line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
** 2003 Feb 4 |
3
|
|
|
|
|
|
|
** |
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
6
|
|
|
|
|
|
|
** |
7
|
|
|
|
|
|
|
** May you do good and not evil. |
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
10
|
|
|
|
|
|
|
** |
11
|
|
|
|
|
|
|
************************************************************************* |
12
|
|
|
|
|
|
|
** $Id: btree_rb.c,v 1.1.1.1 2004/08/08 15:03:57 matt Exp $ |
13
|
|
|
|
|
|
|
** |
14
|
|
|
|
|
|
|
** This file implements an in-core database using Red-Black balanced |
15
|
|
|
|
|
|
|
** binary trees. |
16
|
|
|
|
|
|
|
** |
17
|
|
|
|
|
|
|
** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC. |
18
|
|
|
|
|
|
|
*/ |
19
|
|
|
|
|
|
|
#include "btree.h" |
20
|
|
|
|
|
|
|
#include "sqliteInt.h" |
21
|
|
|
|
|
|
|
#include |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
/* |
24
|
|
|
|
|
|
|
** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is |
25
|
|
|
|
|
|
|
** defined. This allows a lot of code to be omitted for installations |
26
|
|
|
|
|
|
|
** that do not need it. |
27
|
|
|
|
|
|
|
*/ |
28
|
|
|
|
|
|
|
#ifndef SQLITE_OMIT_INMEMORYDB |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
typedef struct BtRbTree BtRbTree; |
32
|
|
|
|
|
|
|
typedef struct BtRbNode BtRbNode; |
33
|
|
|
|
|
|
|
typedef struct BtRollbackOp BtRollbackOp; |
34
|
|
|
|
|
|
|
typedef struct Rbtree Rbtree; |
35
|
|
|
|
|
|
|
typedef struct RbtCursor RbtCursor; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
/* Forward declarations */ |
38
|
|
|
|
|
|
|
static BtOps sqliteRbtreeOps; |
39
|
|
|
|
|
|
|
static BtCursorOps sqliteRbtreeCursorOps; |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
/* |
42
|
|
|
|
|
|
|
* During each transaction (or checkpoint), a linked-list of |
43
|
|
|
|
|
|
|
* "rollback-operations" is accumulated. If the transaction is rolled back, |
44
|
|
|
|
|
|
|
* then the list of operations must be executed (to restore the database to |
45
|
|
|
|
|
|
|
* it's state before the transaction started). If the transaction is to be |
46
|
|
|
|
|
|
|
* committed, just delete the list. |
47
|
|
|
|
|
|
|
* |
48
|
|
|
|
|
|
|
* Each operation is represented as follows, depending on the value of eOp: |
49
|
|
|
|
|
|
|
* |
50
|
|
|
|
|
|
|
* ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab. |
51
|
|
|
|
|
|
|
* ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab. |
52
|
|
|
|
|
|
|
* ROLLBACK_CREATE -> Need to create table iTab. |
53
|
|
|
|
|
|
|
* ROLLBACK_DROP -> Need to drop table iTab. |
54
|
|
|
|
|
|
|
*/ |
55
|
|
|
|
|
|
|
struct BtRollbackOp { |
56
|
|
|
|
|
|
|
u8 eOp; |
57
|
|
|
|
|
|
|
int iTab; |
58
|
|
|
|
|
|
|
int nKey; |
59
|
|
|
|
|
|
|
void *pKey; |
60
|
|
|
|
|
|
|
int nData; |
61
|
|
|
|
|
|
|
void *pData; |
62
|
|
|
|
|
|
|
BtRollbackOp *pNext; |
63
|
|
|
|
|
|
|
}; |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
/* |
66
|
|
|
|
|
|
|
** Legal values for BtRollbackOp.eOp: |
67
|
|
|
|
|
|
|
*/ |
68
|
|
|
|
|
|
|
#define ROLLBACK_INSERT 1 /* Insert a record */ |
69
|
|
|
|
|
|
|
#define ROLLBACK_DELETE 2 /* Delete a record */ |
70
|
|
|
|
|
|
|
#define ROLLBACK_CREATE 3 /* Create a table */ |
71
|
|
|
|
|
|
|
#define ROLLBACK_DROP 4 /* Drop a table */ |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
struct Rbtree { |
74
|
|
|
|
|
|
|
BtOps *pOps; /* Function table */ |
75
|
|
|
|
|
|
|
int aMetaData[SQLITE_N_BTREE_META]; |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
int next_idx; /* next available table index */ |
78
|
|
|
|
|
|
|
Hash tblHash; /* All created tables, by index */ |
79
|
|
|
|
|
|
|
u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */ |
80
|
|
|
|
|
|
|
u8 eTransState; /* State of this Rbtree wrt transactions */ |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
BtRollbackOp *pTransRollback; |
83
|
|
|
|
|
|
|
BtRollbackOp *pCheckRollback; |
84
|
|
|
|
|
|
|
BtRollbackOp *pCheckRollbackTail; |
85
|
|
|
|
|
|
|
}; |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
/* |
88
|
|
|
|
|
|
|
** Legal values for Rbtree.eTransState. |
89
|
|
|
|
|
|
|
*/ |
90
|
|
|
|
|
|
|
#define TRANS_NONE 0 /* No transaction is in progress */ |
91
|
|
|
|
|
|
|
#define TRANS_INTRANSACTION 1 /* A transaction is in progress */ |
92
|
|
|
|
|
|
|
#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */ |
93
|
|
|
|
|
|
|
#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or |
94
|
|
|
|
|
|
|
* transaction. */ |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
struct RbtCursor { |
97
|
|
|
|
|
|
|
BtCursorOps *pOps; /* Function table */ |
98
|
|
|
|
|
|
|
Rbtree *pRbtree; |
99
|
|
|
|
|
|
|
BtRbTree *pTree; |
100
|
|
|
|
|
|
|
int iTree; /* Index of pTree in pRbtree */ |
101
|
|
|
|
|
|
|
BtRbNode *pNode; |
102
|
|
|
|
|
|
|
RbtCursor *pShared; /* List of all cursors on the same Rbtree */ |
103
|
|
|
|
|
|
|
u8 eSkip; /* Determines if next step operation is a no-op */ |
104
|
|
|
|
|
|
|
u8 wrFlag; /* True if this cursor is open for writing */ |
105
|
|
|
|
|
|
|
}; |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
/* |
108
|
|
|
|
|
|
|
** Legal values for RbtCursor.eSkip. |
109
|
|
|
|
|
|
|
*/ |
110
|
|
|
|
|
|
|
#define SKIP_NONE 0 /* Always step the cursor */ |
111
|
|
|
|
|
|
|
#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */ |
112
|
|
|
|
|
|
|
#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */ |
113
|
|
|
|
|
|
|
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */ |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
struct BtRbTree { |
116
|
|
|
|
|
|
|
RbtCursor *pCursors; /* All cursors pointing to this tree */ |
117
|
|
|
|
|
|
|
BtRbNode *pHead; /* Head of the tree, or NULL */ |
118
|
|
|
|
|
|
|
}; |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
struct BtRbNode { |
121
|
|
|
|
|
|
|
int nKey; |
122
|
|
|
|
|
|
|
void *pKey; |
123
|
|
|
|
|
|
|
int nData; |
124
|
|
|
|
|
|
|
void *pData; |
125
|
|
|
|
|
|
|
u8 isBlack; /* true for a black node, 0 for a red node */ |
126
|
|
|
|
|
|
|
BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */ |
127
|
|
|
|
|
|
|
BtRbNode *pLeft; /* Nodes left child, or NULL */ |
128
|
|
|
|
|
|
|
BtRbNode *pRight; /* Nodes right child, or NULL */ |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
int nBlackHeight; /* Only used during the red-black integrity check */ |
131
|
|
|
|
|
|
|
}; |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
/* Forward declarations */ |
134
|
|
|
|
|
|
|
static int memRbtreeMoveto( |
135
|
|
|
|
|
|
|
RbtCursor* pCur, |
136
|
|
|
|
|
|
|
const void *pKey, |
137
|
|
|
|
|
|
|
int nKey, |
138
|
|
|
|
|
|
|
int *pRes |
139
|
|
|
|
|
|
|
); |
140
|
|
|
|
|
|
|
static int memRbtreeClearTable(Rbtree* tree, int n); |
141
|
|
|
|
|
|
|
static int memRbtreeNext(RbtCursor* pCur, int *pRes); |
142
|
|
|
|
|
|
|
static int memRbtreeLast(RbtCursor* pCur, int *pRes); |
143
|
|
|
|
|
|
|
static int memRbtreePrevious(RbtCursor* pCur, int *pRes); |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
/* |
147
|
|
|
|
|
|
|
** This routine checks all cursors that point to the same table |
148
|
|
|
|
|
|
|
** as pCur points to. If any of those cursors were opened with |
149
|
|
|
|
|
|
|
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all |
150
|
|
|
|
|
|
|
** cursors point to the same table were opened with wrFlag==1 |
151
|
|
|
|
|
|
|
** then this routine returns SQLITE_OK. |
152
|
|
|
|
|
|
|
** |
153
|
|
|
|
|
|
|
** In addition to checking for read-locks (where a read-lock |
154
|
|
|
|
|
|
|
** means a cursor opened with wrFlag==0) this routine also NULLs |
155
|
|
|
|
|
|
|
** out the pNode field of all other cursors. |
156
|
|
|
|
|
|
|
** This is necessary because an insert |
157
|
|
|
|
|
|
|
** or delete might change erase the node out from under |
158
|
|
|
|
|
|
|
** another cursor. |
159
|
|
|
|
|
|
|
*/ |
160
|
0
|
|
|
|
|
|
static int checkReadLocks(RbtCursor *pCur){ |
161
|
|
|
|
|
|
|
RbtCursor *p; |
162
|
|
|
|
|
|
|
assert( pCur->wrFlag ); |
163
|
0
|
0
|
|
|
|
|
for(p=pCur->pTree->pCursors; p; p=p->pShared){ |
164
|
0
|
0
|
|
|
|
|
if( p!=pCur ){ |
165
|
0
|
0
|
|
|
|
|
if( p->wrFlag==0 ) return SQLITE_LOCKED; |
166
|
0
|
|
|
|
|
|
p->pNode = 0; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
} |
169
|
0
|
|
|
|
|
|
return SQLITE_OK; |
170
|
|
|
|
|
|
|
} |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
/* |
173
|
|
|
|
|
|
|
* The key-compare function for the red-black trees. Returns as follows: |
174
|
|
|
|
|
|
|
* |
175
|
|
|
|
|
|
|
* (key1 < key2) -1 |
176
|
|
|
|
|
|
|
* (key1 == key2) 0 |
177
|
|
|
|
|
|
|
* (key1 > key2) 1 |
178
|
|
|
|
|
|
|
* |
179
|
|
|
|
|
|
|
* Keys are compared using memcmp(). If one key is an exact prefix of the |
180
|
|
|
|
|
|
|
* other, then the shorter key is less than the longer key. |
181
|
|
|
|
|
|
|
*/ |
182
|
0
|
|
|
|
|
|
static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2) |
183
|
|
|
|
|
|
|
{ |
184
|
0
|
|
|
|
|
|
int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2); |
185
|
0
|
0
|
|
|
|
|
if( mcmp == 0){ |
186
|
0
|
0
|
|
|
|
|
if( nKey1 == nKey2 ) return 0; |
187
|
0
|
0
|
|
|
|
|
return ((nKey1 < nKey2)?-1:1); |
188
|
|
|
|
|
|
|
} |
189
|
0
|
0
|
|
|
|
|
return ((mcmp>0)?1:-1); |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
/* |
193
|
|
|
|
|
|
|
* Perform the LEFT-rotate transformation on node X of tree pTree. This |
194
|
|
|
|
|
|
|
* transform is part of the red-black balancing code. |
195
|
|
|
|
|
|
|
* |
196
|
|
|
|
|
|
|
* | | |
197
|
|
|
|
|
|
|
* X Y |
198
|
|
|
|
|
|
|
* / \ / \ |
199
|
|
|
|
|
|
|
* a Y X c |
200
|
|
|
|
|
|
|
* / \ / \ |
201
|
|
|
|
|
|
|
* b c a b |
202
|
|
|
|
|
|
|
* |
203
|
|
|
|
|
|
|
* BEFORE AFTER |
204
|
|
|
|
|
|
|
*/ |
205
|
0
|
|
|
|
|
|
static void leftRotate(BtRbTree *pTree, BtRbNode *pX) |
206
|
|
|
|
|
|
|
{ |
207
|
|
|
|
|
|
|
BtRbNode *pY; |
208
|
|
|
|
|
|
|
BtRbNode *pb; |
209
|
0
|
|
|
|
|
|
pY = pX->pRight; |
210
|
0
|
|
|
|
|
|
pb = pY->pLeft; |
211
|
|
|
|
|
|
|
|
212
|
0
|
|
|
|
|
|
pY->pParent = pX->pParent; |
213
|
0
|
0
|
|
|
|
|
if( pX->pParent ){ |
214
|
0
|
0
|
|
|
|
|
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; |
215
|
0
|
|
|
|
|
|
else pX->pParent->pRight = pY; |
216
|
|
|
|
|
|
|
} |
217
|
0
|
|
|
|
|
|
pY->pLeft = pX; |
218
|
0
|
|
|
|
|
|
pX->pParent = pY; |
219
|
0
|
|
|
|
|
|
pX->pRight = pb; |
220
|
0
|
0
|
|
|
|
|
if( pb ) pb->pParent = pX; |
221
|
0
|
0
|
|
|
|
|
if( pTree->pHead == pX ) pTree->pHead = pY; |
222
|
0
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
/* |
225
|
|
|
|
|
|
|
* Perform the RIGHT-rotate transformation on node X of tree pTree. This |
226
|
|
|
|
|
|
|
* transform is part of the red-black balancing code. |
227
|
|
|
|
|
|
|
* |
228
|
|
|
|
|
|
|
* | | |
229
|
|
|
|
|
|
|
* X Y |
230
|
|
|
|
|
|
|
* / \ / \ |
231
|
|
|
|
|
|
|
* Y c a X |
232
|
|
|
|
|
|
|
* / \ / \ |
233
|
|
|
|
|
|
|
* a b b c |
234
|
|
|
|
|
|
|
* |
235
|
|
|
|
|
|
|
* BEFORE AFTER |
236
|
|
|
|
|
|
|
*/ |
237
|
0
|
|
|
|
|
|
static void rightRotate(BtRbTree *pTree, BtRbNode *pX) |
238
|
|
|
|
|
|
|
{ |
239
|
|
|
|
|
|
|
BtRbNode *pY; |
240
|
|
|
|
|
|
|
BtRbNode *pb; |
241
|
0
|
|
|
|
|
|
pY = pX->pLeft; |
242
|
0
|
|
|
|
|
|
pb = pY->pRight; |
243
|
|
|
|
|
|
|
|
244
|
0
|
|
|
|
|
|
pY->pParent = pX->pParent; |
245
|
0
|
0
|
|
|
|
|
if( pX->pParent ){ |
246
|
0
|
0
|
|
|
|
|
if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY; |
247
|
0
|
|
|
|
|
|
else pX->pParent->pRight = pY; |
248
|
|
|
|
|
|
|
} |
249
|
0
|
|
|
|
|
|
pY->pRight = pX; |
250
|
0
|
|
|
|
|
|
pX->pParent = pY; |
251
|
0
|
|
|
|
|
|
pX->pLeft = pb; |
252
|
0
|
0
|
|
|
|
|
if( pb ) pb->pParent = pX; |
253
|
0
|
0
|
|
|
|
|
if( pTree->pHead == pX ) pTree->pHead = pY; |
254
|
0
|
|
|
|
|
|
} |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
/* |
257
|
|
|
|
|
|
|
* A string-manipulation helper function for check_redblack_tree(). If (orig == |
258
|
|
|
|
|
|
|
* NULL) a copy of val is returned. If (orig != NULL) then a copy of the * |
259
|
|
|
|
|
|
|
* concatenation of orig and val is returned. The original orig is deleted |
260
|
|
|
|
|
|
|
* (using sqliteFree()). |
261
|
|
|
|
|
|
|
*/ |
262
|
0
|
|
|
|
|
|
static char *append_val(char * orig, char const * val){ |
263
|
|
|
|
|
|
|
char *z; |
264
|
0
|
0
|
|
|
|
|
if( !orig ){ |
265
|
0
|
|
|
|
|
|
z = sqliteStrDup( val ); |
266
|
|
|
|
|
|
|
} else{ |
267
|
0
|
|
|
|
|
|
z = 0; |
268
|
0
|
|
|
|
|
|
sqliteSetString(&z, orig, val, (char*)0); |
269
|
0
|
|
|
|
|
|
sqliteFree( orig ); |
270
|
|
|
|
|
|
|
} |
271
|
0
|
|
|
|
|
|
return z; |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* |
275
|
|
|
|
|
|
|
* Append a string representation of the entire node to orig and return it. |
276
|
|
|
|
|
|
|
* This is used to produce debugging information if check_redblack_tree() finds |
277
|
|
|
|
|
|
|
* a problem with a red-black binary tree. |
278
|
|
|
|
|
|
|
*/ |
279
|
0
|
|
|
|
|
|
static char *append_node(char * orig, BtRbNode *pNode, int indent) |
280
|
|
|
|
|
|
|
{ |
281
|
|
|
|
|
|
|
char buf[128]; |
282
|
|
|
|
|
|
|
int i; |
283
|
|
|
|
|
|
|
|
284
|
0
|
0
|
|
|
|
|
for( i=0; i
|
285
|
0
|
|
|
|
|
|
orig = append_val(orig, " "); |
286
|
|
|
|
|
|
|
} |
287
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
sprintf(buf, "%p", pNode); |
289
|
0
|
|
|
|
|
|
orig = append_val(orig, buf); |
290
|
|
|
|
|
|
|
|
291
|
0
|
0
|
|
|
|
|
if( pNode ){ |
292
|
0
|
|
|
|
|
|
indent += 3; |
293
|
0
|
0
|
|
|
|
|
if( pNode->isBlack ){ |
294
|
0
|
|
|
|
|
|
orig = append_val(orig, " B \n"); |
295
|
|
|
|
|
|
|
}else{ |
296
|
0
|
|
|
|
|
|
orig = append_val(orig, " R \n"); |
297
|
|
|
|
|
|
|
} |
298
|
0
|
|
|
|
|
|
orig = append_node( orig, pNode->pLeft, indent ); |
299
|
0
|
|
|
|
|
|
orig = append_node( orig, pNode->pRight, indent ); |
300
|
|
|
|
|
|
|
}else{ |
301
|
0
|
|
|
|
|
|
orig = append_val(orig, "\n"); |
302
|
|
|
|
|
|
|
} |
303
|
0
|
|
|
|
|
|
return orig; |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
/* |
307
|
|
|
|
|
|
|
* Print a representation of a node to stdout. This function is only included |
308
|
|
|
|
|
|
|
* so you can call it from within a debugger if things get really bad. It |
309
|
|
|
|
|
|
|
* is not called from anyplace in the code. |
310
|
|
|
|
|
|
|
*/ |
311
|
0
|
|
|
|
|
|
static void print_node(BtRbNode *pNode) |
312
|
|
|
|
|
|
|
{ |
313
|
0
|
|
|
|
|
|
char * str = append_node(0, pNode, 0); |
314
|
0
|
|
|
|
|
|
printf("%s", str); |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
/* Suppress a warning message about print_node() being unused */ |
317
|
|
|
|
|
|
|
(void)print_node; |
318
|
0
|
|
|
|
|
|
} |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
/* |
321
|
|
|
|
|
|
|
* Check the following properties of the red-black tree: |
322
|
|
|
|
|
|
|
* (1) - If a node is red, both of it's children are black |
323
|
|
|
|
|
|
|
* (2) - Each path from a given node to a leaf (NULL) node passes thru the |
324
|
|
|
|
|
|
|
* same number of black nodes |
325
|
|
|
|
|
|
|
* |
326
|
|
|
|
|
|
|
* If there is a problem, append a description (using append_val() ) to *msg. |
327
|
|
|
|
|
|
|
*/ |
328
|
0
|
|
|
|
|
|
static void check_redblack_tree(BtRbTree * tree, char ** msg) |
329
|
|
|
|
|
|
|
{ |
330
|
|
|
|
|
|
|
BtRbNode *pNode; |
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
/* 0 -> came from parent |
333
|
|
|
|
|
|
|
* 1 -> came from left |
334
|
|
|
|
|
|
|
* 2 -> came from right */ |
335
|
0
|
|
|
|
|
|
int prev_step = 0; |
336
|
|
|
|
|
|
|
|
337
|
0
|
|
|
|
|
|
pNode = tree->pHead; |
338
|
0
|
0
|
|
|
|
|
while( pNode ){ |
339
|
0
|
|
|
|
|
|
switch( prev_step ){ |
340
|
|
|
|
|
|
|
case 0: |
341
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
342
|
0
|
|
|
|
|
|
pNode = pNode->pLeft; |
343
|
|
|
|
|
|
|
}else{ |
344
|
0
|
|
|
|
|
|
prev_step = 1; |
345
|
|
|
|
|
|
|
} |
346
|
0
|
|
|
|
|
|
break; |
347
|
|
|
|
|
|
|
case 1: |
348
|
0
|
0
|
|
|
|
|
if( pNode->pRight ){ |
349
|
0
|
|
|
|
|
|
pNode = pNode->pRight; |
350
|
0
|
|
|
|
|
|
prev_step = 0; |
351
|
|
|
|
|
|
|
}else{ |
352
|
0
|
|
|
|
|
|
prev_step = 2; |
353
|
|
|
|
|
|
|
} |
354
|
0
|
|
|
|
|
|
break; |
355
|
|
|
|
|
|
|
case 2: |
356
|
|
|
|
|
|
|
/* Check red-black property (1) */ |
357
|
0
|
0
|
|
|
|
|
if( !pNode->isBlack && |
|
|
0
|
|
|
|
|
|
358
|
0
|
0
|
|
|
|
|
( (pNode->pLeft && !pNode->pLeft->isBlack) || |
|
|
0
|
|
|
|
|
|
359
|
0
|
0
|
|
|
|
|
(pNode->pRight && !pNode->pRight->isBlack) ) |
360
|
|
|
|
|
|
|
){ |
361
|
|
|
|
|
|
|
char buf[128]; |
362
|
0
|
|
|
|
|
|
sprintf(buf, "Red node with red child at %p\n", pNode); |
363
|
0
|
|
|
|
|
|
*msg = append_val(*msg, buf); |
364
|
0
|
|
|
|
|
|
*msg = append_node(*msg, tree->pHead, 0); |
365
|
0
|
|
|
|
|
|
*msg = append_val(*msg, "\n"); |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
/* Check red-black property (2) */ |
369
|
|
|
|
|
|
|
{ |
370
|
0
|
|
|
|
|
|
int leftHeight = 0; |
371
|
0
|
|
|
|
|
|
int rightHeight = 0; |
372
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
373
|
0
|
|
|
|
|
|
leftHeight += pNode->pLeft->nBlackHeight; |
374
|
0
|
|
|
|
|
|
leftHeight += (pNode->pLeft->isBlack?1:0); |
375
|
|
|
|
|
|
|
} |
376
|
0
|
0
|
|
|
|
|
if( pNode->pRight ){ |
377
|
0
|
|
|
|
|
|
rightHeight += pNode->pRight->nBlackHeight; |
378
|
0
|
|
|
|
|
|
rightHeight += (pNode->pRight->isBlack?1:0); |
379
|
|
|
|
|
|
|
} |
380
|
0
|
0
|
|
|
|
|
if( leftHeight != rightHeight ){ |
381
|
|
|
|
|
|
|
char buf[128]; |
382
|
0
|
|
|
|
|
|
sprintf(buf, "Different black-heights at %p\n", pNode); |
383
|
0
|
|
|
|
|
|
*msg = append_val(*msg, buf); |
384
|
0
|
|
|
|
|
|
*msg = append_node(*msg, tree->pHead, 0); |
385
|
0
|
|
|
|
|
|
*msg = append_val(*msg, "\n"); |
386
|
|
|
|
|
|
|
} |
387
|
0
|
|
|
|
|
|
pNode->nBlackHeight = leftHeight; |
388
|
|
|
|
|
|
|
} |
389
|
|
|
|
|
|
|
|
390
|
0
|
0
|
|
|
|
|
if( pNode->pParent ){ |
391
|
0
|
0
|
|
|
|
|
if( pNode == pNode->pParent->pLeft ) prev_step = 1; |
392
|
0
|
|
|
|
|
|
else prev_step = 2; |
393
|
|
|
|
|
|
|
} |
394
|
0
|
|
|
|
|
|
pNode = pNode->pParent; |
395
|
0
|
|
|
|
|
|
break; |
396
|
|
|
|
|
|
|
default: assert(0); |
397
|
|
|
|
|
|
|
} |
398
|
|
|
|
|
|
|
} |
399
|
0
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
/* |
402
|
|
|
|
|
|
|
* Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()). |
403
|
|
|
|
|
|
|
* It is possible that pX is a red node with a red parent, which is a violation |
404
|
|
|
|
|
|
|
* of the red-black tree properties. This function performs rotations and |
405
|
|
|
|
|
|
|
* color changes to rebalance the tree |
406
|
|
|
|
|
|
|
*/ |
407
|
0
|
|
|
|
|
|
static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX) |
408
|
|
|
|
|
|
|
{ |
409
|
|
|
|
|
|
|
/* In the first iteration of this loop, pX points to the red node just |
410
|
|
|
|
|
|
|
* inserted in the tree. If the parent of pX exists (pX is not the root |
411
|
|
|
|
|
|
|
* node) and is red, then the properties of the red-black tree are |
412
|
|
|
|
|
|
|
* violated. |
413
|
|
|
|
|
|
|
* |
414
|
|
|
|
|
|
|
* At the start of any subsequent iterations, pX points to a red node |
415
|
|
|
|
|
|
|
* with a red parent. In all other respects the tree is a legal red-black |
416
|
|
|
|
|
|
|
* binary tree. */ |
417
|
0
|
0
|
|
|
|
|
while( pX != pTree->pHead && !pX->pParent->isBlack ){ |
|
|
0
|
|
|
|
|
|
418
|
|
|
|
|
|
|
BtRbNode *pUncle; |
419
|
|
|
|
|
|
|
BtRbNode *pGrandparent; |
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
/* Grandparent of pX must exist and must be black. */ |
422
|
0
|
|
|
|
|
|
pGrandparent = pX->pParent->pParent; |
423
|
|
|
|
|
|
|
assert( pGrandparent ); |
424
|
|
|
|
|
|
|
assert( pGrandparent->isBlack ); |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
/* Uncle of pX may or may not exist. */ |
427
|
0
|
0
|
|
|
|
|
if( pX->pParent == pGrandparent->pLeft ) |
428
|
0
|
|
|
|
|
|
pUncle = pGrandparent->pRight; |
429
|
|
|
|
|
|
|
else |
430
|
0
|
|
|
|
|
|
pUncle = pGrandparent->pLeft; |
431
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
/* If the uncle of pX exists and is red, we do the following: |
433
|
|
|
|
|
|
|
* | | |
434
|
|
|
|
|
|
|
* G(b) G(r) |
435
|
|
|
|
|
|
|
* / \ / \ |
436
|
|
|
|
|
|
|
* U(r) P(r) U(b) P(b) |
437
|
|
|
|
|
|
|
* \ \ |
438
|
|
|
|
|
|
|
* X(r) X(r) |
439
|
|
|
|
|
|
|
* |
440
|
|
|
|
|
|
|
* BEFORE AFTER |
441
|
|
|
|
|
|
|
* pX is then set to G. If the parent of G is red, then the while loop |
442
|
|
|
|
|
|
|
* will run again. */ |
443
|
0
|
0
|
|
|
|
|
if( pUncle && !pUncle->isBlack ){ |
|
|
0
|
|
|
|
|
|
444
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
445
|
0
|
|
|
|
|
|
pUncle->isBlack = 1; |
446
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
447
|
0
|
|
|
|
|
|
pX = pGrandparent; |
448
|
|
|
|
|
|
|
}else{ |
449
|
|
|
|
|
|
|
|
450
|
0
|
0
|
|
|
|
|
if( pX->pParent == pGrandparent->pLeft ){ |
451
|
0
|
0
|
|
|
|
|
if( pX == pX->pParent->pRight ){ |
452
|
|
|
|
|
|
|
/* If pX is a right-child, do the following transform, essentially |
453
|
|
|
|
|
|
|
* to change pX into a left-child: |
454
|
|
|
|
|
|
|
* | | |
455
|
|
|
|
|
|
|
* G(b) G(b) |
456
|
|
|
|
|
|
|
* / \ / \ |
457
|
|
|
|
|
|
|
* P(r) U(b) X(r) U(b) |
458
|
|
|
|
|
|
|
* \ / |
459
|
|
|
|
|
|
|
* X(r) P(r) <-- new X |
460
|
|
|
|
|
|
|
* |
461
|
|
|
|
|
|
|
* BEFORE AFTER |
462
|
|
|
|
|
|
|
*/ |
463
|
0
|
|
|
|
|
|
pX = pX->pParent; |
464
|
0
|
|
|
|
|
|
leftRotate(pTree, pX); |
465
|
|
|
|
|
|
|
} |
466
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
/* Do the following transform, which balances the tree :) |
468
|
|
|
|
|
|
|
* | | |
469
|
|
|
|
|
|
|
* G(b) P(b) |
470
|
|
|
|
|
|
|
* / \ / \ |
471
|
|
|
|
|
|
|
* P(r) U(b) X(r) G(r) |
472
|
|
|
|
|
|
|
* / \ |
473
|
|
|
|
|
|
|
* X(r) U(b) |
474
|
|
|
|
|
|
|
* |
475
|
|
|
|
|
|
|
* BEFORE AFTER |
476
|
|
|
|
|
|
|
*/ |
477
|
|
|
|
|
|
|
assert( pGrandparent == pX->pParent->pParent ); |
478
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
479
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
480
|
0
|
|
|
|
|
|
rightRotate( pTree, pGrandparent ); |
481
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
}else{ |
483
|
|
|
|
|
|
|
/* This code is symetric to the illustrated case above. */ |
484
|
0
|
0
|
|
|
|
|
if( pX == pX->pParent->pLeft ){ |
485
|
0
|
|
|
|
|
|
pX = pX->pParent; |
486
|
0
|
|
|
|
|
|
rightRotate(pTree, pX); |
487
|
|
|
|
|
|
|
} |
488
|
|
|
|
|
|
|
assert( pGrandparent == pX->pParent->pParent ); |
489
|
0
|
|
|
|
|
|
pGrandparent->isBlack = 0; |
490
|
0
|
|
|
|
|
|
pX->pParent->isBlack = 1; |
491
|
0
|
|
|
|
|
|
leftRotate( pTree, pGrandparent ); |
492
|
|
|
|
|
|
|
} |
493
|
|
|
|
|
|
|
} |
494
|
|
|
|
|
|
|
} |
495
|
0
|
|
|
|
|
|
pTree->pHead->isBlack = 1; |
496
|
0
|
|
|
|
|
|
} |
497
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
/* |
499
|
|
|
|
|
|
|
* A child of pParent, which in turn had child pX, has just been removed from |
500
|
|
|
|
|
|
|
* pTree (the figure below depicts the operation, Z is being removed). pParent |
501
|
|
|
|
|
|
|
* or pX, or both may be NULL. |
502
|
|
|
|
|
|
|
* | | |
503
|
|
|
|
|
|
|
* P P |
504
|
|
|
|
|
|
|
* / \ / \ |
505
|
|
|
|
|
|
|
* Z X |
506
|
|
|
|
|
|
|
* / \ |
507
|
|
|
|
|
|
|
* X nil |
508
|
|
|
|
|
|
|
* |
509
|
|
|
|
|
|
|
* This function is only called if Z was black. In this case the red-black tree |
510
|
|
|
|
|
|
|
* properties have been violated, and pX has an "extra black". This function |
511
|
|
|
|
|
|
|
* performs rotations and color-changes to re-balance the tree. |
512
|
|
|
|
|
|
|
*/ |
513
|
|
|
|
|
|
|
static |
514
|
0
|
|
|
|
|
|
void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent) |
515
|
|
|
|
|
|
|
{ |
516
|
|
|
|
|
|
|
BtRbNode *pSib; |
517
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
/* TODO: Comment this code! */ |
519
|
0
|
0
|
|
|
|
|
while( pX != pTree->pHead && (!pX || pX->isBlack) ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
520
|
0
|
0
|
|
|
|
|
if( pX == pParent->pLeft ){ |
521
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
522
|
0
|
0
|
|
|
|
|
if( pSib && !(pSib->isBlack) ){ |
|
|
0
|
|
|
|
|
|
523
|
0
|
|
|
|
|
|
pSib->isBlack = 1; |
524
|
0
|
|
|
|
|
|
pParent->isBlack = 0; |
525
|
0
|
|
|
|
|
|
leftRotate(pTree, pParent); |
526
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
527
|
|
|
|
|
|
|
} |
528
|
0
|
0
|
|
|
|
|
if( !pSib ){ |
529
|
0
|
|
|
|
|
|
pX = pParent; |
530
|
0
|
0
|
|
|
|
|
}else if( |
531
|
0
|
0
|
|
|
|
|
(!pSib->pLeft || pSib->pLeft->isBlack) && |
|
|
0
|
|
|
|
|
|
532
|
0
|
0
|
|
|
|
|
(!pSib->pRight || pSib->pRight->isBlack) ) { |
533
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
534
|
0
|
|
|
|
|
|
pX = pParent; |
535
|
|
|
|
|
|
|
}else{ |
536
|
0
|
0
|
|
|
|
|
if( (!pSib->pRight || pSib->pRight->isBlack) ){ |
|
|
0
|
|
|
|
|
|
537
|
0
|
0
|
|
|
|
|
if( pSib->pLeft ) pSib->pLeft->isBlack = 1; |
538
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
539
|
0
|
|
|
|
|
|
rightRotate( pTree, pSib ); |
540
|
0
|
|
|
|
|
|
pSib = pParent->pRight; |
541
|
|
|
|
|
|
|
} |
542
|
0
|
|
|
|
|
|
pSib->isBlack = pParent->isBlack; |
543
|
0
|
|
|
|
|
|
pParent->isBlack = 1; |
544
|
0
|
0
|
|
|
|
|
if( pSib->pRight ) pSib->pRight->isBlack = 1; |
545
|
0
|
|
|
|
|
|
leftRotate(pTree, pParent); |
546
|
0
|
|
|
|
|
|
pX = pTree->pHead; |
547
|
|
|
|
|
|
|
} |
548
|
|
|
|
|
|
|
}else{ |
549
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
550
|
0
|
0
|
|
|
|
|
if( pSib && !(pSib->isBlack) ){ |
|
|
0
|
|
|
|
|
|
551
|
0
|
|
|
|
|
|
pSib->isBlack = 1; |
552
|
0
|
|
|
|
|
|
pParent->isBlack = 0; |
553
|
0
|
|
|
|
|
|
rightRotate(pTree, pParent); |
554
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
555
|
|
|
|
|
|
|
} |
556
|
0
|
0
|
|
|
|
|
if( !pSib ){ |
557
|
0
|
|
|
|
|
|
pX = pParent; |
558
|
0
|
0
|
|
|
|
|
}else if( |
559
|
0
|
0
|
|
|
|
|
(!pSib->pLeft || pSib->pLeft->isBlack) && |
|
|
0
|
|
|
|
|
|
560
|
0
|
0
|
|
|
|
|
(!pSib->pRight || pSib->pRight->isBlack) ){ |
561
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
562
|
0
|
|
|
|
|
|
pX = pParent; |
563
|
|
|
|
|
|
|
}else{ |
564
|
0
|
0
|
|
|
|
|
if( (!pSib->pLeft || pSib->pLeft->isBlack) ){ |
|
|
0
|
|
|
|
|
|
565
|
0
|
0
|
|
|
|
|
if( pSib->pRight ) pSib->pRight->isBlack = 1; |
566
|
0
|
|
|
|
|
|
pSib->isBlack = 0; |
567
|
0
|
|
|
|
|
|
leftRotate( pTree, pSib ); |
568
|
0
|
|
|
|
|
|
pSib = pParent->pLeft; |
569
|
|
|
|
|
|
|
} |
570
|
0
|
|
|
|
|
|
pSib->isBlack = pParent->isBlack; |
571
|
0
|
|
|
|
|
|
pParent->isBlack = 1; |
572
|
0
|
0
|
|
|
|
|
if( pSib->pLeft ) pSib->pLeft->isBlack = 1; |
573
|
0
|
|
|
|
|
|
rightRotate(pTree, pParent); |
574
|
0
|
|
|
|
|
|
pX = pTree->pHead; |
575
|
|
|
|
|
|
|
} |
576
|
|
|
|
|
|
|
} |
577
|
0
|
|
|
|
|
|
pParent = pX->pParent; |
578
|
|
|
|
|
|
|
} |
579
|
0
|
0
|
|
|
|
|
if( pX ) pX->isBlack = 1; |
580
|
0
|
|
|
|
|
|
} |
581
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
/* |
583
|
|
|
|
|
|
|
* Create table n in tree pRbtree. Table n must not exist. |
584
|
|
|
|
|
|
|
*/ |
585
|
0
|
|
|
|
|
|
static void btreeCreateTable(Rbtree* pRbtree, int n) |
586
|
|
|
|
|
|
|
{ |
587
|
0
|
|
|
|
|
|
BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree)); |
588
|
0
|
|
|
|
|
|
sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl); |
589
|
0
|
|
|
|
|
|
} |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
/* |
592
|
|
|
|
|
|
|
* Log a single "rollback-op" for the given Rbtree. See comments for struct |
593
|
|
|
|
|
|
|
* BtRollbackOp. |
594
|
|
|
|
|
|
|
*/ |
595
|
0
|
|
|
|
|
|
static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp) |
596
|
|
|
|
|
|
|
{ |
597
|
|
|
|
|
|
|
assert( pRbtree->eTransState == TRANS_INCHECKPOINT || |
598
|
|
|
|
|
|
|
pRbtree->eTransState == TRANS_INTRANSACTION ); |
599
|
0
|
0
|
|
|
|
|
if( pRbtree->eTransState == TRANS_INTRANSACTION ){ |
600
|
0
|
|
|
|
|
|
pRollbackOp->pNext = pRbtree->pTransRollback; |
601
|
0
|
|
|
|
|
|
pRbtree->pTransRollback = pRollbackOp; |
602
|
|
|
|
|
|
|
} |
603
|
0
|
0
|
|
|
|
|
if( pRbtree->eTransState == TRANS_INCHECKPOINT ){ |
604
|
0
|
0
|
|
|
|
|
if( !pRbtree->pCheckRollback ){ |
605
|
0
|
|
|
|
|
|
pRbtree->pCheckRollbackTail = pRollbackOp; |
606
|
|
|
|
|
|
|
} |
607
|
0
|
|
|
|
|
|
pRollbackOp->pNext = pRbtree->pCheckRollback; |
608
|
0
|
|
|
|
|
|
pRbtree->pCheckRollback = pRollbackOp; |
609
|
|
|
|
|
|
|
} |
610
|
0
|
|
|
|
|
|
} |
611
|
|
|
|
|
|
|
|
612
|
0
|
|
|
|
|
|
int sqliteRbtreeOpen( |
613
|
|
|
|
|
|
|
const char *zFilename, |
614
|
|
|
|
|
|
|
int mode, |
615
|
|
|
|
|
|
|
int nPg, |
616
|
|
|
|
|
|
|
Btree **ppBtree |
617
|
|
|
|
|
|
|
){ |
618
|
0
|
|
|
|
|
|
Rbtree **ppRbtree = (Rbtree**)ppBtree; |
619
|
0
|
|
|
|
|
|
*ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree)); |
620
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto open_no_mem; |
621
|
0
|
|
|
|
|
|
sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0); |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
/* Create a binary tree for the SQLITE_MASTER table at location 2 */ |
624
|
0
|
|
|
|
|
|
btreeCreateTable(*ppRbtree, 2); |
625
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) goto open_no_mem; |
626
|
0
|
|
|
|
|
|
(*ppRbtree)->next_idx = 3; |
627
|
0
|
|
|
|
|
|
(*ppRbtree)->pOps = &sqliteRbtreeOps; |
628
|
|
|
|
|
|
|
/* Set file type to 4; this is so that "attach ':memory:' as ...." does not |
629
|
|
|
|
|
|
|
** think that the database in uninitialised and refuse to attach |
630
|
|
|
|
|
|
|
*/ |
631
|
0
|
|
|
|
|
|
(*ppRbtree)->aMetaData[2] = 4; |
632
|
|
|
|
|
|
|
|
633
|
0
|
|
|
|
|
|
return SQLITE_OK; |
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
open_no_mem: |
636
|
0
|
|
|
|
|
|
*ppBtree = 0; |
637
|
0
|
|
|
|
|
|
return SQLITE_NOMEM; |
638
|
|
|
|
|
|
|
} |
639
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
/* |
641
|
|
|
|
|
|
|
* Create a new table in the supplied Rbtree. Set *n to the new table number. |
642
|
|
|
|
|
|
|
* Return SQLITE_OK if the operation is a success. |
643
|
|
|
|
|
|
|
*/ |
644
|
0
|
|
|
|
|
|
static int memRbtreeCreateTable(Rbtree* tree, int* n) |
645
|
|
|
|
|
|
|
{ |
646
|
|
|
|
|
|
|
assert( tree->eTransState != TRANS_NONE ); |
647
|
|
|
|
|
|
|
|
648
|
0
|
|
|
|
|
|
*n = tree->next_idx++; |
649
|
0
|
|
|
|
|
|
btreeCreateTable(tree, *n); |
650
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
651
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
/* Set up the rollback structure (if we are not doing this as part of a |
653
|
|
|
|
|
|
|
* rollback) */ |
654
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_ROLLBACK ){ |
655
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); |
656
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
657
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_DROP; |
658
|
0
|
|
|
|
|
|
pRollbackOp->iTab = *n; |
659
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
660
|
|
|
|
|
|
|
} |
661
|
|
|
|
|
|
|
|
662
|
0
|
|
|
|
|
|
return SQLITE_OK; |
663
|
|
|
|
|
|
|
} |
664
|
|
|
|
|
|
|
|
665
|
|
|
|
|
|
|
/* |
666
|
|
|
|
|
|
|
* Delete table n from the supplied Rbtree. |
667
|
|
|
|
|
|
|
*/ |
668
|
0
|
|
|
|
|
|
static int memRbtreeDropTable(Rbtree* tree, int n) |
669
|
|
|
|
|
|
|
{ |
670
|
|
|
|
|
|
|
BtRbTree *pTree; |
671
|
|
|
|
|
|
|
assert( tree->eTransState != TRANS_NONE ); |
672
|
|
|
|
|
|
|
|
673
|
0
|
|
|
|
|
|
memRbtreeClearTable(tree, n); |
674
|
0
|
|
|
|
|
|
pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0); |
675
|
|
|
|
|
|
|
assert(pTree); |
676
|
|
|
|
|
|
|
assert( pTree->pCursors==0 ); |
677
|
0
|
|
|
|
|
|
sqliteFree(pTree); |
678
|
|
|
|
|
|
|
|
679
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_ROLLBACK ){ |
680
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp)); |
681
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
682
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_CREATE; |
683
|
0
|
|
|
|
|
|
pRollbackOp->iTab = n; |
684
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
685
|
|
|
|
|
|
|
} |
686
|
|
|
|
|
|
|
|
687
|
0
|
|
|
|
|
|
return SQLITE_OK; |
688
|
|
|
|
|
|
|
} |
689
|
|
|
|
|
|
|
|
690
|
0
|
|
|
|
|
|
static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey, |
691
|
|
|
|
|
|
|
int nIgnore, int *pRes) |
692
|
|
|
|
|
|
|
{ |
693
|
|
|
|
|
|
|
assert(pCur); |
694
|
|
|
|
|
|
|
|
695
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) { |
696
|
0
|
|
|
|
|
|
*pRes = -1; |
697
|
|
|
|
|
|
|
} else { |
698
|
0
|
0
|
|
|
|
|
if( (pCur->pNode->nKey - nIgnore) < 0 ){ |
699
|
0
|
|
|
|
|
|
*pRes = -1; |
700
|
|
|
|
|
|
|
}else{ |
701
|
0
|
|
|
|
|
|
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, |
702
|
|
|
|
|
|
|
pKey, nKey); |
703
|
|
|
|
|
|
|
} |
704
|
|
|
|
|
|
|
} |
705
|
0
|
|
|
|
|
|
return SQLITE_OK; |
706
|
|
|
|
|
|
|
} |
707
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
/* |
709
|
|
|
|
|
|
|
* Get a new cursor for table iTable of the supplied Rbtree. The wrFlag |
710
|
|
|
|
|
|
|
* parameter indicates that the cursor is open for writing. |
711
|
|
|
|
|
|
|
* |
712
|
|
|
|
|
|
|
* Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0. |
713
|
|
|
|
|
|
|
*/ |
714
|
0
|
|
|
|
|
|
static int memRbtreeCursor( |
715
|
|
|
|
|
|
|
Rbtree* tree, |
716
|
|
|
|
|
|
|
int iTable, |
717
|
|
|
|
|
|
|
int wrFlag, |
718
|
|
|
|
|
|
|
RbtCursor **ppCur |
719
|
|
|
|
|
|
|
){ |
720
|
|
|
|
|
|
|
RbtCursor *pCur; |
721
|
|
|
|
|
|
|
assert(tree); |
722
|
0
|
|
|
|
|
|
pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor)); |
723
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
724
|
0
|
|
|
|
|
|
pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable); |
725
|
|
|
|
|
|
|
assert( pCur->pTree ); |
726
|
0
|
|
|
|
|
|
pCur->pRbtree = tree; |
727
|
0
|
|
|
|
|
|
pCur->iTree = iTable; |
728
|
0
|
|
|
|
|
|
pCur->pOps = &sqliteRbtreeCursorOps; |
729
|
0
|
|
|
|
|
|
pCur->wrFlag = wrFlag; |
730
|
0
|
|
|
|
|
|
pCur->pShared = pCur->pTree->pCursors; |
731
|
0
|
|
|
|
|
|
pCur->pTree->pCursors = pCur; |
732
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
assert( (*ppCur)->pTree ); |
734
|
0
|
|
|
|
|
|
return SQLITE_OK; |
735
|
|
|
|
|
|
|
} |
736
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
/* |
738
|
|
|
|
|
|
|
* Insert a new record into the Rbtree. The key is given by (pKey,nKey) |
739
|
|
|
|
|
|
|
* and the data is given by (pData,nData). The cursor is used only to |
740
|
|
|
|
|
|
|
* define what database the record should be inserted into. The cursor |
741
|
|
|
|
|
|
|
* is left pointing at the new record. |
742
|
|
|
|
|
|
|
* |
743
|
|
|
|
|
|
|
* If the key exists already in the tree, just replace the data. |
744
|
|
|
|
|
|
|
*/ |
745
|
0
|
|
|
|
|
|
static int memRbtreeInsert( |
746
|
|
|
|
|
|
|
RbtCursor* pCur, |
747
|
|
|
|
|
|
|
const void *pKey, |
748
|
|
|
|
|
|
|
int nKey, |
749
|
|
|
|
|
|
|
const void *pDataInput, |
750
|
|
|
|
|
|
|
int nData |
751
|
|
|
|
|
|
|
){ |
752
|
|
|
|
|
|
|
void * pData; |
753
|
|
|
|
|
|
|
int match; |
754
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
/* It is illegal to call sqliteRbtreeInsert() if we are |
756
|
|
|
|
|
|
|
** not in a transaction */ |
757
|
|
|
|
|
|
|
assert( pCur->pRbtree->eTransState != TRANS_NONE ); |
758
|
|
|
|
|
|
|
|
759
|
|
|
|
|
|
|
/* Make sure some other cursor isn't trying to read this same table */ |
760
|
0
|
0
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
761
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
762
|
|
|
|
|
|
|
} |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
/* Take a copy of the input data now, in case we need it for the |
765
|
|
|
|
|
|
|
* replace case */ |
766
|
0
|
|
|
|
|
|
pData = sqliteMallocRaw(nData); |
767
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
768
|
0
|
|
|
|
|
|
memcpy(pData, pDataInput, nData); |
769
|
|
|
|
|
|
|
|
770
|
|
|
|
|
|
|
/* Move the cursor to a node near the key to be inserted. If the key already |
771
|
|
|
|
|
|
|
* exists in the table, then (match == 0). In this case we can just replace |
772
|
|
|
|
|
|
|
* the data associated with the entry, we don't need to manipulate the tree. |
773
|
|
|
|
|
|
|
* |
774
|
|
|
|
|
|
|
* If there is no exact match, then the cursor points at what would be either |
775
|
|
|
|
|
|
|
* the predecessor (match == -1) or successor (match == 1) of the |
776
|
|
|
|
|
|
|
* searched-for key, were it to be inserted. The new node becomes a child of |
777
|
|
|
|
|
|
|
* this node. |
778
|
|
|
|
|
|
|
* |
779
|
|
|
|
|
|
|
* The new node is initially red. |
780
|
|
|
|
|
|
|
*/ |
781
|
0
|
|
|
|
|
|
memRbtreeMoveto( pCur, pKey, nKey, &match); |
782
|
0
|
0
|
|
|
|
|
if( match ){ |
783
|
0
|
|
|
|
|
|
BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode)); |
784
|
0
|
0
|
|
|
|
|
if( pNode==0 ) return SQLITE_NOMEM; |
785
|
0
|
|
|
|
|
|
pNode->nKey = nKey; |
786
|
0
|
|
|
|
|
|
pNode->pKey = sqliteMallocRaw(nKey); |
787
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
788
|
0
|
|
|
|
|
|
memcpy(pNode->pKey, pKey, nKey); |
789
|
0
|
|
|
|
|
|
pNode->nData = nData; |
790
|
0
|
|
|
|
|
|
pNode->pData = pData; |
791
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
792
|
0
|
|
|
|
|
|
switch( match ){ |
793
|
|
|
|
|
|
|
case -1: |
794
|
|
|
|
|
|
|
assert( !pCur->pNode->pRight ); |
795
|
0
|
|
|
|
|
|
pNode->pParent = pCur->pNode; |
796
|
0
|
|
|
|
|
|
pCur->pNode->pRight = pNode; |
797
|
0
|
|
|
|
|
|
break; |
798
|
|
|
|
|
|
|
case 1: |
799
|
|
|
|
|
|
|
assert( !pCur->pNode->pLeft ); |
800
|
0
|
|
|
|
|
|
pNode->pParent = pCur->pNode; |
801
|
0
|
|
|
|
|
|
pCur->pNode->pLeft = pNode; |
802
|
0
|
|
|
|
|
|
break; |
803
|
|
|
|
|
|
|
default: |
804
|
|
|
|
|
|
|
assert(0); |
805
|
|
|
|
|
|
|
} |
806
|
|
|
|
|
|
|
}else{ |
807
|
0
|
|
|
|
|
|
pCur->pTree->pHead = pNode; |
808
|
|
|
|
|
|
|
} |
809
|
|
|
|
|
|
|
|
810
|
|
|
|
|
|
|
/* Point the cursor at the node just inserted, as per SQLite requirements */ |
811
|
0
|
|
|
|
|
|
pCur->pNode = pNode; |
812
|
|
|
|
|
|
|
|
813
|
|
|
|
|
|
|
/* A new node has just been inserted, so run the balancing code */ |
814
|
0
|
|
|
|
|
|
do_insert_balancing(pCur->pTree, pNode); |
815
|
|
|
|
|
|
|
|
816
|
|
|
|
|
|
|
/* Set up a rollback-op in case we have to roll this operation back */ |
817
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
818
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
819
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
820
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_DELETE; |
821
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
822
|
0
|
|
|
|
|
|
pOp->nKey = pNode->nKey; |
823
|
0
|
|
|
|
|
|
pOp->pKey = sqliteMallocRaw( pOp->nKey ); |
824
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
825
|
0
|
|
|
|
|
|
memcpy( pOp->pKey, pNode->pKey, pOp->nKey ); |
826
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
827
|
|
|
|
|
|
|
} |
828
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
}else{ |
830
|
|
|
|
|
|
|
/* No need to insert a new node in the tree, as the key already exists. |
831
|
|
|
|
|
|
|
* Just clobber the current nodes data. */ |
832
|
|
|
|
|
|
|
|
833
|
|
|
|
|
|
|
/* Set up a rollback-op in case we have to roll this operation back */ |
834
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
835
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
836
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
837
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
838
|
0
|
|
|
|
|
|
pOp->nKey = pCur->pNode->nKey; |
839
|
0
|
|
|
|
|
|
pOp->pKey = sqliteMallocRaw( pOp->nKey ); |
840
|
0
|
0
|
|
|
|
|
if( sqlite_malloc_failed ) return SQLITE_NOMEM; |
841
|
0
|
|
|
|
|
|
memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey ); |
842
|
0
|
|
|
|
|
|
pOp->nData = pCur->pNode->nData; |
843
|
0
|
|
|
|
|
|
pOp->pData = pCur->pNode->pData; |
844
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_INSERT; |
845
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
846
|
|
|
|
|
|
|
}else{ |
847
|
0
|
|
|
|
|
|
sqliteFree( pCur->pNode->pData ); |
848
|
|
|
|
|
|
|
} |
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
/* Actually clobber the nodes data */ |
851
|
0
|
|
|
|
|
|
pCur->pNode->pData = pData; |
852
|
0
|
|
|
|
|
|
pCur->pNode->nData = nData; |
853
|
|
|
|
|
|
|
} |
854
|
|
|
|
|
|
|
|
855
|
0
|
|
|
|
|
|
return SQLITE_OK; |
856
|
|
|
|
|
|
|
} |
857
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
/* Move the cursor so that it points to an entry near pKey. |
859
|
|
|
|
|
|
|
** Return a success code. |
860
|
|
|
|
|
|
|
** |
861
|
|
|
|
|
|
|
** *pRes<0 The cursor is left pointing at an entry that |
862
|
|
|
|
|
|
|
** is smaller than pKey or if the table is empty |
863
|
|
|
|
|
|
|
** and the cursor is therefore left point to nothing. |
864
|
|
|
|
|
|
|
** |
865
|
|
|
|
|
|
|
** *pRes==0 The cursor is left pointing at an entry that |
866
|
|
|
|
|
|
|
** exactly matches pKey. |
867
|
|
|
|
|
|
|
** |
868
|
|
|
|
|
|
|
** *pRes>0 The cursor is left pointing at an entry that |
869
|
|
|
|
|
|
|
** is larger than pKey. |
870
|
|
|
|
|
|
|
*/ |
871
|
0
|
|
|
|
|
|
static int memRbtreeMoveto( |
872
|
|
|
|
|
|
|
RbtCursor* pCur, |
873
|
|
|
|
|
|
|
const void *pKey, |
874
|
|
|
|
|
|
|
int nKey, |
875
|
|
|
|
|
|
|
int *pRes |
876
|
|
|
|
|
|
|
){ |
877
|
0
|
|
|
|
|
|
BtRbNode *pTmp = 0; |
878
|
|
|
|
|
|
|
|
879
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
880
|
0
|
|
|
|
|
|
*pRes = -1; |
881
|
0
|
0
|
|
|
|
|
while( pCur->pNode && *pRes ) { |
|
|
0
|
|
|
|
|
|
882
|
0
|
|
|
|
|
|
*pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey); |
883
|
0
|
|
|
|
|
|
pTmp = pCur->pNode; |
884
|
0
|
|
|
|
|
|
switch( *pRes ){ |
885
|
|
|
|
|
|
|
case 1: /* cursor > key */ |
886
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
887
|
0
|
|
|
|
|
|
break; |
888
|
|
|
|
|
|
|
case -1: /* cursor < key */ |
889
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
890
|
0
|
|
|
|
|
|
break; |
891
|
|
|
|
|
|
|
} |
892
|
|
|
|
|
|
|
} |
893
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
/* If (pCur->pNode == NULL), then we have failed to find a match. Set |
895
|
|
|
|
|
|
|
* pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the |
896
|
|
|
|
|
|
|
* last node traversed in the search. In either case the relation ship |
897
|
|
|
|
|
|
|
* between pTmp and the searched for key is already stored in *pRes. pTmp is |
898
|
|
|
|
|
|
|
* either the successor or predecessor of the key we tried to move to. */ |
899
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) pCur->pNode = pTmp; |
900
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
901
|
|
|
|
|
|
|
|
902
|
0
|
|
|
|
|
|
return SQLITE_OK; |
903
|
|
|
|
|
|
|
} |
904
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
/* |
907
|
|
|
|
|
|
|
** Delete the entry that the cursor is pointing to. |
908
|
|
|
|
|
|
|
** |
909
|
|
|
|
|
|
|
** The cursor is left pointing at either the next or the previous |
910
|
|
|
|
|
|
|
** entry. If the cursor is left pointing to the next entry, then |
911
|
|
|
|
|
|
|
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to |
912
|
|
|
|
|
|
|
** sqliteRbtreeNext() to be a no-op. That way, you can always call |
913
|
|
|
|
|
|
|
** sqliteRbtreeNext() after a delete and the cursor will be left |
914
|
|
|
|
|
|
|
** pointing to the first entry after the deleted entry. Similarly, |
915
|
|
|
|
|
|
|
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to |
916
|
|
|
|
|
|
|
** the entry prior to the deleted entry so that a subsequent call to |
917
|
|
|
|
|
|
|
** sqliteRbtreePrevious() will always leave the cursor pointing at the |
918
|
|
|
|
|
|
|
** entry immediately before the one that was deleted. |
919
|
|
|
|
|
|
|
*/ |
920
|
0
|
|
|
|
|
|
static int memRbtreeDelete(RbtCursor* pCur) |
921
|
|
|
|
|
|
|
{ |
922
|
|
|
|
|
|
|
BtRbNode *pZ; /* The one being deleted */ |
923
|
|
|
|
|
|
|
BtRbNode *pChild; /* The child of the spliced out node */ |
924
|
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
/* It is illegal to call sqliteRbtreeDelete() if we are |
926
|
|
|
|
|
|
|
** not in a transaction */ |
927
|
|
|
|
|
|
|
assert( pCur->pRbtree->eTransState != TRANS_NONE ); |
928
|
|
|
|
|
|
|
|
929
|
|
|
|
|
|
|
/* Make sure some other cursor isn't trying to read this same table */ |
930
|
0
|
0
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
931
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
932
|
|
|
|
|
|
|
} |
933
|
|
|
|
|
|
|
|
934
|
0
|
|
|
|
|
|
pZ = pCur->pNode; |
935
|
0
|
0
|
|
|
|
|
if( !pZ ){ |
936
|
0
|
|
|
|
|
|
return SQLITE_OK; |
937
|
|
|
|
|
|
|
} |
938
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
/* If we are not currently doing a rollback, set up a rollback op for this |
940
|
|
|
|
|
|
|
* deletion */ |
941
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){ |
942
|
0
|
|
|
|
|
|
BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) ); |
943
|
0
|
0
|
|
|
|
|
if( pOp==0 ) return SQLITE_NOMEM; |
944
|
0
|
|
|
|
|
|
pOp->iTab = pCur->iTree; |
945
|
0
|
|
|
|
|
|
pOp->nKey = pZ->nKey; |
946
|
0
|
|
|
|
|
|
pOp->pKey = pZ->pKey; |
947
|
0
|
|
|
|
|
|
pOp->nData = pZ->nData; |
948
|
0
|
|
|
|
|
|
pOp->pData = pZ->pData; |
949
|
0
|
|
|
|
|
|
pOp->eOp = ROLLBACK_INSERT; |
950
|
0
|
|
|
|
|
|
btreeLogRollbackOp(pCur->pRbtree, pOp); |
951
|
|
|
|
|
|
|
} |
952
|
|
|
|
|
|
|
|
953
|
|
|
|
|
|
|
/* First do a standard binary-tree delete (node pZ is to be deleted). How |
954
|
|
|
|
|
|
|
* to do this depends on how many children pZ has: |
955
|
|
|
|
|
|
|
* |
956
|
|
|
|
|
|
|
* If pZ has no children or one child, then splice out pZ. If pZ has two |
957
|
|
|
|
|
|
|
* children, splice out the successor of pZ and replace the key and data of |
958
|
|
|
|
|
|
|
* pZ with the key and data of the spliced out successor. */ |
959
|
0
|
0
|
|
|
|
|
if( pZ->pLeft && pZ->pRight ){ |
|
|
0
|
|
|
|
|
|
960
|
|
|
|
|
|
|
BtRbNode *pTmp; |
961
|
|
|
|
|
|
|
int dummy; |
962
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
963
|
0
|
|
|
|
|
|
memRbtreeNext(pCur, &dummy); |
964
|
|
|
|
|
|
|
assert( dummy == 0 ); |
965
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ |
966
|
0
|
|
|
|
|
|
sqliteFree(pZ->pKey); |
967
|
0
|
|
|
|
|
|
sqliteFree(pZ->pData); |
968
|
|
|
|
|
|
|
} |
969
|
0
|
|
|
|
|
|
pZ->pData = pCur->pNode->pData; |
970
|
0
|
|
|
|
|
|
pZ->nData = pCur->pNode->nData; |
971
|
0
|
|
|
|
|
|
pZ->pKey = pCur->pNode->pKey; |
972
|
0
|
|
|
|
|
|
pZ->nKey = pCur->pNode->nKey; |
973
|
0
|
|
|
|
|
|
pTmp = pZ; |
974
|
0
|
|
|
|
|
|
pZ = pCur->pNode; |
975
|
0
|
|
|
|
|
|
pCur->pNode = pTmp; |
976
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
977
|
|
|
|
|
|
|
}else{ |
978
|
|
|
|
|
|
|
int res; |
979
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
980
|
0
|
|
|
|
|
|
memRbtreeNext(pCur, &res); |
981
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
982
|
0
|
0
|
|
|
|
|
if( res ){ |
983
|
0
|
|
|
|
|
|
memRbtreeLast(pCur, &res); |
984
|
0
|
|
|
|
|
|
memRbtreePrevious(pCur, &res); |
985
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_PREV; |
986
|
|
|
|
|
|
|
} |
987
|
0
|
0
|
|
|
|
|
if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){ |
988
|
0
|
|
|
|
|
|
sqliteFree(pZ->pKey); |
989
|
0
|
|
|
|
|
|
sqliteFree(pZ->pData); |
990
|
|
|
|
|
|
|
} |
991
|
|
|
|
|
|
|
} |
992
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
/* pZ now points at the node to be spliced out. This block does the |
994
|
|
|
|
|
|
|
* splicing. */ |
995
|
|
|
|
|
|
|
{ |
996
|
0
|
|
|
|
|
|
BtRbNode **ppParentSlot = 0; |
997
|
|
|
|
|
|
|
assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */ |
998
|
0
|
0
|
|
|
|
|
pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight); |
999
|
0
|
0
|
|
|
|
|
if( pZ->pParent ){ |
1000
|
|
|
|
|
|
|
assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight ); |
1001
|
0
|
|
|
|
|
|
ppParentSlot = ((pZ == pZ->pParent->pLeft) |
1002
|
0
|
0
|
|
|
|
|
?&pZ->pParent->pLeft:&pZ->pParent->pRight); |
1003
|
0
|
|
|
|
|
|
*ppParentSlot = pChild; |
1004
|
|
|
|
|
|
|
}else{ |
1005
|
0
|
|
|
|
|
|
pCur->pTree->pHead = pChild; |
1006
|
|
|
|
|
|
|
} |
1007
|
0
|
0
|
|
|
|
|
if( pChild ) pChild->pParent = pZ->pParent; |
1008
|
|
|
|
|
|
|
} |
1009
|
|
|
|
|
|
|
|
1010
|
|
|
|
|
|
|
/* pZ now points at the spliced out node. pChild is the only child of pZ, or |
1011
|
|
|
|
|
|
|
* NULL if pZ has no children. If pZ is black, and not the tree root, then we |
1012
|
|
|
|
|
|
|
* will have violated the "same number of black nodes in every path to a |
1013
|
|
|
|
|
|
|
* leaf" property of the red-black tree. The code in do_delete_balancing() |
1014
|
|
|
|
|
|
|
* repairs this. */ |
1015
|
0
|
0
|
|
|
|
|
if( pZ->isBlack ){ |
1016
|
0
|
|
|
|
|
|
do_delete_balancing(pCur->pTree, pChild, pZ->pParent); |
1017
|
|
|
|
|
|
|
} |
1018
|
|
|
|
|
|
|
|
1019
|
0
|
|
|
|
|
|
sqliteFree(pZ); |
1020
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1021
|
|
|
|
|
|
|
} |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
/* |
1024
|
|
|
|
|
|
|
* Empty table n of the Rbtree. |
1025
|
|
|
|
|
|
|
*/ |
1026
|
0
|
|
|
|
|
|
static int memRbtreeClearTable(Rbtree* tree, int n) |
1027
|
|
|
|
|
|
|
{ |
1028
|
|
|
|
|
|
|
BtRbTree *pTree; |
1029
|
|
|
|
|
|
|
BtRbNode *pNode; |
1030
|
|
|
|
|
|
|
|
1031
|
0
|
|
|
|
|
|
pTree = sqliteHashFind(&tree->tblHash, 0, n); |
1032
|
|
|
|
|
|
|
assert(pTree); |
1033
|
|
|
|
|
|
|
|
1034
|
0
|
|
|
|
|
|
pNode = pTree->pHead; |
1035
|
0
|
0
|
|
|
|
|
while( pNode ){ |
1036
|
0
|
0
|
|
|
|
|
if( pNode->pLeft ){ |
1037
|
0
|
|
|
|
|
|
pNode = pNode->pLeft; |
1038
|
|
|
|
|
|
|
} |
1039
|
0
|
0
|
|
|
|
|
else if( pNode->pRight ){ |
1040
|
0
|
|
|
|
|
|
pNode = pNode->pRight; |
1041
|
|
|
|
|
|
|
} |
1042
|
|
|
|
|
|
|
else { |
1043
|
0
|
|
|
|
|
|
BtRbNode *pTmp = pNode->pParent; |
1044
|
0
|
0
|
|
|
|
|
if( tree->eTransState == TRANS_ROLLBACK ){ |
1045
|
0
|
|
|
|
|
|
sqliteFree( pNode->pKey ); |
1046
|
0
|
|
|
|
|
|
sqliteFree( pNode->pData ); |
1047
|
|
|
|
|
|
|
}else{ |
1048
|
0
|
|
|
|
|
|
BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp)); |
1049
|
0
|
0
|
|
|
|
|
if( pRollbackOp==0 ) return SQLITE_NOMEM; |
1050
|
0
|
|
|
|
|
|
pRollbackOp->eOp = ROLLBACK_INSERT; |
1051
|
0
|
|
|
|
|
|
pRollbackOp->iTab = n; |
1052
|
0
|
|
|
|
|
|
pRollbackOp->nKey = pNode->nKey; |
1053
|
0
|
|
|
|
|
|
pRollbackOp->pKey = pNode->pKey; |
1054
|
0
|
|
|
|
|
|
pRollbackOp->nData = pNode->nData; |
1055
|
0
|
|
|
|
|
|
pRollbackOp->pData = pNode->pData; |
1056
|
0
|
|
|
|
|
|
btreeLogRollbackOp(tree, pRollbackOp); |
1057
|
|
|
|
|
|
|
} |
1058
|
0
|
|
|
|
|
|
sqliteFree( pNode ); |
1059
|
0
|
0
|
|
|
|
|
if( pTmp ){ |
1060
|
0
|
0
|
|
|
|
|
if( pTmp->pLeft == pNode ) pTmp->pLeft = 0; |
1061
|
0
|
0
|
|
|
|
|
else if( pTmp->pRight == pNode ) pTmp->pRight = 0; |
1062
|
|
|
|
|
|
|
} |
1063
|
0
|
|
|
|
|
|
pNode = pTmp; |
1064
|
|
|
|
|
|
|
} |
1065
|
|
|
|
|
|
|
} |
1066
|
|
|
|
|
|
|
|
1067
|
0
|
|
|
|
|
|
pTree->pHead = 0; |
1068
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1069
|
|
|
|
|
|
|
} |
1070
|
|
|
|
|
|
|
|
1071
|
0
|
|
|
|
|
|
static int memRbtreeFirst(RbtCursor* pCur, int *pRes) |
1072
|
|
|
|
|
|
|
{ |
1073
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pHead ){ |
1074
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
1075
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pLeft ){ |
1076
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
1077
|
|
|
|
|
|
|
} |
1078
|
|
|
|
|
|
|
} |
1079
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
1080
|
0
|
|
|
|
|
|
*pRes = 0; |
1081
|
|
|
|
|
|
|
}else{ |
1082
|
0
|
|
|
|
|
|
*pRes = 1; |
1083
|
|
|
|
|
|
|
} |
1084
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1085
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1086
|
|
|
|
|
|
|
} |
1087
|
|
|
|
|
|
|
|
1088
|
0
|
|
|
|
|
|
static int memRbtreeLast(RbtCursor* pCur, int *pRes) |
1089
|
|
|
|
|
|
|
{ |
1090
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pHead ){ |
1091
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pTree->pHead; |
1092
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pRight ){ |
1093
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
1094
|
|
|
|
|
|
|
} |
1095
|
|
|
|
|
|
|
} |
1096
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
1097
|
0
|
|
|
|
|
|
*pRes = 0; |
1098
|
|
|
|
|
|
|
}else{ |
1099
|
0
|
|
|
|
|
|
*pRes = 1; |
1100
|
|
|
|
|
|
|
} |
1101
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1102
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1103
|
|
|
|
|
|
|
} |
1104
|
|
|
|
|
|
|
|
1105
|
|
|
|
|
|
|
/* |
1106
|
|
|
|
|
|
|
** Advance the cursor to the next entry in the database. If |
1107
|
|
|
|
|
|
|
** successful then set *pRes=0. If the cursor |
1108
|
|
|
|
|
|
|
** was already pointing to the last entry in the database before |
1109
|
|
|
|
|
|
|
** this routine was called, then set *pRes=1. |
1110
|
|
|
|
|
|
|
*/ |
1111
|
0
|
|
|
|
|
|
static int memRbtreeNext(RbtCursor* pCur, int *pRes) |
1112
|
|
|
|
|
|
|
{ |
1113
|
0
|
0
|
|
|
|
|
if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){ |
|
|
0
|
|
|
|
|
|
1114
|
0
|
0
|
|
|
|
|
if( pCur->pNode->pRight ){ |
1115
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
1116
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pLeft ) |
1117
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
1118
|
|
|
|
|
|
|
}else{ |
1119
|
0
|
|
|
|
|
|
BtRbNode * pX = pCur->pNode; |
1120
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
1121
|
0
|
0
|
|
|
|
|
while( pCur->pNode && (pCur->pNode->pRight == pX) ){ |
|
|
0
|
|
|
|
|
|
1122
|
0
|
|
|
|
|
|
pX = pCur->pNode; |
1123
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
1124
|
|
|
|
|
|
|
} |
1125
|
|
|
|
|
|
|
} |
1126
|
|
|
|
|
|
|
} |
1127
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1128
|
|
|
|
|
|
|
|
1129
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ){ |
1130
|
0
|
|
|
|
|
|
*pRes = 1; |
1131
|
|
|
|
|
|
|
}else{ |
1132
|
0
|
|
|
|
|
|
*pRes = 0; |
1133
|
|
|
|
|
|
|
} |
1134
|
|
|
|
|
|
|
|
1135
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1136
|
|
|
|
|
|
|
} |
1137
|
|
|
|
|
|
|
|
1138
|
0
|
|
|
|
|
|
static int memRbtreePrevious(RbtCursor* pCur, int *pRes) |
1139
|
|
|
|
|
|
|
{ |
1140
|
0
|
0
|
|
|
|
|
if( pCur->pNode && pCur->eSkip != SKIP_PREV ){ |
|
|
0
|
|
|
|
|
|
1141
|
0
|
0
|
|
|
|
|
if( pCur->pNode->pLeft ){ |
1142
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pLeft; |
1143
|
0
|
0
|
|
|
|
|
while( pCur->pNode->pRight ) |
1144
|
0
|
|
|
|
|
|
pCur->pNode = pCur->pNode->pRight; |
1145
|
|
|
|
|
|
|
}else{ |
1146
|
0
|
|
|
|
|
|
BtRbNode * pX = pCur->pNode; |
1147
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
1148
|
0
|
0
|
|
|
|
|
while( pCur->pNode && (pCur->pNode->pLeft == pX) ){ |
|
|
0
|
|
|
|
|
|
1149
|
0
|
|
|
|
|
|
pX = pCur->pNode; |
1150
|
0
|
|
|
|
|
|
pCur->pNode = pX->pParent; |
1151
|
|
|
|
|
|
|
} |
1152
|
|
|
|
|
|
|
} |
1153
|
|
|
|
|
|
|
} |
1154
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1155
|
|
|
|
|
|
|
|
1156
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ){ |
1157
|
0
|
|
|
|
|
|
*pRes = 1; |
1158
|
|
|
|
|
|
|
}else{ |
1159
|
0
|
|
|
|
|
|
*pRes = 0; |
1160
|
|
|
|
|
|
|
} |
1161
|
|
|
|
|
|
|
|
1162
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1163
|
|
|
|
|
|
|
} |
1164
|
|
|
|
|
|
|
|
1165
|
0
|
|
|
|
|
|
static int memRbtreeKeySize(RbtCursor* pCur, int *pSize) |
1166
|
|
|
|
|
|
|
{ |
1167
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
1168
|
0
|
|
|
|
|
|
*pSize = pCur->pNode->nKey; |
1169
|
|
|
|
|
|
|
}else{ |
1170
|
0
|
|
|
|
|
|
*pSize = 0; |
1171
|
|
|
|
|
|
|
} |
1172
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1173
|
|
|
|
|
|
|
} |
1174
|
|
|
|
|
|
|
|
1175
|
0
|
|
|
|
|
|
static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf) |
1176
|
|
|
|
|
|
|
{ |
1177
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) return 0; |
1178
|
0
|
0
|
|
|
|
|
if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){ |
|
|
0
|
|
|
|
|
|
1179
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt); |
1180
|
|
|
|
|
|
|
}else{ |
1181
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset); |
1182
|
0
|
|
|
|
|
|
amt = pCur->pNode->nKey-offset; |
1183
|
|
|
|
|
|
|
} |
1184
|
0
|
|
|
|
|
|
return amt; |
1185
|
|
|
|
|
|
|
} |
1186
|
|
|
|
|
|
|
|
1187
|
0
|
|
|
|
|
|
static int memRbtreeDataSize(RbtCursor* pCur, int *pSize) |
1188
|
|
|
|
|
|
|
{ |
1189
|
0
|
0
|
|
|
|
|
if( pCur->pNode ){ |
1190
|
0
|
|
|
|
|
|
*pSize = pCur->pNode->nData; |
1191
|
|
|
|
|
|
|
}else{ |
1192
|
0
|
|
|
|
|
|
*pSize = 0; |
1193
|
|
|
|
|
|
|
} |
1194
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1195
|
|
|
|
|
|
|
} |
1196
|
|
|
|
|
|
|
|
1197
|
0
|
|
|
|
|
|
static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf) |
1198
|
|
|
|
|
|
|
{ |
1199
|
0
|
0
|
|
|
|
|
if( !pCur->pNode ) return 0; |
1200
|
0
|
0
|
|
|
|
|
if( (amt + offset) <= pCur->pNode->nData ){ |
1201
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt); |
1202
|
|
|
|
|
|
|
}else{ |
1203
|
0
|
|
|
|
|
|
memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset); |
1204
|
0
|
|
|
|
|
|
amt = pCur->pNode->nData-offset; |
1205
|
|
|
|
|
|
|
} |
1206
|
0
|
|
|
|
|
|
return amt; |
1207
|
|
|
|
|
|
|
} |
1208
|
|
|
|
|
|
|
|
1209
|
0
|
|
|
|
|
|
static int memRbtreeCloseCursor(RbtCursor* pCur) |
1210
|
|
|
|
|
|
|
{ |
1211
|
0
|
0
|
|
|
|
|
if( pCur->pTree->pCursors==pCur ){ |
1212
|
0
|
|
|
|
|
|
pCur->pTree->pCursors = pCur->pShared; |
1213
|
|
|
|
|
|
|
}else{ |
1214
|
0
|
|
|
|
|
|
RbtCursor *p = pCur->pTree->pCursors; |
1215
|
0
|
0
|
|
|
|
|
while( p && p->pShared!=pCur ){ p = p->pShared; } |
|
|
0
|
|
|
|
|
|
1216
|
|
|
|
|
|
|
assert( p!=0 ); |
1217
|
0
|
0
|
|
|
|
|
if( p ){ |
1218
|
0
|
|
|
|
|
|
p->pShared = pCur->pShared; |
1219
|
|
|
|
|
|
|
} |
1220
|
|
|
|
|
|
|
} |
1221
|
0
|
|
|
|
|
|
sqliteFree(pCur); |
1222
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1223
|
|
|
|
|
|
|
} |
1224
|
|
|
|
|
|
|
|
1225
|
0
|
|
|
|
|
|
static int memRbtreeGetMeta(Rbtree* tree, int* aMeta) |
1226
|
|
|
|
|
|
|
{ |
1227
|
0
|
|
|
|
|
|
memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META ); |
1228
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1229
|
|
|
|
|
|
|
} |
1230
|
|
|
|
|
|
|
|
1231
|
0
|
|
|
|
|
|
static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta) |
1232
|
|
|
|
|
|
|
{ |
1233
|
0
|
|
|
|
|
|
memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META ); |
1234
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1235
|
|
|
|
|
|
|
} |
1236
|
|
|
|
|
|
|
|
1237
|
|
|
|
|
|
|
/* |
1238
|
|
|
|
|
|
|
* Check that each table in the Rbtree meets the requirements for a red-black |
1239
|
|
|
|
|
|
|
* binary tree. If an error is found, return an explanation of the problem in |
1240
|
|
|
|
|
|
|
* memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored. |
1241
|
|
|
|
|
|
|
*/ |
1242
|
0
|
|
|
|
|
|
static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot) |
1243
|
|
|
|
|
|
|
{ |
1244
|
0
|
|
|
|
|
|
char * msg = 0; |
1245
|
|
|
|
|
|
|
HashElem *p; |
1246
|
|
|
|
|
|
|
|
1247
|
0
|
0
|
|
|
|
|
for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){ |
1248
|
0
|
|
|
|
|
|
BtRbTree *pTree = sqliteHashData(p); |
1249
|
0
|
|
|
|
|
|
check_redblack_tree(pTree, &msg); |
1250
|
|
|
|
|
|
|
} |
1251
|
|
|
|
|
|
|
|
1252
|
0
|
|
|
|
|
|
return msg; |
1253
|
|
|
|
|
|
|
} |
1254
|
|
|
|
|
|
|
|
1255
|
0
|
|
|
|
|
|
static int memRbtreeSetCacheSize(Rbtree* tree, int sz) |
1256
|
|
|
|
|
|
|
{ |
1257
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1258
|
|
|
|
|
|
|
} |
1259
|
|
|
|
|
|
|
|
1260
|
0
|
|
|
|
|
|
static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){ |
1261
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1262
|
|
|
|
|
|
|
} |
1263
|
|
|
|
|
|
|
|
1264
|
0
|
|
|
|
|
|
static int memRbtreeBeginTrans(Rbtree* tree) |
1265
|
|
|
|
|
|
|
{ |
1266
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_NONE ) |
1267
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
1268
|
|
|
|
|
|
|
|
1269
|
|
|
|
|
|
|
assert( tree->pTransRollback == 0 ); |
1270
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
1271
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1272
|
|
|
|
|
|
|
} |
1273
|
|
|
|
|
|
|
|
1274
|
|
|
|
|
|
|
/* |
1275
|
|
|
|
|
|
|
** Delete a linked list of BtRollbackOp structures. |
1276
|
|
|
|
|
|
|
*/ |
1277
|
0
|
|
|
|
|
|
static void deleteRollbackList(BtRollbackOp *pOp){ |
1278
|
0
|
0
|
|
|
|
|
while( pOp ){ |
1279
|
0
|
|
|
|
|
|
BtRollbackOp *pTmp = pOp->pNext; |
1280
|
0
|
|
|
|
|
|
sqliteFree(pOp->pData); |
1281
|
0
|
|
|
|
|
|
sqliteFree(pOp->pKey); |
1282
|
0
|
|
|
|
|
|
sqliteFree(pOp); |
1283
|
0
|
|
|
|
|
|
pOp = pTmp; |
1284
|
|
|
|
|
|
|
} |
1285
|
0
|
|
|
|
|
|
} |
1286
|
|
|
|
|
|
|
|
1287
|
0
|
|
|
|
|
|
static int memRbtreeCommit(Rbtree* tree){ |
1288
|
|
|
|
|
|
|
/* Just delete pTransRollback and pCheckRollback */ |
1289
|
0
|
|
|
|
|
|
deleteRollbackList(tree->pCheckRollback); |
1290
|
0
|
|
|
|
|
|
deleteRollbackList(tree->pTransRollback); |
1291
|
0
|
|
|
|
|
|
tree->pTransRollback = 0; |
1292
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
1293
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
1294
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_NONE; |
1295
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1296
|
|
|
|
|
|
|
} |
1297
|
|
|
|
|
|
|
|
1298
|
|
|
|
|
|
|
/* |
1299
|
|
|
|
|
|
|
* Close the supplied Rbtree. Delete everything associated with it. |
1300
|
|
|
|
|
|
|
*/ |
1301
|
0
|
|
|
|
|
|
static int memRbtreeClose(Rbtree* tree) |
1302
|
|
|
|
|
|
|
{ |
1303
|
|
|
|
|
|
|
HashElem *p; |
1304
|
0
|
|
|
|
|
|
memRbtreeCommit(tree); |
1305
|
0
|
0
|
|
|
|
|
while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){ |
1306
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
1307
|
0
|
|
|
|
|
|
memRbtreeDropTable(tree, sqliteHashKeysize(p)); |
1308
|
|
|
|
|
|
|
} |
1309
|
0
|
|
|
|
|
|
sqliteHashClear(&tree->tblHash); |
1310
|
0
|
|
|
|
|
|
sqliteFree(tree); |
1311
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1312
|
|
|
|
|
|
|
} |
1313
|
|
|
|
|
|
|
|
1314
|
|
|
|
|
|
|
/* |
1315
|
|
|
|
|
|
|
* Execute and delete the supplied rollback-list on pRbtree. |
1316
|
|
|
|
|
|
|
*/ |
1317
|
0
|
|
|
|
|
|
static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList) |
1318
|
|
|
|
|
|
|
{ |
1319
|
|
|
|
|
|
|
BtRollbackOp *pTmp; |
1320
|
|
|
|
|
|
|
RbtCursor cur; |
1321
|
|
|
|
|
|
|
int res; |
1322
|
|
|
|
|
|
|
|
1323
|
0
|
|
|
|
|
|
cur.pRbtree = pRbtree; |
1324
|
0
|
|
|
|
|
|
cur.wrFlag = 1; |
1325
|
0
|
0
|
|
|
|
|
while( pList ){ |
1326
|
0
|
|
|
|
|
|
switch( pList->eOp ){ |
1327
|
|
|
|
|
|
|
case ROLLBACK_INSERT: |
1328
|
0
|
|
|
|
|
|
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); |
1329
|
|
|
|
|
|
|
assert(cur.pTree); |
1330
|
0
|
|
|
|
|
|
cur.iTree = pList->iTab; |
1331
|
0
|
|
|
|
|
|
cur.eSkip = SKIP_NONE; |
1332
|
0
|
|
|
|
|
|
memRbtreeInsert( &cur, pList->pKey, |
1333
|
0
|
|
|
|
|
|
pList->nKey, pList->pData, pList->nData ); |
1334
|
0
|
|
|
|
|
|
break; |
1335
|
|
|
|
|
|
|
case ROLLBACK_DELETE: |
1336
|
0
|
|
|
|
|
|
cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab ); |
1337
|
|
|
|
|
|
|
assert(cur.pTree); |
1338
|
0
|
|
|
|
|
|
cur.iTree = pList->iTab; |
1339
|
0
|
|
|
|
|
|
cur.eSkip = SKIP_NONE; |
1340
|
0
|
|
|
|
|
|
memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res); |
1341
|
|
|
|
|
|
|
assert(res == 0); |
1342
|
0
|
|
|
|
|
|
memRbtreeDelete( &cur ); |
1343
|
0
|
|
|
|
|
|
break; |
1344
|
|
|
|
|
|
|
case ROLLBACK_CREATE: |
1345
|
0
|
|
|
|
|
|
btreeCreateTable(pRbtree, pList->iTab); |
1346
|
0
|
|
|
|
|
|
break; |
1347
|
|
|
|
|
|
|
case ROLLBACK_DROP: |
1348
|
0
|
|
|
|
|
|
memRbtreeDropTable(pRbtree, pList->iTab); |
1349
|
0
|
|
|
|
|
|
break; |
1350
|
|
|
|
|
|
|
default: |
1351
|
|
|
|
|
|
|
assert(0); |
1352
|
|
|
|
|
|
|
} |
1353
|
0
|
|
|
|
|
|
sqliteFree(pList->pKey); |
1354
|
0
|
|
|
|
|
|
sqliteFree(pList->pData); |
1355
|
0
|
|
|
|
|
|
pTmp = pList->pNext; |
1356
|
0
|
|
|
|
|
|
sqliteFree(pList); |
1357
|
0
|
|
|
|
|
|
pList = pTmp; |
1358
|
|
|
|
|
|
|
} |
1359
|
0
|
|
|
|
|
|
} |
1360
|
|
|
|
|
|
|
|
1361
|
0
|
|
|
|
|
|
static int memRbtreeRollback(Rbtree* tree) |
1362
|
|
|
|
|
|
|
{ |
1363
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
1364
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pCheckRollback); |
1365
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pTransRollback); |
1366
|
0
|
|
|
|
|
|
tree->pTransRollback = 0; |
1367
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
1368
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
1369
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_NONE; |
1370
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1371
|
|
|
|
|
|
|
} |
1372
|
|
|
|
|
|
|
|
1373
|
0
|
|
|
|
|
|
static int memRbtreeBeginCkpt(Rbtree* tree) |
1374
|
|
|
|
|
|
|
{ |
1375
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_INTRANSACTION ) |
1376
|
0
|
|
|
|
|
|
return SQLITE_ERROR; |
1377
|
|
|
|
|
|
|
|
1378
|
|
|
|
|
|
|
assert( tree->pCheckRollback == 0 ); |
1379
|
|
|
|
|
|
|
assert( tree->pCheckRollbackTail == 0 ); |
1380
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INCHECKPOINT; |
1381
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1382
|
|
|
|
|
|
|
} |
1383
|
|
|
|
|
|
|
|
1384
|
0
|
|
|
|
|
|
static int memRbtreeCommitCkpt(Rbtree* tree) |
1385
|
|
|
|
|
|
|
{ |
1386
|
0
|
0
|
|
|
|
|
if( tree->eTransState == TRANS_INCHECKPOINT ){ |
1387
|
0
|
0
|
|
|
|
|
if( tree->pCheckRollback ){ |
1388
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail->pNext = tree->pTransRollback; |
1389
|
0
|
|
|
|
|
|
tree->pTransRollback = tree->pCheckRollback; |
1390
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
1391
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
1392
|
|
|
|
|
|
|
} |
1393
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
1394
|
|
|
|
|
|
|
} |
1395
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1396
|
|
|
|
|
|
|
} |
1397
|
|
|
|
|
|
|
|
1398
|
0
|
|
|
|
|
|
static int memRbtreeRollbackCkpt(Rbtree* tree) |
1399
|
|
|
|
|
|
|
{ |
1400
|
0
|
0
|
|
|
|
|
if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK; |
1401
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_ROLLBACK; |
1402
|
0
|
|
|
|
|
|
execute_rollback_list(tree, tree->pCheckRollback); |
1403
|
0
|
|
|
|
|
|
tree->pCheckRollback = 0; |
1404
|
0
|
|
|
|
|
|
tree->pCheckRollbackTail = 0; |
1405
|
0
|
|
|
|
|
|
tree->eTransState = TRANS_INTRANSACTION; |
1406
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1407
|
|
|
|
|
|
|
} |
1408
|
|
|
|
|
|
|
|
1409
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
1410
|
|
|
|
|
|
|
static int memRbtreePageDump(Rbtree* tree, int pgno, int rec) |
1411
|
|
|
|
|
|
|
{ |
1412
|
|
|
|
|
|
|
assert(!"Cannot call sqliteRbtreePageDump"); |
1413
|
|
|
|
|
|
|
return SQLITE_OK; |
1414
|
|
|
|
|
|
|
} |
1415
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes) |
1417
|
|
|
|
|
|
|
{ |
1418
|
|
|
|
|
|
|
assert(!"Cannot call sqliteRbtreeCursorDump"); |
1419
|
|
|
|
|
|
|
return SQLITE_OK; |
1420
|
|
|
|
|
|
|
} |
1421
|
|
|
|
|
|
|
#endif |
1422
|
|
|
|
|
|
|
|
1423
|
0
|
|
|
|
|
|
static struct Pager *memRbtreePager(Rbtree* tree) |
1424
|
|
|
|
|
|
|
{ |
1425
|
0
|
|
|
|
|
|
return 0; |
1426
|
|
|
|
|
|
|
} |
1427
|
|
|
|
|
|
|
|
1428
|
|
|
|
|
|
|
/* |
1429
|
|
|
|
|
|
|
** Return the full pathname of the underlying database file. |
1430
|
|
|
|
|
|
|
*/ |
1431
|
0
|
|
|
|
|
|
static const char *memRbtreeGetFilename(Rbtree *pBt){ |
1432
|
0
|
|
|
|
|
|
return 0; /* A NULL return indicates there is no underlying file */ |
1433
|
|
|
|
|
|
|
} |
1434
|
|
|
|
|
|
|
|
1435
|
|
|
|
|
|
|
/* |
1436
|
|
|
|
|
|
|
** The copy file function is not implemented for the in-memory database |
1437
|
|
|
|
|
|
|
*/ |
1438
|
0
|
|
|
|
|
|
static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){ |
1439
|
0
|
|
|
|
|
|
return SQLITE_INTERNAL; /* Not implemented */ |
1440
|
|
|
|
|
|
|
} |
1441
|
|
|
|
|
|
|
|
1442
|
|
|
|
|
|
|
static BtOps sqliteRbtreeOps = { |
1443
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeClose, |
1444
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeSetCacheSize, |
1445
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeSetSafetyLevel, |
1446
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeBeginTrans, |
1447
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeCommit, |
1448
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeRollback, |
1449
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeBeginCkpt, |
1450
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeCommitCkpt, |
1451
|
|
|
|
|
|
|
(int(*)(Btree*)) memRbtreeRollbackCkpt, |
1452
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeCreateTable, |
1453
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeCreateTable, |
1454
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeDropTable, |
1455
|
|
|
|
|
|
|
(int(*)(Btree*,int)) memRbtreeClearTable, |
1456
|
|
|
|
|
|
|
(int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor, |
1457
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeGetMeta, |
1458
|
|
|
|
|
|
|
(int(*)(Btree*,int*)) memRbtreeUpdateMeta, |
1459
|
|
|
|
|
|
|
(char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck, |
1460
|
|
|
|
|
|
|
(const char*(*)(Btree*)) memRbtreeGetFilename, |
1461
|
|
|
|
|
|
|
(int(*)(Btree*,Btree*)) memRbtreeCopyFile, |
1462
|
|
|
|
|
|
|
(struct Pager*(*)(Btree*)) memRbtreePager, |
1463
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
1464
|
|
|
|
|
|
|
(int(*)(Btree*,int,int)) memRbtreePageDump, |
1465
|
|
|
|
|
|
|
#endif |
1466
|
|
|
|
|
|
|
}; |
1467
|
|
|
|
|
|
|
|
1468
|
|
|
|
|
|
|
static BtCursorOps sqliteRbtreeCursorOps = { |
1469
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto, |
1470
|
|
|
|
|
|
|
(int(*)(BtCursor*)) memRbtreeDelete, |
1471
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert, |
1472
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeFirst, |
1473
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeLast, |
1474
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeNext, |
1475
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreePrevious, |
1476
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeKeySize, |
1477
|
|
|
|
|
|
|
(int(*)(BtCursor*,int,int,char*)) memRbtreeKey, |
1478
|
|
|
|
|
|
|
(int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare, |
1479
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeDataSize, |
1480
|
|
|
|
|
|
|
(int(*)(BtCursor*,int,int,char*)) memRbtreeData, |
1481
|
|
|
|
|
|
|
(int(*)(BtCursor*)) memRbtreeCloseCursor, |
1482
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
1483
|
|
|
|
|
|
|
(int(*)(BtCursor*,int*)) memRbtreeCursorDump, |
1484
|
|
|
|
|
|
|
#endif |
1485
|
|
|
|
|
|
|
|
1486
|
|
|
|
|
|
|
}; |
1487
|
|
|
|
|
|
|
|
1488
|
|
|
|
|
|
|
#endif /* SQLITE_OMIT_INMEMORYDB */ |