926
|
96
|
|
|
|
|
|
popStack(&pTos, nField); |
1927
|
96
|
|
|
|
|
|
pTos++; |
1928
|
96
|
|
|
|
|
|
pTos->n = nByte; |
1929
|
96
|
100
|
|
|
|
|
if( nByte<=NBFS ){ |
1930
|
|
|
|
|
|
|
assert( zNewRecord==zTemp ); |
1931
|
44
|
|
|
|
|
|
memcpy(pTos->zShort, zTemp, nByte); |
1932
|
44
|
|
|
|
|
|
pTos->z = pTos->zShort; |
1933
|
44
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
1934
|
|
|
|
|
|
|
}else{ |
1935
|
|
|
|
|
|
|
assert( zNewRecord!=zTemp ); |
1936
|
52
|
|
|
|
|
|
pTos->z = zNewRecord; |
1937
|
52
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
1938
|
|
|
|
|
|
|
} |
1939
|
96
|
|
|
|
|
|
break; |
1940
|
|
|
|
|
|
|
} |
1941
|
|
|
|
|
|
|
|
1942
|
|
|
|
|
|
|
/* Opcode: MakeKey P1 P2 P3 |
1943
|
|
|
|
|
|
|
** |
1944
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry suitable |
1945
|
|
|
|
|
|
|
** for use as the key in an index. The top P1 records are |
1946
|
|
|
|
|
|
|
** converted to strings and merged. The null-terminators |
1947
|
|
|
|
|
|
|
** are retained and used as separators. |
1948
|
|
|
|
|
|
|
** The lowest entry in the stack is the first field and the top of the |
1949
|
|
|
|
|
|
|
** stack becomes the last. |
1950
|
|
|
|
|
|
|
** |
1951
|
|
|
|
|
|
|
** If P2 is not zero, then the original entries remain on the stack |
1952
|
|
|
|
|
|
|
** and the new key is pushed on top. If P2 is zero, the original |
1953
|
|
|
|
|
|
|
** data is popped off the stack first then the new key is pushed |
1954
|
|
|
|
|
|
|
** back in its place. |
1955
|
|
|
|
|
|
|
** |
1956
|
|
|
|
|
|
|
** P3 is a string that is P1 characters long. Each character is either |
1957
|
|
|
|
|
|
|
** an 'n' or a 't' to indicates if the argument should be intepreted as |
1958
|
|
|
|
|
|
|
** numeric or text type. The first character of P3 corresponds to the |
1959
|
|
|
|
|
|
|
** lowest element on the stack. If P3 is NULL then all arguments are |
1960
|
|
|
|
|
|
|
** assumed to be of the numeric type. |
1961
|
|
|
|
|
|
|
** |
1962
|
|
|
|
|
|
|
** The type makes a difference in that text-type fields may not be |
1963
|
|
|
|
|
|
|
** introduced by 'b' (as described in the next paragraph). The |
1964
|
|
|
|
|
|
|
** first character of a text-type field must be either 'a' (if it is NULL) |
1965
|
|
|
|
|
|
|
** or 'c'. Numeric fields will be introduced by 'b' if their content |
1966
|
|
|
|
|
|
|
** looks like a well-formed number. Otherwise the 'a' or 'c' will be |
1967
|
|
|
|
|
|
|
** used. |
1968
|
|
|
|
|
|
|
** |
1969
|
|
|
|
|
|
|
** The key is a concatenation of fields. Each field is terminated by |
1970
|
|
|
|
|
|
|
** a single 0x00 character. A NULL field is introduced by an 'a' and |
1971
|
|
|
|
|
|
|
** is followed immediately by its 0x00 terminator. A numeric field is |
1972
|
|
|
|
|
|
|
** introduced by a single character 'b' and is followed by a sequence |
1973
|
|
|
|
|
|
|
** of characters that represent the number such that a comparison of |
1974
|
|
|
|
|
|
|
** the character string using memcpy() sorts the numbers in numerical |
1975
|
|
|
|
|
|
|
** order. The character strings for numbers are generated using the |
1976
|
|
|
|
|
|
|
** sqliteRealToSortable() function. A text field is introduced by a |
1977
|
|
|
|
|
|
|
** 'c' character and is followed by the exact text of the field. The |
1978
|
|
|
|
|
|
|
** use of an 'a', 'b', or 'c' character at the beginning of each field |
1979
|
|
|
|
|
|
|
** guarantees that NULLs sort before numbers and that numbers sort |
1980
|
|
|
|
|
|
|
** before text. 0x00 characters do not occur except as separators |
1981
|
|
|
|
|
|
|
** between fields. |
1982
|
|
|
|
|
|
|
** |
1983
|
|
|
|
|
|
|
** See also: MakeIdxKey, SortMakeKey |
1984
|
|
|
|
|
|
|
*/ |
1985
|
|
|
|
|
|
|
/* Opcode: MakeIdxKey P1 P2 P3 |
1986
|
|
|
|
|
|
|
** |
1987
|
|
|
|
|
|
|
** Convert the top P1 entries of the stack into a single entry suitable |
1988
|
|
|
|
|
|
|
** for use as the key in an index. In addition, take one additional integer |
1989
|
|
|
|
|
|
|
** off of the stack, treat that integer as a four-byte record number, and |
1990
|
|
|
|
|
|
|
** append the four bytes to the key. Thus a total of P1+1 entries are |
1991
|
|
|
|
|
|
|
** popped from the stack for this instruction and a single entry is pushed |
1992
|
|
|
|
|
|
|
** back. The first P1 entries that are popped are strings and the last |
1993
|
|
|
|
|
|
|
** entry (the lowest on the stack) is an integer record number. |
1994
|
|
|
|
|
|
|
** |
1995
|
|
|
|
|
|
|
** The converstion of the first P1 string entries occurs just like in |
1996
|
|
|
|
|
|
|
** MakeKey. Each entry is separated from the others by a null. |
1997
|
|
|
|
|
|
|
** The entire concatenation is null-terminated. The lowest entry |
1998
|
|
|
|
|
|
|
** in the stack is the first field and the top of the stack becomes the |
1999
|
|
|
|
|
|
|
** last. |
2000
|
|
|
|
|
|
|
** |
2001
|
|
|
|
|
|
|
** If P2 is not zero and one or more of the P1 entries that go into the |
2002
|
|
|
|
|
|
|
** generated key is NULL, then jump to P2 after the new key has been |
2003
|
|
|
|
|
|
|
** pushed on the stack. In other words, jump to P2 if the key is |
2004
|
|
|
|
|
|
|
** guaranteed to be unique. This jump can be used to skip a subsequent |
2005
|
|
|
|
|
|
|
** uniqueness test. |
2006
|
|
|
|
|
|
|
** |
2007
|
|
|
|
|
|
|
** P3 is a string that is P1 characters long. Each character is either |
2008
|
|
|
|
|
|
|
** an 'n' or a 't' to indicates if the argument should be numeric or |
2009
|
|
|
|
|
|
|
** text. The first character corresponds to the lowest element on the |
2010
|
|
|
|
|
|
|
** stack. If P3 is null then all arguments are assumed to be numeric. |
2011
|
|
|
|
|
|
|
** |
2012
|
|
|
|
|
|
|
** See also: MakeKey, SortMakeKey |
2013
|
|
|
|
|
|
|
*/ |
2014
|
|
|
|
|
|
|
case OP_MakeIdxKey: |
2015
|
|
|
|
|
|
|
case OP_MakeKey: { |
2016
|
|
|
|
|
|
|
char *zNewKey; |
2017
|
|
|
|
|
|
|
int nByte; |
2018
|
|
|
|
|
|
|
int nField; |
2019
|
|
|
|
|
|
|
int addRowid; |
2020
|
|
|
|
|
|
|
int i, j; |
2021
|
7
|
|
|
|
|
|
int containsNull = 0; |
2022
|
|
|
|
|
|
|
Mem *pRec; |
2023
|
|
|
|
|
|
|
char zTemp[NBFS]; |
2024
|
|
|
|
|
|
|
|
2025
|
7
|
|
|
|
|
|
addRowid = pOp->opcode==OP_MakeIdxKey; |
2026
|
7
|
|
|
|
|
|
nField = pOp->p1; |
2027
|
7
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
2028
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
2029
|
7
|
|
|
|
|
|
nByte = 0; |
2030
|
15
|
100
|
|
|
|
|
for(j=0, i=0; i
|
2031
|
8
|
|
|
|
|
|
int flags = pRec->flags; |
2032
|
|
|
|
|
|
|
int len; |
2033
|
|
|
|
|
|
|
char *z; |
2034
|
8
|
100
|
|
|
|
|
if( flags & MEM_Null ){ |
2035
|
1
|
|
|
|
|
|
nByte += 2; |
2036
|
1
|
|
|
|
|
|
containsNull = 1; |
2037
|
7
|
50
|
|
|
|
|
}else if( pOp->p3 && pOp->p3[j]=='t' ){ |
|
|
100
|
|
|
|
|
|
2038
|
2
|
50
|
|
|
|
|
Stringify(pRec); |
2039
|
2
|
|
|
|
|
|
pRec->flags &= ~(MEM_Int|MEM_Real); |
2040
|
2
|
|
|
|
|
|
nByte += pRec->n+1; |
2041
|
5
|
100
|
|
|
|
|
}else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){ |
|
|
100
|
|
|
|
|
|
2042
|
4
|
100
|
|
|
|
|
if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){ |
2043
|
1
|
|
|
|
|
|
pRec->r = pRec->i; |
2044
|
3
|
50
|
|
|
|
|
}else if( (flags & (MEM_Real|MEM_Int))==0 ){ |
2045
|
3
|
|
|
|
|
|
pRec->r = sqliteAtoF(pRec->z, 0); |
2046
|
|
|
|
|
|
|
} |
2047
|
4
|
50
|
|
|
|
|
Release(pRec); |
2048
|
4
|
|
|
|
|
|
z = pRec->zShort; |
2049
|
4
|
|
|
|
|
|
sqliteRealToSortable(pRec->r, z); |
2050
|
4
|
|
|
|
|
|
len = strlen(z); |
2051
|
4
|
|
|
|
|
|
pRec->z = 0; |
2052
|
4
|
|
|
|
|
|
pRec->flags = MEM_Real; |
2053
|
4
|
|
|
|
|
|
pRec->n = len+1; |
2054
|
4
|
|
|
|
|
|
nByte += pRec->n+1; |
2055
|
|
|
|
|
|
|
}else{ |
2056
|
1
|
|
|
|
|
|
nByte += pRec->n+1; |
2057
|
|
|
|
|
|
|
} |
2058
|
|
|
|
|
|
|
} |
2059
|
7
|
50
|
|
|
|
|
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){ |
2060
|
0
|
|
|
|
|
|
rc = SQLITE_TOOBIG; |
2061
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
2062
|
|
|
|
|
|
|
} |
2063
|
7
|
100
|
|
|
|
|
if( addRowid ) nByte += sizeof(u32); |
2064
|
7
|
50
|
|
|
|
|
if( nByte<=NBFS ){ |
2065
|
7
|
|
|
|
|
|
zNewKey = zTemp; |
2066
|
|
|
|
|
|
|
}else{ |
2067
|
0
|
|
|
|
|
|
zNewKey = sqliteMallocRaw( nByte ); |
2068
|
0
|
0
|
|
|
|
|
if( zNewKey==0 ) goto no_mem; |
2069
|
|
|
|
|
|
|
} |
2070
|
7
|
|
|
|
|
|
j = 0; |
2071
|
7
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
2072
|
15
|
100
|
|
|
|
|
for(i=0; i
|
2073
|
8
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
2074
|
1
|
|
|
|
|
|
zNewKey[j++] = 'a'; |
2075
|
1
|
|
|
|
|
|
zNewKey[j++] = 0; |
2076
|
7
|
100
|
|
|
|
|
}else if( pRec->flags==MEM_Real ){ |
2077
|
4
|
|
|
|
|
|
zNewKey[j++] = 'b'; |
2078
|
4
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->zShort, pRec->n); |
2079
|
4
|
|
|
|
|
|
j += pRec->n; |
2080
|
|
|
|
|
|
|
}else{ |
2081
|
|
|
|
|
|
|
assert( pRec->flags & MEM_Str ); |
2082
|
3
|
|
|
|
|
|
zNewKey[j++] = 'c'; |
2083
|
3
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->z, pRec->n); |
2084
|
3
|
|
|
|
|
|
j += pRec->n; |
2085
|
|
|
|
|
|
|
} |
2086
|
|
|
|
|
|
|
} |
2087
|
7
|
100
|
|
|
|
|
if( addRowid ){ |
2088
|
|
|
|
|
|
|
u32 iKey; |
2089
|
4
|
|
|
|
|
|
pRec = &pTos[-nField]; |
2090
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
2091
|
4
|
50
|
|
|
|
|
Integerify(pRec); |
2092
|
4
|
|
|
|
|
|
iKey = intToKey(pRec->i); |
2093
|
4
|
|
|
|
|
|
memcpy(&zNewKey[j], &iKey, sizeof(u32)); |
2094
|
4
|
|
|
|
|
|
popStack(&pTos, nField+1); |
2095
|
4
|
100
|
|
|
|
|
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1; |
|
|
50
|
|
|
|
|
|
2096
|
|
|
|
|
|
|
}else{ |
2097
|
3
|
50
|
|
|
|
|
if( pOp->p2==0 ) popStack(&pTos, nField); |
2098
|
|
|
|
|
|
|
} |
2099
|
7
|
|
|
|
|
|
pTos++; |
2100
|
7
|
|
|
|
|
|
pTos->n = nByte; |
2101
|
7
|
50
|
|
|
|
|
if( nByte<=NBFS ){ |
2102
|
|
|
|
|
|
|
assert( zNewKey==zTemp ); |
2103
|
7
|
|
|
|
|
|
pTos->z = pTos->zShort; |
2104
|
7
|
|
|
|
|
|
memcpy(pTos->zShort, zTemp, nByte); |
2105
|
7
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
2106
|
|
|
|
|
|
|
}else{ |
2107
|
0
|
|
|
|
|
|
pTos->z = zNewKey; |
2108
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
2109
|
|
|
|
|
|
|
} |
2110
|
7
|
|
|
|
|
|
break; |
2111
|
|
|
|
|
|
|
} |
2112
|
|
|
|
|
|
|
|
2113
|
|
|
|
|
|
|
/* Opcode: IncrKey * * * |
2114
|
|
|
|
|
|
|
** |
2115
|
|
|
|
|
|
|
** The top of the stack should contain an index key generated by |
2116
|
|
|
|
|
|
|
** The MakeKey opcode. This routine increases the least significant |
2117
|
|
|
|
|
|
|
** byte of that key by one. This is used so that the MoveTo opcode |
2118
|
|
|
|
|
|
|
** will move to the first entry greater than the key rather than to |
2119
|
|
|
|
|
|
|
** the key itself. |
2120
|
|
|
|
|
|
|
*/ |
2121
|
|
|
|
|
|
|
case OP_IncrKey: { |
2122
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2123
|
|
|
|
|
|
|
/* The IncrKey opcode is only applied to keys generated by |
2124
|
|
|
|
|
|
|
** MakeKey or MakeIdxKey and the results of those operands |
2125
|
|
|
|
|
|
|
** are always dynamic strings or zShort[] strings. So we |
2126
|
|
|
|
|
|
|
** are always free to modify the string in place. |
2127
|
|
|
|
|
|
|
*/ |
2128
|
|
|
|
|
|
|
assert( pTos->flags & (MEM_Dyn|MEM_Short) ); |
2129
|
0
|
|
|
|
|
|
pTos->z[pTos->n-1]++; |
2130
|
0
|
|
|
|
|
|
break; |
2131
|
|
|
|
|
|
|
} |
2132
|
|
|
|
|
|
|
|
2133
|
|
|
|
|
|
|
/* Opcode: Checkpoint P1 * * |
2134
|
|
|
|
|
|
|
** |
2135
|
|
|
|
|
|
|
** Begin a checkpoint. A checkpoint is the beginning of a operation that |
2136
|
|
|
|
|
|
|
** is part of a larger transaction but which might need to be rolled back |
2137
|
|
|
|
|
|
|
** itself without effecting the containing transaction. A checkpoint will |
2138
|
|
|
|
|
|
|
** be automatically committed or rollback when the VDBE halts. |
2139
|
|
|
|
|
|
|
** |
2140
|
|
|
|
|
|
|
** The checkpoint is begun on the database file with index P1. The main |
2141
|
|
|
|
|
|
|
** database file has an index of 0 and the file used for temporary tables |
2142
|
|
|
|
|
|
|
** has an index of 1. |
2143
|
|
|
|
|
|
|
*/ |
2144
|
|
|
|
|
|
|
case OP_Checkpoint: { |
2145
|
0
|
|
|
|
|
|
int i = pOp->p1; |
2146
|
0
|
0
|
|
|
|
|
if( i>=0 && inDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2147
|
0
|
|
|
|
|
|
rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt); |
2148
|
0
|
0
|
|
|
|
|
if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2; |
2149
|
|
|
|
|
|
|
} |
2150
|
0
|
|
|
|
|
|
break; |
2151
|
|
|
|
|
|
|
} |
2152
|
|
|
|
|
|
|
|
2153
|
|
|
|
|
|
|
/* Opcode: Transaction P1 * * |
2154
|
|
|
|
|
|
|
** |
2155
|
|
|
|
|
|
|
** Begin a transaction. The transaction ends when a Commit or Rollback |
2156
|
|
|
|
|
|
|
** opcode is encountered. Depending on the ON CONFLICT setting, the |
2157
|
|
|
|
|
|
|
** transaction might also be rolled back if an error is encountered. |
2158
|
|
|
|
|
|
|
** |
2159
|
|
|
|
|
|
|
** P1 is the index of the database file on which the transaction is |
2160
|
|
|
|
|
|
|
** started. Index 0 is the main database file and index 1 is the |
2161
|
|
|
|
|
|
|
** file used for temporary tables. |
2162
|
|
|
|
|
|
|
** |
2163
|
|
|
|
|
|
|
** A write lock is obtained on the database file when a transaction is |
2164
|
|
|
|
|
|
|
** started. No other process can read or write the file while the |
2165
|
|
|
|
|
|
|
** transaction is underway. Starting a transaction also creates a |
2166
|
|
|
|
|
|
|
** rollback journal. A transaction must be started before any changes |
2167
|
|
|
|
|
|
|
** can be made to the database. |
2168
|
|
|
|
|
|
|
*/ |
2169
|
|
|
|
|
|
|
case OP_Transaction: { |
2170
|
153
|
|
|
|
|
|
int busy = 1; |
2171
|
153
|
|
|
|
|
|
int i = pOp->p1; |
2172
|
|
|
|
|
|
|
assert( i>=0 && inDb ); |
2173
|
153
|
50
|
|
|
|
|
if( db->aDb[i].inTrans ) break; |
2174
|
306
|
50
|
|
|
|
|
while( db->aDb[i].pBt!=0 && busy ){ |
|
|
100
|
|
|
|
|
|
2175
|
153
|
|
|
|
|
|
rc = sqliteBtreeBeginTrans(db->aDb[i].pBt); |
2176
|
153
|
|
|
|
|
|
switch( rc ){ |
2177
|
|
|
|
|
|
|
case SQLITE_BUSY: { |
2178
|
0
|
0
|
|
|
|
|
if( db->xBusyCallback==0 ){ |
2179
|
0
|
|
|
|
|
|
p->pc = pc; |
2180
|
0
|
|
|
|
|
|
p->undoTransOnError = 1; |
2181
|
0
|
|
|
|
|
|
p->rc = SQLITE_BUSY; |
2182
|
0
|
|
|
|
|
|
p->pTos = pTos; |
2183
|
0
|
|
|
|
|
|
return SQLITE_BUSY; |
2184
|
0
|
0
|
|
|
|
|
}else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){ |
2185
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
2186
|
0
|
|
|
|
|
|
busy = 0; |
2187
|
|
|
|
|
|
|
} |
2188
|
0
|
|
|
|
|
|
break; |
2189
|
|
|
|
|
|
|
} |
2190
|
|
|
|
|
|
|
case SQLITE_READONLY: { |
2191
|
0
|
|
|
|
|
|
rc = SQLITE_OK; |
2192
|
|
|
|
|
|
|
/* Fall thru into the next case */ |
2193
|
|
|
|
|
|
|
} |
2194
|
|
|
|
|
|
|
case SQLITE_OK: { |
2195
|
153
|
|
|
|
|
|
p->inTempTrans = 0; |
2196
|
153
|
|
|
|
|
|
busy = 0; |
2197
|
153
|
|
|
|
|
|
break; |
2198
|
|
|
|
|
|
|
} |
2199
|
|
|
|
|
|
|
default: { |
2200
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
2201
|
|
|
|
|
|
|
} |
2202
|
|
|
|
|
|
|
} |
2203
|
|
|
|
|
|
|
} |
2204
|
153
|
|
|
|
|
|
db->aDb[i].inTrans = 1; |
2205
|
153
|
|
|
|
|
|
p->undoTransOnError = 1; |
2206
|
153
|
|
|
|
|
|
break; |
2207
|
|
|
|
|
|
|
} |
2208
|
|
|
|
|
|
|
|
2209
|
|
|
|
|
|
|
/* Opcode: Commit * * * |
2210
|
|
|
|
|
|
|
** |
2211
|
|
|
|
|
|
|
** Cause all modifications to the database that have been made since the |
2212
|
|
|
|
|
|
|
** last Transaction to actually take effect. No additional modifications |
2213
|
|
|
|
|
|
|
** are allowed until another transaction is started. The Commit instruction |
2214
|
|
|
|
|
|
|
** deletes the journal file and releases the write lock on the database. |
2215
|
|
|
|
|
|
|
** A read lock continues to be held if there are still cursors open. |
2216
|
|
|
|
|
|
|
*/ |
2217
|
|
|
|
|
|
|
case OP_Commit: { |
2218
|
|
|
|
|
|
|
int i; |
2219
|
73
|
50
|
|
|
|
|
if( db->xCommitCallback!=0 ){ |
2220
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
2221
|
0
|
0
|
|
|
|
|
if( db->xCommitCallback(db->pCommitArg)!=0 ){ |
2222
|
0
|
|
|
|
|
|
rc = SQLITE_CONSTRAINT; |
2223
|
|
|
|
|
|
|
} |
2224
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
2225
|
|
|
|
|
|
|
} |
2226
|
219
|
50
|
|
|
|
|
for(i=0; rc==SQLITE_OK && inDb; i++){ |
|
|
100
|
|
|
|
|
|
2227
|
146
|
100
|
|
|
|
|
if( db->aDb[i].inTrans ){ |
2228
|
143
|
|
|
|
|
|
rc = sqliteBtreeCommit(db->aDb[i].pBt); |
2229
|
143
|
|
|
|
|
|
db->aDb[i].inTrans = 0; |
2230
|
|
|
|
|
|
|
} |
2231
|
|
|
|
|
|
|
} |
2232
|
73
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2233
|
73
|
|
|
|
|
|
sqliteCommitInternalChanges(db); |
2234
|
|
|
|
|
|
|
}else{ |
2235
|
0
|
|
|
|
|
|
sqliteRollbackAll(db); |
2236
|
|
|
|
|
|
|
} |
2237
|
73
|
|
|
|
|
|
break; |
2238
|
|
|
|
|
|
|
} |
2239
|
|
|
|
|
|
|
|
2240
|
|
|
|
|
|
|
/* Opcode: Rollback P1 * * |
2241
|
|
|
|
|
|
|
** |
2242
|
|
|
|
|
|
|
** Cause all modifications to the database that have been made since the |
2243
|
|
|
|
|
|
|
** last Transaction to be undone. The database is restored to its state |
2244
|
|
|
|
|
|
|
** before the Transaction opcode was executed. No additional modifications |
2245
|
|
|
|
|
|
|
** are allowed until another transaction is started. |
2246
|
|
|
|
|
|
|
** |
2247
|
|
|
|
|
|
|
** P1 is the index of the database file that is committed. An index of 0 |
2248
|
|
|
|
|
|
|
** is used for the main database and an index of 1 is used for the file used |
2249
|
|
|
|
|
|
|
** to hold temporary tables. |
2250
|
|
|
|
|
|
|
** |
2251
|
|
|
|
|
|
|
** This instruction automatically closes all cursors and releases both |
2252
|
|
|
|
|
|
|
** the read and write locks on the indicated database. |
2253
|
|
|
|
|
|
|
*/ |
2254
|
|
|
|
|
|
|
case OP_Rollback: { |
2255
|
4
|
|
|
|
|
|
sqliteRollbackAll(db); |
2256
|
4
|
|
|
|
|
|
break; |
2257
|
|
|
|
|
|
|
} |
2258
|
|
|
|
|
|
|
|
2259
|
|
|
|
|
|
|
/* Opcode: ReadCookie P1 P2 * |
2260
|
|
|
|
|
|
|
** |
2261
|
|
|
|
|
|
|
** Read cookie number P2 from database P1 and push it onto the stack. |
2262
|
|
|
|
|
|
|
** P2==0 is the schema version. P2==1 is the database format. |
2263
|
|
|
|
|
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
2264
|
|
|
|
|
|
|
** the main database file and P1==1 is the database file used to store |
2265
|
|
|
|
|
|
|
** temporary tables. |
2266
|
|
|
|
|
|
|
** |
2267
|
|
|
|
|
|
|
** There must be a read-lock on the database (either a transaction |
2268
|
|
|
|
|
|
|
** must be started or there must be an open cursor) before |
2269
|
|
|
|
|
|
|
** executing this instruction. |
2270
|
|
|
|
|
|
|
*/ |
2271
|
|
|
|
|
|
|
case OP_ReadCookie: { |
2272
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
2273
|
|
|
|
|
|
|
assert( pOp->p2
|
2274
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
2275
|
|
|
|
|
|
|
assert( db->aDb[pOp->p1].pBt!=0 ); |
2276
|
0
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
2277
|
0
|
|
|
|
|
|
pTos++; |
2278
|
0
|
|
|
|
|
|
pTos->i = aMeta[1+pOp->p2]; |
2279
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
2280
|
0
|
|
|
|
|
|
break; |
2281
|
|
|
|
|
|
|
} |
2282
|
|
|
|
|
|
|
|
2283
|
|
|
|
|
|
|
/* Opcode: SetCookie P1 P2 * |
2284
|
|
|
|
|
|
|
** |
2285
|
|
|
|
|
|
|
** Write the top of the stack into cookie number P2 of database P1. |
2286
|
|
|
|
|
|
|
** P2==0 is the schema version. P2==1 is the database format. |
2287
|
|
|
|
|
|
|
** P2==2 is the recommended pager cache size, and so forth. P1==0 is |
2288
|
|
|
|
|
|
|
** the main database file and P1==1 is the database file used to store |
2289
|
|
|
|
|
|
|
** temporary tables. |
2290
|
|
|
|
|
|
|
** |
2291
|
|
|
|
|
|
|
** A transaction must be started before executing this opcode. |
2292
|
|
|
|
|
|
|
*/ |
2293
|
|
|
|
|
|
|
case OP_SetCookie: { |
2294
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
2295
|
|
|
|
|
|
|
assert( pOp->p2
|
2296
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
2297
|
|
|
|
|
|
|
assert( db->aDb[pOp->p1].pBt!=0 ); |
2298
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2299
|
53
|
50
|
|
|
|
|
Integerify(pTos) |
2300
|
53
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
2301
|
53
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2302
|
53
|
|
|
|
|
|
aMeta[1+pOp->p2] = pTos->i; |
2303
|
53
|
|
|
|
|
|
rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta); |
2304
|
|
|
|
|
|
|
} |
2305
|
53
|
50
|
|
|
|
|
Release(pTos); |
2306
|
53
|
|
|
|
|
|
pTos--; |
2307
|
53
|
|
|
|
|
|
break; |
2308
|
|
|
|
|
|
|
} |
2309
|
|
|
|
|
|
|
|
2310
|
|
|
|
|
|
|
/* Opcode: VerifyCookie P1 P2 * |
2311
|
|
|
|
|
|
|
** |
2312
|
|
|
|
|
|
|
** Check the value of global database parameter number 0 (the |
2313
|
|
|
|
|
|
|
** schema version) and make sure it is equal to P2. |
2314
|
|
|
|
|
|
|
** P1 is the database number which is 0 for the main database file |
2315
|
|
|
|
|
|
|
** and 1 for the file holding temporary tables and some higher number |
2316
|
|
|
|
|
|
|
** for auxiliary databases. |
2317
|
|
|
|
|
|
|
** |
2318
|
|
|
|
|
|
|
** The cookie changes its value whenever the database schema changes. |
2319
|
|
|
|
|
|
|
** This operation is used to detect when that the cookie has changed |
2320
|
|
|
|
|
|
|
** and that the current process needs to reread the schema. |
2321
|
|
|
|
|
|
|
** |
2322
|
|
|
|
|
|
|
** Either a transaction needs to have been started or an OP_Open needs |
2323
|
|
|
|
|
|
|
** to be executed (to establish a read lock) before this opcode is |
2324
|
|
|
|
|
|
|
** invoked. |
2325
|
|
|
|
|
|
|
*/ |
2326
|
|
|
|
|
|
|
case OP_VerifyCookie: { |
2327
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META]; |
2328
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nDb ); |
2329
|
147
|
|
|
|
|
|
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta); |
2330
|
147
|
50
|
|
|
|
|
if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){ |
|
|
50
|
|
|
|
|
|
2331
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0); |
2332
|
0
|
|
|
|
|
|
rc = SQLITE_SCHEMA; |
2333
|
|
|
|
|
|
|
} |
2334
|
147
|
|
|
|
|
|
break; |
2335
|
|
|
|
|
|
|
} |
2336
|
|
|
|
|
|
|
|
2337
|
|
|
|
|
|
|
/* Opcode: OpenRead P1 P2 P3 |
2338
|
|
|
|
|
|
|
** |
2339
|
|
|
|
|
|
|
** Open a read-only cursor for the database table whose root page is |
2340
|
|
|
|
|
|
|
** P2 in a database file. The database file is determined by an |
2341
|
|
|
|
|
|
|
** integer from the top of the stack. 0 means the main database and |
2342
|
|
|
|
|
|
|
** 1 means the database used for temporary tables. Give the new |
2343
|
|
|
|
|
|
|
** cursor an identifier of P1. The P1 values need not be contiguous |
2344
|
|
|
|
|
|
|
** but all P1 values should be small integers. It is an error for |
2345
|
|
|
|
|
|
|
** P1 to be negative. |
2346
|
|
|
|
|
|
|
** |
2347
|
|
|
|
|
|
|
** If P2==0 then take the root page number from the next of the stack. |
2348
|
|
|
|
|
|
|
** |
2349
|
|
|
|
|
|
|
** There will be a read lock on the database whenever there is an |
2350
|
|
|
|
|
|
|
** open cursor. If the database was unlocked prior to this instruction |
2351
|
|
|
|
|
|
|
** then a read lock is acquired as part of this instruction. A read |
2352
|
|
|
|
|
|
|
** lock allows other processes to read the database but prohibits |
2353
|
|
|
|
|
|
|
** any other process from modifying the database. The read lock is |
2354
|
|
|
|
|
|
|
** released when all cursors are closed. If this instruction attempts |
2355
|
|
|
|
|
|
|
** to get a read lock but fails, the script terminates with an |
2356
|
|
|
|
|
|
|
** SQLITE_BUSY error code. |
2357
|
|
|
|
|
|
|
** |
2358
|
|
|
|
|
|
|
** The P3 value is the name of the table or index being opened. |
2359
|
|
|
|
|
|
|
** The P3 value is not actually used by this opcode and may be |
2360
|
|
|
|
|
|
|
** omitted. But the code generator usually inserts the index or |
2361
|
|
|
|
|
|
|
** table name into P3 to make the code easier to read. |
2362
|
|
|
|
|
|
|
** |
2363
|
|
|
|
|
|
|
** See also OpenWrite. |
2364
|
|
|
|
|
|
|
*/ |
2365
|
|
|
|
|
|
|
/* Opcode: OpenWrite P1 P2 P3 |
2366
|
|
|
|
|
|
|
** |
2367
|
|
|
|
|
|
|
** Open a read/write cursor named P1 on the table or index whose root |
2368
|
|
|
|
|
|
|
** page is P2. If P2==0 then take the root page number from the stack. |
2369
|
|
|
|
|
|
|
** |
2370
|
|
|
|
|
|
|
** The P3 value is the name of the table or index being opened. |
2371
|
|
|
|
|
|
|
** The P3 value is not actually used by this opcode and may be |
2372
|
|
|
|
|
|
|
** omitted. But the code generator usually inserts the index or |
2373
|
|
|
|
|
|
|
** table name into P3 to make the code easier to read. |
2374
|
|
|
|
|
|
|
** |
2375
|
|
|
|
|
|
|
** This instruction works just like OpenRead except that it opens the cursor |
2376
|
|
|
|
|
|
|
** in read/write mode. For a given table, there can be one or more read-only |
2377
|
|
|
|
|
|
|
** cursors or a single read/write cursor but not both. |
2378
|
|
|
|
|
|
|
** |
2379
|
|
|
|
|
|
|
** See also OpenRead. |
2380
|
|
|
|
|
|
|
*/ |
2381
|
|
|
|
|
|
|
case OP_OpenRead: |
2382
|
|
|
|
|
|
|
case OP_OpenWrite: { |
2383
|
215
|
|
|
|
|
|
int busy = 0; |
2384
|
215
|
|
|
|
|
|
int i = pOp->p1; |
2385
|
215
|
|
|
|
|
|
int p2 = pOp->p2; |
2386
|
|
|
|
|
|
|
int wrFlag; |
2387
|
|
|
|
|
|
|
Btree *pX; |
2388
|
|
|
|
|
|
|
int iDb; |
2389
|
|
|
|
|
|
|
|
2390
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2391
|
215
|
50
|
|
|
|
|
Integerify(pTos); |
2392
|
215
|
|
|
|
|
|
iDb = pTos->i; |
2393
|
215
|
|
|
|
|
|
pTos--; |
2394
|
|
|
|
|
|
|
assert( iDb>=0 && iDbnDb ); |
2395
|
215
|
|
|
|
|
|
pX = db->aDb[iDb].pBt; |
2396
|
|
|
|
|
|
|
assert( pX!=0 ); |
2397
|
215
|
|
|
|
|
|
wrFlag = pOp->opcode==OP_OpenWrite; |
2398
|
215
|
100
|
|
|
|
|
if( p2<=0 ){ |
2399
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2400
|
1
|
50
|
|
|
|
|
Integerify(pTos); |
2401
|
1
|
|
|
|
|
|
p2 = pTos->i; |
2402
|
1
|
|
|
|
|
|
pTos--; |
2403
|
1
|
50
|
|
|
|
|
if( p2<2 ){ |
2404
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0); |
2405
|
0
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
2406
|
0
|
|
|
|
|
|
break; |
2407
|
|
|
|
|
|
|
} |
2408
|
|
|
|
|
|
|
} |
2409
|
|
|
|
|
|
|
assert( i>=0 ); |
2410
|
215
|
50
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
2411
|
215
|
|
|
|
|
|
sqliteVdbeCleanupCursor(&p->aCsr[i]); |
2412
|
215
|
|
|
|
|
|
memset(&p->aCsr[i], 0, sizeof(Cursor)); |
2413
|
215
|
|
|
|
|
|
p->aCsr[i].nullRow = 1; |
2414
|
215
|
50
|
|
|
|
|
if( pX==0 ) break; |
2415
|
|
|
|
|
|
|
do{ |
2416
|
215
|
|
|
|
|
|
rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor); |
2417
|
215
|
|
|
|
|
|
switch( rc ){ |
2418
|
|
|
|
|
|
|
case SQLITE_BUSY: { |
2419
|
0
|
0
|
|
|
|
|
if( db->xBusyCallback==0 ){ |
2420
|
0
|
|
|
|
|
|
p->pc = pc; |
2421
|
0
|
|
|
|
|
|
p->rc = SQLITE_BUSY; |
2422
|
0
|
0
|
|
|
|
|
p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */ |
2423
|
0
|
|
|
|
|
|
return SQLITE_BUSY; |
2424
|
0
|
0
|
|
|
|
|
}else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){ |
2425
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
2426
|
0
|
|
|
|
|
|
busy = 0; |
2427
|
|
|
|
|
|
|
} |
2428
|
0
|
|
|
|
|
|
break; |
2429
|
|
|
|
|
|
|
} |
2430
|
|
|
|
|
|
|
case SQLITE_OK: { |
2431
|
215
|
|
|
|
|
|
busy = 0; |
2432
|
215
|
|
|
|
|
|
break; |
2433
|
|
|
|
|
|
|
} |
2434
|
|
|
|
|
|
|
default: { |
2435
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
2436
|
|
|
|
|
|
|
} |
2437
|
|
|
|
|
|
|
} |
2438
|
215
|
50
|
|
|
|
|
}while( busy ); |
2439
|
215
|
|
|
|
|
|
break; |
2440
|
|
|
|
|
|
|
} |
2441
|
|
|
|
|
|
|
|
2442
|
|
|
|
|
|
|
/* Opcode: OpenTemp P1 P2 * |
2443
|
|
|
|
|
|
|
** |
2444
|
|
|
|
|
|
|
** Open a new cursor to a transient table. |
2445
|
|
|
|
|
|
|
** The transient cursor is always opened read/write even if |
2446
|
|
|
|
|
|
|
** the main database is read-only. The transient table is deleted |
2447
|
|
|
|
|
|
|
** automatically when the cursor is closed. |
2448
|
|
|
|
|
|
|
** |
2449
|
|
|
|
|
|
|
** The cursor points to a BTree table if P2==0 and to a BTree index |
2450
|
|
|
|
|
|
|
** if P2==1. A BTree table must have an integer key and can have arbitrary |
2451
|
|
|
|
|
|
|
** data. A BTree index has no data but can have an arbitrary key. |
2452
|
|
|
|
|
|
|
** |
2453
|
|
|
|
|
|
|
** This opcode is used for tables that exist for the duration of a single |
2454
|
|
|
|
|
|
|
** SQL statement only. Tables created using CREATE TEMPORARY TABLE |
2455
|
|
|
|
|
|
|
** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the |
2456
|
|
|
|
|
|
|
** context of this opcode means for the duration of a single SQL statement |
2457
|
|
|
|
|
|
|
** whereas "Temporary" in the context of CREATE TABLE means for the duration |
2458
|
|
|
|
|
|
|
** of the connection to the database. Same word; different meanings. |
2459
|
|
|
|
|
|
|
*/ |
2460
|
|
|
|
|
|
|
case OP_OpenTemp: { |
2461
|
3
|
|
|
|
|
|
int i = pOp->p1; |
2462
|
|
|
|
|
|
|
Cursor *pCx; |
2463
|
|
|
|
|
|
|
assert( i>=0 ); |
2464
|
3
|
50
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
2465
|
3
|
|
|
|
|
|
pCx = &p->aCsr[i]; |
2466
|
3
|
|
|
|
|
|
sqliteVdbeCleanupCursor(pCx); |
2467
|
3
|
|
|
|
|
|
memset(pCx, 0, sizeof(*pCx)); |
2468
|
3
|
|
|
|
|
|
pCx->nullRow = 1; |
2469
|
3
|
|
|
|
|
|
rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt); |
2470
|
|
|
|
|
|
|
|
2471
|
3
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2472
|
3
|
|
|
|
|
|
rc = sqliteBtreeBeginTrans(pCx->pBt); |
2473
|
|
|
|
|
|
|
} |
2474
|
3
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2475
|
3
|
50
|
|
|
|
|
if( pOp->p2 ){ |
2476
|
|
|
|
|
|
|
int pgno; |
2477
|
0
|
|
|
|
|
|
rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno); |
2478
|
0
|
0
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2479
|
0
|
|
|
|
|
|
rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor); |
2480
|
|
|
|
|
|
|
} |
2481
|
|
|
|
|
|
|
}else{ |
2482
|
3
|
|
|
|
|
|
rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor); |
2483
|
|
|
|
|
|
|
} |
2484
|
|
|
|
|
|
|
} |
2485
|
3
|
|
|
|
|
|
break; |
2486
|
|
|
|
|
|
|
} |
2487
|
|
|
|
|
|
|
|
2488
|
|
|
|
|
|
|
/* Opcode: OpenPseudo P1 * * |
2489
|
|
|
|
|
|
|
** |
2490
|
|
|
|
|
|
|
** Open a new cursor that points to a fake table that contains a single |
2491
|
|
|
|
|
|
|
** row of data. Any attempt to write a second row of data causes the |
2492
|
|
|
|
|
|
|
** first row to be deleted. All data is deleted when the cursor is |
2493
|
|
|
|
|
|
|
** closed. |
2494
|
|
|
|
|
|
|
** |
2495
|
|
|
|
|
|
|
** A pseudo-table created by this opcode is useful for holding the |
2496
|
|
|
|
|
|
|
** NEW or OLD tables in a trigger. |
2497
|
|
|
|
|
|
|
*/ |
2498
|
|
|
|
|
|
|
case OP_OpenPseudo: { |
2499
|
0
|
|
|
|
|
|
int i = pOp->p1; |
2500
|
|
|
|
|
|
|
Cursor *pCx; |
2501
|
|
|
|
|
|
|
assert( i>=0 ); |
2502
|
0
|
0
|
|
|
|
|
if( expandCursorArraySize(p, i) ) goto no_mem; |
2503
|
0
|
|
|
|
|
|
pCx = &p->aCsr[i]; |
2504
|
0
|
|
|
|
|
|
sqliteVdbeCleanupCursor(pCx); |
2505
|
0
|
|
|
|
|
|
memset(pCx, 0, sizeof(*pCx)); |
2506
|
0
|
|
|
|
|
|
pCx->nullRow = 1; |
2507
|
0
|
|
|
|
|
|
pCx->pseudoTable = 1; |
2508
|
0
|
|
|
|
|
|
break; |
2509
|
|
|
|
|
|
|
} |
2510
|
|
|
|
|
|
|
|
2511
|
|
|
|
|
|
|
/* Opcode: Close P1 * * |
2512
|
|
|
|
|
|
|
** |
2513
|
|
|
|
|
|
|
** Close a cursor previously opened as P1. If P1 is not |
2514
|
|
|
|
|
|
|
** currently open, this instruction is a no-op. |
2515
|
|
|
|
|
|
|
*/ |
2516
|
|
|
|
|
|
|
case OP_Close: { |
2517
|
198
|
|
|
|
|
|
int i = pOp->p1; |
2518
|
198
|
50
|
|
|
|
|
if( i>=0 && inCursor ){ |
|
|
50
|
|
|
|
|
|
2519
|
198
|
|
|
|
|
|
sqliteVdbeCleanupCursor(&p->aCsr[i]); |
2520
|
|
|
|
|
|
|
} |
2521
|
198
|
|
|
|
|
|
break; |
2522
|
|
|
|
|
|
|
} |
2523
|
|
|
|
|
|
|
|
2524
|
|
|
|
|
|
|
/* Opcode: MoveTo P1 P2 * |
2525
|
|
|
|
|
|
|
** |
2526
|
|
|
|
|
|
|
** Pop the top of the stack and use its value as a key. Reposition |
2527
|
|
|
|
|
|
|
** cursor P1 so that it points to an entry with a matching key. If |
2528
|
|
|
|
|
|
|
** the table contains no record with a matching key, then the cursor |
2529
|
|
|
|
|
|
|
** is left pointing at the first record that is greater than the key. |
2530
|
|
|
|
|
|
|
** If there are no records greater than the key and P2 is not zero, |
2531
|
|
|
|
|
|
|
** then an immediate jump to P2 is made. |
2532
|
|
|
|
|
|
|
** |
2533
|
|
|
|
|
|
|
** See also: Found, NotFound, Distinct, MoveLt |
2534
|
|
|
|
|
|
|
*/ |
2535
|
|
|
|
|
|
|
/* Opcode: MoveLt P1 P2 * |
2536
|
|
|
|
|
|
|
** |
2537
|
|
|
|
|
|
|
** Pop the top of the stack and use its value as a key. Reposition |
2538
|
|
|
|
|
|
|
** cursor P1 so that it points to the entry with the largest key that is |
2539
|
|
|
|
|
|
|
** less than the key popped from the stack. |
2540
|
|
|
|
|
|
|
** If there are no records less than than the key and P2 |
2541
|
|
|
|
|
|
|
** is not zero then an immediate jump to P2 is made. |
2542
|
|
|
|
|
|
|
** |
2543
|
|
|
|
|
|
|
** See also: MoveTo |
2544
|
|
|
|
|
|
|
*/ |
2545
|
|
|
|
|
|
|
case OP_MoveLt: |
2546
|
|
|
|
|
|
|
case OP_MoveTo: { |
2547
|
0
|
|
|
|
|
|
int i = pOp->p1; |
2548
|
|
|
|
|
|
|
Cursor *pC; |
2549
|
|
|
|
|
|
|
|
2550
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2551
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2552
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
2553
|
0
|
0
|
|
|
|
|
if( pC->pCursor!=0 ){ |
2554
|
|
|
|
|
|
|
int res, oc; |
2555
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
2556
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Int ){ |
2557
|
0
|
|
|
|
|
|
int iKey = intToKey(pTos->i); |
2558
|
0
|
0
|
|
|
|
|
if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){ |
|
|
0
|
|
|
|
|
|
2559
|
0
|
|
|
|
|
|
pC->movetoTarget = iKey; |
2560
|
0
|
|
|
|
|
|
pC->deferredMoveto = 1; |
2561
|
0
|
0
|
|
|
|
|
Release(pTos); |
2562
|
0
|
|
|
|
|
|
pTos--; |
2563
|
0
|
|
|
|
|
|
break; |
2564
|
|
|
|
|
|
|
} |
2565
|
0
|
|
|
|
|
|
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res); |
2566
|
0
|
|
|
|
|
|
pC->lastRecno = pTos->i; |
2567
|
0
|
|
|
|
|
|
pC->recnoIsValid = res==0; |
2568
|
|
|
|
|
|
|
}else{ |
2569
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
2570
|
0
|
|
|
|
|
|
sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); |
2571
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
2572
|
|
|
|
|
|
|
} |
2573
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
2574
|
0
|
|
|
|
|
|
sqlite_search_count++; |
2575
|
0
|
|
|
|
|
|
oc = pOp->opcode; |
2576
|
0
|
0
|
|
|
|
|
if( oc==OP_MoveTo && res<0 ){ |
|
|
0
|
|
|
|
|
|
2577
|
0
|
|
|
|
|
|
sqliteBtreeNext(pC->pCursor, &res); |
2578
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
2579
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
0
|
|
|
|
|
|
2580
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2581
|
|
|
|
|
|
|
} |
2582
|
0
|
0
|
|
|
|
|
}else if( oc==OP_MoveLt ){ |
2583
|
0
|
0
|
|
|
|
|
if( res>=0 ){ |
2584
|
0
|
|
|
|
|
|
sqliteBtreePrevious(pC->pCursor, &res); |
2585
|
0
|
|
|
|
|
|
pC->recnoIsValid = 0; |
2586
|
|
|
|
|
|
|
}else{ |
2587
|
|
|
|
|
|
|
/* res might be negative because the table is empty. Check to |
2588
|
|
|
|
|
|
|
** see if this is the case. |
2589
|
|
|
|
|
|
|
*/ |
2590
|
|
|
|
|
|
|
int keysize; |
2591
|
0
|
0
|
|
|
|
|
res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0; |
|
|
0
|
|
|
|
|
|
2592
|
|
|
|
|
|
|
} |
2593
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
0
|
|
|
|
|
|
2594
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2595
|
|
|
|
|
|
|
} |
2596
|
|
|
|
|
|
|
} |
2597
|
|
|
|
|
|
|
} |
2598
|
0
|
0
|
|
|
|
|
Release(pTos); |
2599
|
0
|
|
|
|
|
|
pTos--; |
2600
|
0
|
|
|
|
|
|
break; |
2601
|
|
|
|
|
|
|
} |
2602
|
|
|
|
|
|
|
|
2603
|
|
|
|
|
|
|
/* Opcode: Distinct P1 P2 * |
2604
|
|
|
|
|
|
|
** |
2605
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key does |
2606
|
|
|
|
|
|
|
** not exist in the table of cursor P1, then jump to P2. If the record |
2607
|
|
|
|
|
|
|
** does already exist, then fall thru. The cursor is left pointing |
2608
|
|
|
|
|
|
|
** at the record if it exists. The key is not popped from the stack. |
2609
|
|
|
|
|
|
|
** |
2610
|
|
|
|
|
|
|
** This operation is similar to NotFound except that this operation |
2611
|
|
|
|
|
|
|
** does not pop the key from the stack. |
2612
|
|
|
|
|
|
|
** |
2613
|
|
|
|
|
|
|
** See also: Found, NotFound, MoveTo, IsUnique, NotExists |
2614
|
|
|
|
|
|
|
*/ |
2615
|
|
|
|
|
|
|
/* Opcode: Found P1 P2 * |
2616
|
|
|
|
|
|
|
** |
2617
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key |
2618
|
|
|
|
|
|
|
** does exist in table of P1, then jump to P2. If the record |
2619
|
|
|
|
|
|
|
** does not exist, then fall thru. The cursor is left pointing |
2620
|
|
|
|
|
|
|
** to the record if it exists. The key is popped from the stack. |
2621
|
|
|
|
|
|
|
** |
2622
|
|
|
|
|
|
|
** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists |
2623
|
|
|
|
|
|
|
*/ |
2624
|
|
|
|
|
|
|
/* Opcode: NotFound P1 P2 * |
2625
|
|
|
|
|
|
|
** |
2626
|
|
|
|
|
|
|
** Use the top of the stack as a string key. If a record with that key |
2627
|
|
|
|
|
|
|
** does not exist in table of P1, then jump to P2. If the record |
2628
|
|
|
|
|
|
|
** does exist, then fall thru. The cursor is left pointing to the |
2629
|
|
|
|
|
|
|
** record if it exists. The key is popped from the stack. |
2630
|
|
|
|
|
|
|
** |
2631
|
|
|
|
|
|
|
** The difference between this operation and Distinct is that |
2632
|
|
|
|
|
|
|
** Distinct does not pop the key from the stack. |
2633
|
|
|
|
|
|
|
** |
2634
|
|
|
|
|
|
|
** See also: Distinct, Found, MoveTo, NotExists, IsUnique |
2635
|
|
|
|
|
|
|
*/ |
2636
|
|
|
|
|
|
|
case OP_Distinct: |
2637
|
|
|
|
|
|
|
case OP_NotFound: |
2638
|
|
|
|
|
|
|
case OP_Found: { |
2639
|
0
|
|
|
|
|
|
int i = pOp->p1; |
2640
|
0
|
|
|
|
|
|
int alreadyExists = 0; |
2641
|
|
|
|
|
|
|
Cursor *pC; |
2642
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2643
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2644
|
0
|
0
|
|
|
|
|
if( (pC = &p->aCsr[i])->pCursor!=0 ){ |
2645
|
|
|
|
|
|
|
int res, rx; |
2646
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
2647
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res); |
2648
|
0
|
0
|
|
|
|
|
alreadyExists = rx==SQLITE_OK && res==0; |
|
|
0
|
|
|
|
|
|
2649
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
2650
|
|
|
|
|
|
|
} |
2651
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_Found ){ |
2652
|
0
|
0
|
|
|
|
|
if( alreadyExists ) pc = pOp->p2 - 1; |
2653
|
|
|
|
|
|
|
}else{ |
2654
|
0
|
0
|
|
|
|
|
if( !alreadyExists ) pc = pOp->p2 - 1; |
2655
|
|
|
|
|
|
|
} |
2656
|
0
|
0
|
|
|
|
|
if( pOp->opcode!=OP_Distinct ){ |
2657
|
0
|
0
|
|
|
|
|
Release(pTos); |
2658
|
0
|
|
|
|
|
|
pTos--; |
2659
|
|
|
|
|
|
|
} |
2660
|
0
|
|
|
|
|
|
break; |
2661
|
|
|
|
|
|
|
} |
2662
|
|
|
|
|
|
|
|
2663
|
|
|
|
|
|
|
/* Opcode: IsUnique P1 P2 * |
2664
|
|
|
|
|
|
|
** |
2665
|
|
|
|
|
|
|
** The top of the stack is an integer record number. Call this |
2666
|
|
|
|
|
|
|
** record number R. The next on the stack is an index key created |
2667
|
|
|
|
|
|
|
** using MakeIdxKey. Call it K. This instruction pops R from the |
2668
|
|
|
|
|
|
|
** stack but it leaves K unchanged. |
2669
|
|
|
|
|
|
|
** |
2670
|
|
|
|
|
|
|
** P1 is an index. So all but the last four bytes of K are an |
2671
|
|
|
|
|
|
|
** index string. The last four bytes of K are a record number. |
2672
|
|
|
|
|
|
|
** |
2673
|
|
|
|
|
|
|
** This instruction asks if there is an entry in P1 where the |
2674
|
|
|
|
|
|
|
** index string matches K but the record number is different |
2675
|
|
|
|
|
|
|
** from R. If there is no such entry, then there is an immediate |
2676
|
|
|
|
|
|
|
** jump to P2. If any entry does exist where the index string |
2677
|
|
|
|
|
|
|
** matches K but the record number is not R, then the record |
2678
|
|
|
|
|
|
|
** number for that entry is pushed onto the stack and control |
2679
|
|
|
|
|
|
|
** falls through to the next instruction. |
2680
|
|
|
|
|
|
|
** |
2681
|
|
|
|
|
|
|
** See also: Distinct, NotFound, NotExists, Found |
2682
|
|
|
|
|
|
|
*/ |
2683
|
|
|
|
|
|
|
case OP_IsUnique: { |
2684
|
2
|
|
|
|
|
|
int i = pOp->p1; |
2685
|
2
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
2686
|
|
|
|
|
|
|
BtCursor *pCrsr; |
2687
|
|
|
|
|
|
|
int R; |
2688
|
|
|
|
|
|
|
|
2689
|
|
|
|
|
|
|
/* Pop the value R off the top of the stack |
2690
|
|
|
|
|
|
|
*/ |
2691
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
2692
|
2
|
50
|
|
|
|
|
Integerify(pTos); |
2693
|
2
|
|
|
|
|
|
R = pTos->i; |
2694
|
2
|
|
|
|
|
|
pTos--; |
2695
|
|
|
|
|
|
|
assert( i>=0 && i<=p->nCursor ); |
2696
|
2
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
2697
|
|
|
|
|
|
|
int res, rc; |
2698
|
|
|
|
|
|
|
int v; /* The record number on the P1 entry that matches K */ |
2699
|
|
|
|
|
|
|
char *zKey; /* The value of K */ |
2700
|
|
|
|
|
|
|
int nKey; /* Number of bytes in K */ |
2701
|
|
|
|
|
|
|
|
2702
|
|
|
|
|
|
|
/* Make sure K is a string and make zKey point to K |
2703
|
|
|
|
|
|
|
*/ |
2704
|
2
|
50
|
|
|
|
|
Stringify(pNos); |
2705
|
2
|
|
|
|
|
|
zKey = pNos->z; |
2706
|
2
|
|
|
|
|
|
nKey = pNos->n; |
2707
|
|
|
|
|
|
|
assert( nKey >= 4 ); |
2708
|
|
|
|
|
|
|
|
2709
|
|
|
|
|
|
|
/* Search for an entry in P1 where all but the last four bytes match K. |
2710
|
|
|
|
|
|
|
** If there is no such entry, jump immediately to P2. |
2711
|
|
|
|
|
|
|
*/ |
2712
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
2713
|
2
|
|
|
|
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); |
2714
|
2
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
2715
|
2
|
100
|
|
|
|
|
if( res<0 ){ |
2716
|
1
|
|
|
|
|
|
rc = sqliteBtreeNext(pCrsr, &res); |
2717
|
1
|
50
|
|
|
|
|
if( res ){ |
2718
|
1
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2719
|
1
|
|
|
|
|
|
break; |
2720
|
|
|
|
|
|
|
} |
2721
|
|
|
|
|
|
|
} |
2722
|
1
|
|
|
|
|
|
rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res); |
2723
|
1
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
2724
|
1
|
50
|
|
|
|
|
if( res>0 ){ |
2725
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2726
|
0
|
|
|
|
|
|
break; |
2727
|
|
|
|
|
|
|
} |
2728
|
|
|
|
|
|
|
|
2729
|
|
|
|
|
|
|
/* At this point, pCrsr is pointing to an entry in P1 where all but |
2730
|
|
|
|
|
|
|
** the last for bytes of the key match K. Check to see if the last |
2731
|
|
|
|
|
|
|
** four bytes of the key are different from R. If the last four |
2732
|
|
|
|
|
|
|
** bytes equal R then jump immediately to P2. |
2733
|
|
|
|
|
|
|
*/ |
2734
|
1
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v); |
2735
|
1
|
|
|
|
|
|
v = keyToInt(v); |
2736
|
1
|
50
|
|
|
|
|
if( v==R ){ |
2737
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2738
|
0
|
|
|
|
|
|
break; |
2739
|
|
|
|
|
|
|
} |
2740
|
|
|
|
|
|
|
|
2741
|
|
|
|
|
|
|
/* The last four bytes of the key are different from R. Convert the |
2742
|
|
|
|
|
|
|
** last four bytes of the key into an integer and push it onto the |
2743
|
|
|
|
|
|
|
** stack. (These bytes are the record number of an entry that |
2744
|
|
|
|
|
|
|
** violates a UNIQUE constraint.) |
2745
|
|
|
|
|
|
|
*/ |
2746
|
1
|
|
|
|
|
|
pTos++; |
2747
|
1
|
|
|
|
|
|
pTos->i = v; |
2748
|
1
|
|
|
|
|
|
pTos->flags = MEM_Int; |
2749
|
|
|
|
|
|
|
} |
2750
|
1
|
|
|
|
|
|
break; |
2751
|
|
|
|
|
|
|
} |
2752
|
|
|
|
|
|
|
|
2753
|
|
|
|
|
|
|
/* Opcode: NotExists P1 P2 * |
2754
|
|
|
|
|
|
|
** |
2755
|
|
|
|
|
|
|
** Use the top of the stack as a integer key. If a record with that key |
2756
|
|
|
|
|
|
|
** does not exist in table of P1, then jump to P2. If the record |
2757
|
|
|
|
|
|
|
** does exist, then fall thru. The cursor is left pointing to the |
2758
|
|
|
|
|
|
|
** record if it exists. The integer key is popped from the stack. |
2759
|
|
|
|
|
|
|
** |
2760
|
|
|
|
|
|
|
** The difference between this operation and NotFound is that this |
2761
|
|
|
|
|
|
|
** operation assumes the key is an integer and NotFound assumes it |
2762
|
|
|
|
|
|
|
** is a string. |
2763
|
|
|
|
|
|
|
** |
2764
|
|
|
|
|
|
|
** See also: Distinct, Found, MoveTo, NotFound, IsUnique |
2765
|
|
|
|
|
|
|
*/ |
2766
|
|
|
|
|
|
|
case OP_NotExists: { |
2767
|
6
|
|
|
|
|
|
int i = pOp->p1; |
2768
|
|
|
|
|
|
|
BtCursor *pCrsr; |
2769
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
2770
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2771
|
6
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
2772
|
|
|
|
|
|
|
int res, rx, iKey; |
2773
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Int ); |
2774
|
6
|
|
|
|
|
|
iKey = intToKey(pTos->i); |
2775
|
6
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res); |
2776
|
6
|
|
|
|
|
|
p->aCsr[i].lastRecno = pTos->i; |
2777
|
6
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = res==0; |
2778
|
6
|
|
|
|
|
|
p->aCsr[i].nullRow = 0; |
2779
|
6
|
50
|
|
|
|
|
if( rx!=SQLITE_OK || res!=0 ){ |
|
|
50
|
|
|
|
|
|
2780
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
2781
|
6
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = 0; |
2782
|
|
|
|
|
|
|
} |
2783
|
|
|
|
|
|
|
} |
2784
|
6
|
50
|
|
|
|
|
Release(pTos); |
2785
|
6
|
|
|
|
|
|
pTos--; |
2786
|
6
|
|
|
|
|
|
break; |
2787
|
|
|
|
|
|
|
} |
2788
|
|
|
|
|
|
|
|
2789
|
|
|
|
|
|
|
/* Opcode: NewRecno P1 * * |
2790
|
|
|
|
|
|
|
** |
2791
|
|
|
|
|
|
|
** Get a new integer record number used as the key to a table. |
2792
|
|
|
|
|
|
|
** The record number is not previously used as a key in the database |
2793
|
|
|
|
|
|
|
** table that cursor P1 points to. The new record number is pushed |
2794
|
|
|
|
|
|
|
** onto the stack. |
2795
|
|
|
|
|
|
|
*/ |
2796
|
|
|
|
|
|
|
case OP_NewRecno: { |
2797
|
97
|
|
|
|
|
|
int i = pOp->p1; |
2798
|
97
|
|
|
|
|
|
int v = 0; |
2799
|
|
|
|
|
|
|
Cursor *pC; |
2800
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2801
|
97
|
50
|
|
|
|
|
if( (pC = &p->aCsr[i])->pCursor==0 ){ |
2802
|
0
|
|
|
|
|
|
v = 0; |
2803
|
|
|
|
|
|
|
}else{ |
2804
|
|
|
|
|
|
|
/* The next rowid or record number (different terms for the same |
2805
|
|
|
|
|
|
|
** thing) is obtained in a two-step algorithm. |
2806
|
|
|
|
|
|
|
** |
2807
|
|
|
|
|
|
|
** First we attempt to find the largest existing rowid and add one |
2808
|
|
|
|
|
|
|
** to that. But if the largest existing rowid is already the maximum |
2809
|
|
|
|
|
|
|
** positive integer, we have to fall through to the second |
2810
|
|
|
|
|
|
|
** probabilistic algorithm |
2811
|
|
|
|
|
|
|
** |
2812
|
|
|
|
|
|
|
** The second algorithm is to select a rowid at random and see if |
2813
|
|
|
|
|
|
|
** it already exists in the table. If it does not exist, we have |
2814
|
|
|
|
|
|
|
** succeeded. If the random rowid does exist, we select a new one |
2815
|
|
|
|
|
|
|
** and try again, up to 1000 times. |
2816
|
|
|
|
|
|
|
** |
2817
|
|
|
|
|
|
|
** For a table with less than 2 billion entries, the probability |
2818
|
|
|
|
|
|
|
** of not finding a unused rowid is about 1.0e-300. This is a |
2819
|
|
|
|
|
|
|
** non-zero probability, but it is still vanishingly small and should |
2820
|
|
|
|
|
|
|
** never cause a problem. You are much, much more likely to have a |
2821
|
|
|
|
|
|
|
** hardware failure than for this algorithm to fail. |
2822
|
|
|
|
|
|
|
** |
2823
|
|
|
|
|
|
|
** The analysis in the previous paragraph assumes that you have a good |
2824
|
|
|
|
|
|
|
** source of random numbers. Is a library function like lrand48() |
2825
|
|
|
|
|
|
|
** good enough? Maybe. Maybe not. It's hard to know whether there |
2826
|
|
|
|
|
|
|
** might be subtle bugs is some implementations of lrand48() that |
2827
|
|
|
|
|
|
|
** could cause problems. To avoid uncertainty, SQLite uses its own |
2828
|
|
|
|
|
|
|
** random number generator based on the RC4 algorithm. |
2829
|
|
|
|
|
|
|
** |
2830
|
|
|
|
|
|
|
** To promote locality of reference for repetitive inserts, the |
2831
|
|
|
|
|
|
|
** first few attempts at chosing a random rowid pick values just a little |
2832
|
|
|
|
|
|
|
** larger than the previous rowid. This has been shown experimentally |
2833
|
|
|
|
|
|
|
** to double the speed of the COPY operation. |
2834
|
|
|
|
|
|
|
*/ |
2835
|
|
|
|
|
|
|
int res, rx, cnt, x; |
2836
|
97
|
|
|
|
|
|
cnt = 0; |
2837
|
97
|
50
|
|
|
|
|
if( !pC->useRandomRowid ){ |
2838
|
97
|
100
|
|
|
|
|
if( pC->nextRowidValid ){ |
2839
|
27
|
|
|
|
|
|
v = pC->nextRowid; |
2840
|
|
|
|
|
|
|
}else{ |
2841
|
70
|
|
|
|
|
|
rx = sqliteBtreeLast(pC->pCursor, &res); |
2842
|
70
|
100
|
|
|
|
|
if( res ){ |
2843
|
35
|
|
|
|
|
|
v = 1; |
2844
|
|
|
|
|
|
|
}else{ |
2845
|
35
|
|
|
|
|
|
sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v); |
2846
|
35
|
|
|
|
|
|
v = keyToInt(v); |
2847
|
35
|
50
|
|
|
|
|
if( v==0x7fffffff ){ |
2848
|
0
|
|
|
|
|
|
pC->useRandomRowid = 1; |
2849
|
|
|
|
|
|
|
}else{ |
2850
|
35
|
|
|
|
|
|
v++; |
2851
|
|
|
|
|
|
|
} |
2852
|
|
|
|
|
|
|
} |
2853
|
|
|
|
|
|
|
} |
2854
|
97
|
50
|
|
|
|
|
if( v<0x7fffffff ){ |
2855
|
97
|
|
|
|
|
|
pC->nextRowidValid = 1; |
2856
|
97
|
|
|
|
|
|
pC->nextRowid = v+1; |
2857
|
|
|
|
|
|
|
}else{ |
2858
|
0
|
|
|
|
|
|
pC->nextRowidValid = 0; |
2859
|
|
|
|
|
|
|
} |
2860
|
|
|
|
|
|
|
} |
2861
|
97
|
50
|
|
|
|
|
if( pC->useRandomRowid ){ |
2862
|
0
|
|
|
|
|
|
v = db->priorNewRowid; |
2863
|
0
|
|
|
|
|
|
cnt = 0; |
2864
|
|
|
|
|
|
|
do{ |
2865
|
0
|
0
|
|
|
|
|
if( v==0 || cnt>2 ){ |
|
|
0
|
|
|
|
|
|
2866
|
0
|
|
|
|
|
|
sqliteRandomness(sizeof(v), &v); |
2867
|
0
|
0
|
|
|
|
|
if( cnt<5 ) v &= 0xffffff; |
2868
|
|
|
|
|
|
|
}else{ |
2869
|
|
|
|
|
|
|
unsigned char r; |
2870
|
0
|
|
|
|
|
|
sqliteRandomness(1, &r); |
2871
|
0
|
|
|
|
|
|
v += r + 1; |
2872
|
|
|
|
|
|
|
} |
2873
|
0
|
0
|
|
|
|
|
if( v==0 ) continue; |
2874
|
0
|
|
|
|
|
|
x = intToKey(v); |
2875
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res); |
2876
|
0
|
|
|
|
|
|
cnt++; |
2877
|
0
|
0
|
|
|
|
|
}while( cnt<1000 && rx==SQLITE_OK && res==0 ); |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2878
|
0
|
|
|
|
|
|
db->priorNewRowid = v; |
2879
|
0
|
0
|
|
|
|
|
if( rx==SQLITE_OK && res==0 ){ |
|
|
0
|
|
|
|
|
|
2880
|
0
|
|
|
|
|
|
rc = SQLITE_FULL; |
2881
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
2882
|
|
|
|
|
|
|
} |
2883
|
|
|
|
|
|
|
} |
2884
|
97
|
|
|
|
|
|
pC->recnoIsValid = 0; |
2885
|
97
|
|
|
|
|
|
pC->deferredMoveto = 0; |
2886
|
|
|
|
|
|
|
} |
2887
|
97
|
|
|
|
|
|
pTos++; |
2888
|
97
|
|
|
|
|
|
pTos->i = v; |
2889
|
97
|
|
|
|
|
|
pTos->flags = MEM_Int; |
2890
|
97
|
|
|
|
|
|
break; |
2891
|
|
|
|
|
|
|
} |
2892
|
|
|
|
|
|
|
|
2893
|
|
|
|
|
|
|
/* Opcode: PutIntKey P1 P2 * |
2894
|
|
|
|
|
|
|
** |
2895
|
|
|
|
|
|
|
** Write an entry into the table of cursor P1. A new entry is |
2896
|
|
|
|
|
|
|
** created if it doesn't already exist or the data for an existing |
2897
|
|
|
|
|
|
|
** entry is overwritten. The data is the value on the top of the |
2898
|
|
|
|
|
|
|
** stack. The key is the next value down on the stack. The key must |
2899
|
|
|
|
|
|
|
** be an integer. The stack is popped twice by this instruction. |
2900
|
|
|
|
|
|
|
** |
2901
|
|
|
|
|
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
2902
|
|
|
|
|
|
|
** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set, |
2903
|
|
|
|
|
|
|
** then the current statement change count is incremented (otherwise not). |
2904
|
|
|
|
|
|
|
** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is |
2905
|
|
|
|
|
|
|
** stored for subsequent return by the sqlite_last_insert_rowid() function |
2906
|
|
|
|
|
|
|
** (otherwise it's unmodified). |
2907
|
|
|
|
|
|
|
*/ |
2908
|
|
|
|
|
|
|
/* Opcode: PutStrKey P1 * * |
2909
|
|
|
|
|
|
|
** |
2910
|
|
|
|
|
|
|
** Write an entry into the table of cursor P1. A new entry is |
2911
|
|
|
|
|
|
|
** created if it doesn't already exist or the data for an existing |
2912
|
|
|
|
|
|
|
** entry is overwritten. The data is the value on the top of the |
2913
|
|
|
|
|
|
|
** stack. The key is the next value down on the stack. The key must |
2914
|
|
|
|
|
|
|
** be a string. The stack is popped twice by this instruction. |
2915
|
|
|
|
|
|
|
** |
2916
|
|
|
|
|
|
|
** P1 may not be a pseudo-table opened using the OpenPseudo opcode. |
2917
|
|
|
|
|
|
|
*/ |
2918
|
|
|
|
|
|
|
case OP_PutIntKey: |
2919
|
|
|
|
|
|
|
case OP_PutStrKey: { |
2920
|
118
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
2921
|
118
|
|
|
|
|
|
int i = pOp->p1; |
2922
|
|
|
|
|
|
|
Cursor *pC; |
2923
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
2924
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2925
|
118
|
50
|
|
|
|
|
if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){ |
|
|
0
|
|
|
|
|
|
2926
|
|
|
|
|
|
|
char *zKey; |
2927
|
|
|
|
|
|
|
int nKey, iKey; |
2928
|
118
|
50
|
|
|
|
|
if( pOp->opcode==OP_PutStrKey ){ |
2929
|
0
|
0
|
|
|
|
|
Stringify(pNos); |
2930
|
0
|
|
|
|
|
|
nKey = pNos->n; |
2931
|
0
|
|
|
|
|
|
zKey = pNos->z; |
2932
|
|
|
|
|
|
|
}else{ |
2933
|
|
|
|
|
|
|
assert( pNos->flags & MEM_Int ); |
2934
|
118
|
|
|
|
|
|
nKey = sizeof(int); |
2935
|
118
|
|
|
|
|
|
iKey = intToKey(pNos->i); |
2936
|
118
|
|
|
|
|
|
zKey = (char*)&iKey; |
2937
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; |
2938
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i; |
2939
|
118
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; |
2940
|
118
|
50
|
|
|
|
|
if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){ |
|
|
100
|
|
|
|
|
|
2941
|
1
|
|
|
|
|
|
pC->nextRowidValid = 0; |
2942
|
|
|
|
|
|
|
} |
2943
|
|
|
|
|
|
|
} |
2944
|
118
|
100
|
|
|
|
|
if( pTos->flags & MEM_Null ){ |
2945
|
22
|
|
|
|
|
|
pTos->z = 0; |
2946
|
22
|
|
|
|
|
|
pTos->n = 0; |
2947
|
|
|
|
|
|
|
}else{ |
2948
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
2949
|
|
|
|
|
|
|
} |
2950
|
118
|
50
|
|
|
|
|
if( pC->pseudoTable ){ |
2951
|
|
|
|
|
|
|
/* PutStrKey does not work for pseudo-tables. |
2952
|
|
|
|
|
|
|
** The following assert makes sure we are not trying to use |
2953
|
|
|
|
|
|
|
** PutStrKey on a pseudo-table |
2954
|
|
|
|
|
|
|
*/ |
2955
|
|
|
|
|
|
|
assert( pOp->opcode==OP_PutIntKey ); |
2956
|
0
|
|
|
|
|
|
sqliteFree(pC->pData); |
2957
|
0
|
|
|
|
|
|
pC->iKey = iKey; |
2958
|
0
|
|
|
|
|
|
pC->nData = pTos->n; |
2959
|
0
|
0
|
|
|
|
|
if( pTos->flags & MEM_Dyn ){ |
2960
|
0
|
|
|
|
|
|
pC->pData = pTos->z; |
2961
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
2962
|
|
|
|
|
|
|
}else{ |
2963
|
0
|
|
|
|
|
|
pC->pData = sqliteMallocRaw( pC->nData ); |
2964
|
0
|
0
|
|
|
|
|
if( pC->pData ){ |
2965
|
0
|
|
|
|
|
|
memcpy(pC->pData, pTos->z, pC->nData); |
2966
|
|
|
|
|
|
|
} |
2967
|
|
|
|
|
|
|
} |
2968
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
2969
|
|
|
|
|
|
|
}else{ |
2970
|
118
|
|
|
|
|
|
rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n); |
2971
|
|
|
|
|
|
|
} |
2972
|
118
|
|
|
|
|
|
pC->recnoIsValid = 0; |
2973
|
118
|
|
|
|
|
|
pC->deferredMoveto = 0; |
2974
|
|
|
|
|
|
|
} |
2975
|
118
|
|
|
|
|
|
popStack(&pTos, 2); |
2976
|
118
|
|
|
|
|
|
break; |
2977
|
|
|
|
|
|
|
} |
2978
|
|
|
|
|
|
|
|
2979
|
|
|
|
|
|
|
/* Opcode: Delete P1 P2 * |
2980
|
|
|
|
|
|
|
** |
2981
|
|
|
|
|
|
|
** Delete the record at which the P1 cursor is currently pointing. |
2982
|
|
|
|
|
|
|
** |
2983
|
|
|
|
|
|
|
** The cursor will be left pointing at either the next or the previous |
2984
|
|
|
|
|
|
|
** record in the table. If it is left pointing at the next record, then |
2985
|
|
|
|
|
|
|
** the next Next instruction will be a no-op. Hence it is OK to delete |
2986
|
|
|
|
|
|
|
** a record from within an Next loop. |
2987
|
|
|
|
|
|
|
** |
2988
|
|
|
|
|
|
|
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
2989
|
|
|
|
|
|
|
** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set, |
2990
|
|
|
|
|
|
|
** then the current statement change count is incremented (otherwise not). |
2991
|
|
|
|
|
|
|
** |
2992
|
|
|
|
|
|
|
** If P1 is a pseudo-table, then this instruction is a no-op. |
2993
|
|
|
|
|
|
|
*/ |
2994
|
|
|
|
|
|
|
case OP_Delete: { |
2995
|
17
|
|
|
|
|
|
int i = pOp->p1; |
2996
|
|
|
|
|
|
|
Cursor *pC; |
2997
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
2998
|
17
|
|
|
|
|
|
pC = &p->aCsr[i]; |
2999
|
17
|
50
|
|
|
|
|
if( pC->pCursor!=0 ){ |
3000
|
17
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
3001
|
17
|
|
|
|
|
|
rc = sqliteBtreeDelete(pC->pCursor); |
3002
|
17
|
|
|
|
|
|
pC->nextRowidValid = 0; |
3003
|
|
|
|
|
|
|
} |
3004
|
17
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++; |
3005
|
17
|
100
|
|
|
|
|
if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++; |
3006
|
17
|
|
|
|
|
|
break; |
3007
|
|
|
|
|
|
|
} |
3008
|
|
|
|
|
|
|
|
3009
|
|
|
|
|
|
|
/* Opcode: SetCounts * * * |
3010
|
|
|
|
|
|
|
** |
3011
|
|
|
|
|
|
|
** Called at end of statement. Updates lsChange (last statement change count) |
3012
|
|
|
|
|
|
|
** and resets csChange (current statement change count) to 0. |
3013
|
|
|
|
|
|
|
*/ |
3014
|
|
|
|
|
|
|
case OP_SetCounts: { |
3015
|
49
|
|
|
|
|
|
db->lsChange=db->csChange; |
3016
|
49
|
|
|
|
|
|
db->csChange=0; |
3017
|
49
|
|
|
|
|
|
break; |
3018
|
|
|
|
|
|
|
} |
3019
|
|
|
|
|
|
|
|
3020
|
|
|
|
|
|
|
/* Opcode: KeyAsData P1 P2 * |
3021
|
|
|
|
|
|
|
** |
3022
|
|
|
|
|
|
|
** Turn the key-as-data mode for cursor P1 either on (if P2==1) or |
3023
|
|
|
|
|
|
|
** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls |
3024
|
|
|
|
|
|
|
** data off of the key rather than the data. This is used for |
3025
|
|
|
|
|
|
|
** processing compound selects. |
3026
|
|
|
|
|
|
|
*/ |
3027
|
|
|
|
|
|
|
case OP_KeyAsData: { |
3028
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3029
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3030
|
0
|
|
|
|
|
|
p->aCsr[i].keyAsData = pOp->p2; |
3031
|
0
|
|
|
|
|
|
break; |
3032
|
|
|
|
|
|
|
} |
3033
|
|
|
|
|
|
|
|
3034
|
|
|
|
|
|
|
/* Opcode: RowData P1 * * |
3035
|
|
|
|
|
|
|
** |
3036
|
|
|
|
|
|
|
** Push onto the stack the complete row data for cursor P1. |
3037
|
|
|
|
|
|
|
** There is no interpretation of the data. It is just copied |
3038
|
|
|
|
|
|
|
** onto the stack exactly as it is found in the database file. |
3039
|
|
|
|
|
|
|
** |
3040
|
|
|
|
|
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed |
3041
|
|
|
|
|
|
|
** onto the stack. |
3042
|
|
|
|
|
|
|
*/ |
3043
|
|
|
|
|
|
|
/* Opcode: RowKey P1 * * |
3044
|
|
|
|
|
|
|
** |
3045
|
|
|
|
|
|
|
** Push onto the stack the complete row key for cursor P1. |
3046
|
|
|
|
|
|
|
** There is no interpretation of the key. It is just copied |
3047
|
|
|
|
|
|
|
** onto the stack exactly as it is found in the database file. |
3048
|
|
|
|
|
|
|
** |
3049
|
|
|
|
|
|
|
** If the cursor is not pointing to a valid row, a NULL is pushed |
3050
|
|
|
|
|
|
|
** onto the stack. |
3051
|
|
|
|
|
|
|
*/ |
3052
|
|
|
|
|
|
|
case OP_RowKey: |
3053
|
|
|
|
|
|
|
case OP_RowData: { |
3054
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3055
|
|
|
|
|
|
|
Cursor *pC; |
3056
|
|
|
|
|
|
|
int n; |
3057
|
|
|
|
|
|
|
|
3058
|
0
|
|
|
|
|
|
pTos++; |
3059
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3060
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
3061
|
0
|
0
|
|
|
|
|
if( pC->nullRow ){ |
3062
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3063
|
0
|
0
|
|
|
|
|
}else if( pC->pCursor!=0 ){ |
3064
|
0
|
|
|
|
|
|
BtCursor *pCrsr = pC->pCursor; |
3065
|
0
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
3066
|
0
|
0
|
|
|
|
|
if( pC->nullRow ){ |
3067
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3068
|
0
|
|
|
|
|
|
break; |
3069
|
0
|
0
|
|
|
|
|
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){ |
|
|
0
|
|
|
|
|
|
3070
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &n); |
3071
|
|
|
|
|
|
|
}else{ |
3072
|
0
|
|
|
|
|
|
sqliteBtreeDataSize(pCrsr, &n); |
3073
|
|
|
|
|
|
|
} |
3074
|
0
|
|
|
|
|
|
pTos->n = n; |
3075
|
0
|
0
|
|
|
|
|
if( n<=NBFS ){ |
3076
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
3077
|
0
|
|
|
|
|
|
pTos->z = pTos->zShort; |
3078
|
|
|
|
|
|
|
}else{ |
3079
|
0
|
|
|
|
|
|
char *z = sqliteMallocRaw( n ); |
3080
|
0
|
0
|
|
|
|
|
if( z==0 ) goto no_mem; |
3081
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
3082
|
0
|
|
|
|
|
|
pTos->z = z; |
3083
|
|
|
|
|
|
|
} |
3084
|
0
|
0
|
|
|
|
|
if( pC->keyAsData || pOp->opcode==OP_RowKey ){ |
|
|
0
|
|
|
|
|
|
3085
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, 0, n, pTos->z); |
3086
|
|
|
|
|
|
|
}else{ |
3087
|
0
|
|
|
|
|
|
sqliteBtreeData(pCrsr, 0, n, pTos->z); |
3088
|
|
|
|
|
|
|
} |
3089
|
0
|
0
|
|
|
|
|
}else if( pC->pseudoTable ){ |
3090
|
0
|
|
|
|
|
|
pTos->n = pC->nData; |
3091
|
0
|
|
|
|
|
|
pTos->z = pC->pData; |
3092
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Ephem; |
3093
|
|
|
|
|
|
|
}else{ |
3094
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3095
|
|
|
|
|
|
|
} |
3096
|
0
|
|
|
|
|
|
break; |
3097
|
|
|
|
|
|
|
} |
3098
|
|
|
|
|
|
|
|
3099
|
|
|
|
|
|
|
/* Opcode: Column P1 P2 * |
3100
|
|
|
|
|
|
|
** |
3101
|
|
|
|
|
|
|
** Interpret the data that cursor P1 points to as |
3102
|
|
|
|
|
|
|
** a structure built using the MakeRecord instruction. |
3103
|
|
|
|
|
|
|
** (See the MakeRecord opcode for additional information about |
3104
|
|
|
|
|
|
|
** the format of the data.) |
3105
|
|
|
|
|
|
|
** Push onto the stack the value of the P2-th column contained |
3106
|
|
|
|
|
|
|
** in the data. |
3107
|
|
|
|
|
|
|
** |
3108
|
|
|
|
|
|
|
** If the KeyAsData opcode has previously executed on this cursor, |
3109
|
|
|
|
|
|
|
** then the field might be extracted from the key rather than the |
3110
|
|
|
|
|
|
|
** data. |
3111
|
|
|
|
|
|
|
** |
3112
|
|
|
|
|
|
|
** If P1 is negative, then the record is stored on the stack rather |
3113
|
|
|
|
|
|
|
** than in a table. For P1==-1, the top of the stack is used. |
3114
|
|
|
|
|
|
|
** For P1==-2, the next on the stack is used. And so forth. The |
3115
|
|
|
|
|
|
|
** value pushed is always just a pointer into the record which is |
3116
|
|
|
|
|
|
|
** stored further down on the stack. The column value is not copied. |
3117
|
|
|
|
|
|
|
*/ |
3118
|
|
|
|
|
|
|
case OP_Column: { |
3119
|
|
|
|
|
|
|
int amt, offset, end, payloadSize; |
3120
|
386
|
|
|
|
|
|
int i = pOp->p1; |
3121
|
386
|
|
|
|
|
|
int p2 = pOp->p2; |
3122
|
|
|
|
|
|
|
Cursor *pC; |
3123
|
|
|
|
|
|
|
char *zRec; |
3124
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3125
|
|
|
|
|
|
|
int idxWidth; |
3126
|
|
|
|
|
|
|
unsigned char aHdr[10]; |
3127
|
|
|
|
|
|
|
|
3128
|
|
|
|
|
|
|
assert( inCursor ); |
3129
|
386
|
|
|
|
|
|
pTos++; |
3130
|
386
|
50
|
|
|
|
|
if( i<0 ){ |
3131
|
|
|
|
|
|
|
assert( &pTos[i]>=p->aStack ); |
3132
|
|
|
|
|
|
|
assert( pTos[i].flags & MEM_Str ); |
3133
|
0
|
|
|
|
|
|
zRec = pTos[i].z; |
3134
|
0
|
|
|
|
|
|
payloadSize = pTos[i].n; |
3135
|
386
|
50
|
|
|
|
|
}else if( (pC = &p->aCsr[i])->pCursor!=0 ){ |
3136
|
386
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
3137
|
386
|
|
|
|
|
|
zRec = 0; |
3138
|
386
|
|
|
|
|
|
pCrsr = pC->pCursor; |
3139
|
386
|
50
|
|
|
|
|
if( pC->nullRow ){ |
3140
|
0
|
|
|
|
|
|
payloadSize = 0; |
3141
|
386
|
50
|
|
|
|
|
}else if( pC->keyAsData ){ |
3142
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &payloadSize); |
3143
|
|
|
|
|
|
|
}else{ |
3144
|
386
|
|
|
|
|
|
sqliteBtreeDataSize(pCrsr, &payloadSize); |
3145
|
|
|
|
|
|
|
} |
3146
|
0
|
0
|
|
|
|
|
}else if( pC->pseudoTable ){ |
3147
|
0
|
|
|
|
|
|
payloadSize = pC->nData; |
3148
|
0
|
|
|
|
|
|
zRec = pC->pData; |
3149
|
|
|
|
|
|
|
assert( payloadSize==0 || zRec!=0 ); |
3150
|
|
|
|
|
|
|
}else{ |
3151
|
0
|
|
|
|
|
|
payloadSize = 0; |
3152
|
|
|
|
|
|
|
} |
3153
|
|
|
|
|
|
|
|
3154
|
|
|
|
|
|
|
/* Figure out how many bytes in the column data and where the column |
3155
|
|
|
|
|
|
|
** data begins. |
3156
|
|
|
|
|
|
|
*/ |
3157
|
386
|
50
|
|
|
|
|
if( payloadSize==0 ){ |
3158
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3159
|
386
|
|
|
|
|
|
break; |
3160
|
386
|
100
|
|
|
|
|
}else if( payloadSize<256 ){ |
3161
|
383
|
|
|
|
|
|
idxWidth = 1; |
3162
|
3
|
50
|
|
|
|
|
}else if( payloadSize<65536 ){ |
3163
|
3
|
|
|
|
|
|
idxWidth = 2; |
3164
|
|
|
|
|
|
|
}else{ |
3165
|
0
|
|
|
|
|
|
idxWidth = 3; |
3166
|
|
|
|
|
|
|
} |
3167
|
|
|
|
|
|
|
|
3168
|
|
|
|
|
|
|
/* Figure out where the requested column is stored and how big it is. |
3169
|
|
|
|
|
|
|
*/ |
3170
|
386
|
50
|
|
|
|
|
if( payloadSize < idxWidth*(p2+1) ){ |
3171
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
3172
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
3173
|
|
|
|
|
|
|
} |
3174
|
386
|
50
|
|
|
|
|
if( zRec ){ |
3175
|
0
|
|
|
|
|
|
memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2); |
3176
|
386
|
50
|
|
|
|
|
}else if( pC->keyAsData ){ |
3177
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); |
3178
|
|
|
|
|
|
|
}else{ |
3179
|
386
|
|
|
|
|
|
sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr); |
3180
|
|
|
|
|
|
|
} |
3181
|
386
|
|
|
|
|
|
offset = aHdr[0]; |
3182
|
386
|
|
|
|
|
|
end = aHdr[idxWidth]; |
3183
|
386
|
100
|
|
|
|
|
if( idxWidth>1 ){ |
3184
|
3
|
|
|
|
|
|
offset |= aHdr[1]<<8; |
3185
|
3
|
|
|
|
|
|
end |= aHdr[idxWidth+1]<<8; |
3186
|
3
|
50
|
|
|
|
|
if( idxWidth>2 ){ |
3187
|
0
|
|
|
|
|
|
offset |= aHdr[2]<<16; |
3188
|
0
|
|
|
|
|
|
end |= aHdr[idxWidth+2]<<16; |
3189
|
|
|
|
|
|
|
} |
3190
|
|
|
|
|
|
|
} |
3191
|
386
|
|
|
|
|
|
amt = end - offset; |
3192
|
386
|
50
|
|
|
|
|
if( amt<0 || offset<0 || end>payloadSize ){ |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
3193
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
3194
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
3195
|
|
|
|
|
|
|
} |
3196
|
|
|
|
|
|
|
|
3197
|
|
|
|
|
|
|
/* amt and offset now hold the offset to the start of data and the |
3198
|
|
|
|
|
|
|
** amount of data. Go get the data and put it on the stack. |
3199
|
|
|
|
|
|
|
*/ |
3200
|
386
|
|
|
|
|
|
pTos->n = amt; |
3201
|
386
|
100
|
|
|
|
|
if( amt==0 ){ |
3202
|
18
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3203
|
368
|
50
|
|
|
|
|
}else if( zRec ){ |
3204
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
3205
|
0
|
|
|
|
|
|
pTos->z = &zRec[offset]; |
3206
|
|
|
|
|
|
|
}else{ |
3207
|
368
|
100
|
|
|
|
|
if( amt<=NBFS ){ |
3208
|
333
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
3209
|
333
|
|
|
|
|
|
pTos->z = pTos->zShort; |
3210
|
|
|
|
|
|
|
}else{ |
3211
|
35
|
|
|
|
|
|
char *z = sqliteMallocRaw( amt ); |
3212
|
35
|
50
|
|
|
|
|
if( z==0 ) goto no_mem; |
3213
|
35
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
3214
|
35
|
|
|
|
|
|
pTos->z = z; |
3215
|
|
|
|
|
|
|
} |
3216
|
368
|
50
|
|
|
|
|
if( pC->keyAsData ){ |
3217
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, offset, amt, pTos->z); |
3218
|
|
|
|
|
|
|
}else{ |
3219
|
368
|
|
|
|
|
|
sqliteBtreeData(pCrsr, offset, amt, pTos->z); |
3220
|
|
|
|
|
|
|
} |
3221
|
|
|
|
|
|
|
} |
3222
|
386
|
|
|
|
|
|
break; |
3223
|
|
|
|
|
|
|
} |
3224
|
|
|
|
|
|
|
|
3225
|
|
|
|
|
|
|
/* Opcode: Recno P1 * * |
3226
|
|
|
|
|
|
|
** |
3227
|
|
|
|
|
|
|
** Push onto the stack an integer which is the first 4 bytes of the |
3228
|
|
|
|
|
|
|
** the key to the current entry in a sequential scan of the database |
3229
|
|
|
|
|
|
|
** file P1. The sequential scan should have been started using the |
3230
|
|
|
|
|
|
|
** Next opcode. |
3231
|
|
|
|
|
|
|
*/ |
3232
|
|
|
|
|
|
|
case OP_Recno: { |
3233
|
8
|
|
|
|
|
|
int i = pOp->p1; |
3234
|
|
|
|
|
|
|
Cursor *pC; |
3235
|
|
|
|
|
|
|
int v; |
3236
|
|
|
|
|
|
|
|
3237
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3238
|
8
|
|
|
|
|
|
pC = &p->aCsr[i]; |
3239
|
8
|
|
|
|
|
|
sqliteVdbeCursorMoveto(pC); |
3240
|
8
|
|
|
|
|
|
pTos++; |
3241
|
8
|
50
|
|
|
|
|
if( pC->recnoIsValid ){ |
3242
|
0
|
|
|
|
|
|
v = pC->lastRecno; |
3243
|
8
|
50
|
|
|
|
|
}else if( pC->pseudoTable ){ |
3244
|
0
|
|
|
|
|
|
v = keyToInt(pC->iKey); |
3245
|
8
|
50
|
|
|
|
|
}else if( pC->nullRow || pC->pCursor==0 ){ |
|
|
50
|
|
|
|
|
|
3246
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3247
|
0
|
|
|
|
|
|
break; |
3248
|
|
|
|
|
|
|
}else{ |
3249
|
|
|
|
|
|
|
assert( pC->pCursor!=0 ); |
3250
|
8
|
|
|
|
|
|
sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v); |
3251
|
8
|
|
|
|
|
|
v = keyToInt(v); |
3252
|
|
|
|
|
|
|
} |
3253
|
8
|
|
|
|
|
|
pTos->i = v; |
3254
|
8
|
|
|
|
|
|
pTos->flags = MEM_Int; |
3255
|
8
|
|
|
|
|
|
break; |
3256
|
|
|
|
|
|
|
} |
3257
|
|
|
|
|
|
|
|
3258
|
|
|
|
|
|
|
/* Opcode: FullKey P1 * * |
3259
|
|
|
|
|
|
|
** |
3260
|
|
|
|
|
|
|
** Extract the complete key from the record that cursor P1 is currently |
3261
|
|
|
|
|
|
|
** pointing to and push the key onto the stack as a string. |
3262
|
|
|
|
|
|
|
** |
3263
|
|
|
|
|
|
|
** Compare this opcode to Recno. The Recno opcode extracts the first |
3264
|
|
|
|
|
|
|
** 4 bytes of the key and pushes those bytes onto the stack as an |
3265
|
|
|
|
|
|
|
** integer. This instruction pushes the entire key as a string. |
3266
|
|
|
|
|
|
|
** |
3267
|
|
|
|
|
|
|
** This opcode may not be used on a pseudo-table. |
3268
|
|
|
|
|
|
|
*/ |
3269
|
|
|
|
|
|
|
case OP_FullKey: { |
3270
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3271
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3272
|
|
|
|
|
|
|
|
3273
|
|
|
|
|
|
|
assert( p->aCsr[i].keyAsData ); |
3274
|
|
|
|
|
|
|
assert( !p->aCsr[i].pseudoTable ); |
3275
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3276
|
0
|
|
|
|
|
|
pTos++; |
3277
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
3278
|
|
|
|
|
|
|
int amt; |
3279
|
|
|
|
|
|
|
char *z; |
3280
|
|
|
|
|
|
|
|
3281
|
0
|
|
|
|
|
|
sqliteVdbeCursorMoveto(&p->aCsr[i]); |
3282
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &amt); |
3283
|
0
|
0
|
|
|
|
|
if( amt<=0 ){ |
3284
|
0
|
|
|
|
|
|
rc = SQLITE_CORRUPT; |
3285
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
3286
|
|
|
|
|
|
|
} |
3287
|
0
|
0
|
|
|
|
|
if( amt>NBFS ){ |
3288
|
0
|
|
|
|
|
|
z = sqliteMallocRaw( amt ); |
3289
|
0
|
0
|
|
|
|
|
if( z==0 ) goto no_mem; |
3290
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
3291
|
|
|
|
|
|
|
}else{ |
3292
|
0
|
|
|
|
|
|
z = pTos->zShort; |
3293
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Short; |
3294
|
|
|
|
|
|
|
} |
3295
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, 0, amt, z); |
3296
|
0
|
|
|
|
|
|
pTos->z = z; |
3297
|
0
|
|
|
|
|
|
pTos->n = amt; |
3298
|
|
|
|
|
|
|
} |
3299
|
0
|
|
|
|
|
|
break; |
3300
|
|
|
|
|
|
|
} |
3301
|
|
|
|
|
|
|
|
3302
|
|
|
|
|
|
|
/* Opcode: NullRow P1 * * |
3303
|
|
|
|
|
|
|
** |
3304
|
|
|
|
|
|
|
** Move the cursor P1 to a null row. Any OP_Column operations |
3305
|
|
|
|
|
|
|
** that occur while the cursor is on the null row will always push |
3306
|
|
|
|
|
|
|
** a NULL onto the stack. |
3307
|
|
|
|
|
|
|
*/ |
3308
|
|
|
|
|
|
|
case OP_NullRow: { |
3309
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3310
|
|
|
|
|
|
|
|
3311
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3312
|
0
|
|
|
|
|
|
p->aCsr[i].nullRow = 1; |
3313
|
0
|
|
|
|
|
|
p->aCsr[i].recnoIsValid = 0; |
3314
|
0
|
|
|
|
|
|
break; |
3315
|
|
|
|
|
|
|
} |
3316
|
|
|
|
|
|
|
|
3317
|
|
|
|
|
|
|
/* Opcode: Last P1 P2 * |
3318
|
|
|
|
|
|
|
** |
3319
|
|
|
|
|
|
|
** The next use of the Recno or Column or Next instruction for P1 |
3320
|
|
|
|
|
|
|
** will refer to the last entry in the database table or index. |
3321
|
|
|
|
|
|
|
** If the table or index is empty and P2>0, then jump immediately to P2. |
3322
|
|
|
|
|
|
|
** If P2 is 0 or if the table or index is not empty, fall through |
3323
|
|
|
|
|
|
|
** to the following instruction. |
3324
|
|
|
|
|
|
|
*/ |
3325
|
|
|
|
|
|
|
case OP_Last: { |
3326
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3327
|
|
|
|
|
|
|
Cursor *pC; |
3328
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3329
|
|
|
|
|
|
|
|
3330
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3331
|
0
|
|
|
|
|
|
pC = &p->aCsr[i]; |
3332
|
0
|
0
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
3333
|
|
|
|
|
|
|
int res; |
3334
|
0
|
|
|
|
|
|
rc = sqliteBtreeLast(pCrsr, &res); |
3335
|
0
|
|
|
|
|
|
pC->nullRow = res; |
3336
|
0
|
|
|
|
|
|
pC->deferredMoveto = 0; |
3337
|
0
|
0
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
0
|
|
|
|
|
|
3338
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
3339
|
|
|
|
|
|
|
} |
3340
|
|
|
|
|
|
|
}else{ |
3341
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
3342
|
|
|
|
|
|
|
} |
3343
|
0
|
|
|
|
|
|
break; |
3344
|
|
|
|
|
|
|
} |
3345
|
|
|
|
|
|
|
|
3346
|
|
|
|
|
|
|
/* Opcode: Rewind P1 P2 * |
3347
|
|
|
|
|
|
|
** |
3348
|
|
|
|
|
|
|
** The next use of the Recno or Column or Next instruction for P1 |
3349
|
|
|
|
|
|
|
** will refer to the first entry in the database table or index. |
3350
|
|
|
|
|
|
|
** If the table or index is empty and P2>0, then jump immediately to P2. |
3351
|
|
|
|
|
|
|
** If P2 is 0 or if the table or index is not empty, fall through |
3352
|
|
|
|
|
|
|
** to the following instruction. |
3353
|
|
|
|
|
|
|
*/ |
3354
|
|
|
|
|
|
|
case OP_Rewind: { |
3355
|
141
|
|
|
|
|
|
int i = pOp->p1; |
3356
|
|
|
|
|
|
|
Cursor *pC; |
3357
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3358
|
|
|
|
|
|
|
|
3359
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3360
|
141
|
|
|
|
|
|
pC = &p->aCsr[i]; |
3361
|
141
|
50
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
3362
|
|
|
|
|
|
|
int res; |
3363
|
141
|
|
|
|
|
|
rc = sqliteBtreeFirst(pCrsr, &res); |
3364
|
141
|
|
|
|
|
|
pC->atFirst = res==0; |
3365
|
141
|
|
|
|
|
|
pC->nullRow = res; |
3366
|
141
|
|
|
|
|
|
pC->deferredMoveto = 0; |
3367
|
141
|
100
|
|
|
|
|
if( res && pOp->p2>0 ){ |
|
|
50
|
|
|
|
|
|
3368
|
141
|
|
|
|
|
|
pc = pOp->p2 - 1; |
3369
|
|
|
|
|
|
|
} |
3370
|
|
|
|
|
|
|
}else{ |
3371
|
0
|
|
|
|
|
|
pC->nullRow = 0; |
3372
|
|
|
|
|
|
|
} |
3373
|
141
|
|
|
|
|
|
break; |
3374
|
|
|
|
|
|
|
} |
3375
|
|
|
|
|
|
|
|
3376
|
|
|
|
|
|
|
/* Opcode: Next P1 P2 * |
3377
|
|
|
|
|
|
|
** |
3378
|
|
|
|
|
|
|
** Advance cursor P1 so that it points to the next key/data pair in its |
3379
|
|
|
|
|
|
|
** table or index. If there are no more key/value pairs then fall through |
3380
|
|
|
|
|
|
|
** to the following instruction. But if the cursor advance was successful, |
3381
|
|
|
|
|
|
|
** jump immediately to P2. |
3382
|
|
|
|
|
|
|
** |
3383
|
|
|
|
|
|
|
** See also: Prev |
3384
|
|
|
|
|
|
|
*/ |
3385
|
|
|
|
|
|
|
/* Opcode: Prev P1 P2 * |
3386
|
|
|
|
|
|
|
** |
3387
|
|
|
|
|
|
|
** Back up cursor P1 so that it points to the previous key/data pair in its |
3388
|
|
|
|
|
|
|
** table or index. If there is no previous key/value pairs then fall through |
3389
|
|
|
|
|
|
|
** to the following instruction. But if the cursor backup was successful, |
3390
|
|
|
|
|
|
|
** jump immediately to P2. |
3391
|
|
|
|
|
|
|
*/ |
3392
|
|
|
|
|
|
|
case OP_Prev: |
3393
|
|
|
|
|
|
|
case OP_Next: { |
3394
|
|
|
|
|
|
|
Cursor *pC; |
3395
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3396
|
|
|
|
|
|
|
|
3397
|
167
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
3398
|
|
|
|
|
|
|
assert( pOp->p1>=0 && pOp->p1nCursor ); |
3399
|
167
|
|
|
|
|
|
pC = &p->aCsr[pOp->p1]; |
3400
|
167
|
50
|
|
|
|
|
if( (pCrsr = pC->pCursor)!=0 ){ |
3401
|
|
|
|
|
|
|
int res; |
3402
|
167
|
50
|
|
|
|
|
if( pC->nullRow ){ |
3403
|
0
|
|
|
|
|
|
res = 1; |
3404
|
|
|
|
|
|
|
}else{ |
3405
|
|
|
|
|
|
|
assert( pC->deferredMoveto==0 ); |
3406
|
167
|
50
|
|
|
|
|
rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) : |
3407
|
0
|
|
|
|
|
|
sqliteBtreePrevious(pCrsr, &res); |
3408
|
167
|
|
|
|
|
|
pC->nullRow = res; |
3409
|
|
|
|
|
|
|
} |
3410
|
167
|
100
|
|
|
|
|
if( res==0 ){ |
3411
|
102
|
|
|
|
|
|
pc = pOp->p2 - 1; |
3412
|
167
|
|
|
|
|
|
sqlite_search_count++; |
3413
|
|
|
|
|
|
|
} |
3414
|
|
|
|
|
|
|
}else{ |
3415
|
0
|
|
|
|
|
|
pC->nullRow = 1; |
3416
|
|
|
|
|
|
|
} |
3417
|
167
|
|
|
|
|
|
pC->recnoIsValid = 0; |
3418
|
167
|
|
|
|
|
|
break; |
3419
|
|
|
|
|
|
|
} |
3420
|
|
|
|
|
|
|
|
3421
|
|
|
|
|
|
|
/* Opcode: IdxPut P1 P2 P3 |
3422
|
|
|
|
|
|
|
** |
3423
|
|
|
|
|
|
|
** The top of the stack holds a SQL index key made using the |
3424
|
|
|
|
|
|
|
** MakeIdxKey instruction. This opcode writes that key into the |
3425
|
|
|
|
|
|
|
** index P1. Data for the entry is nil. |
3426
|
|
|
|
|
|
|
** |
3427
|
|
|
|
|
|
|
** If P2==1, then the key must be unique. If the key is not unique, |
3428
|
|
|
|
|
|
|
** the program aborts with a SQLITE_CONSTRAINT error and the database |
3429
|
|
|
|
|
|
|
** is rolled back. If P3 is not null, then it becomes part of the |
3430
|
|
|
|
|
|
|
** error message returned with the SQLITE_CONSTRAINT. |
3431
|
|
|
|
|
|
|
*/ |
3432
|
|
|
|
|
|
|
case OP_IdxPut: { |
3433
|
3
|
|
|
|
|
|
int i = pOp->p1; |
3434
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3435
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
3436
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3437
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
3438
|
3
|
50
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
3439
|
3
|
|
|
|
|
|
int nKey = pTos->n; |
3440
|
3
|
|
|
|
|
|
const char *zKey = pTos->z; |
3441
|
3
|
100
|
|
|
|
|
if( pOp->p2 ){ |
3442
|
|
|
|
|
|
|
int res, n; |
3443
|
|
|
|
|
|
|
assert( nKey >= 4 ); |
3444
|
2
|
|
|
|
|
|
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res); |
3445
|
2
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) goto abort_due_to_error; |
3446
|
6
|
50
|
|
|
|
|
while( res!=0 ){ |
3447
|
|
|
|
|
|
|
int c; |
3448
|
4
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &n); |
3449
|
4
|
100
|
|
|
|
|
if( n==nKey |
3450
|
1
|
50
|
|
|
|
|
&& sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK |
3451
|
1
|
50
|
|
|
|
|
&& c==0 |
3452
|
|
|
|
|
|
|
){ |
3453
|
0
|
|
|
|
|
|
rc = SQLITE_CONSTRAINT; |
3454
|
0
|
0
|
|
|
|
|
if( pOp->p3 && pOp->p3[0] ){ |
|
|
0
|
|
|
|
|
|
3455
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0); |
3456
|
|
|
|
|
|
|
} |
3457
|
0
|
|
|
|
|
|
goto abort_due_to_error; |
3458
|
|
|
|
|
|
|
} |
3459
|
4
|
100
|
|
|
|
|
if( res<0 ){ |
3460
|
2
|
|
|
|
|
|
sqliteBtreeNext(pCrsr, &res); |
3461
|
2
|
|
|
|
|
|
res = +1; |
3462
|
|
|
|
|
|
|
}else{ |
3463
|
2
|
|
|
|
|
|
break; |
3464
|
|
|
|
|
|
|
} |
3465
|
|
|
|
|
|
|
} |
3466
|
|
|
|
|
|
|
} |
3467
|
3
|
|
|
|
|
|
rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0); |
3468
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
3469
|
|
|
|
|
|
|
} |
3470
|
3
|
50
|
|
|
|
|
Release(pTos); |
3471
|
3
|
|
|
|
|
|
pTos--; |
3472
|
3
|
|
|
|
|
|
break; |
3473
|
|
|
|
|
|
|
} |
3474
|
|
|
|
|
|
|
|
3475
|
|
|
|
|
|
|
/* Opcode: IdxDelete P1 * * |
3476
|
|
|
|
|
|
|
** |
3477
|
|
|
|
|
|
|
** The top of the stack is an index key built using the MakeIdxKey opcode. |
3478
|
|
|
|
|
|
|
** This opcode removes that entry from the index. |
3479
|
|
|
|
|
|
|
*/ |
3480
|
|
|
|
|
|
|
case OP_IdxDelete: { |
3481
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3482
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3483
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
3484
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
3485
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3486
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
3487
|
|
|
|
|
|
|
int rx, res; |
3488
|
0
|
|
|
|
|
|
rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res); |
3489
|
0
|
0
|
|
|
|
|
if( rx==SQLITE_OK && res==0 ){ |
|
|
0
|
|
|
|
|
|
3490
|
0
|
|
|
|
|
|
rc = sqliteBtreeDelete(pCrsr); |
3491
|
|
|
|
|
|
|
} |
3492
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
3493
|
|
|
|
|
|
|
} |
3494
|
0
|
0
|
|
|
|
|
Release(pTos); |
3495
|
0
|
|
|
|
|
|
pTos--; |
3496
|
0
|
|
|
|
|
|
break; |
3497
|
|
|
|
|
|
|
} |
3498
|
|
|
|
|
|
|
|
3499
|
|
|
|
|
|
|
/* Opcode: IdxRecno P1 * * |
3500
|
|
|
|
|
|
|
** |
3501
|
|
|
|
|
|
|
** Push onto the stack an integer which is the last 4 bytes of the |
3502
|
|
|
|
|
|
|
** the key to the current entry in index P1. These 4 bytes should |
3503
|
|
|
|
|
|
|
** be the record number of the table entry to which this index entry |
3504
|
|
|
|
|
|
|
** points. |
3505
|
|
|
|
|
|
|
** |
3506
|
|
|
|
|
|
|
** See also: Recno, MakeIdxKey. |
3507
|
|
|
|
|
|
|
*/ |
3508
|
|
|
|
|
|
|
case OP_IdxRecno: { |
3509
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3510
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3511
|
|
|
|
|
|
|
|
3512
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3513
|
0
|
|
|
|
|
|
pTos++; |
3514
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
3515
|
|
|
|
|
|
|
int v; |
3516
|
|
|
|
|
|
|
int sz; |
3517
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
3518
|
0
|
|
|
|
|
|
sqliteBtreeKeySize(pCrsr, &sz); |
3519
|
0
|
0
|
|
|
|
|
if( sz
|
3520
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3521
|
|
|
|
|
|
|
}else{ |
3522
|
0
|
|
|
|
|
|
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v); |
3523
|
0
|
|
|
|
|
|
v = keyToInt(v); |
3524
|
0
|
|
|
|
|
|
pTos->i = v; |
3525
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
3526
|
|
|
|
|
|
|
} |
3527
|
|
|
|
|
|
|
}else{ |
3528
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3529
|
|
|
|
|
|
|
} |
3530
|
0
|
|
|
|
|
|
break; |
3531
|
|
|
|
|
|
|
} |
3532
|
|
|
|
|
|
|
|
3533
|
|
|
|
|
|
|
/* Opcode: IdxGT P1 P2 * |
3534
|
|
|
|
|
|
|
** |
3535
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
3536
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
3537
|
|
|
|
|
|
|
** index entry. If the index entry is greater than the top of the stack |
3538
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
3539
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
3540
|
|
|
|
|
|
|
*/ |
3541
|
|
|
|
|
|
|
/* Opcode: IdxGE P1 P2 * |
3542
|
|
|
|
|
|
|
** |
3543
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
3544
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
3545
|
|
|
|
|
|
|
** index entry. If the index entry is greater than or equal to |
3546
|
|
|
|
|
|
|
** the top of the stack |
3547
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
3548
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
3549
|
|
|
|
|
|
|
*/ |
3550
|
|
|
|
|
|
|
/* Opcode: IdxLT P1 P2 * |
3551
|
|
|
|
|
|
|
** |
3552
|
|
|
|
|
|
|
** Compare the top of the stack against the key on the index entry that |
3553
|
|
|
|
|
|
|
** cursor P1 is currently pointing to. Ignore the last 4 bytes of the |
3554
|
|
|
|
|
|
|
** index entry. If the index entry is less than the top of the stack |
3555
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through to the next instruction. |
3556
|
|
|
|
|
|
|
** In either case, the stack is popped once. |
3557
|
|
|
|
|
|
|
*/ |
3558
|
|
|
|
|
|
|
case OP_IdxLT: |
3559
|
|
|
|
|
|
|
case OP_IdxGT: |
3560
|
|
|
|
|
|
|
case OP_IdxGE: { |
3561
|
0
|
|
|
|
|
|
int i= pOp->p1; |
3562
|
|
|
|
|
|
|
BtCursor *pCrsr; |
3563
|
|
|
|
|
|
|
|
3564
|
|
|
|
|
|
|
assert( i>=0 && inCursor ); |
3565
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
3566
|
0
|
0
|
|
|
|
|
if( (pCrsr = p->aCsr[i].pCursor)!=0 ){ |
3567
|
|
|
|
|
|
|
int res, rc; |
3568
|
|
|
|
|
|
|
|
3569
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
3570
|
|
|
|
|
|
|
assert( p->aCsr[i].deferredMoveto==0 ); |
3571
|
0
|
|
|
|
|
|
rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res); |
3572
|
0
|
0
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
3573
|
0
|
|
|
|
|
|
break; |
3574
|
|
|
|
|
|
|
} |
3575
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_IdxLT ){ |
3576
|
0
|
|
|
|
|
|
res = -res; |
3577
|
0
|
0
|
|
|
|
|
}else if( pOp->opcode==OP_IdxGE ){ |
3578
|
0
|
|
|
|
|
|
res++; |
3579
|
|
|
|
|
|
|
} |
3580
|
0
|
0
|
|
|
|
|
if( res>0 ){ |
3581
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1 ; |
3582
|
|
|
|
|
|
|
} |
3583
|
|
|
|
|
|
|
} |
3584
|
0
|
0
|
|
|
|
|
Release(pTos); |
3585
|
0
|
|
|
|
|
|
pTos--; |
3586
|
0
|
|
|
|
|
|
break; |
3587
|
|
|
|
|
|
|
} |
3588
|
|
|
|
|
|
|
|
3589
|
|
|
|
|
|
|
/* Opcode: IdxIsNull P1 P2 * |
3590
|
|
|
|
|
|
|
** |
3591
|
|
|
|
|
|
|
** The top of the stack contains an index entry such as might be generated |
3592
|
|
|
|
|
|
|
** by the MakeIdxKey opcode. This routine looks at the first P1 fields of |
3593
|
|
|
|
|
|
|
** that key. If any of the first P1 fields are NULL, then a jump is made |
3594
|
|
|
|
|
|
|
** to address P2. Otherwise we fall straight through. |
3595
|
|
|
|
|
|
|
** |
3596
|
|
|
|
|
|
|
** The index entry is always popped from the stack. |
3597
|
|
|
|
|
|
|
*/ |
3598
|
|
|
|
|
|
|
case OP_IdxIsNull: { |
3599
|
0
|
|
|
|
|
|
int i = pOp->p1; |
3600
|
|
|
|
|
|
|
int k, n; |
3601
|
|
|
|
|
|
|
const char *z; |
3602
|
|
|
|
|
|
|
|
3603
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
3604
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
3605
|
0
|
|
|
|
|
|
z = pTos->z; |
3606
|
0
|
|
|
|
|
|
n = pTos->n; |
3607
|
0
|
0
|
|
|
|
|
for(k=0; k0; i--){ |
|
|
0
|
|
|
|
|
|
3608
|
0
|
0
|
|
|
|
|
if( z[k]=='a' ){ |
3609
|
0
|
|
|
|
|
|
pc = pOp->p2-1; |
3610
|
0
|
|
|
|
|
|
break; |
3611
|
|
|
|
|
|
|
} |
3612
|
0
|
0
|
|
|
|
|
while( k
|
|
|
0
|
|
|
|
|
|
3613
|
0
|
|
|
|
|
|
k++; |
3614
|
|
|
|
|
|
|
} |
3615
|
0
|
0
|
|
|
|
|
Release(pTos); |
3616
|
0
|
|
|
|
|
|
pTos--; |
3617
|
0
|
|
|
|
|
|
break; |
3618
|
|
|
|
|
|
|
} |
3619
|
|
|
|
|
|
|
|
3620
|
|
|
|
|
|
|
/* Opcode: Destroy P1 P2 * |
3621
|
|
|
|
|
|
|
** |
3622
|
|
|
|
|
|
|
** Delete an entire database table or index whose root page in the database |
3623
|
|
|
|
|
|
|
** file is given by P1. |
3624
|
|
|
|
|
|
|
** |
3625
|
|
|
|
|
|
|
** The table being destroyed is in the main database file if P2==0. If |
3626
|
|
|
|
|
|
|
** P2==1 then the table to be clear is in the auxiliary database file |
3627
|
|
|
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE. |
3628
|
|
|
|
|
|
|
** |
3629
|
|
|
|
|
|
|
** See also: Clear |
3630
|
|
|
|
|
|
|
*/ |
3631
|
|
|
|
|
|
|
case OP_Destroy: { |
3632
|
11
|
|
|
|
|
|
rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1); |
3633
|
11
|
|
|
|
|
|
break; |
3634
|
|
|
|
|
|
|
} |
3635
|
|
|
|
|
|
|
|
3636
|
|
|
|
|
|
|
/* Opcode: Clear P1 P2 * |
3637
|
|
|
|
|
|
|
** |
3638
|
|
|
|
|
|
|
** Delete all contents of the database table or index whose root page |
3639
|
|
|
|
|
|
|
** in the database file is given by P1. But, unlike Destroy, do not |
3640
|
|
|
|
|
|
|
** remove the table or index from the database file. |
3641
|
|
|
|
|
|
|
** |
3642
|
|
|
|
|
|
|
** The table being clear is in the main database file if P2==0. If |
3643
|
|
|
|
|
|
|
** P2==1 then the table to be clear is in the auxiliary database file |
3644
|
|
|
|
|
|
|
** that is used to store tables create using CREATE TEMPORARY TABLE. |
3645
|
|
|
|
|
|
|
** |
3646
|
|
|
|
|
|
|
** See also: Destroy |
3647
|
|
|
|
|
|
|
*/ |
3648
|
|
|
|
|
|
|
case OP_Clear: { |
3649
|
0
|
|
|
|
|
|
rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); |
3650
|
0
|
|
|
|
|
|
break; |
3651
|
|
|
|
|
|
|
} |
3652
|
|
|
|
|
|
|
|
3653
|
|
|
|
|
|
|
/* Opcode: CreateTable * P2 P3 |
3654
|
|
|
|
|
|
|
** |
3655
|
|
|
|
|
|
|
** Allocate a new table in the main database file if P2==0 or in the |
3656
|
|
|
|
|
|
|
** auxiliary database file if P2==1. Push the page number |
3657
|
|
|
|
|
|
|
** for the root page of the new table onto the stack. |
3658
|
|
|
|
|
|
|
** |
3659
|
|
|
|
|
|
|
** The root page number is also written to a memory location that P3 |
3660
|
|
|
|
|
|
|
** points to. This is the mechanism is used to write the root page |
3661
|
|
|
|
|
|
|
** number into the parser's internal data structures that describe the |
3662
|
|
|
|
|
|
|
** new table. |
3663
|
|
|
|
|
|
|
** |
3664
|
|
|
|
|
|
|
** The difference between a table and an index is this: A table must |
3665
|
|
|
|
|
|
|
** have a 4-byte integer key and can have arbitrary data. An index |
3666
|
|
|
|
|
|
|
** has an arbitrary key but no data. |
3667
|
|
|
|
|
|
|
** |
3668
|
|
|
|
|
|
|
** See also: CreateIndex |
3669
|
|
|
|
|
|
|
*/ |
3670
|
|
|
|
|
|
|
/* Opcode: CreateIndex * P2 P3 |
3671
|
|
|
|
|
|
|
** |
3672
|
|
|
|
|
|
|
** Allocate a new index in the main database file if P2==0 or in the |
3673
|
|
|
|
|
|
|
** auxiliary database file if P2==1. Push the page number of the |
3674
|
|
|
|
|
|
|
** root page of the new index onto the stack. |
3675
|
|
|
|
|
|
|
** |
3676
|
|
|
|
|
|
|
** See documentation on OP_CreateTable for additional information. |
3677
|
|
|
|
|
|
|
*/ |
3678
|
|
|
|
|
|
|
case OP_CreateIndex: |
3679
|
|
|
|
|
|
|
case OP_CreateTable: { |
3680
|
|
|
|
|
|
|
int pgno; |
3681
|
|
|
|
|
|
|
assert( pOp->p3!=0 && pOp->p3type==P3_POINTER ); |
3682
|
|
|
|
|
|
|
assert( pOp->p2>=0 && pOp->p2nDb ); |
3683
|
|
|
|
|
|
|
assert( db->aDb[pOp->p2].pBt!=0 ); |
3684
|
27
|
100
|
|
|
|
|
if( pOp->opcode==OP_CreateTable ){ |
3685
|
22
|
|
|
|
|
|
rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno); |
3686
|
|
|
|
|
|
|
}else{ |
3687
|
5
|
|
|
|
|
|
rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno); |
3688
|
|
|
|
|
|
|
} |
3689
|
27
|
|
|
|
|
|
pTos++; |
3690
|
27
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
3691
|
27
|
|
|
|
|
|
pTos->i = pgno; |
3692
|
27
|
|
|
|
|
|
pTos->flags = MEM_Int; |
3693
|
27
|
|
|
|
|
|
*(u32*)pOp->p3 = pgno; |
3694
|
27
|
|
|
|
|
|
pOp->p3 = 0; |
3695
|
|
|
|
|
|
|
}else{ |
3696
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
3697
|
|
|
|
|
|
|
} |
3698
|
27
|
|
|
|
|
|
break; |
3699
|
|
|
|
|
|
|
} |
3700
|
|
|
|
|
|
|
|
3701
|
|
|
|
|
|
|
/* Opcode: IntegrityCk P1 P2 * |
3702
|
|
|
|
|
|
|
** |
3703
|
|
|
|
|
|
|
** Do an analysis of the currently open database. Push onto the |
3704
|
|
|
|
|
|
|
** stack the text of an error message describing any problems. |
3705
|
|
|
|
|
|
|
** If there are no errors, push a "ok" onto the stack. |
3706
|
|
|
|
|
|
|
** |
3707
|
|
|
|
|
|
|
** P1 is the index of a set that contains the root page numbers |
3708
|
|
|
|
|
|
|
** for all tables and indices in the main database file. The set |
3709
|
|
|
|
|
|
|
** is cleared by this opcode. In other words, after this opcode |
3710
|
|
|
|
|
|
|
** has executed, the set will be empty. |
3711
|
|
|
|
|
|
|
** |
3712
|
|
|
|
|
|
|
** If P2 is not zero, the check is done on the auxiliary database |
3713
|
|
|
|
|
|
|
** file, not the main database file. |
3714
|
|
|
|
|
|
|
** |
3715
|
|
|
|
|
|
|
** This opcode is used for testing purposes only. |
3716
|
|
|
|
|
|
|
*/ |
3717
|
|
|
|
|
|
|
case OP_IntegrityCk: { |
3718
|
|
|
|
|
|
|
int nRoot; |
3719
|
|
|
|
|
|
|
int *aRoot; |
3720
|
0
|
|
|
|
|
|
int iSet = pOp->p1; |
3721
|
|
|
|
|
|
|
Set *pSet; |
3722
|
|
|
|
|
|
|
int j; |
3723
|
|
|
|
|
|
|
HashElem *i; |
3724
|
|
|
|
|
|
|
char *z; |
3725
|
|
|
|
|
|
|
|
3726
|
|
|
|
|
|
|
assert( iSet>=0 && iSetnSet ); |
3727
|
0
|
|
|
|
|
|
pTos++; |
3728
|
0
|
|
|
|
|
|
pSet = &p->aSet[iSet]; |
3729
|
0
|
|
|
|
|
|
nRoot = sqliteHashCount(&pSet->hash); |
3730
|
0
|
|
|
|
|
|
aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) ); |
3731
|
0
|
0
|
|
|
|
|
if( aRoot==0 ) goto no_mem; |
3732
|
0
|
0
|
|
|
|
|
for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){ |
3733
|
0
|
|
|
|
|
|
toInt((char*)sqliteHashKey(i), &aRoot[j]); |
3734
|
|
|
|
|
|
|
} |
3735
|
0
|
|
|
|
|
|
aRoot[j] = 0; |
3736
|
0
|
|
|
|
|
|
sqliteHashClear(&pSet->hash); |
3737
|
0
|
|
|
|
|
|
pSet->prev = 0; |
3738
|
0
|
|
|
|
|
|
z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot); |
3739
|
0
|
0
|
|
|
|
|
if( z==0 || z[0]==0 ){ |
|
|
0
|
|
|
|
|
|
3740
|
0
|
0
|
|
|
|
|
if( z ) sqliteFree(z); |
3741
|
0
|
|
|
|
|
|
pTos->z = "ok"; |
3742
|
0
|
|
|
|
|
|
pTos->n = 3; |
3743
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Static; |
3744
|
|
|
|
|
|
|
}else{ |
3745
|
0
|
|
|
|
|
|
pTos->z = z; |
3746
|
0
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
3747
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
3748
|
|
|
|
|
|
|
} |
3749
|
0
|
|
|
|
|
|
sqliteFree(aRoot); |
3750
|
0
|
|
|
|
|
|
break; |
3751
|
|
|
|
|
|
|
} |
3752
|
|
|
|
|
|
|
|
3753
|
|
|
|
|
|
|
/* Opcode: ListWrite * * * |
3754
|
|
|
|
|
|
|
** |
3755
|
|
|
|
|
|
|
** Write the integer on the top of the stack |
3756
|
|
|
|
|
|
|
** into the temporary storage list. |
3757
|
|
|
|
|
|
|
*/ |
3758
|
|
|
|
|
|
|
case OP_ListWrite: { |
3759
|
|
|
|
|
|
|
Keylist *pKeylist; |
3760
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
3761
|
6
|
|
|
|
|
|
pKeylist = p->pList; |
3762
|
6
|
100
|
|
|
|
|
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){ |
|
|
50
|
|
|
|
|
|
3763
|
4
|
|
|
|
|
|
pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) ); |
3764
|
4
|
50
|
|
|
|
|
if( pKeylist==0 ) goto no_mem; |
3765
|
4
|
|
|
|
|
|
pKeylist->nKey = 1000; |
3766
|
4
|
|
|
|
|
|
pKeylist->nRead = 0; |
3767
|
4
|
|
|
|
|
|
pKeylist->nUsed = 0; |
3768
|
4
|
|
|
|
|
|
pKeylist->pNext = p->pList; |
3769
|
4
|
|
|
|
|
|
p->pList = pKeylist; |
3770
|
|
|
|
|
|
|
} |
3771
|
6
|
50
|
|
|
|
|
Integerify(pTos); |
3772
|
6
|
|
|
|
|
|
pKeylist->aKey[pKeylist->nUsed++] = pTos->i; |
3773
|
6
|
50
|
|
|
|
|
Release(pTos); |
3774
|
6
|
|
|
|
|
|
pTos--; |
3775
|
6
|
|
|
|
|
|
break; |
3776
|
|
|
|
|
|
|
} |
3777
|
|
|
|
|
|
|
|
3778
|
|
|
|
|
|
|
/* Opcode: ListRewind * * * |
3779
|
|
|
|
|
|
|
** |
3780
|
|
|
|
|
|
|
** Rewind the temporary buffer back to the beginning. |
3781
|
|
|
|
|
|
|
*/ |
3782
|
|
|
|
|
|
|
case OP_ListRewind: { |
3783
|
|
|
|
|
|
|
/* What this opcode codes, really, is reverse the order of the |
3784
|
|
|
|
|
|
|
** linked list of Keylist structures so that they are read out |
3785
|
|
|
|
|
|
|
** in the same order that they were read in. */ |
3786
|
|
|
|
|
|
|
Keylist *pRev, *pTop; |
3787
|
6
|
|
|
|
|
|
pRev = 0; |
3788
|
10
|
100
|
|
|
|
|
while( p->pList ){ |
3789
|
4
|
|
|
|
|
|
pTop = p->pList; |
3790
|
4
|
|
|
|
|
|
p->pList = pTop->pNext; |
3791
|
4
|
|
|
|
|
|
pTop->pNext = pRev; |
3792
|
4
|
|
|
|
|
|
pRev = pTop; |
3793
|
|
|
|
|
|
|
} |
3794
|
6
|
|
|
|
|
|
p->pList = pRev; |
3795
|
6
|
|
|
|
|
|
break; |
3796
|
|
|
|
|
|
|
} |
3797
|
|
|
|
|
|
|
|
3798
|
|
|
|
|
|
|
/* Opcode: ListRead * P2 * |
3799
|
|
|
|
|
|
|
** |
3800
|
|
|
|
|
|
|
** Attempt to read an integer from the temporary storage buffer |
3801
|
|
|
|
|
|
|
** and push it onto the stack. If the storage buffer is empty, |
3802
|
|
|
|
|
|
|
** push nothing but instead jump to P2. |
3803
|
|
|
|
|
|
|
*/ |
3804
|
|
|
|
|
|
|
case OP_ListRead: { |
3805
|
|
|
|
|
|
|
Keylist *pKeylist; |
3806
|
12
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
3807
|
12
|
|
|
|
|
|
pKeylist = p->pList; |
3808
|
12
|
100
|
|
|
|
|
if( pKeylist!=0 ){ |
3809
|
|
|
|
|
|
|
assert( pKeylist->nRead>=0 ); |
3810
|
|
|
|
|
|
|
assert( pKeylist->nReadnUsed ); |
3811
|
|
|
|
|
|
|
assert( pKeylist->nReadnKey ); |
3812
|
6
|
|
|
|
|
|
pTos++; |
3813
|
6
|
|
|
|
|
|
pTos->i = pKeylist->aKey[pKeylist->nRead++]; |
3814
|
6
|
|
|
|
|
|
pTos->flags = MEM_Int; |
3815
|
6
|
100
|
|
|
|
|
if( pKeylist->nRead>=pKeylist->nUsed ){ |
3816
|
4
|
|
|
|
|
|
p->pList = pKeylist->pNext; |
3817
|
6
|
|
|
|
|
|
sqliteFree(pKeylist); |
3818
|
|
|
|
|
|
|
} |
3819
|
|
|
|
|
|
|
}else{ |
3820
|
6
|
|
|
|
|
|
pc = pOp->p2 - 1; |
3821
|
|
|
|
|
|
|
} |
3822
|
12
|
|
|
|
|
|
break; |
3823
|
|
|
|
|
|
|
} |
3824
|
|
|
|
|
|
|
|
3825
|
|
|
|
|
|
|
/* Opcode: ListReset * * * |
3826
|
|
|
|
|
|
|
** |
3827
|
|
|
|
|
|
|
** Reset the temporary storage buffer so that it holds nothing. |
3828
|
|
|
|
|
|
|
*/ |
3829
|
|
|
|
|
|
|
case OP_ListReset: { |
3830
|
6
|
50
|
|
|
|
|
if( p->pList ){ |
3831
|
0
|
|
|
|
|
|
sqliteVdbeKeylistFree(p->pList); |
3832
|
0
|
|
|
|
|
|
p->pList = 0; |
3833
|
|
|
|
|
|
|
} |
3834
|
6
|
|
|
|
|
|
break; |
3835
|
|
|
|
|
|
|
} |
3836
|
|
|
|
|
|
|
|
3837
|
|
|
|
|
|
|
/* Opcode: ListPush * * * |
3838
|
|
|
|
|
|
|
** |
3839
|
|
|
|
|
|
|
** Save the current Vdbe list such that it can be restored by a ListPop |
3840
|
|
|
|
|
|
|
** opcode. The list is empty after this is executed. |
3841
|
|
|
|
|
|
|
*/ |
3842
|
|
|
|
|
|
|
case OP_ListPush: { |
3843
|
0
|
|
|
|
|
|
p->keylistStackDepth++; |
3844
|
|
|
|
|
|
|
assert(p->keylistStackDepth > 0); |
3845
|
0
|
|
|
|
|
|
p->keylistStack = sqliteRealloc(p->keylistStack, |
3846
|
0
|
|
|
|
|
|
sizeof(Keylist *) * p->keylistStackDepth); |
3847
|
0
|
0
|
|
|
|
|
if( p->keylistStack==0 ) goto no_mem; |
3848
|
0
|
|
|
|
|
|
p->keylistStack[p->keylistStackDepth - 1] = p->pList; |
3849
|
0
|
|
|
|
|
|
p->pList = 0; |
3850
|
0
|
|
|
|
|
|
break; |
3851
|
|
|
|
|
|
|
} |
3852
|
|
|
|
|
|
|
|
3853
|
|
|
|
|
|
|
/* Opcode: ListPop * * * |
3854
|
|
|
|
|
|
|
** |
3855
|
|
|
|
|
|
|
** Restore the Vdbe list to the state it was in when ListPush was last |
3856
|
|
|
|
|
|
|
** executed. |
3857
|
|
|
|
|
|
|
*/ |
3858
|
|
|
|
|
|
|
case OP_ListPop: { |
3859
|
|
|
|
|
|
|
assert(p->keylistStackDepth > 0); |
3860
|
0
|
|
|
|
|
|
p->keylistStackDepth--; |
3861
|
0
|
|
|
|
|
|
sqliteVdbeKeylistFree(p->pList); |
3862
|
0
|
|
|
|
|
|
p->pList = p->keylistStack[p->keylistStackDepth]; |
3863
|
0
|
|
|
|
|
|
p->keylistStack[p->keylistStackDepth] = 0; |
3864
|
0
|
0
|
|
|
|
|
if( p->keylistStackDepth == 0 ){ |
3865
|
0
|
|
|
|
|
|
sqliteFree(p->keylistStack); |
3866
|
0
|
|
|
|
|
|
p->keylistStack = 0; |
3867
|
|
|
|
|
|
|
} |
3868
|
0
|
|
|
|
|
|
break; |
3869
|
|
|
|
|
|
|
} |
3870
|
|
|
|
|
|
|
|
3871
|
|
|
|
|
|
|
/* Opcode: ContextPush * * * |
3872
|
|
|
|
|
|
|
** |
3873
|
|
|
|
|
|
|
** Save the current Vdbe context such that it can be restored by a ContextPop |
3874
|
|
|
|
|
|
|
** opcode. The context stores the last insert row id, the last statement change |
3875
|
|
|
|
|
|
|
** count, and the current statement change count. |
3876
|
|
|
|
|
|
|
*/ |
3877
|
|
|
|
|
|
|
case OP_ContextPush: { |
3878
|
0
|
|
|
|
|
|
p->contextStackDepth++; |
3879
|
|
|
|
|
|
|
assert(p->contextStackDepth > 0); |
3880
|
0
|
|
|
|
|
|
p->contextStack = sqliteRealloc(p->contextStack, |
3881
|
0
|
|
|
|
|
|
sizeof(Context) * p->contextStackDepth); |
3882
|
0
|
0
|
|
|
|
|
if( p->contextStack==0 ) goto no_mem; |
3883
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid; |
3884
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange; |
3885
|
0
|
|
|
|
|
|
p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange; |
3886
|
0
|
|
|
|
|
|
break; |
3887
|
|
|
|
|
|
|
} |
3888
|
|
|
|
|
|
|
|
3889
|
|
|
|
|
|
|
/* Opcode: ContextPop * * * |
3890
|
|
|
|
|
|
|
** |
3891
|
|
|
|
|
|
|
** Restore the Vdbe context to the state it was in when contextPush was last |
3892
|
|
|
|
|
|
|
** executed. The context stores the last insert row id, the last statement |
3893
|
|
|
|
|
|
|
** change count, and the current statement change count. |
3894
|
|
|
|
|
|
|
*/ |
3895
|
|
|
|
|
|
|
case OP_ContextPop: { |
3896
|
|
|
|
|
|
|
assert(p->contextStackDepth > 0); |
3897
|
0
|
|
|
|
|
|
p->contextStackDepth--; |
3898
|
0
|
|
|
|
|
|
p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid; |
3899
|
0
|
|
|
|
|
|
p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange; |
3900
|
0
|
|
|
|
|
|
p->db->csChange = p->contextStack[p->contextStackDepth].csChange; |
3901
|
0
|
0
|
|
|
|
|
if( p->contextStackDepth == 0 ){ |
3902
|
0
|
|
|
|
|
|
sqliteFree(p->contextStack); |
3903
|
0
|
|
|
|
|
|
p->contextStack = 0; |
3904
|
|
|
|
|
|
|
} |
3905
|
0
|
|
|
|
|
|
break; |
3906
|
|
|
|
|
|
|
} |
3907
|
|
|
|
|
|
|
|
3908
|
|
|
|
|
|
|
/* Opcode: SortPut * * * |
3909
|
|
|
|
|
|
|
** |
3910
|
|
|
|
|
|
|
** The TOS is the key and the NOS is the data. Pop both from the stack |
3911
|
|
|
|
|
|
|
** and put them on the sorter. The key and data should have been |
3912
|
|
|
|
|
|
|
** made using SortMakeKey and SortMakeRec, respectively. |
3913
|
|
|
|
|
|
|
*/ |
3914
|
|
|
|
|
|
|
case OP_SortPut: { |
3915
|
15
|
|
|
|
|
|
Mem *pNos = &pTos[-1]; |
3916
|
|
|
|
|
|
|
Sorter *pSorter; |
3917
|
|
|
|
|
|
|
assert( pNos>=p->aStack ); |
3918
|
15
|
50
|
|
|
|
|
if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem; |
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
3919
|
15
|
|
|
|
|
|
pSorter = sqliteMallocRaw( sizeof(Sorter) ); |
3920
|
15
|
50
|
|
|
|
|
if( pSorter==0 ) goto no_mem; |
3921
|
15
|
|
|
|
|
|
pSorter->pNext = p->pSort; |
3922
|
15
|
|
|
|
|
|
p->pSort = pSorter; |
3923
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Dyn ); |
3924
|
15
|
|
|
|
|
|
pSorter->nKey = pTos->n; |
3925
|
15
|
|
|
|
|
|
pSorter->zKey = pTos->z; |
3926
|
|
|
|
|
|
|
assert( pNos->flags & MEM_Dyn ); |
3927
|
15
|
|
|
|
|
|
pSorter->nData = pNos->n; |
3928
|
15
|
|
|
|
|
|
pSorter->pData = pNos->z; |
3929
|
15
|
|
|
|
|
|
pTos -= 2; |
3930
|
15
|
|
|
|
|
|
break; |
3931
|
|
|
|
|
|
|
} |
3932
|
|
|
|
|
|
|
|
3933
|
|
|
|
|
|
|
/* Opcode: SortMakeRec P1 * * |
3934
|
|
|
|
|
|
|
** |
3935
|
|
|
|
|
|
|
** The top P1 elements are the arguments to a callback. Form these |
3936
|
|
|
|
|
|
|
** elements into a single data entry that can be stored on a sorter |
3937
|
|
|
|
|
|
|
** using SortPut and later fed to a callback using SortCallback. |
3938
|
|
|
|
|
|
|
*/ |
3939
|
|
|
|
|
|
|
case OP_SortMakeRec: { |
3940
|
|
|
|
|
|
|
char *z; |
3941
|
|
|
|
|
|
|
char **azArg; |
3942
|
|
|
|
|
|
|
int nByte; |
3943
|
|
|
|
|
|
|
int nField; |
3944
|
|
|
|
|
|
|
int i; |
3945
|
|
|
|
|
|
|
Mem *pRec; |
3946
|
|
|
|
|
|
|
|
3947
|
15
|
|
|
|
|
|
nField = pOp->p1; |
3948
|
15
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
3949
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
3950
|
15
|
|
|
|
|
|
nByte = 0; |
3951
|
85
|
100
|
|
|
|
|
for(i=0; i
|
3952
|
70
|
100
|
|
|
|
|
if( (pRec->flags & MEM_Null)==0 ){ |
3953
|
37
|
50
|
|
|
|
|
Stringify(pRec); |
3954
|
37
|
|
|
|
|
|
nByte += pRec->n; |
3955
|
|
|
|
|
|
|
} |
3956
|
|
|
|
|
|
|
} |
3957
|
15
|
|
|
|
|
|
nByte += sizeof(char*)*(nField+1); |
3958
|
15
|
|
|
|
|
|
azArg = sqliteMallocRaw( nByte ); |
3959
|
15
|
50
|
|
|
|
|
if( azArg==0 ) goto no_mem; |
3960
|
15
|
|
|
|
|
|
z = (char*)&azArg[nField+1]; |
3961
|
85
|
100
|
|
|
|
|
for(pRec=&pTos[1-nField], i=0; i
|
3962
|
70
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
3963
|
33
|
|
|
|
|
|
azArg[i] = 0; |
3964
|
|
|
|
|
|
|
}else{ |
3965
|
37
|
|
|
|
|
|
azArg[i] = z; |
3966
|
37
|
|
|
|
|
|
memcpy(z, pRec->z, pRec->n); |
3967
|
37
|
|
|
|
|
|
z += pRec->n; |
3968
|
|
|
|
|
|
|
} |
3969
|
|
|
|
|
|
|
} |
3970
|
15
|
|
|
|
|
|
popStack(&pTos, nField); |
3971
|
15
|
|
|
|
|
|
pTos++; |
3972
|
15
|
|
|
|
|
|
pTos->n = nByte; |
3973
|
15
|
|
|
|
|
|
pTos->z = (char*)azArg; |
3974
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Dyn; |
3975
|
15
|
|
|
|
|
|
break; |
3976
|
|
|
|
|
|
|
} |
3977
|
|
|
|
|
|
|
|
3978
|
|
|
|
|
|
|
/* Opcode: SortMakeKey * * P3 |
3979
|
|
|
|
|
|
|
** |
3980
|
|
|
|
|
|
|
** Convert the top few entries of the stack into a sort key. The |
3981
|
|
|
|
|
|
|
** number of stack entries consumed is the number of characters in |
3982
|
|
|
|
|
|
|
** the string P3. One character from P3 is prepended to each entry. |
3983
|
|
|
|
|
|
|
** The first character of P3 is prepended to the element lowest in |
3984
|
|
|
|
|
|
|
** the stack and the last character of P3 is prepended to the top of |
3985
|
|
|
|
|
|
|
** the stack. All stack entries are separated by a \000 character |
3986
|
|
|
|
|
|
|
** in the result. The whole key is terminated by two \000 characters |
3987
|
|
|
|
|
|
|
** in a row. |
3988
|
|
|
|
|
|
|
** |
3989
|
|
|
|
|
|
|
** "N" is substituted in place of the P3 character for NULL values. |
3990
|
|
|
|
|
|
|
** |
3991
|
|
|
|
|
|
|
** See also the MakeKey and MakeIdxKey opcodes. |
3992
|
|
|
|
|
|
|
*/ |
3993
|
|
|
|
|
|
|
case OP_SortMakeKey: { |
3994
|
|
|
|
|
|
|
char *zNewKey; |
3995
|
|
|
|
|
|
|
int nByte; |
3996
|
|
|
|
|
|
|
int nField; |
3997
|
|
|
|
|
|
|
int i, j, k; |
3998
|
|
|
|
|
|
|
Mem *pRec; |
3999
|
|
|
|
|
|
|
|
4000
|
15
|
|
|
|
|
|
nField = strlen(pOp->p3); |
4001
|
15
|
|
|
|
|
|
pRec = &pTos[1-nField]; |
4002
|
15
|
|
|
|
|
|
nByte = 1; |
4003
|
50
|
100
|
|
|
|
|
for(i=0; i
|
4004
|
35
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
4005
|
10
|
|
|
|
|
|
nByte += 2; |
4006
|
|
|
|
|
|
|
}else{ |
4007
|
25
|
50
|
|
|
|
|
Stringify(pRec); |
4008
|
25
|
|
|
|
|
|
nByte += pRec->n+2; |
4009
|
|
|
|
|
|
|
} |
4010
|
|
|
|
|
|
|
} |
4011
|
15
|
|
|
|
|
|
zNewKey = sqliteMallocRaw( nByte ); |
4012
|
15
|
50
|
|
|
|
|
if( zNewKey==0 ) goto no_mem; |
4013
|
15
|
|
|
|
|
|
j = 0; |
4014
|
15
|
|
|
|
|
|
k = 0; |
4015
|
50
|
100
|
|
|
|
|
for(pRec=&pTos[1-nField], i=0; i
|
4016
|
35
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
4017
|
10
|
|
|
|
|
|
zNewKey[j++] = 'N'; |
4018
|
10
|
|
|
|
|
|
zNewKey[j++] = 0; |
4019
|
10
|
|
|
|
|
|
k++; |
4020
|
|
|
|
|
|
|
}else{ |
4021
|
25
|
|
|
|
|
|
zNewKey[j++] = pOp->p3[k++]; |
4022
|
25
|
|
|
|
|
|
memcpy(&zNewKey[j], pRec->z, pRec->n-1); |
4023
|
25
|
|
|
|
|
|
j += pRec->n-1; |
4024
|
25
|
|
|
|
|
|
zNewKey[j++] = 0; |
4025
|
|
|
|
|
|
|
} |
4026
|
|
|
|
|
|
|
} |
4027
|
15
|
|
|
|
|
|
zNewKey[j] = 0; |
4028
|
|
|
|
|
|
|
assert( j
|
4029
|
15
|
|
|
|
|
|
popStack(&pTos, nField); |
4030
|
15
|
|
|
|
|
|
pTos++; |
4031
|
15
|
|
|
|
|
|
pTos->n = nByte; |
4032
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
4033
|
15
|
|
|
|
|
|
pTos->z = zNewKey; |
4034
|
15
|
|
|
|
|
|
break; |
4035
|
|
|
|
|
|
|
} |
4036
|
|
|
|
|
|
|
|
4037
|
|
|
|
|
|
|
/* Opcode: Sort * * * |
4038
|
|
|
|
|
|
|
** |
4039
|
|
|
|
|
|
|
** Sort all elements on the sorter. The algorithm is a |
4040
|
|
|
|
|
|
|
** mergesort. |
4041
|
|
|
|
|
|
|
*/ |
4042
|
|
|
|
|
|
|
case OP_Sort: { |
4043
|
|
|
|
|
|
|
int i; |
4044
|
|
|
|
|
|
|
Sorter *pElem; |
4045
|
|
|
|
|
|
|
Sorter *apSorter[NSORT]; |
4046
|
155
|
100
|
|
|
|
|
for(i=0; i
|
4047
|
150
|
|
|
|
|
|
apSorter[i] = 0; |
4048
|
|
|
|
|
|
|
} |
4049
|
20
|
100
|
|
|
|
|
while( p->pSort ){ |
4050
|
15
|
|
|
|
|
|
pElem = p->pSort; |
4051
|
15
|
|
|
|
|
|
p->pSort = pElem->pNext; |
4052
|
15
|
|
|
|
|
|
pElem->pNext = 0; |
4053
|
25
|
50
|
|
|
|
|
for(i=0; i
|
4054
|
25
|
100
|
|
|
|
|
if( apSorter[i]==0 ){ |
4055
|
15
|
|
|
|
|
|
apSorter[i] = pElem; |
4056
|
15
|
|
|
|
|
|
break; |
4057
|
|
|
|
|
|
|
}else{ |
4058
|
10
|
|
|
|
|
|
pElem = Merge(apSorter[i], pElem); |
4059
|
10
|
|
|
|
|
|
apSorter[i] = 0; |
4060
|
|
|
|
|
|
|
} |
4061
|
|
|
|
|
|
|
} |
4062
|
15
|
50
|
|
|
|
|
if( i>=NSORT-1 ){ |
4063
|
0
|
|
|
|
|
|
apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem); |
4064
|
|
|
|
|
|
|
} |
4065
|
|
|
|
|
|
|
} |
4066
|
5
|
|
|
|
|
|
pElem = 0; |
4067
|
155
|
100
|
|
|
|
|
for(i=0; i
|
4068
|
150
|
|
|
|
|
|
pElem = Merge(apSorter[i], pElem); |
4069
|
|
|
|
|
|
|
} |
4070
|
5
|
|
|
|
|
|
p->pSort = pElem; |
4071
|
5
|
|
|
|
|
|
break; |
4072
|
|
|
|
|
|
|
} |
4073
|
|
|
|
|
|
|
|
4074
|
|
|
|
|
|
|
/* Opcode: SortNext * P2 * |
4075
|
|
|
|
|
|
|
** |
4076
|
|
|
|
|
|
|
** Push the data for the topmost element in the sorter onto the |
4077
|
|
|
|
|
|
|
** stack, then remove the element from the sorter. If the sorter |
4078
|
|
|
|
|
|
|
** is empty, push nothing on the stack and instead jump immediately |
4079
|
|
|
|
|
|
|
** to instruction P2. |
4080
|
|
|
|
|
|
|
*/ |
4081
|
|
|
|
|
|
|
case OP_SortNext: { |
4082
|
20
|
|
|
|
|
|
Sorter *pSorter = p->pSort; |
4083
|
20
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
4084
|
20
|
100
|
|
|
|
|
if( pSorter!=0 ){ |
4085
|
15
|
|
|
|
|
|
p->pSort = pSorter->pNext; |
4086
|
15
|
|
|
|
|
|
pTos++; |
4087
|
15
|
|
|
|
|
|
pTos->z = pSorter->pData; |
4088
|
15
|
|
|
|
|
|
pTos->n = pSorter->nData; |
4089
|
15
|
|
|
|
|
|
pTos->flags = MEM_Str|MEM_Dyn; |
4090
|
15
|
|
|
|
|
|
sqliteFree(pSorter->zKey); |
4091
|
15
|
|
|
|
|
|
sqliteFree(pSorter); |
4092
|
|
|
|
|
|
|
}else{ |
4093
|
5
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4094
|
|
|
|
|
|
|
} |
4095
|
20
|
|
|
|
|
|
break; |
4096
|
|
|
|
|
|
|
} |
4097
|
|
|
|
|
|
|
|
4098
|
|
|
|
|
|
|
/* Opcode: SortCallback P1 * * |
4099
|
|
|
|
|
|
|
** |
4100
|
|
|
|
|
|
|
** The top of the stack contains a callback record built using |
4101
|
|
|
|
|
|
|
** the SortMakeRec operation with the same P1 value as this |
4102
|
|
|
|
|
|
|
** instruction. Pop this record from the stack and invoke the |
4103
|
|
|
|
|
|
|
** callback on it. |
4104
|
|
|
|
|
|
|
*/ |
4105
|
|
|
|
|
|
|
case OP_SortCallback: { |
4106
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4107
|
|
|
|
|
|
|
assert( pTos->flags & MEM_Str ); |
4108
|
15
|
|
|
|
|
|
p->nCallback++; |
4109
|
15
|
|
|
|
|
|
p->pc = pc+1; |
4110
|
15
|
|
|
|
|
|
p->azResColumn = (char**)pTos->z; |
4111
|
|
|
|
|
|
|
assert( p->nResColumn==pOp->p1 ); |
4112
|
15
|
|
|
|
|
|
p->popStack = 1; |
4113
|
15
|
|
|
|
|
|
p->pTos = pTos; |
4114
|
15
|
|
|
|
|
|
return SQLITE_ROW; |
4115
|
|
|
|
|
|
|
} |
4116
|
|
|
|
|
|
|
|
4117
|
|
|
|
|
|
|
/* Opcode: SortReset * * * |
4118
|
|
|
|
|
|
|
** |
4119
|
|
|
|
|
|
|
** Remove any elements that remain on the sorter. |
4120
|
|
|
|
|
|
|
*/ |
4121
|
|
|
|
|
|
|
case OP_SortReset: { |
4122
|
5
|
|
|
|
|
|
sqliteVdbeSorterReset(p); |
4123
|
5
|
|
|
|
|
|
break; |
4124
|
|
|
|
|
|
|
} |
4125
|
|
|
|
|
|
|
|
4126
|
|
|
|
|
|
|
/* Opcode: FileOpen * * P3 |
4127
|
|
|
|
|
|
|
** |
4128
|
|
|
|
|
|
|
** Open the file named by P3 for reading using the FileRead opcode. |
4129
|
|
|
|
|
|
|
** If P3 is "stdin" then open standard input for reading. |
4130
|
|
|
|
|
|
|
*/ |
4131
|
|
|
|
|
|
|
case OP_FileOpen: { |
4132
|
|
|
|
|
|
|
assert( pOp->p3!=0 ); |
4133
|
0
|
0
|
|
|
|
|
if( p->pFile ){ |
4134
|
0
|
0
|
|
|
|
|
if( p->pFile!=stdin ) fclose(p->pFile); |
4135
|
0
|
|
|
|
|
|
p->pFile = 0; |
4136
|
|
|
|
|
|
|
} |
4137
|
0
|
0
|
|
|
|
|
if( sqliteStrICmp(pOp->p3,"stdin")==0 ){ |
4138
|
0
|
|
|
|
|
|
p->pFile = stdin; |
4139
|
|
|
|
|
|
|
}else{ |
4140
|
0
|
|
|
|
|
|
p->pFile = fopen(pOp->p3, "r"); |
4141
|
|
|
|
|
|
|
} |
4142
|
0
|
0
|
|
|
|
|
if( p->pFile==0 ){ |
4143
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0); |
4144
|
0
|
|
|
|
|
|
rc = SQLITE_ERROR; |
4145
|
|
|
|
|
|
|
} |
4146
|
0
|
|
|
|
|
|
break; |
4147
|
|
|
|
|
|
|
} |
4148
|
|
|
|
|
|
|
|
4149
|
|
|
|
|
|
|
/* Opcode: FileRead P1 P2 P3 |
4150
|
|
|
|
|
|
|
** |
4151
|
|
|
|
|
|
|
** Read a single line of input from the open file (the file opened using |
4152
|
|
|
|
|
|
|
** FileOpen). If we reach end-of-file, jump immediately to P2. If |
4153
|
|
|
|
|
|
|
** we are able to get another line, split the line apart using P3 as |
4154
|
|
|
|
|
|
|
** a delimiter. There should be P1 fields. If the input line contains |
4155
|
|
|
|
|
|
|
** more than P1 fields, ignore the excess. If the input line contains |
4156
|
|
|
|
|
|
|
** fewer than P1 fields, assume the remaining fields contain NULLs. |
4157
|
|
|
|
|
|
|
** |
4158
|
|
|
|
|
|
|
** Input ends if a line consists of just "\.". A field containing only |
4159
|
|
|
|
|
|
|
** "\N" is a null field. The backslash \ character can be used be used |
4160
|
|
|
|
|
|
|
** to escape newlines or the delimiter. |
4161
|
|
|
|
|
|
|
*/ |
4162
|
|
|
|
|
|
|
case OP_FileRead: { |
4163
|
|
|
|
|
|
|
int n, eol, nField, i, c, nDelim; |
4164
|
|
|
|
|
|
|
char *zDelim, *z; |
4165
|
0
|
0
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
4166
|
0
|
0
|
|
|
|
|
if( p->pFile==0 ) goto fileread_jump; |
4167
|
0
|
|
|
|
|
|
nField = pOp->p1; |
4168
|
0
|
0
|
|
|
|
|
if( nField<=0 ) goto fileread_jump; |
4169
|
0
|
0
|
|
|
|
|
if( nField!=p->nField || p->azField==0 ){ |
|
|
0
|
|
|
|
|
|
4170
|
0
|
|
|
|
|
|
char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1); |
4171
|
0
|
0
|
|
|
|
|
if( azField==0 ){ goto no_mem; } |
4172
|
0
|
|
|
|
|
|
p->azField = azField; |
4173
|
0
|
|
|
|
|
|
p->nField = nField; |
4174
|
|
|
|
|
|
|
} |
4175
|
0
|
|
|
|
|
|
n = 0; |
4176
|
0
|
|
|
|
|
|
eol = 0; |
4177
|
0
|
0
|
|
|
|
|
while( eol==0 ){ |
4178
|
0
|
0
|
|
|
|
|
if( p->zLine==0 || n+200>p->nLineAlloc ){ |
|
|
0
|
|
|
|
|
|
4179
|
|
|
|
|
|
|
char *zLine; |
4180
|
0
|
|
|
|
|
|
p->nLineAlloc = p->nLineAlloc*2 + 300; |
4181
|
0
|
|
|
|
|
|
zLine = sqliteRealloc(p->zLine, p->nLineAlloc); |
4182
|
0
|
0
|
|
|
|
|
if( zLine==0 ){ |
4183
|
0
|
|
|
|
|
|
p->nLineAlloc = 0; |
4184
|
0
|
|
|
|
|
|
sqliteFree(p->zLine); |
4185
|
0
|
|
|
|
|
|
p->zLine = 0; |
4186
|
0
|
|
|
|
|
|
goto no_mem; |
4187
|
|
|
|
|
|
|
} |
4188
|
0
|
|
|
|
|
|
p->zLine = zLine; |
4189
|
|
|
|
|
|
|
} |
4190
|
0
|
0
|
|
|
|
|
if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){ |
4191
|
0
|
|
|
|
|
|
eol = 1; |
4192
|
0
|
|
|
|
|
|
p->zLine[n] = 0; |
4193
|
|
|
|
|
|
|
}else{ |
4194
|
|
|
|
|
|
|
int c; |
4195
|
0
|
0
|
|
|
|
|
while( (c = p->zLine[n])!=0 ){ |
4196
|
0
|
0
|
|
|
|
|
if( c=='\\' ){ |
4197
|
0
|
0
|
|
|
|
|
if( p->zLine[n+1]==0 ) break; |
4198
|
0
|
|
|
|
|
|
n += 2; |
4199
|
0
|
0
|
|
|
|
|
}else if( c=='\n' ){ |
4200
|
0
|
|
|
|
|
|
p->zLine[n] = 0; |
4201
|
0
|
|
|
|
|
|
eol = 1; |
4202
|
0
|
|
|
|
|
|
break; |
4203
|
|
|
|
|
|
|
}else{ |
4204
|
0
|
|
|
|
|
|
n++; |
4205
|
|
|
|
|
|
|
} |
4206
|
|
|
|
|
|
|
} |
4207
|
|
|
|
|
|
|
} |
4208
|
|
|
|
|
|
|
} |
4209
|
0
|
0
|
|
|
|
|
if( n==0 ) goto fileread_jump; |
4210
|
0
|
|
|
|
|
|
z = p->zLine; |
4211
|
0
|
0
|
|
|
|
|
if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4212
|
0
|
|
|
|
|
|
goto fileread_jump; |
4213
|
|
|
|
|
|
|
} |
4214
|
0
|
|
|
|
|
|
zDelim = pOp->p3; |
4215
|
0
|
0
|
|
|
|
|
if( zDelim==0 ) zDelim = "\t"; |
4216
|
0
|
|
|
|
|
|
c = zDelim[0]; |
4217
|
0
|
|
|
|
|
|
nDelim = strlen(zDelim); |
4218
|
0
|
|
|
|
|
|
p->azField[0] = z; |
4219
|
0
|
0
|
|
|
|
|
for(i=1; *z!=0 && i<=nField; i++){ |
|
|
0
|
|
|
|
|
|
4220
|
|
|
|
|
|
|
int from, to; |
4221
|
0
|
|
|
|
|
|
from = to = 0; |
4222
|
0
|
0
|
|
|
|
|
if( z[0]=='\\' && z[1]=='N' |
|
|
0
|
|
|
|
|
|
4223
|
0
|
0
|
|
|
|
|
&& (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){ |
|
|
0
|
|
|
|
|
|
4224
|
0
|
0
|
|
|
|
|
if( i<=nField ) p->azField[i-1] = 0; |
4225
|
0
|
|
|
|
|
|
z += 2 + nDelim; |
4226
|
0
|
0
|
|
|
|
|
if( iazField[i] = z; |
4227
|
0
|
|
|
|
|
|
continue; |
4228
|
|
|
|
|
|
|
} |
4229
|
0
|
0
|
|
|
|
|
while( z[from] ){ |
4230
|
0
|
0
|
|
|
|
|
if( z[from]=='\\' && z[from+1]!=0 ){ |
|
|
0
|
|
|
|
|
|
4231
|
0
|
|
|
|
|
|
int tx = z[from+1]; |
4232
|
0
|
|
|
|
|
|
switch( tx ){ |
4233
|
0
|
|
|
|
|
|
case 'b': tx = '\b'; break; |
4234
|
0
|
|
|
|
|
|
case 'f': tx = '\f'; break; |
4235
|
0
|
|
|
|
|
|
case 'n': tx = '\n'; break; |
4236
|
0
|
|
|
|
|
|
case 'r': tx = '\r'; break; |
4237
|
0
|
|
|
|
|
|
case 't': tx = '\t'; break; |
4238
|
0
|
|
|
|
|
|
case 'v': tx = '\v'; break; |
4239
|
0
|
|
|
|
|
|
default: break; |
4240
|
|
|
|
|
|
|
} |
4241
|
0
|
|
|
|
|
|
z[to++] = tx; |
4242
|
0
|
|
|
|
|
|
from += 2; |
4243
|
0
|
|
|
|
|
|
continue; |
4244
|
|
|
|
|
|
|
} |
4245
|
0
|
0
|
|
|
|
|
if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break; |
|
|
0
|
|
|
|
|
|
4246
|
0
|
|
|
|
|
|
z[to++] = z[from++]; |
4247
|
|
|
|
|
|
|
} |
4248
|
0
|
0
|
|
|
|
|
if( z[from] ){ |
4249
|
0
|
|
|
|
|
|
z[to] = 0; |
4250
|
0
|
|
|
|
|
|
z += from + nDelim; |
4251
|
0
|
0
|
|
|
|
|
if( iazField[i] = z; |
4252
|
|
|
|
|
|
|
}else{ |
4253
|
0
|
|
|
|
|
|
z[to] = 0; |
4254
|
0
|
|
|
|
|
|
z = ""; |
4255
|
|
|
|
|
|
|
} |
4256
|
|
|
|
|
|
|
} |
4257
|
0
|
0
|
|
|
|
|
while( i
|
4258
|
0
|
|
|
|
|
|
p->azField[i++] = 0; |
4259
|
|
|
|
|
|
|
} |
4260
|
0
|
|
|
|
|
|
break; |
4261
|
|
|
|
|
|
|
|
4262
|
|
|
|
|
|
|
/* If we reach end-of-file, or if anything goes wrong, jump here. |
4263
|
|
|
|
|
|
|
** This code will cause a jump to P2 */ |
4264
|
|
|
|
|
|
|
fileread_jump: |
4265
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4266
|
0
|
|
|
|
|
|
break; |
4267
|
|
|
|
|
|
|
} |
4268
|
|
|
|
|
|
|
|
4269
|
|
|
|
|
|
|
/* Opcode: FileColumn P1 * * |
4270
|
|
|
|
|
|
|
** |
4271
|
|
|
|
|
|
|
** Push onto the stack the P1-th column of the most recently read line |
4272
|
|
|
|
|
|
|
** from the input file. |
4273
|
|
|
|
|
|
|
*/ |
4274
|
|
|
|
|
|
|
case OP_FileColumn: { |
4275
|
0
|
|
|
|
|
|
int i = pOp->p1; |
4276
|
|
|
|
|
|
|
char *z; |
4277
|
|
|
|
|
|
|
assert( i>=0 && inField ); |
4278
|
0
|
0
|
|
|
|
|
if( p->azField ){ |
4279
|
0
|
|
|
|
|
|
z = p->azField[i]; |
4280
|
|
|
|
|
|
|
}else{ |
4281
|
0
|
|
|
|
|
|
z = 0; |
4282
|
|
|
|
|
|
|
} |
4283
|
0
|
|
|
|
|
|
pTos++; |
4284
|
0
|
0
|
|
|
|
|
if( z ){ |
4285
|
0
|
|
|
|
|
|
pTos->n = strlen(z) + 1; |
4286
|
0
|
|
|
|
|
|
pTos->z = z; |
4287
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
4288
|
|
|
|
|
|
|
}else{ |
4289
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
4290
|
|
|
|
|
|
|
} |
4291
|
0
|
|
|
|
|
|
break; |
4292
|
|
|
|
|
|
|
} |
4293
|
|
|
|
|
|
|
|
4294
|
|
|
|
|
|
|
/* Opcode: MemStore P1 P2 * |
4295
|
|
|
|
|
|
|
** |
4296
|
|
|
|
|
|
|
** Write the top of the stack into memory location P1. |
4297
|
|
|
|
|
|
|
** P1 should be a small integer since space is allocated |
4298
|
|
|
|
|
|
|
** for all memory locations between 0 and P1 inclusive. |
4299
|
|
|
|
|
|
|
** |
4300
|
|
|
|
|
|
|
** After the data is stored in the memory location, the |
4301
|
|
|
|
|
|
|
** stack is popped once if P2 is 1. If P2 is zero, then |
4302
|
|
|
|
|
|
|
** the original data remains on the stack. |
4303
|
|
|
|
|
|
|
*/ |
4304
|
|
|
|
|
|
|
case OP_MemStore: { |
4305
|
11
|
|
|
|
|
|
int i = pOp->p1; |
4306
|
|
|
|
|
|
|
Mem *pMem; |
4307
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4308
|
11
|
50
|
|
|
|
|
if( i>=p->nMem ){ |
4309
|
11
|
|
|
|
|
|
int nOld = p->nMem; |
4310
|
|
|
|
|
|
|
Mem *aMem; |
4311
|
11
|
|
|
|
|
|
p->nMem = i + 5; |
4312
|
11
|
|
|
|
|
|
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0])); |
4313
|
11
|
50
|
|
|
|
|
if( aMem==0 ) goto no_mem; |
4314
|
11
|
50
|
|
|
|
|
if( aMem!=p->aMem ){ |
4315
|
|
|
|
|
|
|
int j; |
4316
|
11
|
50
|
|
|
|
|
for(j=0; j
|
4317
|
0
|
0
|
|
|
|
|
if( aMem[j].flags & MEM_Short ){ |
4318
|
0
|
|
|
|
|
|
aMem[j].z = aMem[j].zShort; |
4319
|
|
|
|
|
|
|
} |
4320
|
|
|
|
|
|
|
} |
4321
|
|
|
|
|
|
|
} |
4322
|
11
|
|
|
|
|
|
p->aMem = aMem; |
4323
|
11
|
50
|
|
|
|
|
if( nOldnMem ){ |
4324
|
11
|
|
|
|
|
|
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld)); |
4325
|
|
|
|
|
|
|
} |
4326
|
|
|
|
|
|
|
} |
4327
|
11
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
0
|
|
|
|
|
|
4328
|
11
|
|
|
|
|
|
pMem = &p->aMem[i]; |
4329
|
11
|
50
|
|
|
|
|
Release(pMem); |
4330
|
11
|
|
|
|
|
|
*pMem = *pTos; |
4331
|
11
|
50
|
|
|
|
|
if( pMem->flags & MEM_Dyn ){ |
4332
|
0
|
0
|
|
|
|
|
if( pOp->p2 ){ |
4333
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
4334
|
|
|
|
|
|
|
}else{ |
4335
|
0
|
|
|
|
|
|
pMem->z = sqliteMallocRaw( pMem->n ); |
4336
|
0
|
0
|
|
|
|
|
if( pMem->z==0 ) goto no_mem; |
4337
|
0
|
|
|
|
|
|
memcpy(pMem->z, pTos->z, pMem->n); |
4338
|
|
|
|
|
|
|
} |
4339
|
11
|
50
|
|
|
|
|
}else if( pMem->flags & MEM_Short ){ |
4340
|
0
|
|
|
|
|
|
pMem->z = pMem->zShort; |
4341
|
|
|
|
|
|
|
} |
4342
|
11
|
50
|
|
|
|
|
if( pOp->p2 ){ |
4343
|
11
|
50
|
|
|
|
|
Release(pTos); |
4344
|
11
|
|
|
|
|
|
pTos--; |
4345
|
|
|
|
|
|
|
} |
4346
|
11
|
|
|
|
|
|
break; |
4347
|
|
|
|
|
|
|
} |
4348
|
|
|
|
|
|
|
|
4349
|
|
|
|
|
|
|
/* Opcode: MemLoad P1 * * |
4350
|
|
|
|
|
|
|
** |
4351
|
|
|
|
|
|
|
** Push a copy of the value in memory location P1 onto the stack. |
4352
|
|
|
|
|
|
|
** |
4353
|
|
|
|
|
|
|
** If the value is a string, then the value pushed is a pointer to |
4354
|
|
|
|
|
|
|
** the string that is stored in the memory location. If the memory |
4355
|
|
|
|
|
|
|
** location is subsequently changed (using OP_MemStore) then the |
4356
|
|
|
|
|
|
|
** value pushed onto the stack will change too. |
4357
|
|
|
|
|
|
|
*/ |
4358
|
|
|
|
|
|
|
case OP_MemLoad: { |
4359
|
11
|
|
|
|
|
|
int i = pOp->p1; |
4360
|
|
|
|
|
|
|
assert( i>=0 && inMem ); |
4361
|
11
|
|
|
|
|
|
pTos++; |
4362
|
11
|
|
|
|
|
|
memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);; |
4363
|
11
|
50
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
4364
|
11
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
4365
|
11
|
|
|
|
|
|
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); |
4366
|
|
|
|
|
|
|
} |
4367
|
11
|
|
|
|
|
|
break; |
4368
|
|
|
|
|
|
|
} |
4369
|
|
|
|
|
|
|
|
4370
|
|
|
|
|
|
|
/* Opcode: MemIncr P1 P2 * |
4371
|
|
|
|
|
|
|
** |
4372
|
|
|
|
|
|
|
** Increment the integer valued memory cell P1 by 1. If P2 is not zero |
4373
|
|
|
|
|
|
|
** and the result after the increment is greater than zero, then jump |
4374
|
|
|
|
|
|
|
** to P2. |
4375
|
|
|
|
|
|
|
** |
4376
|
|
|
|
|
|
|
** This instruction throws an error if the memory cell is not initially |
4377
|
|
|
|
|
|
|
** an integer. |
4378
|
|
|
|
|
|
|
*/ |
4379
|
|
|
|
|
|
|
case OP_MemIncr: { |
4380
|
0
|
|
|
|
|
|
int i = pOp->p1; |
4381
|
|
|
|
|
|
|
Mem *pMem; |
4382
|
|
|
|
|
|
|
assert( i>=0 && inMem ); |
4383
|
0
|
|
|
|
|
|
pMem = &p->aMem[i]; |
4384
|
|
|
|
|
|
|
assert( pMem->flags==MEM_Int ); |
4385
|
0
|
|
|
|
|
|
pMem->i++; |
4386
|
0
|
0
|
|
|
|
|
if( pOp->p2>0 && pMem->i>0 ){ |
|
|
0
|
|
|
|
|
|
4387
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4388
|
|
|
|
|
|
|
} |
4389
|
0
|
|
|
|
|
|
break; |
4390
|
|
|
|
|
|
|
} |
4391
|
|
|
|
|
|
|
|
4392
|
|
|
|
|
|
|
/* Opcode: AggReset * P2 * |
4393
|
|
|
|
|
|
|
** |
4394
|
|
|
|
|
|
|
** Reset the aggregator so that it no longer contains any data. |
4395
|
|
|
|
|
|
|
** Future aggregator elements will contain P2 values each. |
4396
|
|
|
|
|
|
|
*/ |
4397
|
|
|
|
|
|
|
case OP_AggReset: { |
4398
|
15
|
|
|
|
|
|
sqliteVdbeAggReset(&p->agg); |
4399
|
15
|
|
|
|
|
|
p->agg.nMem = pOp->p2; |
4400
|
15
|
|
|
|
|
|
p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) ); |
4401
|
15
|
50
|
|
|
|
|
if( p->agg.apFunc==0 ) goto no_mem; |
4402
|
15
|
|
|
|
|
|
break; |
4403
|
|
|
|
|
|
|
} |
4404
|
|
|
|
|
|
|
|
4405
|
|
|
|
|
|
|
/* Opcode: AggInit * P2 P3 |
4406
|
|
|
|
|
|
|
** |
4407
|
|
|
|
|
|
|
** Initialize the function parameters for an aggregate function. |
4408
|
|
|
|
|
|
|
** The aggregate will operate out of aggregate column P2. |
4409
|
|
|
|
|
|
|
** P3 is a pointer to the FuncDef structure for the function. |
4410
|
|
|
|
|
|
|
*/ |
4411
|
|
|
|
|
|
|
case OP_AggInit: { |
4412
|
15
|
|
|
|
|
|
int i = pOp->p2; |
4413
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
4414
|
15
|
|
|
|
|
|
p->agg.apFunc[i] = (FuncDef*)pOp->p3; |
4415
|
15
|
|
|
|
|
|
break; |
4416
|
|
|
|
|
|
|
} |
4417
|
|
|
|
|
|
|
|
4418
|
|
|
|
|
|
|
/* Opcode: AggFunc * P2 P3 |
4419
|
|
|
|
|
|
|
** |
4420
|
|
|
|
|
|
|
** Execute the step function for an aggregate. The |
4421
|
|
|
|
|
|
|
** function has P2 arguments. P3 is a pointer to the FuncDef |
4422
|
|
|
|
|
|
|
** structure that specifies the function. |
4423
|
|
|
|
|
|
|
** |
4424
|
|
|
|
|
|
|
** The top of the stack must be an integer which is the index of |
4425
|
|
|
|
|
|
|
** the aggregate column that corresponds to this aggregate function. |
4426
|
|
|
|
|
|
|
** Ideally, this index would be another parameter, but there are |
4427
|
|
|
|
|
|
|
** no free parameters left. The integer is popped from the stack. |
4428
|
|
|
|
|
|
|
*/ |
4429
|
|
|
|
|
|
|
case OP_AggFunc: { |
4430
|
24
|
|
|
|
|
|
int n = pOp->p2; |
4431
|
|
|
|
|
|
|
int i; |
4432
|
|
|
|
|
|
|
Mem *pMem, *pRec; |
4433
|
24
|
|
|
|
|
|
char **azArgv = p->zArgv; |
4434
|
|
|
|
|
|
|
sqlite_func ctx; |
4435
|
|
|
|
|
|
|
|
4436
|
|
|
|
|
|
|
assert( n>=0 ); |
4437
|
|
|
|
|
|
|
assert( pTos->flags==MEM_Int ); |
4438
|
24
|
|
|
|
|
|
pRec = &pTos[-n]; |
4439
|
|
|
|
|
|
|
assert( pRec>=p->aStack ); |
4440
|
30
|
100
|
|
|
|
|
for(i=0; i
|
4441
|
6
|
100
|
|
|
|
|
if( pRec->flags & MEM_Null ){ |
4442
|
2
|
|
|
|
|
|
azArgv[i] = 0; |
4443
|
|
|
|
|
|
|
}else{ |
4444
|
4
|
50
|
|
|
|
|
Stringify(pRec); |
4445
|
4
|
|
|
|
|
|
azArgv[i] = pRec->z; |
4446
|
|
|
|
|
|
|
} |
4447
|
|
|
|
|
|
|
} |
4448
|
24
|
|
|
|
|
|
i = pTos->i; |
4449
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
4450
|
24
|
|
|
|
|
|
ctx.pFunc = (FuncDef*)pOp->p3; |
4451
|
24
|
|
|
|
|
|
pMem = &p->agg.pCurrent->aMem[i]; |
4452
|
24
|
|
|
|
|
|
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */ |
4453
|
24
|
|
|
|
|
|
ctx.pAgg = pMem->z; |
4454
|
24
|
|
|
|
|
|
ctx.cnt = ++pMem->i; |
4455
|
24
|
|
|
|
|
|
ctx.isError = 0; |
4456
|
24
|
|
|
|
|
|
ctx.isStep = 1; |
4457
|
24
|
|
|
|
|
|
(ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv); |
4458
|
24
|
|
|
|
|
|
pMem->z = ctx.pAgg; |
4459
|
24
|
|
|
|
|
|
pMem->flags = MEM_AggCtx; |
4460
|
24
|
|
|
|
|
|
popStack(&pTos, n+1); |
4461
|
24
|
50
|
|
|
|
|
if( ctx.isError ){ |
4462
|
0
|
|
|
|
|
|
rc = SQLITE_ERROR; |
4463
|
|
|
|
|
|
|
} |
4464
|
24
|
|
|
|
|
|
break; |
4465
|
|
|
|
|
|
|
} |
4466
|
|
|
|
|
|
|
|
4467
|
|
|
|
|
|
|
/* Opcode: AggFocus * P2 * |
4468
|
|
|
|
|
|
|
** |
4469
|
|
|
|
|
|
|
** Pop the top of the stack and use that as an aggregator key. If |
4470
|
|
|
|
|
|
|
** an aggregator with that same key already exists, then make the |
4471
|
|
|
|
|
|
|
** aggregator the current aggregator and jump to P2. If no aggregator |
4472
|
|
|
|
|
|
|
** with the given key exists, create one and make it current but |
4473
|
|
|
|
|
|
|
** do not jump. |
4474
|
|
|
|
|
|
|
** |
4475
|
|
|
|
|
|
|
** The order of aggregator opcodes is important. The order is: |
4476
|
|
|
|
|
|
|
** AggReset AggFocus AggNext. In other words, you must execute |
4477
|
|
|
|
|
|
|
** AggReset first, then zero or more AggFocus operations, then |
4478
|
|
|
|
|
|
|
** zero or more AggNext operations. You must not execute an AggFocus |
4479
|
|
|
|
|
|
|
** in between an AggNext and an AggReset. |
4480
|
|
|
|
|
|
|
*/ |
4481
|
|
|
|
|
|
|
case OP_AggFocus: { |
4482
|
|
|
|
|
|
|
AggElem *pElem; |
4483
|
|
|
|
|
|
|
char *zKey; |
4484
|
|
|
|
|
|
|
int nKey; |
4485
|
|
|
|
|
|
|
|
4486
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4487
|
16
|
100
|
|
|
|
|
Stringify(pTos); |
4488
|
16
|
|
|
|
|
|
zKey = pTos->z; |
4489
|
16
|
|
|
|
|
|
nKey = pTos->n; |
4490
|
16
|
|
|
|
|
|
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey); |
4491
|
16
|
50
|
|
|
|
|
if( pElem ){ |
4492
|
0
|
|
|
|
|
|
p->agg.pCurrent = pElem; |
4493
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4494
|
|
|
|
|
|
|
}else{ |
4495
|
16
|
|
|
|
|
|
AggInsert(&p->agg, zKey, nKey); |
4496
|
16
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
4497
|
|
|
|
|
|
|
} |
4498
|
16
|
50
|
|
|
|
|
Release(pTos); |
4499
|
16
|
|
|
|
|
|
pTos--; |
4500
|
16
|
|
|
|
|
|
break; |
4501
|
|
|
|
|
|
|
} |
4502
|
|
|
|
|
|
|
|
4503
|
|
|
|
|
|
|
/* Opcode: AggSet * P2 * |
4504
|
|
|
|
|
|
|
** |
4505
|
|
|
|
|
|
|
** Move the top of the stack into the P2-th field of the current |
4506
|
|
|
|
|
|
|
** aggregate. String values are duplicated into new memory. |
4507
|
|
|
|
|
|
|
*/ |
4508
|
|
|
|
|
|
|
case OP_AggSet: { |
4509
|
3
|
50
|
|
|
|
|
AggElem *pFocus = AggInFocus(p->agg); |
4510
|
|
|
|
|
|
|
Mem *pMem; |
4511
|
3
|
|
|
|
|
|
int i = pOp->p2; |
4512
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4513
|
3
|
50
|
|
|
|
|
if( pFocus==0 ) goto no_mem; |
4514
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
4515
|
3
|
50
|
|
|
|
|
Deephemeralize(pTos); |
|
|
0
|
|
|
|
|
|
4516
|
3
|
|
|
|
|
|
pMem = &pFocus->aMem[i]; |
4517
|
3
|
50
|
|
|
|
|
Release(pMem); |
4518
|
3
|
|
|
|
|
|
*pMem = *pTos; |
4519
|
3
|
50
|
|
|
|
|
if( pMem->flags & MEM_Dyn ){ |
4520
|
0
|
|
|
|
|
|
pTos->flags = MEM_Null; |
4521
|
3
|
100
|
|
|
|
|
}else if( pMem->flags & MEM_Short ){ |
4522
|
2
|
|
|
|
|
|
pMem->z = pMem->zShort; |
4523
|
|
|
|
|
|
|
} |
4524
|
3
|
50
|
|
|
|
|
Release(pTos); |
4525
|
3
|
|
|
|
|
|
pTos--; |
4526
|
3
|
|
|
|
|
|
break; |
4527
|
|
|
|
|
|
|
} |
4528
|
|
|
|
|
|
|
|
4529
|
|
|
|
|
|
|
/* Opcode: AggGet * P2 * |
4530
|
|
|
|
|
|
|
** |
4531
|
|
|
|
|
|
|
** Push a new entry onto the stack which is a copy of the P2-th field |
4532
|
|
|
|
|
|
|
** of the current aggregate. Strings are not duplicated so |
4533
|
|
|
|
|
|
|
** string values will be ephemeral. |
4534
|
|
|
|
|
|
|
*/ |
4535
|
|
|
|
|
|
|
case OP_AggGet: { |
4536
|
16
|
50
|
|
|
|
|
AggElem *pFocus = AggInFocus(p->agg); |
4537
|
|
|
|
|
|
|
Mem *pMem; |
4538
|
16
|
|
|
|
|
|
int i = pOp->p2; |
4539
|
16
|
50
|
|
|
|
|
if( pFocus==0 ) goto no_mem; |
4540
|
|
|
|
|
|
|
assert( i>=0 && iagg.nMem ); |
4541
|
16
|
|
|
|
|
|
pTos++; |
4542
|
16
|
|
|
|
|
|
pMem = &pFocus->aMem[i]; |
4543
|
16
|
|
|
|
|
|
*pTos = *pMem; |
4544
|
16
|
50
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
4545
|
0
|
|
|
|
|
|
pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short); |
4546
|
0
|
|
|
|
|
|
pTos->flags |= MEM_Ephem; |
4547
|
|
|
|
|
|
|
} |
4548
|
16
|
|
|
|
|
|
break; |
4549
|
|
|
|
|
|
|
} |
4550
|
|
|
|
|
|
|
|
4551
|
|
|
|
|
|
|
/* Opcode: AggNext * P2 * |
4552
|
|
|
|
|
|
|
** |
4553
|
|
|
|
|
|
|
** Make the next aggregate value the current aggregate. The prior |
4554
|
|
|
|
|
|
|
** aggregate is deleted. If all aggregate values have been consumed, |
4555
|
|
|
|
|
|
|
** jump to P2. |
4556
|
|
|
|
|
|
|
** |
4557
|
|
|
|
|
|
|
** The order of aggregator opcodes is important. The order is: |
4558
|
|
|
|
|
|
|
** AggReset AggFocus AggNext. In other words, you must execute |
4559
|
|
|
|
|
|
|
** AggReset first, then zero or more AggFocus operations, then |
4560
|
|
|
|
|
|
|
** zero or more AggNext operations. You must not execute an AggFocus |
4561
|
|
|
|
|
|
|
** in between an AggNext and an AggReset. |
4562
|
|
|
|
|
|
|
*/ |
4563
|
|
|
|
|
|
|
case OP_AggNext: { |
4564
|
31
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
4565
|
31
|
100
|
|
|
|
|
if( p->agg.pSearch==0 ){ |
4566
|
15
|
|
|
|
|
|
p->agg.pSearch = sqliteHashFirst(&p->agg.hash); |
4567
|
|
|
|
|
|
|
}else{ |
4568
|
16
|
|
|
|
|
|
p->agg.pSearch = sqliteHashNext(p->agg.pSearch); |
4569
|
|
|
|
|
|
|
} |
4570
|
31
|
100
|
|
|
|
|
if( p->agg.pSearch==0 ){ |
4571
|
15
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4572
|
|
|
|
|
|
|
} else { |
4573
|
|
|
|
|
|
|
int i; |
4574
|
|
|
|
|
|
|
sqlite_func ctx; |
4575
|
|
|
|
|
|
|
Mem *aMem; |
4576
|
16
|
|
|
|
|
|
p->agg.pCurrent = sqliteHashData(p->agg.pSearch); |
4577
|
16
|
|
|
|
|
|
aMem = p->agg.pCurrent->aMem; |
4578
|
35
|
100
|
|
|
|
|
for(i=0; iagg.nMem; i++){ |
4579
|
|
|
|
|
|
|
int freeCtx; |
4580
|
19
|
100
|
|
|
|
|
if( p->agg.apFunc[i]==0 ) continue; |
4581
|
16
|
50
|
|
|
|
|
if( p->agg.apFunc[i]->xFinalize==0 ) continue; |
4582
|
16
|
|
|
|
|
|
ctx.s.flags = MEM_Null; |
4583
|
16
|
|
|
|
|
|
ctx.s.z = aMem[i].zShort; |
4584
|
16
|
|
|
|
|
|
ctx.pAgg = (void*)aMem[i].z; |
4585
|
16
|
100
|
|
|
|
|
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort; |
|
|
50
|
|
|
|
|
|
4586
|
16
|
|
|
|
|
|
ctx.cnt = aMem[i].i; |
4587
|
16
|
|
|
|
|
|
ctx.isStep = 0; |
4588
|
16
|
|
|
|
|
|
ctx.pFunc = p->agg.apFunc[i]; |
4589
|
16
|
|
|
|
|
|
(*p->agg.apFunc[i]->xFinalize)(&ctx); |
4590
|
16
|
50
|
|
|
|
|
if( freeCtx ){ |
4591
|
0
|
|
|
|
|
|
sqliteFree( aMem[i].z ); |
4592
|
|
|
|
|
|
|
} |
4593
|
16
|
|
|
|
|
|
aMem[i] = ctx.s; |
4594
|
16
|
50
|
|
|
|
|
if( aMem[i].flags & MEM_Short ){ |
4595
|
0
|
|
|
|
|
|
aMem[i].z = aMem[i].zShort; |
4596
|
|
|
|
|
|
|
} |
4597
|
|
|
|
|
|
|
} |
4598
|
|
|
|
|
|
|
} |
4599
|
31
|
|
|
|
|
|
break; |
4600
|
|
|
|
|
|
|
} |
4601
|
|
|
|
|
|
|
|
4602
|
|
|
|
|
|
|
/* Opcode: SetInsert P1 * P3 |
4603
|
|
|
|
|
|
|
** |
4604
|
|
|
|
|
|
|
** If Set P1 does not exist then create it. Then insert value |
4605
|
|
|
|
|
|
|
** P3 into that set. If P3 is NULL, then insert the top of the |
4606
|
|
|
|
|
|
|
** stack into the set. |
4607
|
|
|
|
|
|
|
*/ |
4608
|
|
|
|
|
|
|
case OP_SetInsert: { |
4609
|
12
|
|
|
|
|
|
int i = pOp->p1; |
4610
|
12
|
100
|
|
|
|
|
if( p->nSet<=i ){ |
4611
|
|
|
|
|
|
|
int k; |
4612
|
6
|
|
|
|
|
|
Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) ); |
4613
|
6
|
50
|
|
|
|
|
if( aSet==0 ) goto no_mem; |
4614
|
6
|
|
|
|
|
|
p->aSet = aSet; |
4615
|
12
|
100
|
|
|
|
|
for(k=p->nSet; k<=i; k++){ |
4616
|
6
|
|
|
|
|
|
sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1); |
4617
|
|
|
|
|
|
|
} |
4618
|
6
|
|
|
|
|
|
p->nSet = i+1; |
4619
|
|
|
|
|
|
|
} |
4620
|
12
|
50
|
|
|
|
|
if( pOp->p3 ){ |
4621
|
12
|
|
|
|
|
|
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p); |
4622
|
|
|
|
|
|
|
}else{ |
4623
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4624
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
4625
|
0
|
|
|
|
|
|
sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p); |
4626
|
0
|
0
|
|
|
|
|
Release(pTos); |
4627
|
0
|
|
|
|
|
|
pTos--; |
4628
|
|
|
|
|
|
|
} |
4629
|
12
|
50
|
|
|
|
|
if( sqlite_malloc_failed ) goto no_mem; |
4630
|
12
|
|
|
|
|
|
break; |
4631
|
|
|
|
|
|
|
} |
4632
|
|
|
|
|
|
|
|
4633
|
|
|
|
|
|
|
/* Opcode: SetFound P1 P2 * |
4634
|
|
|
|
|
|
|
** |
4635
|
|
|
|
|
|
|
** Pop the stack once and compare the value popped off with the |
4636
|
|
|
|
|
|
|
** contents of set P1. If the element popped exists in set P1, |
4637
|
|
|
|
|
|
|
** then jump to P2. Otherwise fall through. |
4638
|
|
|
|
|
|
|
*/ |
4639
|
|
|
|
|
|
|
case OP_SetFound: { |
4640
|
0
|
|
|
|
|
|
int i = pOp->p1; |
4641
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4642
|
0
|
0
|
|
|
|
|
Stringify(pTos); |
4643
|
0
|
0
|
|
|
|
|
if( i>=0 && inSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
4644
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4645
|
|
|
|
|
|
|
} |
4646
|
0
|
0
|
|
|
|
|
Release(pTos); |
4647
|
0
|
|
|
|
|
|
pTos--; |
4648
|
0
|
|
|
|
|
|
break; |
4649
|
|
|
|
|
|
|
} |
4650
|
|
|
|
|
|
|
|
4651
|
|
|
|
|
|
|
/* Opcode: SetNotFound P1 P2 * |
4652
|
|
|
|
|
|
|
** |
4653
|
|
|
|
|
|
|
** Pop the stack once and compare the value popped off with the |
4654
|
|
|
|
|
|
|
** contents of set P1. If the element popped does not exists in |
4655
|
|
|
|
|
|
|
** set P1, then jump to P2. Otherwise fall through. |
4656
|
|
|
|
|
|
|
*/ |
4657
|
|
|
|
|
|
|
case OP_SetNotFound: { |
4658
|
34
|
|
|
|
|
|
int i = pOp->p1; |
4659
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4660
|
34
|
50
|
|
|
|
|
Stringify(pTos); |
4661
|
68
|
50
|
|
|
|
|
if( i<0 || i>=p->nSet || |
4662
|
34
|
|
|
|
|
|
sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){ |
4663
|
14
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4664
|
|
|
|
|
|
|
} |
4665
|
34
|
50
|
|
|
|
|
Release(pTos); |
4666
|
34
|
|
|
|
|
|
pTos--; |
4667
|
34
|
|
|
|
|
|
break; |
4668
|
|
|
|
|
|
|
} |
4669
|
|
|
|
|
|
|
|
4670
|
|
|
|
|
|
|
/* Opcode: SetFirst P1 P2 * |
4671
|
|
|
|
|
|
|
** |
4672
|
|
|
|
|
|
|
** Read the first element from set P1 and push it onto the stack. If the |
4673
|
|
|
|
|
|
|
** set is empty, push nothing and jump immediately to P2. This opcode is |
4674
|
|
|
|
|
|
|
** used in combination with OP_SetNext to loop over all elements of a set. |
4675
|
|
|
|
|
|
|
*/ |
4676
|
|
|
|
|
|
|
/* Opcode: SetNext P1 P2 * |
4677
|
|
|
|
|
|
|
** |
4678
|
|
|
|
|
|
|
** Read the next element from set P1 and push it onto the stack. If there |
4679
|
|
|
|
|
|
|
** are no more elements in the set, do not do the push and fall through. |
4680
|
|
|
|
|
|
|
** Otherwise, jump to P2 after pushing the next set element. |
4681
|
|
|
|
|
|
|
*/ |
4682
|
|
|
|
|
|
|
case OP_SetFirst: |
4683
|
|
|
|
|
|
|
case OP_SetNext: { |
4684
|
|
|
|
|
|
|
Set *pSet; |
4685
|
0
|
0
|
|
|
|
|
CHECK_FOR_INTERRUPT; |
4686
|
0
|
0
|
|
|
|
|
if( pOp->p1<0 || pOp->p1>=p->nSet ){ |
|
|
0
|
|
|
|
|
|
4687
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1; |
4688
|
0
|
|
|
|
|
|
break; |
4689
|
|
|
|
|
|
|
} |
4690
|
0
|
|
|
|
|
|
pSet = &p->aSet[pOp->p1]; |
4691
|
0
|
0
|
|
|
|
|
if( pOp->opcode==OP_SetFirst ){ |
4692
|
0
|
|
|
|
|
|
pSet->prev = sqliteHashFirst(&pSet->hash); |
4693
|
0
|
0
|
|
|
|
|
if( pSet->prev==0 ){ |
4694
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4695
|
0
|
|
|
|
|
|
break; |
4696
|
|
|
|
|
|
|
} |
4697
|
|
|
|
|
|
|
}else{ |
4698
|
0
|
0
|
|
|
|
|
if( pSet->prev ){ |
4699
|
0
|
|
|
|
|
|
pSet->prev = sqliteHashNext(pSet->prev); |
4700
|
|
|
|
|
|
|
} |
4701
|
0
|
0
|
|
|
|
|
if( pSet->prev==0 ){ |
4702
|
0
|
|
|
|
|
|
break; |
4703
|
|
|
|
|
|
|
}else{ |
4704
|
0
|
|
|
|
|
|
pc = pOp->p2 - 1; |
4705
|
|
|
|
|
|
|
} |
4706
|
|
|
|
|
|
|
} |
4707
|
0
|
|
|
|
|
|
pTos++; |
4708
|
0
|
|
|
|
|
|
pTos->z = sqliteHashKey(pSet->prev); |
4709
|
0
|
|
|
|
|
|
pTos->n = sqliteHashKeysize(pSet->prev); |
4710
|
0
|
|
|
|
|
|
pTos->flags = MEM_Str | MEM_Ephem; |
4711
|
0
|
|
|
|
|
|
break; |
4712
|
|
|
|
|
|
|
} |
4713
|
|
|
|
|
|
|
|
4714
|
|
|
|
|
|
|
/* Opcode: Vacuum * * * |
4715
|
|
|
|
|
|
|
** |
4716
|
|
|
|
|
|
|
** Vacuum the entire database. This opcode will cause other virtual |
4717
|
|
|
|
|
|
|
** machines to be created and run. It may not be called from within |
4718
|
|
|
|
|
|
|
** a transaction. |
4719
|
|
|
|
|
|
|
*/ |
4720
|
|
|
|
|
|
|
case OP_Vacuum: { |
4721
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse; |
4722
|
0
|
|
|
|
|
|
rc = sqliteRunVacuum(&p->zErrMsg, db); |
4723
|
0
|
0
|
|
|
|
|
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse; |
4724
|
0
|
|
|
|
|
|
break; |
4725
|
|
|
|
|
|
|
} |
4726
|
|
|
|
|
|
|
|
4727
|
|
|
|
|
|
|
/* Opcode: StackDepth * * * |
4728
|
|
|
|
|
|
|
** |
4729
|
|
|
|
|
|
|
** Push an integer onto the stack which is the depth of the stack prior |
4730
|
|
|
|
|
|
|
** to that integer being pushed. |
4731
|
|
|
|
|
|
|
*/ |
4732
|
|
|
|
|
|
|
case OP_StackDepth: { |
4733
|
0
|
|
|
|
|
|
int depth = (&pTos[1]) - p->aStack; |
4734
|
0
|
|
|
|
|
|
pTos++; |
4735
|
0
|
|
|
|
|
|
pTos->i = depth; |
4736
|
0
|
|
|
|
|
|
pTos->flags = MEM_Int; |
4737
|
0
|
|
|
|
|
|
break; |
4738
|
|
|
|
|
|
|
} |
4739
|
|
|
|
|
|
|
|
4740
|
|
|
|
|
|
|
/* Opcode: StackReset * * * |
4741
|
|
|
|
|
|
|
** |
4742
|
|
|
|
|
|
|
** Pop a single integer off of the stack. Then pop the stack |
4743
|
|
|
|
|
|
|
** as many times as necessary to get the depth of the stack down |
4744
|
|
|
|
|
|
|
** to the value of the integer that was popped. |
4745
|
|
|
|
|
|
|
*/ |
4746
|
|
|
|
|
|
|
case OP_StackReset: { |
4747
|
|
|
|
|
|
|
int depth, goal; |
4748
|
|
|
|
|
|
|
assert( pTos>=p->aStack ); |
4749
|
0
|
0
|
|
|
|
|
Integerify(pTos); |
4750
|
0
|
|
|
|
|
|
goal = pTos->i; |
4751
|
0
|
|
|
|
|
|
depth = (&pTos[1]) - p->aStack; |
4752
|
|
|
|
|
|
|
assert( goal
|
4753
|
0
|
|
|
|
|
|
popStack(&pTos, depth-goal); |
4754
|
0
|
|
|
|
|
|
break; |
4755
|
|
|
|
|
|
|
} |
4756
|
|
|
|
|
|
|
|
4757
|
|
|
|
|
|
|
/* An other opcode is illegal... |
4758
|
|
|
|
|
|
|
*/ |
4759
|
|
|
|
|
|
|
default: { |
4760
|
0
|
|
|
|
|
|
sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode); |
4761
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0); |
4762
|
0
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
4763
|
0
|
|
|
|
|
|
break; |
4764
|
|
|
|
|
|
|
} |
4765
|
|
|
|
|
|
|
|
4766
|
|
|
|
|
|
|
/***************************************************************************** |
4767
|
|
|
|
|
|
|
** The cases of the switch statement above this line should all be indented |
4768
|
|
|
|
|
|
|
** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
4769
|
|
|
|
|
|
|
** readability. From this point on down, the normal indentation rules are |
4770
|
|
|
|
|
|
|
** restored. |
4771
|
|
|
|
|
|
|
*****************************************************************************/ |
4772
|
|
|
|
|
|
|
} |
4773
|
|
|
|
|
|
|
|
4774
|
|
|
|
|
|
|
#ifdef VDBE_PROFILE |
4775
|
|
|
|
|
|
|
{ |
4776
|
|
|
|
|
|
|
long long elapse = hwtime() - start; |
4777
|
|
|
|
|
|
|
pOp->cycles += elapse; |
4778
|
|
|
|
|
|
|
pOp->cnt++; |
4779
|
|
|
|
|
|
|
#if 0 |
4780
|
|
|
|
|
|
|
fprintf(stdout, "%10lld ", elapse); |
4781
|
|
|
|
|
|
|
sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]); |
4782
|
|
|
|
|
|
|
#endif |
4783
|
|
|
|
|
|
|
} |
4784
|
|
|
|
|
|
|
#endif |
4785
|
|
|
|
|
|
|
|
4786
|
|
|
|
|
|
|
/* The following code adds nothing to the actual functionality |
4787
|
|
|
|
|
|
|
** of the program. It is only here for testing and debugging. |
4788
|
|
|
|
|
|
|
** On the other hand, it does burn CPU cycles every time through |
4789
|
|
|
|
|
|
|
** the evaluator loop. So we can leave it out when NDEBUG is defined. |
4790
|
|
|
|
|
|
|
*/ |
4791
|
|
|
|
|
|
|
#ifndef NDEBUG |
4792
|
|
|
|
|
|
|
/* Sanity checking on the top element of the stack */ |
4793
|
|
|
|
|
|
|
if( pTos>=p->aStack ){ |
4794
|
|
|
|
|
|
|
assert( pTos->flags!=0 ); /* Must define some type */ |
4795
|
|
|
|
|
|
|
if( pTos->flags & MEM_Str ){ |
4796
|
|
|
|
|
|
|
int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
4797
|
|
|
|
|
|
|
assert( x!=0 ); /* Strings must define a string subtype */ |
4798
|
|
|
|
|
|
|
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ |
4799
|
|
|
|
|
|
|
assert( pTos->z!=0 ); /* Strings must have a value */ |
4800
|
|
|
|
|
|
|
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ |
4801
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort ); |
4802
|
|
|
|
|
|
|
assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort ); |
4803
|
|
|
|
|
|
|
}else{ |
4804
|
|
|
|
|
|
|
/* Cannot define a string subtype for non-string objects */ |
4805
|
|
|
|
|
|
|
assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); |
4806
|
|
|
|
|
|
|
} |
4807
|
|
|
|
|
|
|
/* MEM_Null excludes all other types */ |
4808
|
|
|
|
|
|
|
assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 ); |
4809
|
|
|
|
|
|
|
} |
4810
|
|
|
|
|
|
|
if( pc<-1 || pc>=p->nOp ){ |
4811
|
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0); |
4812
|
|
|
|
|
|
|
rc = SQLITE_INTERNAL; |
4813
|
|
|
|
|
|
|
} |
4814
|
|
|
|
|
|
|
if( p->trace && pTos>=p->aStack ){ |
4815
|
|
|
|
|
|
|
int i; |
4816
|
|
|
|
|
|
|
fprintf(p->trace, "Stack:"); |
4817
|
|
|
|
|
|
|
for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){ |
4818
|
|
|
|
|
|
|
if( pTos[i].flags & MEM_Null ){ |
4819
|
|
|
|
|
|
|
fprintf(p->trace, " NULL"); |
4820
|
|
|
|
|
|
|
}else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
4821
|
|
|
|
|
|
|
fprintf(p->trace, " si:%d", pTos[i].i); |
4822
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Int ){ |
4823
|
|
|
|
|
|
|
fprintf(p->trace, " i:%d", pTos[i].i); |
4824
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Real ){ |
4825
|
|
|
|
|
|
|
fprintf(p->trace, " r:%g", pTos[i].r); |
4826
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Str ){ |
4827
|
|
|
|
|
|
|
int j, k; |
4828
|
|
|
|
|
|
|
char zBuf[100]; |
4829
|
|
|
|
|
|
|
zBuf[0] = ' '; |
4830
|
|
|
|
|
|
|
if( pTos[i].flags & MEM_Dyn ){ |
4831
|
|
|
|
|
|
|
zBuf[1] = 'z'; |
4832
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 ); |
4833
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Static ){ |
4834
|
|
|
|
|
|
|
zBuf[1] = 't'; |
4835
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 ); |
4836
|
|
|
|
|
|
|
}else if( pTos[i].flags & MEM_Ephem ){ |
4837
|
|
|
|
|
|
|
zBuf[1] = 'e'; |
4838
|
|
|
|
|
|
|
assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 ); |
4839
|
|
|
|
|
|
|
}else{ |
4840
|
|
|
|
|
|
|
zBuf[1] = 's'; |
4841
|
|
|
|
|
|
|
} |
4842
|
|
|
|
|
|
|
zBuf[2] = '['; |
4843
|
|
|
|
|
|
|
k = 3; |
4844
|
|
|
|
|
|
|
for(j=0; j<20 && j
|
4845
|
|
|
|
|
|
|
int c = pTos[i].z[j]; |
4846
|
|
|
|
|
|
|
if( c==0 && j==pTos[i].n-1 ) break; |
4847
|
|
|
|
|
|
|
if( isprint(c) && !isspace(c) ){ |
4848
|
|
|
|
|
|
|
zBuf[k++] = c; |
4849
|
|
|
|
|
|
|
}else{ |
4850
|
|
|
|
|
|
|
zBuf[k++] = '.'; |
4851
|
|
|
|
|
|
|
} |
4852
|
|
|
|
|
|
|
} |
4853
|
|
|
|
|
|
|
zBuf[k++] = ']'; |
4854
|
|
|
|
|
|
|
zBuf[k++] = 0; |
4855
|
|
|
|
|
|
|
fprintf(p->trace, "%s", zBuf); |
4856
|
|
|
|
|
|
|
}else{ |
4857
|
|
|
|
|
|
|
fprintf(p->trace, " ???"); |
4858
|
|
|
|
|
|
|
} |
4859
|
|
|
|
|
|
|
} |
4860
|
|
|
|
|
|
|
if( rc!=0 ) fprintf(p->trace," rc=%d",rc); |
4861
|
|
|
|
|
|
|
fprintf(p->trace,"\n"); |
4862
|
|
|
|
|
|
|
} |
4863
|
|
|
|
|
|
|
#endif |
4864
|
|
|
|
|
|
|
} /* The end of the for(;;) loop the loops through opcodes */ |
4865
|
|
|
|
|
|
|
|
4866
|
|
|
|
|
|
|
/* If we reach this point, it means that execution is finished. |
4867
|
|
|
|
|
|
|
*/ |
4868
|
|
|
|
|
|
|
vdbe_halt: |
4869
|
1
|
50
|
|
|
|
|
CHECK_FOR_INTERRUPT |
4870
|
1
|
50
|
|
|
|
|
if( rc ){ |
4871
|
1
|
|
|
|
|
|
p->rc = rc; |
4872
|
1
|
|
|
|
|
|
rc = SQLITE_ERROR; |
4873
|
|
|
|
|
|
|
}else{ |
4874
|
0
|
|
|
|
|
|
rc = SQLITE_DONE; |
4875
|
|
|
|
|
|
|
} |
4876
|
1
|
|
|
|
|
|
p->magic = VDBE_MAGIC_HALT; |
4877
|
1
|
|
|
|
|
|
p->pTos = pTos; |
4878
|
1
|
|
|
|
|
|
return rc; |
4879
|
|
|
|
|
|
|
|
4880
|
|
|
|
|
|
|
/* Jump to here if a malloc() fails. It's hard to get a malloc() |
4881
|
|
|
|
|
|
|
** to fail on a modern VM computer, so this code is untested. |
4882
|
|
|
|
|
|
|
*/ |
4883
|
|
|
|
|
|
|
no_mem: |
4884
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, "out of memory", (char*)0); |
4885
|
0
|
|
|
|
|
|
rc = SQLITE_NOMEM; |
4886
|
0
|
|
|
|
|
|
goto vdbe_halt; |
4887
|
|
|
|
|
|
|
|
4888
|
|
|
|
|
|
|
/* Jump to here for an SQLITE_MISUSE error. |
4889
|
|
|
|
|
|
|
*/ |
4890
|
|
|
|
|
|
|
abort_due_to_misuse: |
4891
|
0
|
|
|
|
|
|
rc = SQLITE_MISUSE; |
4892
|
|
|
|
|
|
|
/* Fall thru into abort_due_to_error */ |
4893
|
|
|
|
|
|
|
|
4894
|
|
|
|
|
|
|
/* Jump to here for any other kind of fatal error. The "rc" variable |
4895
|
|
|
|
|
|
|
** should hold the error number. |
4896
|
|
|
|
|
|
|
*/ |
4897
|
|
|
|
|
|
|
abort_due_to_error: |
4898
|
0
|
0
|
|
|
|
|
if( p->zErrMsg==0 ){ |
4899
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) rc = SQLITE_NOMEM; |
4900
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
4901
|
|
|
|
|
|
|
} |
4902
|
0
|
|
|
|
|
|
goto vdbe_halt; |
4903
|
|
|
|
|
|
|
|
4904
|
|
|
|
|
|
|
/* Jump to here if the sqlite_interrupt() API sets the interrupt |
4905
|
|
|
|
|
|
|
** flag. |
4906
|
|
|
|
|
|
|
*/ |
4907
|
|
|
|
|
|
|
abort_due_to_interrupt: |
4908
|
|
|
|
|
|
|
assert( db->flags & SQLITE_Interrupt ); |
4909
|
0
|
|
|
|
|
|
db->flags &= ~SQLITE_Interrupt; |
4910
|
0
|
0
|
|
|
|
|
if( db->magic!=SQLITE_MAGIC_BUSY ){ |
4911
|
0
|
|
|
|
|
|
rc = SQLITE_MISUSE; |
4912
|
|
|
|
|
|
|
}else{ |
4913
|
0
|
|
|
|
|
|
rc = SQLITE_INTERRUPT; |
4914
|
|
|
|
|
|
|
} |
4915
|
0
|
|
|
|
|
|
sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0); |
4916
|
433
|
|
|
|
|
|
goto vdbe_halt; |
4917
|
|
|
|
|
|
|
} |