line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
** 2001 September 15 |
3
|
|
|
|
|
|
|
** |
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
6
|
|
|
|
|
|
|
** |
7
|
|
|
|
|
|
|
** May you do good and not evil. |
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
10
|
|
|
|
|
|
|
** |
11
|
|
|
|
|
|
|
************************************************************************* |
12
|
|
|
|
|
|
|
** $Id: btree.c,v 1.1.1.1 2004/08/08 15:03:57 matt Exp $ |
13
|
|
|
|
|
|
|
** |
14
|
|
|
|
|
|
|
** This file implements a external (disk-based) database using BTrees. |
15
|
|
|
|
|
|
|
** For a detailed discussion of BTrees, refer to |
16
|
|
|
|
|
|
|
** |
17
|
|
|
|
|
|
|
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: |
18
|
|
|
|
|
|
|
** "Sorting And Searching", pages 473-480. Addison-Wesley |
19
|
|
|
|
|
|
|
** Publishing Company, Reading, Massachusetts. |
20
|
|
|
|
|
|
|
** |
21
|
|
|
|
|
|
|
** The basic idea is that each page of the file contains N database |
22
|
|
|
|
|
|
|
** entries and N+1 pointers to subpages. |
23
|
|
|
|
|
|
|
** |
24
|
|
|
|
|
|
|
** ---------------------------------------------------------------- |
25
|
|
|
|
|
|
|
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) | |
26
|
|
|
|
|
|
|
** ---------------------------------------------------------------- |
27
|
|
|
|
|
|
|
** |
28
|
|
|
|
|
|
|
** All of the keys on the page that Ptr(0) points to have values less |
29
|
|
|
|
|
|
|
** than Key(0). All of the keys on page Ptr(1) and its subpages have |
30
|
|
|
|
|
|
|
** values greater than Key(0) and less than Key(1). All of the keys |
31
|
|
|
|
|
|
|
** on Ptr(N+1) and its subpages have values greater than Key(N). And |
32
|
|
|
|
|
|
|
** so forth. |
33
|
|
|
|
|
|
|
** |
34
|
|
|
|
|
|
|
** Finding a particular key requires reading O(log(M)) pages from the |
35
|
|
|
|
|
|
|
** disk where M is the number of entries in the tree. |
36
|
|
|
|
|
|
|
** |
37
|
|
|
|
|
|
|
** In this implementation, a single file can hold one or more separate |
38
|
|
|
|
|
|
|
** BTrees. Each BTree is identified by the index of its root page. The |
39
|
|
|
|
|
|
|
** key and data for any entry are combined to form the "payload". Up to |
40
|
|
|
|
|
|
|
** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the |
41
|
|
|
|
|
|
|
** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes |
42
|
|
|
|
|
|
|
** then surplus bytes are stored on overflow pages. The payload for an |
43
|
|
|
|
|
|
|
** entry and the preceding pointer are combined to form a "Cell". Each |
44
|
|
|
|
|
|
|
** page has a small header which contains the Ptr(N+1) pointer. |
45
|
|
|
|
|
|
|
** |
46
|
|
|
|
|
|
|
** The first page of the file contains a magic string used to verify that |
47
|
|
|
|
|
|
|
** the file really is a valid BTree database, a pointer to a list of unused |
48
|
|
|
|
|
|
|
** pages in the file, and some meta information. The root of the first |
49
|
|
|
|
|
|
|
** BTree begins on page 2 of the file. (Pages are numbered beginning with |
50
|
|
|
|
|
|
|
** 1, not 0.) Thus a minimum database contains 2 pages. |
51
|
|
|
|
|
|
|
*/ |
52
|
|
|
|
|
|
|
#include "sqliteInt.h" |
53
|
|
|
|
|
|
|
#include "pager.h" |
54
|
|
|
|
|
|
|
#include "btree.h" |
55
|
|
|
|
|
|
|
#include |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
/* Forward declarations */ |
58
|
|
|
|
|
|
|
static BtOps sqliteBtreeOps; |
59
|
|
|
|
|
|
|
static BtCursorOps sqliteBtreeCursorOps; |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
/* |
62
|
|
|
|
|
|
|
** Macros used for byteswapping. B is a pointer to the Btree |
63
|
|
|
|
|
|
|
** structure. This is needed to access the Btree.needSwab boolean |
64
|
|
|
|
|
|
|
** in order to tell if byte swapping is needed or not. |
65
|
|
|
|
|
|
|
** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer. |
66
|
|
|
|
|
|
|
** SWAB32 byteswaps a 32-bit integer. |
67
|
|
|
|
|
|
|
*/ |
68
|
|
|
|
|
|
|
#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X)) |
69
|
|
|
|
|
|
|
#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X)) |
70
|
|
|
|
|
|
|
#define SWAB_ADD(B,X,A) \ |
71
|
|
|
|
|
|
|
if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); } |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
/* |
74
|
|
|
|
|
|
|
** The following global variable - available only if SQLITE_TEST is |
75
|
|
|
|
|
|
|
** defined - is used to determine whether new databases are created in |
76
|
|
|
|
|
|
|
** native byte order or in non-native byte order. Non-native byte order |
77
|
|
|
|
|
|
|
** databases are created for testing purposes only. Under normal operation, |
78
|
|
|
|
|
|
|
** only native byte-order databases should be created, but we should be |
79
|
|
|
|
|
|
|
** able to read or write existing databases regardless of the byteorder. |
80
|
|
|
|
|
|
|
*/ |
81
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
82
|
|
|
|
|
|
|
int btree_native_byte_order = 1; |
83
|
|
|
|
|
|
|
#else |
84
|
|
|
|
|
|
|
# define btree_native_byte_order 1 |
85
|
|
|
|
|
|
|
#endif |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
/* |
88
|
|
|
|
|
|
|
** Forward declarations of structures used only in this file. |
89
|
|
|
|
|
|
|
*/ |
90
|
|
|
|
|
|
|
typedef struct PageOne PageOne; |
91
|
|
|
|
|
|
|
typedef struct MemPage MemPage; |
92
|
|
|
|
|
|
|
typedef struct PageHdr PageHdr; |
93
|
|
|
|
|
|
|
typedef struct Cell Cell; |
94
|
|
|
|
|
|
|
typedef struct CellHdr CellHdr; |
95
|
|
|
|
|
|
|
typedef struct FreeBlk FreeBlk; |
96
|
|
|
|
|
|
|
typedef struct OverflowPage OverflowPage; |
97
|
|
|
|
|
|
|
typedef struct FreelistInfo FreelistInfo; |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
/* |
100
|
|
|
|
|
|
|
** All structures on a database page are aligned to 4-byte boundries. |
101
|
|
|
|
|
|
|
** This routine rounds up a number of bytes to the next multiple of 4. |
102
|
|
|
|
|
|
|
** |
103
|
|
|
|
|
|
|
** This might need to change for computer architectures that require |
104
|
|
|
|
|
|
|
** and 8-byte alignment boundry for structures. |
105
|
|
|
|
|
|
|
*/ |
106
|
|
|
|
|
|
|
#define ROUNDUP(X) ((X+3) & ~3) |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
/* |
109
|
|
|
|
|
|
|
** This is a magic string that appears at the beginning of every |
110
|
|
|
|
|
|
|
** SQLite database in order to identify the file as a real database. |
111
|
|
|
|
|
|
|
*/ |
112
|
|
|
|
|
|
|
static const char zMagicHeader[] = |
113
|
|
|
|
|
|
|
"** This file contains an SQLite 2.1 database **"; |
114
|
|
|
|
|
|
|
#define MAGIC_SIZE (sizeof(zMagicHeader)) |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
/* |
117
|
|
|
|
|
|
|
** This is a magic integer also used to test the integrity of the database |
118
|
|
|
|
|
|
|
** file. This integer is used in addition to the string above so that |
119
|
|
|
|
|
|
|
** if the file is written on a little-endian architecture and read |
120
|
|
|
|
|
|
|
** on a big-endian architectures (or vice versa) we can detect the |
121
|
|
|
|
|
|
|
** problem. |
122
|
|
|
|
|
|
|
** |
123
|
|
|
|
|
|
|
** The number used was obtained at random and has no special |
124
|
|
|
|
|
|
|
** significance other than the fact that it represents a different |
125
|
|
|
|
|
|
|
** integer on little-endian and big-endian machines. |
126
|
|
|
|
|
|
|
*/ |
127
|
|
|
|
|
|
|
#define MAGIC 0xdae37528 |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
/* |
130
|
|
|
|
|
|
|
** The first page of the database file contains a magic header string |
131
|
|
|
|
|
|
|
** to identify the file as an SQLite database file. It also contains |
132
|
|
|
|
|
|
|
** a pointer to the first free page of the file. Page 2 contains the |
133
|
|
|
|
|
|
|
** root of the principle BTree. The file might contain other BTrees |
134
|
|
|
|
|
|
|
** rooted on pages above 2. |
135
|
|
|
|
|
|
|
** |
136
|
|
|
|
|
|
|
** The first page also contains SQLITE_N_BTREE_META integers that |
137
|
|
|
|
|
|
|
** can be used by higher-level routines. |
138
|
|
|
|
|
|
|
** |
139
|
|
|
|
|
|
|
** Remember that pages are numbered beginning with 1. (See pager.c |
140
|
|
|
|
|
|
|
** for additional information.) Page 0 does not exist and a page |
141
|
|
|
|
|
|
|
** number of 0 is used to mean "no such page". |
142
|
|
|
|
|
|
|
*/ |
143
|
|
|
|
|
|
|
struct PageOne { |
144
|
|
|
|
|
|
|
char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */ |
145
|
|
|
|
|
|
|
int iMagic; /* Integer to verify correct byte order */ |
146
|
|
|
|
|
|
|
Pgno freeList; /* First free page in a list of all free pages */ |
147
|
|
|
|
|
|
|
int nFree; /* Number of pages on the free list */ |
148
|
|
|
|
|
|
|
int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */ |
149
|
|
|
|
|
|
|
}; |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
/* |
152
|
|
|
|
|
|
|
** Each database page has a header that is an instance of this |
153
|
|
|
|
|
|
|
** structure. |
154
|
|
|
|
|
|
|
** |
155
|
|
|
|
|
|
|
** PageHdr.firstFree is 0 if there is no free space on this page. |
156
|
|
|
|
|
|
|
** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a |
157
|
|
|
|
|
|
|
** FreeBlk structure that describes the first block of free space. |
158
|
|
|
|
|
|
|
** All free space is defined by a linked list of FreeBlk structures. |
159
|
|
|
|
|
|
|
** |
160
|
|
|
|
|
|
|
** Data is stored in a linked list of Cell structures. PageHdr.firstCell |
161
|
|
|
|
|
|
|
** is the index into MemPage.u.aDisk[] of the first cell on the page. The |
162
|
|
|
|
|
|
|
** Cells are kept in sorted order. |
163
|
|
|
|
|
|
|
** |
164
|
|
|
|
|
|
|
** A Cell contains all information about a database entry and a pointer |
165
|
|
|
|
|
|
|
** to a child page that contains other entries less than itself. In |
166
|
|
|
|
|
|
|
** other words, the i-th Cell contains both Ptr(i) and Key(i). The |
167
|
|
|
|
|
|
|
** right-most pointer of the page is contained in PageHdr.rightChild. |
168
|
|
|
|
|
|
|
*/ |
169
|
|
|
|
|
|
|
struct PageHdr { |
170
|
|
|
|
|
|
|
Pgno rightChild; /* Child page that comes after all cells on this page */ |
171
|
|
|
|
|
|
|
u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */ |
172
|
|
|
|
|
|
|
u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */ |
173
|
|
|
|
|
|
|
}; |
174
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
/* |
176
|
|
|
|
|
|
|
** Entries on a page of the database are called "Cells". Each Cell |
177
|
|
|
|
|
|
|
** has a header and data. This structure defines the header. The |
178
|
|
|
|
|
|
|
** key and data (collectively the "payload") follow this header on |
179
|
|
|
|
|
|
|
** the database page. |
180
|
|
|
|
|
|
|
** |
181
|
|
|
|
|
|
|
** A definition of the complete Cell structure is given below. The |
182
|
|
|
|
|
|
|
** header for the cell must be defined first in order to do some |
183
|
|
|
|
|
|
|
** of the sizing #defines that follow. |
184
|
|
|
|
|
|
|
*/ |
185
|
|
|
|
|
|
|
struct CellHdr { |
186
|
|
|
|
|
|
|
Pgno leftChild; /* Child page that comes before this cell */ |
187
|
|
|
|
|
|
|
u16 nKey; /* Number of bytes in the key */ |
188
|
|
|
|
|
|
|
u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */ |
189
|
|
|
|
|
|
|
u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */ |
190
|
|
|
|
|
|
|
u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */ |
191
|
|
|
|
|
|
|
u16 nData; /* Number of bytes of data */ |
192
|
|
|
|
|
|
|
}; |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
/* |
195
|
|
|
|
|
|
|
** The key and data size are split into a lower 16-bit segment and an |
196
|
|
|
|
|
|
|
** upper 8-bit segment in order to pack them together into a smaller |
197
|
|
|
|
|
|
|
** space. The following macros reassembly a key or data size back |
198
|
|
|
|
|
|
|
** into an integer. |
199
|
|
|
|
|
|
|
*/ |
200
|
|
|
|
|
|
|
#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536) |
201
|
|
|
|
|
|
|
#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536) |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
/* |
204
|
|
|
|
|
|
|
** The minimum size of a complete Cell. The Cell must contain a header |
205
|
|
|
|
|
|
|
** and at least 4 bytes of payload. |
206
|
|
|
|
|
|
|
*/ |
207
|
|
|
|
|
|
|
#define MIN_CELL_SIZE (sizeof(CellHdr)+4) |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
/* |
210
|
|
|
|
|
|
|
** The maximum number of database entries that can be held in a single |
211
|
|
|
|
|
|
|
** page of the database. |
212
|
|
|
|
|
|
|
*/ |
213
|
|
|
|
|
|
|
#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE) |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
/* |
216
|
|
|
|
|
|
|
** The amount of usable space on a single page of the BTree. This is the |
217
|
|
|
|
|
|
|
** page size minus the overhead of the page header. |
218
|
|
|
|
|
|
|
*/ |
219
|
|
|
|
|
|
|
#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr)) |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
/* |
222
|
|
|
|
|
|
|
** The maximum amount of payload (in bytes) that can be stored locally for |
223
|
|
|
|
|
|
|
** a database entry. If the entry contains more data than this, the |
224
|
|
|
|
|
|
|
** extra goes onto overflow pages. |
225
|
|
|
|
|
|
|
** |
226
|
|
|
|
|
|
|
** This number is chosen so that at least 4 cells will fit on every page. |
227
|
|
|
|
|
|
|
*/ |
228
|
|
|
|
|
|
|
#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3) |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
/* |
231
|
|
|
|
|
|
|
** Data on a database page is stored as a linked list of Cell structures. |
232
|
|
|
|
|
|
|
** Both the key and the data are stored in aPayload[]. The key always comes |
233
|
|
|
|
|
|
|
** first. The aPayload[] field grows as necessary to hold the key and data, |
234
|
|
|
|
|
|
|
** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and |
235
|
|
|
|
|
|
|
** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the |
236
|
|
|
|
|
|
|
** page number of the first overflow page. |
237
|
|
|
|
|
|
|
** |
238
|
|
|
|
|
|
|
** Though this structure is fixed in size, the Cell on the database |
239
|
|
|
|
|
|
|
** page varies in size. Every cell has a CellHdr and at least 4 bytes |
240
|
|
|
|
|
|
|
** of payload space. Additional payload bytes (up to the maximum of |
241
|
|
|
|
|
|
|
** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as |
242
|
|
|
|
|
|
|
** needed. |
243
|
|
|
|
|
|
|
*/ |
244
|
|
|
|
|
|
|
struct Cell { |
245
|
|
|
|
|
|
|
CellHdr h; /* The cell header */ |
246
|
|
|
|
|
|
|
char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */ |
247
|
|
|
|
|
|
|
Pgno ovfl; /* The first overflow page */ |
248
|
|
|
|
|
|
|
}; |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
/* |
251
|
|
|
|
|
|
|
** Free space on a page is remembered using a linked list of the FreeBlk |
252
|
|
|
|
|
|
|
** structures. Space on a database page is allocated in increments of |
253
|
|
|
|
|
|
|
** at least 4 bytes and is always aligned to a 4-byte boundry. The |
254
|
|
|
|
|
|
|
** linked list of FreeBlks is always kept in order by address. |
255
|
|
|
|
|
|
|
*/ |
256
|
|
|
|
|
|
|
struct FreeBlk { |
257
|
|
|
|
|
|
|
u16 iSize; /* Number of bytes in this block of free space */ |
258
|
|
|
|
|
|
|
u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */ |
259
|
|
|
|
|
|
|
}; |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
/* |
262
|
|
|
|
|
|
|
** The number of bytes of payload that will fit on a single overflow page. |
263
|
|
|
|
|
|
|
*/ |
264
|
|
|
|
|
|
|
#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno)) |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
/* |
267
|
|
|
|
|
|
|
** When the key and data for a single entry in the BTree will not fit in |
268
|
|
|
|
|
|
|
** the MX_LOCAL_PAYLOAD bytes of space available on the database page, |
269
|
|
|
|
|
|
|
** then all extra bytes are written to a linked list of overflow pages. |
270
|
|
|
|
|
|
|
** Each overflow page is an instance of the following structure. |
271
|
|
|
|
|
|
|
** |
272
|
|
|
|
|
|
|
** Unused pages in the database are also represented by instances of |
273
|
|
|
|
|
|
|
** the OverflowPage structure. The PageOne.freeList field is the |
274
|
|
|
|
|
|
|
** page number of the first page in a linked list of unused database |
275
|
|
|
|
|
|
|
** pages. |
276
|
|
|
|
|
|
|
*/ |
277
|
|
|
|
|
|
|
struct OverflowPage { |
278
|
|
|
|
|
|
|
Pgno iNext; |
279
|
|
|
|
|
|
|
char aPayload[OVERFLOW_SIZE]; |
280
|
|
|
|
|
|
|
}; |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
/* |
283
|
|
|
|
|
|
|
** The PageOne.freeList field points to a linked list of overflow pages |
284
|
|
|
|
|
|
|
** hold information about free pages. The aPayload section of each |
285
|
|
|
|
|
|
|
** overflow page contains an instance of the following structure. The |
286
|
|
|
|
|
|
|
** aFree[] array holds the page number of nFree unused pages in the disk |
287
|
|
|
|
|
|
|
** file. |
288
|
|
|
|
|
|
|
*/ |
289
|
|
|
|
|
|
|
struct FreelistInfo { |
290
|
|
|
|
|
|
|
int nFree; |
291
|
|
|
|
|
|
|
Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)]; |
292
|
|
|
|
|
|
|
}; |
293
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
/* |
295
|
|
|
|
|
|
|
** For every page in the database file, an instance of the following structure |
296
|
|
|
|
|
|
|
** is stored in memory. The u.aDisk[] array contains the raw bits read from |
297
|
|
|
|
|
|
|
** the disk. The rest is auxiliary information held in memory only. The |
298
|
|
|
|
|
|
|
** auxiliary info is only valid for regular database pages - it is not |
299
|
|
|
|
|
|
|
** used for overflow pages and pages on the freelist. |
300
|
|
|
|
|
|
|
** |
301
|
|
|
|
|
|
|
** Of particular interest in the auxiliary info is the apCell[] entry. Each |
302
|
|
|
|
|
|
|
** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are |
303
|
|
|
|
|
|
|
** put in this array so that they can be accessed in constant time, rather |
304
|
|
|
|
|
|
|
** than in linear time which would be needed if we had to walk the linked |
305
|
|
|
|
|
|
|
** list on every access. |
306
|
|
|
|
|
|
|
** |
307
|
|
|
|
|
|
|
** Note that apCell[] contains enough space to hold up to two more Cells |
308
|
|
|
|
|
|
|
** than can possibly fit on one page. In the steady state, every apCell[] |
309
|
|
|
|
|
|
|
** points to memory inside u.aDisk[]. But in the middle of an insert |
310
|
|
|
|
|
|
|
** operation, some apCell[] entries may temporarily point to data space |
311
|
|
|
|
|
|
|
** outside of u.aDisk[]. This is a transient situation that is quickly |
312
|
|
|
|
|
|
|
** resolved. But while it is happening, it is possible for a database |
313
|
|
|
|
|
|
|
** page to hold as many as two more cells than it might otherwise hold. |
314
|
|
|
|
|
|
|
** The extra two entries in apCell[] are an allowance for this situation. |
315
|
|
|
|
|
|
|
** |
316
|
|
|
|
|
|
|
** The pParent field points back to the parent page. This allows us to |
317
|
|
|
|
|
|
|
** walk up the BTree from any leaf to the root. Care must be taken to |
318
|
|
|
|
|
|
|
** unref() the parent page pointer when this page is no longer referenced. |
319
|
|
|
|
|
|
|
** The pageDestructor() routine handles that chore. |
320
|
|
|
|
|
|
|
*/ |
321
|
|
|
|
|
|
|
struct MemPage { |
322
|
|
|
|
|
|
|
union u_page_data { |
323
|
|
|
|
|
|
|
char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */ |
324
|
|
|
|
|
|
|
PageHdr hdr; /* Overlay page header */ |
325
|
|
|
|
|
|
|
} u; |
326
|
|
|
|
|
|
|
u8 isInit; /* True if auxiliary data is initialized */ |
327
|
|
|
|
|
|
|
u8 idxShift; /* True if apCell[] indices have changed */ |
328
|
|
|
|
|
|
|
u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */ |
329
|
|
|
|
|
|
|
MemPage *pParent; /* The parent of this page. NULL for root */ |
330
|
|
|
|
|
|
|
int idxParent; /* Index in pParent->apCell[] of this node */ |
331
|
|
|
|
|
|
|
int nFree; /* Number of free bytes in u.aDisk[] */ |
332
|
|
|
|
|
|
|
int nCell; /* Number of entries on this page */ |
333
|
|
|
|
|
|
|
Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */ |
334
|
|
|
|
|
|
|
}; |
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
/* |
337
|
|
|
|
|
|
|
** The in-memory image of a disk page has the auxiliary information appended |
338
|
|
|
|
|
|
|
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold |
339
|
|
|
|
|
|
|
** that extra information. |
340
|
|
|
|
|
|
|
*/ |
341
|
|
|
|
|
|
|
#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data)) |
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
/* |
344
|
|
|
|
|
|
|
** Everything we need to know about an open database |
345
|
|
|
|
|
|
|
*/ |
346
|
|
|
|
|
|
|
struct Btree { |
347
|
|
|
|
|
|
|
BtOps *pOps; /* Function table */ |
348
|
|
|
|
|
|
|
Pager *pPager; /* The page cache */ |
349
|
|
|
|
|
|
|
BtCursor *pCursor; /* A list of all open cursors */ |
350
|
|
|
|
|
|
|
PageOne *page1; /* First page of the database */ |
351
|
|
|
|
|
|
|
u8 inTrans; /* True if a transaction is in progress */ |
352
|
|
|
|
|
|
|
u8 inCkpt; /* True if there is a checkpoint on the transaction */ |
353
|
|
|
|
|
|
|
u8 readOnly; /* True if the underlying file is readonly */ |
354
|
|
|
|
|
|
|
u8 needSwab; /* Need to byte-swapping */ |
355
|
|
|
|
|
|
|
}; |
356
|
|
|
|
|
|
|
typedef Btree Bt; |
357
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
/* |
359
|
|
|
|
|
|
|
** A cursor is a pointer to a particular entry in the BTree. |
360
|
|
|
|
|
|
|
** The entry is identified by its MemPage and the index in |
361
|
|
|
|
|
|
|
** MemPage.apCell[] of the entry. |
362
|
|
|
|
|
|
|
*/ |
363
|
|
|
|
|
|
|
struct BtCursor { |
364
|
|
|
|
|
|
|
BtCursorOps *pOps; /* Function table */ |
365
|
|
|
|
|
|
|
Btree *pBt; /* The Btree to which this cursor belongs */ |
366
|
|
|
|
|
|
|
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ |
367
|
|
|
|
|
|
|
BtCursor *pShared; /* Loop of cursors with the same root page */ |
368
|
|
|
|
|
|
|
Pgno pgnoRoot; /* The root page of this tree */ |
369
|
|
|
|
|
|
|
MemPage *pPage; /* Page that contains the entry */ |
370
|
|
|
|
|
|
|
int idx; /* Index of the entry in pPage->apCell[] */ |
371
|
|
|
|
|
|
|
u8 wrFlag; /* True if writable */ |
372
|
|
|
|
|
|
|
u8 eSkip; /* Determines if next step operation is a no-op */ |
373
|
|
|
|
|
|
|
u8 iMatch; /* compare result from last sqliteBtreeMoveto() */ |
374
|
|
|
|
|
|
|
}; |
375
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
/* |
377
|
|
|
|
|
|
|
** Legal values for BtCursor.eSkip. |
378
|
|
|
|
|
|
|
*/ |
379
|
|
|
|
|
|
|
#define SKIP_NONE 0 /* Always step the cursor */ |
380
|
|
|
|
|
|
|
#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */ |
381
|
|
|
|
|
|
|
#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */ |
382
|
|
|
|
|
|
|
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */ |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
/* Forward declarations */ |
385
|
|
|
|
|
|
|
static int fileBtreeCloseCursor(BtCursor *pCur); |
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
/* |
388
|
|
|
|
|
|
|
** Routines for byte swapping. |
389
|
|
|
|
|
|
|
*/ |
390
|
0
|
|
|
|
|
|
u16 swab16(u16 x){ |
391
|
0
|
|
|
|
|
|
return ((x & 0xff)<<8) | ((x>>8)&0xff); |
392
|
|
|
|
|
|
|
} |
393
|
0
|
|
|
|
|
|
u32 swab32(u32 x){ |
394
|
0
|
|
|
|
|
|
return ((x & 0xff)<<24) | ((x & 0xff00)<<8) | |
395
|
0
|
|
|
|
|
|
((x>>8) & 0xff00) | ((x>>24)&0xff); |
396
|
|
|
|
|
|
|
} |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
/* |
399
|
|
|
|
|
|
|
** Compute the total number of bytes that a Cell needs on the main |
400
|
|
|
|
|
|
|
** database page. The number returned includes the Cell header, |
401
|
|
|
|
|
|
|
** local payload storage, and the pointer to overflow pages (if |
402
|
|
|
|
|
|
|
** applicable). Additional space allocated on overflow pages |
403
|
|
|
|
|
|
|
** is NOT included in the value returned from this routine. |
404
|
|
|
|
|
|
|
*/ |
405
|
409
|
|
|
|
|
|
static int cellSize(Btree *pBt, Cell *pCell){ |
406
|
409
|
50
|
|
|
|
|
int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h); |
|
|
50
|
|
|
|
|
|
407
|
409
|
100
|
|
|
|
|
if( n>MX_LOCAL_PAYLOAD ){ |
408
|
3
|
|
|
|
|
|
n = MX_LOCAL_PAYLOAD + sizeof(Pgno); |
409
|
|
|
|
|
|
|
}else{ |
410
|
406
|
|
|
|
|
|
n = ROUNDUP(n); |
411
|
|
|
|
|
|
|
} |
412
|
409
|
|
|
|
|
|
n += sizeof(CellHdr); |
413
|
409
|
|
|
|
|
|
return n; |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
/* |
417
|
|
|
|
|
|
|
** Defragment the page given. All Cells are moved to the |
418
|
|
|
|
|
|
|
** beginning of the page and all free space is collected |
419
|
|
|
|
|
|
|
** into one big FreeBlk at the end of the page. |
420
|
|
|
|
|
|
|
*/ |
421
|
0
|
|
|
|
|
|
static void defragmentPage(Btree *pBt, MemPage *pPage){ |
422
|
|
|
|
|
|
|
int pc, i, n; |
423
|
|
|
|
|
|
|
FreeBlk *pFBlk; |
424
|
|
|
|
|
|
|
char newPage[SQLITE_USABLE_SIZE]; |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
427
|
|
|
|
|
|
|
assert( pPage->isInit ); |
428
|
0
|
|
|
|
|
|
pc = sizeof(PageHdr); |
429
|
0
|
0
|
|
|
|
|
pPage->u.hdr.firstCell = SWAB16(pBt, pc); |
430
|
0
|
|
|
|
|
|
memcpy(newPage, pPage->u.aDisk, pc); |
431
|
0
|
0
|
|
|
|
|
for(i=0; inCell; i++){ |
432
|
0
|
|
|
|
|
|
Cell *pCell = pPage->apCell[i]; |
433
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
/* This routine should never be called on an overfull page. The |
435
|
|
|
|
|
|
|
** following asserts verify that constraint. */ |
436
|
|
|
|
|
|
|
assert( Addr(pCell) > Addr(pPage) ); |
437
|
|
|
|
|
|
|
assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE ); |
438
|
|
|
|
|
|
|
|
439
|
0
|
|
|
|
|
|
n = cellSize(pBt, pCell); |
440
|
0
|
0
|
|
|
|
|
pCell->h.iNext = SWAB16(pBt, pc + n); |
441
|
0
|
|
|
|
|
|
memcpy(&newPage[pc], pCell, n); |
442
|
0
|
|
|
|
|
|
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc]; |
443
|
0
|
|
|
|
|
|
pc += n; |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
assert( pPage->nFree==SQLITE_USABLE_SIZE-pc ); |
446
|
0
|
|
|
|
|
|
memcpy(pPage->u.aDisk, newPage, pc); |
447
|
0
|
0
|
|
|
|
|
if( pPage->nCell>0 ){ |
448
|
0
|
|
|
|
|
|
pPage->apCell[pPage->nCell-1]->h.iNext = 0; |
449
|
|
|
|
|
|
|
} |
450
|
0
|
|
|
|
|
|
pFBlk = (FreeBlk*)&pPage->u.aDisk[pc]; |
451
|
0
|
0
|
|
|
|
|
pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc); |
452
|
0
|
|
|
|
|
|
pFBlk->iNext = 0; |
453
|
0
|
0
|
|
|
|
|
pPage->u.hdr.firstFree = SWAB16(pBt, pc); |
454
|
0
|
|
|
|
|
|
memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk)); |
455
|
0
|
|
|
|
|
|
} |
456
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
/* |
458
|
|
|
|
|
|
|
** Allocate nByte bytes of space on a page. nByte must be a |
459
|
|
|
|
|
|
|
** multiple of 4. |
460
|
|
|
|
|
|
|
** |
461
|
|
|
|
|
|
|
** Return the index into pPage->u.aDisk[] of the first byte of |
462
|
|
|
|
|
|
|
** the new allocation. Or return 0 if there is not enough free |
463
|
|
|
|
|
|
|
** space on the page to satisfy the allocation request. |
464
|
|
|
|
|
|
|
** |
465
|
|
|
|
|
|
|
** If the page contains nBytes of free space but does not contain |
466
|
|
|
|
|
|
|
** nBytes of contiguous free space, then this routine automatically |
467
|
|
|
|
|
|
|
** calls defragementPage() to consolidate all free space before |
468
|
|
|
|
|
|
|
** allocating the new chunk. |
469
|
|
|
|
|
|
|
*/ |
470
|
133
|
|
|
|
|
|
static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){ |
471
|
|
|
|
|
|
|
FreeBlk *p; |
472
|
|
|
|
|
|
|
u16 *pIdx; |
473
|
|
|
|
|
|
|
int start; |
474
|
|
|
|
|
|
|
int iSize; |
475
|
|
|
|
|
|
|
#ifndef NDEBUG |
476
|
|
|
|
|
|
|
int cnt = 0; |
477
|
|
|
|
|
|
|
#endif |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
480
|
|
|
|
|
|
|
assert( nByte==ROUNDUP(nByte) ); |
481
|
|
|
|
|
|
|
assert( pPage->isInit ); |
482
|
133
|
100
|
|
|
|
|
if( pPage->nFreeisOverfull ) return 0; |
|
|
50
|
|
|
|
|
|
483
|
132
|
|
|
|
|
|
pIdx = &pPage->u.hdr.firstFree; |
484
|
132
|
50
|
|
|
|
|
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)]; |
485
|
135
|
50
|
|
|
|
|
while( (iSize = SWAB16(pBt, p->iSize))
|
|
|
100
|
|
|
|
|
|
486
|
|
|
|
|
|
|
assert( cnt++ < SQLITE_USABLE_SIZE/4 ); |
487
|
3
|
50
|
|
|
|
|
if( p->iNext==0 ){ |
488
|
0
|
|
|
|
|
|
defragmentPage(pBt, pPage); |
489
|
0
|
|
|
|
|
|
pIdx = &pPage->u.hdr.firstFree; |
490
|
|
|
|
|
|
|
}else{ |
491
|
3
|
|
|
|
|
|
pIdx = &p->iNext; |
492
|
|
|
|
|
|
|
} |
493
|
3
|
50
|
|
|
|
|
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)]; |
494
|
|
|
|
|
|
|
} |
495
|
132
|
100
|
|
|
|
|
if( iSize==nByte ){ |
496
|
3
|
50
|
|
|
|
|
start = SWAB16(pBt, *pIdx); |
497
|
3
|
|
|
|
|
|
*pIdx = p->iNext; |
498
|
|
|
|
|
|
|
}else{ |
499
|
|
|
|
|
|
|
FreeBlk *pNew; |
500
|
129
|
50
|
|
|
|
|
start = SWAB16(pBt, *pIdx); |
501
|
129
|
|
|
|
|
|
pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte]; |
502
|
129
|
|
|
|
|
|
pNew->iNext = p->iNext; |
503
|
129
|
50
|
|
|
|
|
pNew->iSize = SWAB16(pBt, iSize - nByte); |
504
|
129
|
50
|
|
|
|
|
*pIdx = SWAB16(pBt, start + nByte); |
505
|
|
|
|
|
|
|
} |
506
|
132
|
|
|
|
|
|
pPage->nFree -= nByte; |
507
|
132
|
|
|
|
|
|
return start; |
508
|
|
|
|
|
|
|
} |
509
|
|
|
|
|
|
|
|
510
|
|
|
|
|
|
|
/* |
511
|
|
|
|
|
|
|
** Return a section of the MemPage.u.aDisk[] to the freelist. |
512
|
|
|
|
|
|
|
** The first byte of the new free block is pPage->u.aDisk[start] |
513
|
|
|
|
|
|
|
** and the size of the block is "size" bytes. Size must be |
514
|
|
|
|
|
|
|
** a multiple of 4. |
515
|
|
|
|
|
|
|
** |
516
|
|
|
|
|
|
|
** Most of the effort here is involved in coalesing adjacent |
517
|
|
|
|
|
|
|
** free blocks into a single big free block. |
518
|
|
|
|
|
|
|
*/ |
519
|
39
|
|
|
|
|
|
static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){ |
520
|
39
|
|
|
|
|
|
int end = start + size; |
521
|
|
|
|
|
|
|
u16 *pIdx, idx; |
522
|
|
|
|
|
|
|
FreeBlk *pFBlk; |
523
|
|
|
|
|
|
|
FreeBlk *pNew; |
524
|
|
|
|
|
|
|
FreeBlk *pNext; |
525
|
|
|
|
|
|
|
int iSize; |
526
|
|
|
|
|
|
|
|
527
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
528
|
|
|
|
|
|
|
assert( size == ROUNDUP(size) ); |
529
|
|
|
|
|
|
|
assert( start == ROUNDUP(start) ); |
530
|
|
|
|
|
|
|
assert( pPage->isInit ); |
531
|
39
|
|
|
|
|
|
pIdx = &pPage->u.hdr.firstFree; |
532
|
39
|
50
|
|
|
|
|
idx = SWAB16(pBt, *pIdx); |
533
|
39
|
50
|
|
|
|
|
while( idx!=0 && idx
|
|
|
100
|
|
|
|
|
|
534
|
2
|
|
|
|
|
|
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; |
535
|
2
|
50
|
|
|
|
|
iSize = SWAB16(pBt, pFBlk->iSize); |
536
|
2
|
50
|
|
|
|
|
if( idx + iSize == start ){ |
537
|
2
|
50
|
|
|
|
|
pFBlk->iSize = SWAB16(pBt, iSize + size); |
538
|
2
|
50
|
|
|
|
|
if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){ |
|
|
100
|
|
|
|
|
|
539
|
1
|
|
|
|
|
|
pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size]; |
540
|
1
|
50
|
|
|
|
|
if( pBt->needSwab ){ |
541
|
0
|
|
|
|
|
|
pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size); |
542
|
|
|
|
|
|
|
}else{ |
543
|
1
|
|
|
|
|
|
pFBlk->iSize += pNext->iSize; |
544
|
|
|
|
|
|
|
} |
545
|
1
|
|
|
|
|
|
pFBlk->iNext = pNext->iNext; |
546
|
|
|
|
|
|
|
} |
547
|
2
|
|
|
|
|
|
pPage->nFree += size; |
548
|
2
|
|
|
|
|
|
return; |
549
|
|
|
|
|
|
|
} |
550
|
0
|
|
|
|
|
|
pIdx = &pFBlk->iNext; |
551
|
0
|
0
|
|
|
|
|
idx = SWAB16(pBt, *pIdx); |
552
|
|
|
|
|
|
|
} |
553
|
37
|
|
|
|
|
|
pNew = (FreeBlk*)&pPage->u.aDisk[start]; |
554
|
37
|
100
|
|
|
|
|
if( idx != end ){ |
555
|
5
|
50
|
|
|
|
|
pNew->iSize = SWAB16(pBt, size); |
556
|
5
|
50
|
|
|
|
|
pNew->iNext = SWAB16(pBt, idx); |
557
|
|
|
|
|
|
|
}else{ |
558
|
32
|
|
|
|
|
|
pNext = (FreeBlk*)&pPage->u.aDisk[idx]; |
559
|
32
|
50
|
|
|
|
|
pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize)); |
|
|
0
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
560
|
32
|
|
|
|
|
|
pNew->iNext = pNext->iNext; |
561
|
|
|
|
|
|
|
} |
562
|
37
|
50
|
|
|
|
|
*pIdx = SWAB16(pBt, start); |
563
|
37
|
|
|
|
|
|
pPage->nFree += size; |
564
|
|
|
|
|
|
|
} |
565
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
/* |
567
|
|
|
|
|
|
|
** Initialize the auxiliary information for a disk block. |
568
|
|
|
|
|
|
|
** |
569
|
|
|
|
|
|
|
** The pParent parameter must be a pointer to the MemPage which |
570
|
|
|
|
|
|
|
** is the parent of the page being initialized. The root of the |
571
|
|
|
|
|
|
|
** BTree (usually page 2) has no parent and so for that page, |
572
|
|
|
|
|
|
|
** pParent==NULL. |
573
|
|
|
|
|
|
|
** |
574
|
|
|
|
|
|
|
** Return SQLITE_OK on success. If we see that the page does |
575
|
|
|
|
|
|
|
** not contain a well-formed database page, then return |
576
|
|
|
|
|
|
|
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
577
|
|
|
|
|
|
|
** guarantee that the page is well-formed. It only shows that |
578
|
|
|
|
|
|
|
** we failed to detect any corruption. |
579
|
|
|
|
|
|
|
*/ |
580
|
630
|
|
|
|
|
|
static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){ |
581
|
|
|
|
|
|
|
int idx; /* An index into pPage->u.aDisk[] */ |
582
|
|
|
|
|
|
|
Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */ |
583
|
|
|
|
|
|
|
FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */ |
584
|
|
|
|
|
|
|
int sz; /* The size of a Cell in bytes */ |
585
|
|
|
|
|
|
|
int freeSpace; /* Amount of free space on the page */ |
586
|
|
|
|
|
|
|
|
587
|
630
|
100
|
|
|
|
|
if( pPage->pParent ){ |
588
|
|
|
|
|
|
|
assert( pPage->pParent==pParent ); |
589
|
1
|
|
|
|
|
|
return SQLITE_OK; |
590
|
|
|
|
|
|
|
} |
591
|
629
|
100
|
|
|
|
|
if( pParent ){ |
592
|
4
|
|
|
|
|
|
pPage->pParent = pParent; |
593
|
4
|
|
|
|
|
|
sqlitepager_ref(pParent); |
594
|
|
|
|
|
|
|
} |
595
|
629
|
100
|
|
|
|
|
if( pPage->isInit ) return SQLITE_OK; |
596
|
216
|
|
|
|
|
|
pPage->isInit = 1; |
597
|
216
|
|
|
|
|
|
pPage->nCell = 0; |
598
|
216
|
|
|
|
|
|
freeSpace = USABLE_SPACE; |
599
|
216
|
50
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstCell); |
600
|
453
|
100
|
|
|
|
|
while( idx!=0 ){ |
601
|
237
|
50
|
|
|
|
|
if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error; |
602
|
237
|
50
|
|
|
|
|
if( idx
|
603
|
237
|
50
|
|
|
|
|
if( idx!=ROUNDUP(idx) ) goto page_format_error; |
604
|
237
|
|
|
|
|
|
pCell = (Cell*)&pPage->u.aDisk[idx]; |
605
|
237
|
|
|
|
|
|
sz = cellSize(pBt, pCell); |
606
|
237
|
50
|
|
|
|
|
if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error; |
607
|
237
|
|
|
|
|
|
freeSpace -= sz; |
608
|
237
|
|
|
|
|
|
pPage->apCell[pPage->nCell++] = pCell; |
609
|
237
|
50
|
|
|
|
|
idx = SWAB16(pBt, pCell->h.iNext); |
610
|
|
|
|
|
|
|
} |
611
|
216
|
|
|
|
|
|
pPage->nFree = 0; |
612
|
216
|
50
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstFree); |
613
|
406
|
100
|
|
|
|
|
while( idx!=0 ){ |
614
|
|
|
|
|
|
|
int iNext; |
615
|
190
|
50
|
|
|
|
|
if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error; |
616
|
190
|
50
|
|
|
|
|
if( idx
|
617
|
190
|
|
|
|
|
|
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; |
618
|
190
|
50
|
|
|
|
|
pPage->nFree += SWAB16(pBt, pFBlk->iSize); |
619
|
190
|
50
|
|
|
|
|
iNext = SWAB16(pBt, pFBlk->iNext); |
620
|
190
|
100
|
|
|
|
|
if( iNext>0 && iNext <= idx ) goto page_format_error; |
|
|
50
|
|
|
|
|
|
621
|
190
|
|
|
|
|
|
idx = iNext; |
622
|
|
|
|
|
|
|
} |
623
|
216
|
100
|
|
|
|
|
if( pPage->nCell==0 && pPage->nFree==0 ){ |
|
|
100
|
|
|
|
|
|
624
|
|
|
|
|
|
|
/* As a special case, an uninitialized root page appears to be |
625
|
|
|
|
|
|
|
** an empty database */ |
626
|
30
|
|
|
|
|
|
return SQLITE_OK; |
627
|
|
|
|
|
|
|
} |
628
|
186
|
50
|
|
|
|
|
if( pPage->nFree!=freeSpace ) goto page_format_error; |
629
|
186
|
|
|
|
|
|
return SQLITE_OK; |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
page_format_error: |
632
|
0
|
|
|
|
|
|
return SQLITE_CORRUPT; |
633
|
|
|
|
|
|
|
} |
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
/* |
636
|
|
|
|
|
|
|
** Set up a raw page so that it looks like a database page holding |
637
|
|
|
|
|
|
|
** no entries. |
638
|
|
|
|
|
|
|
*/ |
639
|
68
|
|
|
|
|
|
static void zeroPage(Btree *pBt, MemPage *pPage){ |
640
|
|
|
|
|
|
|
PageHdr *pHdr; |
641
|
|
|
|
|
|
|
FreeBlk *pFBlk; |
642
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
643
|
68
|
|
|
|
|
|
memset(pPage, 0, SQLITE_USABLE_SIZE); |
644
|
68
|
|
|
|
|
|
pHdr = &pPage->u.hdr; |
645
|
68
|
|
|
|
|
|
pHdr->firstCell = 0; |
646
|
68
|
50
|
|
|
|
|
pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr)); |
647
|
68
|
|
|
|
|
|
pFBlk = (FreeBlk*)&pHdr[1]; |
648
|
68
|
|
|
|
|
|
pFBlk->iNext = 0; |
649
|
68
|
|
|
|
|
|
pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr); |
650
|
68
|
50
|
|
|
|
|
pFBlk->iSize = SWAB16(pBt, pPage->nFree); |
651
|
68
|
|
|
|
|
|
pPage->nCell = 0; |
652
|
68
|
|
|
|
|
|
pPage->isOverfull = 0; |
653
|
68
|
|
|
|
|
|
} |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
/* |
656
|
|
|
|
|
|
|
** This routine is called when the reference count for a page |
657
|
|
|
|
|
|
|
** reaches zero. We need to unref the pParent pointer when that |
658
|
|
|
|
|
|
|
** happens. |
659
|
|
|
|
|
|
|
*/ |
660
|
691
|
|
|
|
|
|
static void pageDestructor(void *pData){ |
661
|
691
|
|
|
|
|
|
MemPage *pPage = (MemPage*)pData; |
662
|
691
|
100
|
|
|
|
|
if( pPage->pParent ){ |
663
|
6
|
|
|
|
|
|
MemPage *pParent = pPage->pParent; |
664
|
6
|
|
|
|
|
|
pPage->pParent = 0; |
665
|
6
|
|
|
|
|
|
sqlitepager_unref(pParent); |
666
|
|
|
|
|
|
|
} |
667
|
691
|
|
|
|
|
|
} |
668
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
/* |
670
|
|
|
|
|
|
|
** Open a new database. |
671
|
|
|
|
|
|
|
** |
672
|
|
|
|
|
|
|
** Actually, this routine just sets up the internal data structures |
673
|
|
|
|
|
|
|
** for accessing the database. We do not open the database file |
674
|
|
|
|
|
|
|
** until the first page is loaded. |
675
|
|
|
|
|
|
|
** |
676
|
|
|
|
|
|
|
** zFilename is the name of the database file. If zFilename is NULL |
677
|
|
|
|
|
|
|
** a new database with a random name is created. This randomly named |
678
|
|
|
|
|
|
|
** database file will be deleted when sqliteBtreeClose() is called. |
679
|
|
|
|
|
|
|
*/ |
680
|
53
|
|
|
|
|
|
int sqliteBtreeOpen( |
681
|
|
|
|
|
|
|
const char *zFilename, /* Name of the file containing the BTree database */ |
682
|
|
|
|
|
|
|
int omitJournal, /* if TRUE then do not journal this file */ |
683
|
|
|
|
|
|
|
int nCache, /* How many pages in the page cache */ |
684
|
|
|
|
|
|
|
Btree **ppBtree /* Pointer to new Btree object written here */ |
685
|
|
|
|
|
|
|
){ |
686
|
|
|
|
|
|
|
Btree *pBt; |
687
|
|
|
|
|
|
|
int rc; |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
/* |
690
|
|
|
|
|
|
|
** The following asserts make sure that structures used by the btree are |
691
|
|
|
|
|
|
|
** the right size. This is to guard against size changes that result |
692
|
|
|
|
|
|
|
** when compiling on a different architecture. |
693
|
|
|
|
|
|
|
*/ |
694
|
|
|
|
|
|
|
assert( sizeof(u32)==4 ); |
695
|
|
|
|
|
|
|
assert( sizeof(u16)==2 ); |
696
|
|
|
|
|
|
|
assert( sizeof(Pgno)==4 ); |
697
|
|
|
|
|
|
|
assert( sizeof(PageHdr)==8 ); |
698
|
|
|
|
|
|
|
assert( sizeof(CellHdr)==12 ); |
699
|
|
|
|
|
|
|
assert( sizeof(FreeBlk)==4 ); |
700
|
|
|
|
|
|
|
assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE ); |
701
|
|
|
|
|
|
|
assert( sizeof(FreelistInfo)==OVERFLOW_SIZE ); |
702
|
|
|
|
|
|
|
assert( sizeof(ptr)==sizeof(char*) ); |
703
|
|
|
|
|
|
|
assert( sizeof(uptr)==sizeof(ptr) ); |
704
|
|
|
|
|
|
|
|
705
|
53
|
|
|
|
|
|
pBt = sqliteMalloc( sizeof(*pBt) ); |
706
|
53
|
50
|
|
|
|
|
if( pBt==0 ){ |
707
|
0
|
|
|
|
|
|
*ppBtree = 0; |
708
|
0
|
|
|
|
|
|
return SQLITE_NOMEM; |
709
|
|
|
|
|
|
|
} |
710
|
53
|
50
|
|
|
|
|
if( nCache<10 ) nCache = 10; |
711
|
53
|
|
|
|
|
|
rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE, |
712
|
|
|
|
|
|
|
!omitJournal); |
713
|
53
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
714
|
0
|
0
|
|
|
|
|
if( pBt->pPager ) sqlitepager_close(pBt->pPager); |
715
|
0
|
|
|
|
|
|
sqliteFree(pBt); |
716
|
0
|
|
|
|
|
|
*ppBtree = 0; |
717
|
0
|
|
|
|
|
|
return rc; |
718
|
|
|
|
|
|
|
} |
719
|
53
|
|
|
|
|
|
sqlitepager_set_destructor(pBt->pPager, pageDestructor); |
720
|
53
|
|
|
|
|
|
pBt->pCursor = 0; |
721
|
53
|
|
|
|
|
|
pBt->page1 = 0; |
722
|
53
|
|
|
|
|
|
pBt->readOnly = sqlitepager_isreadonly(pBt->pPager); |
723
|
53
|
|
|
|
|
|
pBt->pOps = &sqliteBtreeOps; |
724
|
53
|
|
|
|
|
|
*ppBtree = pBt; |
725
|
53
|
|
|
|
|
|
return SQLITE_OK; |
726
|
|
|
|
|
|
|
} |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
/* |
729
|
|
|
|
|
|
|
** Close an open database and invalidate all cursors. |
730
|
|
|
|
|
|
|
*/ |
731
|
53
|
|
|
|
|
|
static int fileBtreeClose(Btree *pBt){ |
732
|
53
|
50
|
|
|
|
|
while( pBt->pCursor ){ |
733
|
0
|
|
|
|
|
|
fileBtreeCloseCursor(pBt->pCursor); |
734
|
|
|
|
|
|
|
} |
735
|
53
|
|
|
|
|
|
sqlitepager_close(pBt->pPager); |
736
|
53
|
|
|
|
|
|
sqliteFree(pBt); |
737
|
53
|
|
|
|
|
|
return SQLITE_OK; |
738
|
|
|
|
|
|
|
} |
739
|
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
/* |
741
|
|
|
|
|
|
|
** Change the limit on the number of pages allowed in the cache. |
742
|
|
|
|
|
|
|
** |
743
|
|
|
|
|
|
|
** The maximum number of cache pages is set to the absolute |
744
|
|
|
|
|
|
|
** value of mxPage. If mxPage is negative, the pager will |
745
|
|
|
|
|
|
|
** operate asynchronously - it will not stop to do fsync()s |
746
|
|
|
|
|
|
|
** to insure data is written to the disk surface before |
747
|
|
|
|
|
|
|
** continuing. Transactions still work if synchronous is off, |
748
|
|
|
|
|
|
|
** and the database cannot be corrupted if this program |
749
|
|
|
|
|
|
|
** crashes. But if the operating system crashes or there is |
750
|
|
|
|
|
|
|
** an abrupt power failure when synchronous is off, the database |
751
|
|
|
|
|
|
|
** could be left in an inconsistent and unrecoverable state. |
752
|
|
|
|
|
|
|
** Synchronous is on by default so database corruption is not |
753
|
|
|
|
|
|
|
** normally a worry. |
754
|
|
|
|
|
|
|
*/ |
755
|
54
|
|
|
|
|
|
static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){ |
756
|
54
|
|
|
|
|
|
sqlitepager_set_cachesize(pBt->pPager, mxPage); |
757
|
54
|
|
|
|
|
|
return SQLITE_OK; |
758
|
|
|
|
|
|
|
} |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
/* |
761
|
|
|
|
|
|
|
** Change the way data is synced to disk in order to increase or decrease |
762
|
|
|
|
|
|
|
** how well the database resists damage due to OS crashes and power |
763
|
|
|
|
|
|
|
** failures. Level 1 is the same as asynchronous (no syncs() occur and |
764
|
|
|
|
|
|
|
** there is a high probability of damage) Level 2 is the default. There |
765
|
|
|
|
|
|
|
** is a very low but non-zero probability of damage. Level 3 reduces the |
766
|
|
|
|
|
|
|
** probability of damage to near zero but with a write performance reduction. |
767
|
|
|
|
|
|
|
*/ |
768
|
54
|
|
|
|
|
|
static int fileBtreeSetSafetyLevel(Btree *pBt, int level){ |
769
|
54
|
|
|
|
|
|
sqlitepager_set_safety_level(pBt->pPager, level); |
770
|
54
|
|
|
|
|
|
return SQLITE_OK; |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
/* |
774
|
|
|
|
|
|
|
** Get a reference to page1 of the database file. This will |
775
|
|
|
|
|
|
|
** also acquire a readlock on that file. |
776
|
|
|
|
|
|
|
** |
777
|
|
|
|
|
|
|
** SQLITE_OK is returned on success. If the file is not a |
778
|
|
|
|
|
|
|
** well-formed database file, then SQLITE_CORRUPT is returned. |
779
|
|
|
|
|
|
|
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
780
|
|
|
|
|
|
|
** is returned if we run out of memory. SQLITE_PROTOCOL is returned |
781
|
|
|
|
|
|
|
** if there is a locking protocol violation. |
782
|
|
|
|
|
|
|
*/ |
783
|
259
|
|
|
|
|
|
static int lockBtree(Btree *pBt){ |
784
|
|
|
|
|
|
|
int rc; |
785
|
259
|
50
|
|
|
|
|
if( pBt->page1 ) return SQLITE_OK; |
786
|
259
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1); |
787
|
259
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ) return rc; |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
/* Do some checking to help insure the file we opened really is |
790
|
|
|
|
|
|
|
** a valid database file. |
791
|
|
|
|
|
|
|
*/ |
792
|
259
|
100
|
|
|
|
|
if( sqlitepager_pagecount(pBt->pPager)>0 ){ |
793
|
202
|
|
|
|
|
|
PageOne *pP1 = pBt->page1; |
794
|
202
|
50
|
|
|
|
|
if( strcmp(pP1->zMagic,zMagicHeader)!=0 || |
|
|
50
|
|
|
|
|
|
795
|
0
|
0
|
|
|
|
|
(pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){ |
796
|
0
|
|
|
|
|
|
rc = SQLITE_NOTADB; |
797
|
0
|
|
|
|
|
|
goto page1_init_failed; |
798
|
|
|
|
|
|
|
} |
799
|
202
|
|
|
|
|
|
pBt->needSwab = pP1->iMagic!=MAGIC; |
800
|
|
|
|
|
|
|
} |
801
|
259
|
|
|
|
|
|
return rc; |
802
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
page1_init_failed: |
804
|
0
|
|
|
|
|
|
sqlitepager_unref(pBt->page1); |
805
|
0
|
|
|
|
|
|
pBt->page1 = 0; |
806
|
0
|
|
|
|
|
|
return rc; |
807
|
|
|
|
|
|
|
} |
808
|
|
|
|
|
|
|
|
809
|
|
|
|
|
|
|
/* |
810
|
|
|
|
|
|
|
** If there are no outstanding cursors and we are not in the middle |
811
|
|
|
|
|
|
|
** of a transaction but there is a read lock on the database, then |
812
|
|
|
|
|
|
|
** this routine unrefs the first page of the database file which |
813
|
|
|
|
|
|
|
** has the effect of releasing the read lock. |
814
|
|
|
|
|
|
|
** |
815
|
|
|
|
|
|
|
** If there are any outstanding cursors, this routine is a no-op. |
816
|
|
|
|
|
|
|
** |
817
|
|
|
|
|
|
|
** If there is a transaction in progress, this routine is a no-op. |
818
|
|
|
|
|
|
|
*/ |
819
|
425
|
|
|
|
|
|
static void unlockBtreeIfUnused(Btree *pBt){ |
820
|
425
|
100
|
|
|
|
|
if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){ |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
821
|
256
|
|
|
|
|
|
sqlitepager_unref(pBt->page1); |
822
|
256
|
|
|
|
|
|
pBt->page1 = 0; |
823
|
256
|
|
|
|
|
|
pBt->inTrans = 0; |
824
|
256
|
|
|
|
|
|
pBt->inCkpt = 0; |
825
|
|
|
|
|
|
|
} |
826
|
425
|
|
|
|
|
|
} |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
/* |
829
|
|
|
|
|
|
|
** Create a new database by initializing the first two pages of the |
830
|
|
|
|
|
|
|
** file. |
831
|
|
|
|
|
|
|
*/ |
832
|
156
|
|
|
|
|
|
static int newDatabase(Btree *pBt){ |
833
|
|
|
|
|
|
|
MemPage *pRoot; |
834
|
|
|
|
|
|
|
PageOne *pP1; |
835
|
|
|
|
|
|
|
int rc; |
836
|
156
|
100
|
|
|
|
|
if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK; |
837
|
27
|
|
|
|
|
|
pP1 = pBt->page1; |
838
|
27
|
|
|
|
|
|
rc = sqlitepager_write(pBt->page1); |
839
|
27
|
50
|
|
|
|
|
if( rc ) return rc; |
840
|
27
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot); |
841
|
27
|
50
|
|
|
|
|
if( rc ) return rc; |
842
|
27
|
|
|
|
|
|
rc = sqlitepager_write(pRoot); |
843
|
27
|
50
|
|
|
|
|
if( rc ){ |
844
|
0
|
|
|
|
|
|
sqlitepager_unref(pRoot); |
845
|
0
|
|
|
|
|
|
return rc; |
846
|
|
|
|
|
|
|
} |
847
|
27
|
|
|
|
|
|
strcpy(pP1->zMagic, zMagicHeader); |
848
|
|
|
|
|
|
|
if( btree_native_byte_order ){ |
849
|
27
|
|
|
|
|
|
pP1->iMagic = MAGIC; |
850
|
27
|
|
|
|
|
|
pBt->needSwab = 0; |
851
|
|
|
|
|
|
|
}else{ |
852
|
|
|
|
|
|
|
pP1->iMagic = swab32(MAGIC); |
853
|
|
|
|
|
|
|
pBt->needSwab = 1; |
854
|
|
|
|
|
|
|
} |
855
|
27
|
|
|
|
|
|
zeroPage(pBt, pRoot); |
856
|
27
|
|
|
|
|
|
sqlitepager_unref(pRoot); |
857
|
156
|
|
|
|
|
|
return SQLITE_OK; |
858
|
|
|
|
|
|
|
} |
859
|
|
|
|
|
|
|
|
860
|
|
|
|
|
|
|
/* |
861
|
|
|
|
|
|
|
** Attempt to start a new transaction. |
862
|
|
|
|
|
|
|
** |
863
|
|
|
|
|
|
|
** A transaction must be started before attempting any changes |
864
|
|
|
|
|
|
|
** to the database. None of the following routines will work |
865
|
|
|
|
|
|
|
** unless a transaction is started first: |
866
|
|
|
|
|
|
|
** |
867
|
|
|
|
|
|
|
** sqliteBtreeCreateTable() |
868
|
|
|
|
|
|
|
** sqliteBtreeCreateIndex() |
869
|
|
|
|
|
|
|
** sqliteBtreeClearTable() |
870
|
|
|
|
|
|
|
** sqliteBtreeDropTable() |
871
|
|
|
|
|
|
|
** sqliteBtreeInsert() |
872
|
|
|
|
|
|
|
** sqliteBtreeDelete() |
873
|
|
|
|
|
|
|
** sqliteBtreeUpdateMeta() |
874
|
|
|
|
|
|
|
*/ |
875
|
156
|
|
|
|
|
|
static int fileBtreeBeginTrans(Btree *pBt){ |
876
|
|
|
|
|
|
|
int rc; |
877
|
156
|
50
|
|
|
|
|
if( pBt->inTrans ) return SQLITE_ERROR; |
878
|
156
|
50
|
|
|
|
|
if( pBt->readOnly ) return SQLITE_READONLY; |
879
|
156
|
50
|
|
|
|
|
if( pBt->page1==0 ){ |
880
|
156
|
|
|
|
|
|
rc = lockBtree(pBt); |
881
|
156
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
882
|
0
|
|
|
|
|
|
return rc; |
883
|
|
|
|
|
|
|
} |
884
|
|
|
|
|
|
|
} |
885
|
156
|
|
|
|
|
|
rc = sqlitepager_begin(pBt->page1); |
886
|
156
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
887
|
156
|
|
|
|
|
|
rc = newDatabase(pBt); |
888
|
|
|
|
|
|
|
} |
889
|
156
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
890
|
156
|
|
|
|
|
|
pBt->inTrans = 1; |
891
|
156
|
|
|
|
|
|
pBt->inCkpt = 0; |
892
|
|
|
|
|
|
|
}else{ |
893
|
0
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
894
|
|
|
|
|
|
|
} |
895
|
156
|
|
|
|
|
|
return rc; |
896
|
|
|
|
|
|
|
} |
897
|
|
|
|
|
|
|
|
898
|
|
|
|
|
|
|
/* |
899
|
|
|
|
|
|
|
** Commit the transaction currently in progress. |
900
|
|
|
|
|
|
|
** |
901
|
|
|
|
|
|
|
** This will release the write lock on the database file. If there |
902
|
|
|
|
|
|
|
** are no active cursors, it also releases the read lock. |
903
|
|
|
|
|
|
|
*/ |
904
|
143
|
|
|
|
|
|
static int fileBtreeCommit(Btree *pBt){ |
905
|
|
|
|
|
|
|
int rc; |
906
|
143
|
50
|
|
|
|
|
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager); |
907
|
143
|
|
|
|
|
|
pBt->inTrans = 0; |
908
|
143
|
|
|
|
|
|
pBt->inCkpt = 0; |
909
|
143
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
910
|
143
|
|
|
|
|
|
return rc; |
911
|
|
|
|
|
|
|
} |
912
|
|
|
|
|
|
|
|
913
|
|
|
|
|
|
|
/* |
914
|
|
|
|
|
|
|
** Rollback the transaction in progress. All cursors will be |
915
|
|
|
|
|
|
|
** invalided by this operation. Any attempt to use a cursor |
916
|
|
|
|
|
|
|
** that was open at the beginning of this operation will result |
917
|
|
|
|
|
|
|
** in an error. |
918
|
|
|
|
|
|
|
** |
919
|
|
|
|
|
|
|
** This will release the write lock on the database file. If there |
920
|
|
|
|
|
|
|
** are no active cursors, it also releases the read lock. |
921
|
|
|
|
|
|
|
*/ |
922
|
10
|
|
|
|
|
|
static int fileBtreeRollback(Btree *pBt){ |
923
|
|
|
|
|
|
|
int rc; |
924
|
|
|
|
|
|
|
BtCursor *pCur; |
925
|
10
|
50
|
|
|
|
|
if( pBt->inTrans==0 ) return SQLITE_OK; |
926
|
10
|
|
|
|
|
|
pBt->inTrans = 0; |
927
|
10
|
|
|
|
|
|
pBt->inCkpt = 0; |
928
|
10
|
50
|
|
|
|
|
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager); |
929
|
10
|
50
|
|
|
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
930
|
0
|
0
|
|
|
|
|
if( pCur->pPage && pCur->pPage->isInit==0 ){ |
|
|
0
|
|
|
|
|
|
931
|
0
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
932
|
0
|
|
|
|
|
|
pCur->pPage = 0; |
933
|
|
|
|
|
|
|
} |
934
|
|
|
|
|
|
|
} |
935
|
10
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
936
|
10
|
|
|
|
|
|
return rc; |
937
|
|
|
|
|
|
|
} |
938
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
/* |
940
|
|
|
|
|
|
|
** Set the checkpoint for the current transaction. The checkpoint serves |
941
|
|
|
|
|
|
|
** as a sub-transaction that can be rolled back independently of the |
942
|
|
|
|
|
|
|
** main transaction. You must start a transaction before starting a |
943
|
|
|
|
|
|
|
** checkpoint. The checkpoint is ended automatically if the transaction |
944
|
|
|
|
|
|
|
** commits or rolls back. |
945
|
|
|
|
|
|
|
** |
946
|
|
|
|
|
|
|
** Only one checkpoint may be active at a time. It is an error to try |
947
|
|
|
|
|
|
|
** to start a new checkpoint if another checkpoint is already active. |
948
|
|
|
|
|
|
|
*/ |
949
|
0
|
|
|
|
|
|
static int fileBtreeBeginCkpt(Btree *pBt){ |
950
|
|
|
|
|
|
|
int rc; |
951
|
0
|
0
|
|
|
|
|
if( !pBt->inTrans || pBt->inCkpt ){ |
|
|
0
|
|
|
|
|
|
952
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
953
|
|
|
|
|
|
|
} |
954
|
0
|
0
|
|
|
|
|
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager); |
955
|
0
|
|
|
|
|
|
pBt->inCkpt = 1; |
956
|
0
|
|
|
|
|
|
return rc; |
957
|
|
|
|
|
|
|
} |
958
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
/* |
961
|
|
|
|
|
|
|
** Commit a checkpoint to transaction currently in progress. If no |
962
|
|
|
|
|
|
|
** checkpoint is active, this is a no-op. |
963
|
|
|
|
|
|
|
*/ |
964
|
0
|
|
|
|
|
|
static int fileBtreeCommitCkpt(Btree *pBt){ |
965
|
|
|
|
|
|
|
int rc; |
966
|
0
|
0
|
|
|
|
|
if( pBt->inCkpt && !pBt->readOnly ){ |
|
|
0
|
|
|
|
|
|
967
|
0
|
|
|
|
|
|
rc = sqlitepager_ckpt_commit(pBt->pPager); |
968
|
|
|
|
|
|
|
}else{ |
969
|
0
|
|
|
|
|
|
rc = SQLITE_OK; |
970
|
|
|
|
|
|
|
} |
971
|
0
|
|
|
|
|
|
pBt->inCkpt = 0; |
972
|
0
|
|
|
|
|
|
return rc; |
973
|
|
|
|
|
|
|
} |
974
|
|
|
|
|
|
|
|
975
|
|
|
|
|
|
|
/* |
976
|
|
|
|
|
|
|
** Rollback the checkpoint to the current transaction. If there |
977
|
|
|
|
|
|
|
** is no active checkpoint or transaction, this routine is a no-op. |
978
|
|
|
|
|
|
|
** |
979
|
|
|
|
|
|
|
** All cursors will be invalided by this operation. Any attempt |
980
|
|
|
|
|
|
|
** to use a cursor that was open at the beginning of this operation |
981
|
|
|
|
|
|
|
** will result in an error. |
982
|
|
|
|
|
|
|
*/ |
983
|
2
|
|
|
|
|
|
static int fileBtreeRollbackCkpt(Btree *pBt){ |
984
|
|
|
|
|
|
|
int rc; |
985
|
|
|
|
|
|
|
BtCursor *pCur; |
986
|
2
|
50
|
|
|
|
|
if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK; |
|
|
0
|
|
|
|
|
|
987
|
0
|
|
|
|
|
|
rc = sqlitepager_ckpt_rollback(pBt->pPager); |
988
|
0
|
0
|
|
|
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
989
|
0
|
0
|
|
|
|
|
if( pCur->pPage && pCur->pPage->isInit==0 ){ |
|
|
0
|
|
|
|
|
|
990
|
0
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
991
|
0
|
|
|
|
|
|
pCur->pPage = 0; |
992
|
|
|
|
|
|
|
} |
993
|
|
|
|
|
|
|
} |
994
|
0
|
|
|
|
|
|
pBt->inCkpt = 0; |
995
|
0
|
|
|
|
|
|
return rc; |
996
|
|
|
|
|
|
|
} |
997
|
|
|
|
|
|
|
|
998
|
|
|
|
|
|
|
/* |
999
|
|
|
|
|
|
|
** Create a new cursor for the BTree whose root is on the page |
1000
|
|
|
|
|
|
|
** iTable. The act of acquiring a cursor gets a read lock on |
1001
|
|
|
|
|
|
|
** the database file. |
1002
|
|
|
|
|
|
|
** |
1003
|
|
|
|
|
|
|
** If wrFlag==0, then the cursor can only be used for reading. |
1004
|
|
|
|
|
|
|
** If wrFlag==1, then the cursor can be used for reading or for |
1005
|
|
|
|
|
|
|
** writing if other conditions for writing are also met. These |
1006
|
|
|
|
|
|
|
** are the conditions that must be met in order for writing to |
1007
|
|
|
|
|
|
|
** be allowed: |
1008
|
|
|
|
|
|
|
** |
1009
|
|
|
|
|
|
|
** 1: The cursor must have been opened with wrFlag==1 |
1010
|
|
|
|
|
|
|
** |
1011
|
|
|
|
|
|
|
** 2: No other cursors may be open with wrFlag==0 on the same table |
1012
|
|
|
|
|
|
|
** |
1013
|
|
|
|
|
|
|
** 3: The database must be writable (not on read-only media) |
1014
|
|
|
|
|
|
|
** |
1015
|
|
|
|
|
|
|
** 4: There must be an active transaction. |
1016
|
|
|
|
|
|
|
** |
1017
|
|
|
|
|
|
|
** Condition 2 warrants further discussion. If any cursor is opened |
1018
|
|
|
|
|
|
|
** on a table with wrFlag==0, that prevents all other cursors from |
1019
|
|
|
|
|
|
|
** writing to that table. This is a kind of "read-lock". When a cursor |
1020
|
|
|
|
|
|
|
** is opened with wrFlag==0 it is guaranteed that the table will not |
1021
|
|
|
|
|
|
|
** change as long as the cursor is open. This allows the cursor to |
1022
|
|
|
|
|
|
|
** do a sequential scan of the table without having to worry about |
1023
|
|
|
|
|
|
|
** entries being inserted or deleted during the scan. Cursors should |
1024
|
|
|
|
|
|
|
** be opened with wrFlag==0 only if this read-lock property is needed. |
1025
|
|
|
|
|
|
|
** That is to say, cursors should be opened with wrFlag==0 only if they |
1026
|
|
|
|
|
|
|
** intend to use the sqliteBtreeNext() system call. All other cursors |
1027
|
|
|
|
|
|
|
** should be opened with wrFlag==1 even if they never really intend |
1028
|
|
|
|
|
|
|
** to write. |
1029
|
|
|
|
|
|
|
** |
1030
|
|
|
|
|
|
|
** No checking is done to make sure that page iTable really is the |
1031
|
|
|
|
|
|
|
** root page of a b-tree. If it is not, then the cursor acquired |
1032
|
|
|
|
|
|
|
** will not work correctly. |
1033
|
|
|
|
|
|
|
*/ |
1034
|
|
|
|
|
|
|
static |
1035
|
272
|
|
|
|
|
|
int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){ |
1036
|
|
|
|
|
|
|
int rc; |
1037
|
|
|
|
|
|
|
BtCursor *pCur, *pRing; |
1038
|
|
|
|
|
|
|
|
1039
|
272
|
50
|
|
|
|
|
if( pBt->readOnly && wrFlag ){ |
|
|
0
|
|
|
|
|
|
1040
|
0
|
|
|
|
|
|
*ppCur = 0; |
1041
|
0
|
|
|
|
|
|
return SQLITE_READONLY; |
1042
|
|
|
|
|
|
|
} |
1043
|
272
|
100
|
|
|
|
|
if( pBt->page1==0 ){ |
1044
|
103
|
|
|
|
|
|
rc = lockBtree(pBt); |
1045
|
103
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
1046
|
0
|
|
|
|
|
|
*ppCur = 0; |
1047
|
0
|
|
|
|
|
|
return rc; |
1048
|
|
|
|
|
|
|
} |
1049
|
|
|
|
|
|
|
} |
1050
|
272
|
|
|
|
|
|
pCur = sqliteMalloc( sizeof(*pCur) ); |
1051
|
272
|
50
|
|
|
|
|
if( pCur==0 ){ |
1052
|
0
|
|
|
|
|
|
rc = SQLITE_NOMEM; |
1053
|
0
|
|
|
|
|
|
goto create_cursor_exception; |
1054
|
|
|
|
|
|
|
} |
1055
|
272
|
|
|
|
|
|
pCur->pgnoRoot = (Pgno)iTable; |
1056
|
272
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage); |
1057
|
272
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
1058
|
0
|
|
|
|
|
|
goto create_cursor_exception; |
1059
|
|
|
|
|
|
|
} |
1060
|
272
|
|
|
|
|
|
rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0); |
1061
|
272
|
50
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
1062
|
0
|
|
|
|
|
|
goto create_cursor_exception; |
1063
|
|
|
|
|
|
|
} |
1064
|
272
|
|
|
|
|
|
pCur->pOps = &sqliteBtreeCursorOps; |
1065
|
272
|
|
|
|
|
|
pCur->pBt = pBt; |
1066
|
272
|
|
|
|
|
|
pCur->wrFlag = wrFlag; |
1067
|
272
|
|
|
|
|
|
pCur->idx = 0; |
1068
|
272
|
|
|
|
|
|
pCur->eSkip = SKIP_INVALID; |
1069
|
272
|
|
|
|
|
|
pCur->pNext = pBt->pCursor; |
1070
|
272
|
100
|
|
|
|
|
if( pCur->pNext ){ |
1071
|
59
|
|
|
|
|
|
pCur->pNext->pPrev = pCur; |
1072
|
|
|
|
|
|
|
} |
1073
|
272
|
|
|
|
|
|
pCur->pPrev = 0; |
1074
|
272
|
|
|
|
|
|
pRing = pBt->pCursor; |
1075
|
278
|
100
|
|
|
|
|
while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; } |
|
|
100
|
|
|
|
|
|
1076
|
272
|
100
|
|
|
|
|
if( pRing ){ |
1077
|
54
|
|
|
|
|
|
pCur->pShared = pRing->pShared; |
1078
|
54
|
|
|
|
|
|
pRing->pShared = pCur; |
1079
|
|
|
|
|
|
|
}else{ |
1080
|
218
|
|
|
|
|
|
pCur->pShared = pCur; |
1081
|
|
|
|
|
|
|
} |
1082
|
272
|
|
|
|
|
|
pBt->pCursor = pCur; |
1083
|
272
|
|
|
|
|
|
*ppCur = pCur; |
1084
|
272
|
|
|
|
|
|
return SQLITE_OK; |
1085
|
|
|
|
|
|
|
|
1086
|
|
|
|
|
|
|
create_cursor_exception: |
1087
|
0
|
|
|
|
|
|
*ppCur = 0; |
1088
|
0
|
0
|
|
|
|
|
if( pCur ){ |
1089
|
0
|
0
|
|
|
|
|
if( pCur->pPage ) sqlitepager_unref(pCur->pPage); |
1090
|
0
|
|
|
|
|
|
sqliteFree(pCur); |
1091
|
|
|
|
|
|
|
} |
1092
|
0
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
1093
|
0
|
|
|
|
|
|
return rc; |
1094
|
|
|
|
|
|
|
} |
1095
|
|
|
|
|
|
|
|
1096
|
|
|
|
|
|
|
/* |
1097
|
|
|
|
|
|
|
** Close a cursor. The read lock on the database file is released |
1098
|
|
|
|
|
|
|
** when the last cursor is closed. |
1099
|
|
|
|
|
|
|
*/ |
1100
|
272
|
|
|
|
|
|
static int fileBtreeCloseCursor(BtCursor *pCur){ |
1101
|
272
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
1102
|
272
|
100
|
|
|
|
|
if( pCur->pPrev ){ |
1103
|
3
|
|
|
|
|
|
pCur->pPrev->pNext = pCur->pNext; |
1104
|
|
|
|
|
|
|
}else{ |
1105
|
269
|
|
|
|
|
|
pBt->pCursor = pCur->pNext; |
1106
|
|
|
|
|
|
|
} |
1107
|
272
|
100
|
|
|
|
|
if( pCur->pNext ){ |
1108
|
56
|
|
|
|
|
|
pCur->pNext->pPrev = pCur->pPrev; |
1109
|
|
|
|
|
|
|
} |
1110
|
272
|
50
|
|
|
|
|
if( pCur->pPage ){ |
1111
|
272
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
1112
|
|
|
|
|
|
|
} |
1113
|
272
|
100
|
|
|
|
|
if( pCur->pShared!=pCur ){ |
1114
|
54
|
|
|
|
|
|
BtCursor *pRing = pCur->pShared; |
1115
|
54
|
50
|
|
|
|
|
while( pRing->pShared!=pCur ){ pRing = pRing->pShared; } |
1116
|
54
|
|
|
|
|
|
pRing->pShared = pCur->pShared; |
1117
|
|
|
|
|
|
|
} |
1118
|
272
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
1119
|
272
|
|
|
|
|
|
sqliteFree(pCur); |
1120
|
272
|
|
|
|
|
|
return SQLITE_OK; |
1121
|
|
|
|
|
|
|
} |
1122
|
|
|
|
|
|
|
|
1123
|
|
|
|
|
|
|
/* |
1124
|
|
|
|
|
|
|
** Make a temporary cursor by filling in the fields of pTempCur. |
1125
|
|
|
|
|
|
|
** The temporary cursor is not on the cursor list for the Btree. |
1126
|
|
|
|
|
|
|
*/ |
1127
|
0
|
|
|
|
|
|
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ |
1128
|
0
|
|
|
|
|
|
memcpy(pTempCur, pCur, sizeof(*pCur)); |
1129
|
0
|
|
|
|
|
|
pTempCur->pNext = 0; |
1130
|
0
|
|
|
|
|
|
pTempCur->pPrev = 0; |
1131
|
0
|
0
|
|
|
|
|
if( pTempCur->pPage ){ |
1132
|
0
|
|
|
|
|
|
sqlitepager_ref(pTempCur->pPage); |
1133
|
|
|
|
|
|
|
} |
1134
|
0
|
|
|
|
|
|
} |
1135
|
|
|
|
|
|
|
|
1136
|
|
|
|
|
|
|
/* |
1137
|
|
|
|
|
|
|
** Delete a temporary cursor such as was made by the CreateTemporaryCursor() |
1138
|
|
|
|
|
|
|
** function above. |
1139
|
|
|
|
|
|
|
*/ |
1140
|
0
|
|
|
|
|
|
static void releaseTempCursor(BtCursor *pCur){ |
1141
|
0
|
0
|
|
|
|
|
if( pCur->pPage ){ |
1142
|
0
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
1143
|
|
|
|
|
|
|
} |
1144
|
0
|
|
|
|
|
|
} |
1145
|
|
|
|
|
|
|
|
1146
|
|
|
|
|
|
|
/* |
1147
|
|
|
|
|
|
|
** Set *pSize to the number of bytes of key in the entry the |
1148
|
|
|
|
|
|
|
** cursor currently points to. Always return SQLITE_OK. |
1149
|
|
|
|
|
|
|
** Failure is not possible. If the cursor is not currently |
1150
|
|
|
|
|
|
|
** pointing to an entry (which can happen, for example, if |
1151
|
|
|
|
|
|
|
** the database is empty) then *pSize is set to 0. |
1152
|
|
|
|
|
|
|
*/ |
1153
|
4
|
|
|
|
|
|
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){ |
1154
|
|
|
|
|
|
|
Cell *pCell; |
1155
|
|
|
|
|
|
|
MemPage *pPage; |
1156
|
|
|
|
|
|
|
|
1157
|
4
|
|
|
|
|
|
pPage = pCur->pPage; |
1158
|
|
|
|
|
|
|
assert( pPage!=0 ); |
1159
|
4
|
100
|
|
|
|
|
if( pCur->idx >= pPage->nCell ){ |
1160
|
3
|
|
|
|
|
|
*pSize = 0; |
1161
|
|
|
|
|
|
|
}else{ |
1162
|
1
|
|
|
|
|
|
pCell = pPage->apCell[pCur->idx]; |
1163
|
1
|
50
|
|
|
|
|
*pSize = NKEY(pCur->pBt, pCell->h); |
1164
|
|
|
|
|
|
|
} |
1165
|
4
|
|
|
|
|
|
return SQLITE_OK; |
1166
|
|
|
|
|
|
|
} |
1167
|
|
|
|
|
|
|
|
1168
|
|
|
|
|
|
|
/* |
1169
|
|
|
|
|
|
|
** Read payload information from the entry that the pCur cursor is |
1170
|
|
|
|
|
|
|
** pointing to. Begin reading the payload at "offset" and read |
1171
|
|
|
|
|
|
|
** a total of "amt" bytes. Put the result in zBuf. |
1172
|
|
|
|
|
|
|
** |
1173
|
|
|
|
|
|
|
** This routine does not make a distinction between key and data. |
1174
|
|
|
|
|
|
|
** It just reads bytes from the payload area. |
1175
|
|
|
|
|
|
|
*/ |
1176
|
798
|
|
|
|
|
|
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){ |
1177
|
|
|
|
|
|
|
char *aPayload; |
1178
|
|
|
|
|
|
|
Pgno nextPage; |
1179
|
|
|
|
|
|
|
int rc; |
1180
|
798
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
1181
|
|
|
|
|
|
|
assert( pCur!=0 && pCur->pPage!=0 ); |
1182
|
|
|
|
|
|
|
assert( pCur->idx>=0 && pCur->idxpPage->nCell ); |
1183
|
798
|
|
|
|
|
|
aPayload = pCur->pPage->apCell[pCur->idx]->aPayload; |
1184
|
798
|
50
|
|
|
|
|
if( offset
|
1185
|
798
|
|
|
|
|
|
int a = amt; |
1186
|
798
|
100
|
|
|
|
|
if( a+offset>MX_LOCAL_PAYLOAD ){ |
1187
|
1
|
|
|
|
|
|
a = MX_LOCAL_PAYLOAD - offset; |
1188
|
|
|
|
|
|
|
} |
1189
|
798
|
|
|
|
|
|
memcpy(zBuf, &aPayload[offset], a); |
1190
|
798
|
100
|
|
|
|
|
if( a==amt ){ |
1191
|
797
|
|
|
|
|
|
return SQLITE_OK; |
1192
|
|
|
|
|
|
|
} |
1193
|
1
|
|
|
|
|
|
offset = 0; |
1194
|
1
|
|
|
|
|
|
zBuf += a; |
1195
|
1
|
|
|
|
|
|
amt -= a; |
1196
|
|
|
|
|
|
|
}else{ |
1197
|
0
|
|
|
|
|
|
offset -= MX_LOCAL_PAYLOAD; |
1198
|
|
|
|
|
|
|
} |
1199
|
1
|
50
|
|
|
|
|
if( amt>0 ){ |
1200
|
1
|
50
|
|
|
|
|
nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl); |
1201
|
|
|
|
|
|
|
} |
1202
|
34
|
100
|
|
|
|
|
while( amt>0 && nextPage ){ |
|
|
50
|
|
|
|
|
|
1203
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
1204
|
33
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl); |
1205
|
33
|
50
|
|
|
|
|
if( rc!=0 ){ |
1206
|
0
|
|
|
|
|
|
return rc; |
1207
|
|
|
|
|
|
|
} |
1208
|
33
|
50
|
|
|
|
|
nextPage = SWAB32(pBt, pOvfl->iNext); |
1209
|
33
|
50
|
|
|
|
|
if( offset
|
1210
|
33
|
|
|
|
|
|
int a = amt; |
1211
|
33
|
100
|
|
|
|
|
if( a + offset > OVERFLOW_SIZE ){ |
1212
|
32
|
|
|
|
|
|
a = OVERFLOW_SIZE - offset; |
1213
|
|
|
|
|
|
|
} |
1214
|
33
|
|
|
|
|
|
memcpy(zBuf, &pOvfl->aPayload[offset], a); |
1215
|
33
|
|
|
|
|
|
offset = 0; |
1216
|
33
|
|
|
|
|
|
amt -= a; |
1217
|
33
|
|
|
|
|
|
zBuf += a; |
1218
|
|
|
|
|
|
|
}else{ |
1219
|
0
|
|
|
|
|
|
offset -= OVERFLOW_SIZE; |
1220
|
|
|
|
|
|
|
} |
1221
|
33
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
1222
|
|
|
|
|
|
|
} |
1223
|
1
|
50
|
|
|
|
|
if( amt>0 ){ |
1224
|
0
|
|
|
|
|
|
return SQLITE_CORRUPT; |
1225
|
|
|
|
|
|
|
} |
1226
|
1
|
|
|
|
|
|
return SQLITE_OK; |
1227
|
|
|
|
|
|
|
} |
1228
|
|
|
|
|
|
|
|
1229
|
|
|
|
|
|
|
/* |
1230
|
|
|
|
|
|
|
** Read part of the key associated with cursor pCur. A maximum |
1231
|
|
|
|
|
|
|
** of "amt" bytes will be transfered into zBuf[]. The transfer |
1232
|
|
|
|
|
|
|
** begins at "offset". The number of bytes actually read is |
1233
|
|
|
|
|
|
|
** returned. |
1234
|
|
|
|
|
|
|
** |
1235
|
|
|
|
|
|
|
** Change: It used to be that the amount returned will be smaller |
1236
|
|
|
|
|
|
|
** than the amount requested if there are not enough bytes in the key |
1237
|
|
|
|
|
|
|
** to satisfy the request. But now, it must be the case that there |
1238
|
|
|
|
|
|
|
** is enough data available to satisfy the request. If not, an exception |
1239
|
|
|
|
|
|
|
** is raised. The change was made in an effort to boost performance |
1240
|
|
|
|
|
|
|
** by eliminating unneeded tests. |
1241
|
|
|
|
|
|
|
*/ |
1242
|
44
|
|
|
|
|
|
static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){ |
1243
|
|
|
|
|
|
|
MemPage *pPage; |
1244
|
|
|
|
|
|
|
|
1245
|
|
|
|
|
|
|
assert( amt>=0 ); |
1246
|
|
|
|
|
|
|
assert( offset>=0 ); |
1247
|
|
|
|
|
|
|
assert( pCur->pPage!=0 ); |
1248
|
44
|
|
|
|
|
|
pPage = pCur->pPage; |
1249
|
44
|
50
|
|
|
|
|
if( pCur->idx >= pPage->nCell ){ |
1250
|
0
|
|
|
|
|
|
return 0; |
1251
|
|
|
|
|
|
|
} |
1252
|
|
|
|
|
|
|
assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) ); |
1253
|
44
|
|
|
|
|
|
getPayload(pCur, offset, amt, zBuf); |
1254
|
44
|
|
|
|
|
|
return amt; |
1255
|
|
|
|
|
|
|
} |
1256
|
|
|
|
|
|
|
|
1257
|
|
|
|
|
|
|
/* |
1258
|
|
|
|
|
|
|
** Set *pSize to the number of bytes of data in the entry the |
1259
|
|
|
|
|
|
|
** cursor currently points to. Always return SQLITE_OK. |
1260
|
|
|
|
|
|
|
** Failure is not possible. If the cursor is not currently |
1261
|
|
|
|
|
|
|
** pointing to an entry (which can happen, for example, if |
1262
|
|
|
|
|
|
|
** the database is empty) then *pSize is set to 0. |
1263
|
|
|
|
|
|
|
*/ |
1264
|
386
|
|
|
|
|
|
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){ |
1265
|
|
|
|
|
|
|
Cell *pCell; |
1266
|
|
|
|
|
|
|
MemPage *pPage; |
1267
|
|
|
|
|
|
|
|
1268
|
386
|
|
|
|
|
|
pPage = pCur->pPage; |
1269
|
|
|
|
|
|
|
assert( pPage!=0 ); |
1270
|
386
|
50
|
|
|
|
|
if( pCur->idx >= pPage->nCell ){ |
1271
|
0
|
|
|
|
|
|
*pSize = 0; |
1272
|
|
|
|
|
|
|
}else{ |
1273
|
386
|
|
|
|
|
|
pCell = pPage->apCell[pCur->idx]; |
1274
|
386
|
50
|
|
|
|
|
*pSize = NDATA(pCur->pBt, pCell->h); |
1275
|
|
|
|
|
|
|
} |
1276
|
386
|
|
|
|
|
|
return SQLITE_OK; |
1277
|
|
|
|
|
|
|
} |
1278
|
|
|
|
|
|
|
|
1279
|
|
|
|
|
|
|
/* |
1280
|
|
|
|
|
|
|
** Read part of the data associated with cursor pCur. A maximum |
1281
|
|
|
|
|
|
|
** of "amt" bytes will be transfered into zBuf[]. The transfer |
1282
|
|
|
|
|
|
|
** begins at "offset". The number of bytes actually read is |
1283
|
|
|
|
|
|
|
** returned. The amount returned will be smaller than the |
1284
|
|
|
|
|
|
|
** amount requested if there are not enough bytes in the data |
1285
|
|
|
|
|
|
|
** to satisfy the request. |
1286
|
|
|
|
|
|
|
*/ |
1287
|
754
|
|
|
|
|
|
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){ |
1288
|
|
|
|
|
|
|
Cell *pCell; |
1289
|
|
|
|
|
|
|
MemPage *pPage; |
1290
|
|
|
|
|
|
|
|
1291
|
|
|
|
|
|
|
assert( amt>=0 ); |
1292
|
|
|
|
|
|
|
assert( offset>=0 ); |
1293
|
|
|
|
|
|
|
assert( pCur->pPage!=0 ); |
1294
|
754
|
|
|
|
|
|
pPage = pCur->pPage; |
1295
|
754
|
50
|
|
|
|
|
if( pCur->idx >= pPage->nCell ){ |
1296
|
0
|
|
|
|
|
|
return 0; |
1297
|
|
|
|
|
|
|
} |
1298
|
754
|
|
|
|
|
|
pCell = pPage->apCell[pCur->idx]; |
1299
|
|
|
|
|
|
|
assert( amt+offset <= NDATA(pCur->pBt, pCell->h) ); |
1300
|
754
|
50
|
|
|
|
|
getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf); |
1301
|
754
|
|
|
|
|
|
return amt; |
1302
|
|
|
|
|
|
|
} |
1303
|
|
|
|
|
|
|
|
1304
|
|
|
|
|
|
|
/* |
1305
|
|
|
|
|
|
|
** Compare an external key against the key on the entry that pCur points to. |
1306
|
|
|
|
|
|
|
** |
1307
|
|
|
|
|
|
|
** The external key is pKey and is nKey bytes long. The last nIgnore bytes |
1308
|
|
|
|
|
|
|
** of the key associated with pCur are ignored, as if they do not exist. |
1309
|
|
|
|
|
|
|
** (The normal case is for nIgnore to be zero in which case the entire |
1310
|
|
|
|
|
|
|
** internal key is used in the comparison.) |
1311
|
|
|
|
|
|
|
** |
1312
|
|
|
|
|
|
|
** The comparison result is written to *pRes as follows: |
1313
|
|
|
|
|
|
|
** |
1314
|
|
|
|
|
|
|
** *pRes<0 This means pCur
|
1315
|
|
|
|
|
|
|
** |
1316
|
|
|
|
|
|
|
** *pRes==0 This means pCur==pKey for all nKey bytes |
1317
|
|
|
|
|
|
|
** |
1318
|
|
|
|
|
|
|
** *pRes>0 This means pCur>pKey |
1319
|
|
|
|
|
|
|
** |
1320
|
|
|
|
|
|
|
** When one key is an exact prefix of the other, the shorter key is |
1321
|
|
|
|
|
|
|
** considered less than the longer one. In order to be equal the |
1322
|
|
|
|
|
|
|
** keys must be exactly the same length. (The length of the pCur key |
1323
|
|
|
|
|
|
|
** is the actual key length minus nIgnore bytes.) |
1324
|
|
|
|
|
|
|
*/ |
1325
|
182
|
|
|
|
|
|
static int fileBtreeKeyCompare( |
1326
|
|
|
|
|
|
|
BtCursor *pCur, /* Pointer to entry to compare against */ |
1327
|
|
|
|
|
|
|
const void *pKey, /* Key to compare against entry that pCur points to */ |
1328
|
|
|
|
|
|
|
int nKey, /* Number of bytes in pKey */ |
1329
|
|
|
|
|
|
|
int nIgnore, /* Ignore this many bytes at the end of pCur */ |
1330
|
|
|
|
|
|
|
int *pResult /* Write the result here */ |
1331
|
|
|
|
|
|
|
){ |
1332
|
|
|
|
|
|
|
Pgno nextPage; |
1333
|
|
|
|
|
|
|
int n, c, rc, nLocal; |
1334
|
|
|
|
|
|
|
Cell *pCell; |
1335
|
182
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
1336
|
182
|
|
|
|
|
|
const char *zKey = (const char*)pKey; |
1337
|
|
|
|
|
|
|
|
1338
|
|
|
|
|
|
|
assert( pCur->pPage ); |
1339
|
|
|
|
|
|
|
assert( pCur->idx>=0 && pCur->idxpPage->nCell ); |
1340
|
182
|
|
|
|
|
|
pCell = pCur->pPage->apCell[pCur->idx]; |
1341
|
182
|
50
|
|
|
|
|
nLocal = NKEY(pBt, pCell->h) - nIgnore; |
1342
|
182
|
50
|
|
|
|
|
if( nLocal<0 ) nLocal = 0; |
1343
|
182
|
|
|
|
|
|
n = nKey
|
1344
|
182
|
50
|
|
|
|
|
if( n>MX_LOCAL_PAYLOAD ){ |
1345
|
0
|
|
|
|
|
|
n = MX_LOCAL_PAYLOAD; |
1346
|
|
|
|
|
|
|
} |
1347
|
182
|
|
|
|
|
|
c = memcmp(pCell->aPayload, zKey, n); |
1348
|
182
|
100
|
|
|
|
|
if( c!=0 ){ |
1349
|
152
|
|
|
|
|
|
*pResult = c; |
1350
|
152
|
|
|
|
|
|
return SQLITE_OK; |
1351
|
|
|
|
|
|
|
} |
1352
|
30
|
|
|
|
|
|
zKey += n; |
1353
|
30
|
|
|
|
|
|
nKey -= n; |
1354
|
30
|
|
|
|
|
|
nLocal -= n; |
1355
|
30
|
50
|
|
|
|
|
nextPage = SWAB32(pBt, pCell->ovfl); |
1356
|
30
|
50
|
|
|
|
|
while( nKey>0 && nLocal>0 ){ |
|
|
0
|
|
|
|
|
|
1357
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
1358
|
0
|
0
|
|
|
|
|
if( nextPage==0 ){ |
1359
|
0
|
|
|
|
|
|
return SQLITE_CORRUPT; |
1360
|
|
|
|
|
|
|
} |
1361
|
0
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl); |
1362
|
0
|
0
|
|
|
|
|
if( rc ){ |
1363
|
0
|
|
|
|
|
|
return rc; |
1364
|
|
|
|
|
|
|
} |
1365
|
0
|
0
|
|
|
|
|
nextPage = SWAB32(pBt, pOvfl->iNext); |
1366
|
0
|
|
|
|
|
|
n = nKey
|
1367
|
0
|
0
|
|
|
|
|
if( n>OVERFLOW_SIZE ){ |
1368
|
0
|
|
|
|
|
|
n = OVERFLOW_SIZE; |
1369
|
|
|
|
|
|
|
} |
1370
|
0
|
|
|
|
|
|
c = memcmp(pOvfl->aPayload, zKey, n); |
1371
|
0
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
1372
|
0
|
0
|
|
|
|
|
if( c!=0 ){ |
1373
|
0
|
|
|
|
|
|
*pResult = c; |
1374
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1375
|
|
|
|
|
|
|
} |
1376
|
0
|
|
|
|
|
|
nKey -= n; |
1377
|
0
|
|
|
|
|
|
nLocal -= n; |
1378
|
0
|
|
|
|
|
|
zKey += n; |
1379
|
|
|
|
|
|
|
} |
1380
|
30
|
50
|
|
|
|
|
if( c==0 ){ |
1381
|
30
|
|
|
|
|
|
c = nLocal - nKey; |
1382
|
|
|
|
|
|
|
} |
1383
|
30
|
|
|
|
|
|
*pResult = c; |
1384
|
30
|
|
|
|
|
|
return SQLITE_OK; |
1385
|
|
|
|
|
|
|
} |
1386
|
|
|
|
|
|
|
|
1387
|
|
|
|
|
|
|
/* |
1388
|
|
|
|
|
|
|
** Move the cursor down to a new child page. The newPgno argument is the |
1389
|
|
|
|
|
|
|
** page number of the child page in the byte order of the disk image. |
1390
|
|
|
|
|
|
|
*/ |
1391
|
4
|
|
|
|
|
|
static int moveToChild(BtCursor *pCur, int newPgno){ |
1392
|
|
|
|
|
|
|
int rc; |
1393
|
|
|
|
|
|
|
MemPage *pNewPage; |
1394
|
4
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
1395
|
|
|
|
|
|
|
|
1396
|
4
|
50
|
|
|
|
|
newPgno = SWAB32(pBt, newPgno); |
1397
|
4
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage); |
1398
|
4
|
50
|
|
|
|
|
if( rc ) return rc; |
1399
|
4
|
|
|
|
|
|
rc = initPage(pBt, pNewPage, newPgno, pCur->pPage); |
1400
|
4
|
50
|
|
|
|
|
if( rc ) return rc; |
1401
|
|
|
|
|
|
|
assert( pCur->idx>=pCur->pPage->nCell |
1402
|
|
|
|
|
|
|
|| pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) ); |
1403
|
|
|
|
|
|
|
assert( pCur->idxpPage->nCell |
1404
|
|
|
|
|
|
|
|| pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) ); |
1405
|
4
|
|
|
|
|
|
pNewPage->idxParent = pCur->idx; |
1406
|
4
|
|
|
|
|
|
pCur->pPage->idxShift = 0; |
1407
|
4
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
1408
|
4
|
|
|
|
|
|
pCur->pPage = pNewPage; |
1409
|
4
|
|
|
|
|
|
pCur->idx = 0; |
1410
|
4
|
50
|
|
|
|
|
if( pNewPage->nCell<1 ){ |
1411
|
0
|
|
|
|
|
|
return SQLITE_CORRUPT; |
1412
|
|
|
|
|
|
|
} |
1413
|
4
|
|
|
|
|
|
return SQLITE_OK; |
1414
|
|
|
|
|
|
|
} |
1415
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
/* |
1417
|
|
|
|
|
|
|
** Move the cursor up to the parent page. |
1418
|
|
|
|
|
|
|
** |
1419
|
|
|
|
|
|
|
** pCur->idx is set to the cell index that contains the pointer |
1420
|
|
|
|
|
|
|
** to the page we are coming from. If we are coming from the |
1421
|
|
|
|
|
|
|
** right-most child page then pCur->idx is set to one more than |
1422
|
|
|
|
|
|
|
** the largest cell index. |
1423
|
|
|
|
|
|
|
*/ |
1424
|
4
|
|
|
|
|
|
static void moveToParent(BtCursor *pCur){ |
1425
|
|
|
|
|
|
|
Pgno oldPgno; |
1426
|
|
|
|
|
|
|
MemPage *pParent; |
1427
|
|
|
|
|
|
|
MemPage *pPage; |
1428
|
|
|
|
|
|
|
int idxParent; |
1429
|
4
|
|
|
|
|
|
pPage = pCur->pPage; |
1430
|
|
|
|
|
|
|
assert( pPage!=0 ); |
1431
|
4
|
|
|
|
|
|
pParent = pPage->pParent; |
1432
|
|
|
|
|
|
|
assert( pParent!=0 ); |
1433
|
4
|
|
|
|
|
|
idxParent = pPage->idxParent; |
1434
|
4
|
|
|
|
|
|
sqlitepager_ref(pParent); |
1435
|
4
|
|
|
|
|
|
sqlitepager_unref(pPage); |
1436
|
4
|
|
|
|
|
|
pCur->pPage = pParent; |
1437
|
|
|
|
|
|
|
assert( pParent->idxShift==0 ); |
1438
|
4
|
50
|
|
|
|
|
if( pParent->idxShift==0 ){ |
1439
|
4
|
|
|
|
|
|
pCur->idx = idxParent; |
1440
|
|
|
|
|
|
|
#ifndef NDEBUG |
1441
|
|
|
|
|
|
|
/* Verify that pCur->idx is the correct index to point back to the child |
1442
|
|
|
|
|
|
|
** page we just came from |
1443
|
|
|
|
|
|
|
*/ |
1444
|
|
|
|
|
|
|
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage)); |
1445
|
|
|
|
|
|
|
if( pCur->idxnCell ){ |
1446
|
|
|
|
|
|
|
assert( pParent->apCell[idxParent]->h.leftChild==oldPgno ); |
1447
|
|
|
|
|
|
|
}else{ |
1448
|
|
|
|
|
|
|
assert( pParent->u.hdr.rightChild==oldPgno ); |
1449
|
|
|
|
|
|
|
} |
1450
|
|
|
|
|
|
|
#endif |
1451
|
|
|
|
|
|
|
}else{ |
1452
|
|
|
|
|
|
|
/* The MemPage.idxShift flag indicates that cell indices might have |
1453
|
|
|
|
|
|
|
** changed since idxParent was set and hence idxParent might be out |
1454
|
|
|
|
|
|
|
** of date. So recompute the parent cell index by scanning all cells |
1455
|
|
|
|
|
|
|
** and locating the one that points to the child we just came from. |
1456
|
|
|
|
|
|
|
*/ |
1457
|
|
|
|
|
|
|
int i; |
1458
|
0
|
|
|
|
|
|
pCur->idx = pParent->nCell; |
1459
|
0
|
0
|
|
|
|
|
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage)); |
1460
|
0
|
0
|
|
|
|
|
for(i=0; inCell; i++){ |
1461
|
0
|
0
|
|
|
|
|
if( pParent->apCell[i]->h.leftChild==oldPgno ){ |
1462
|
0
|
|
|
|
|
|
pCur->idx = i; |
1463
|
0
|
|
|
|
|
|
break; |
1464
|
|
|
|
|
|
|
} |
1465
|
|
|
|
|
|
|
} |
1466
|
|
|
|
|
|
|
} |
1467
|
4
|
|
|
|
|
|
} |
1468
|
|
|
|
|
|
|
|
1469
|
|
|
|
|
|
|
/* |
1470
|
|
|
|
|
|
|
** Move the cursor to the root page |
1471
|
|
|
|
|
|
|
*/ |
1472
|
342
|
|
|
|
|
|
static int moveToRoot(BtCursor *pCur){ |
1473
|
|
|
|
|
|
|
MemPage *pNew; |
1474
|
|
|
|
|
|
|
int rc; |
1475
|
342
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
1476
|
|
|
|
|
|
|
|
1477
|
342
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew); |
1478
|
342
|
50
|
|
|
|
|
if( rc ) return rc; |
1479
|
342
|
|
|
|
|
|
rc = initPage(pBt, pNew, pCur->pgnoRoot, 0); |
1480
|
342
|
50
|
|
|
|
|
if( rc ) return rc; |
1481
|
342
|
|
|
|
|
|
sqlitepager_unref(pCur->pPage); |
1482
|
342
|
|
|
|
|
|
pCur->pPage = pNew; |
1483
|
342
|
|
|
|
|
|
pCur->idx = 0; |
1484
|
342
|
|
|
|
|
|
return SQLITE_OK; |
1485
|
|
|
|
|
|
|
} |
1486
|
|
|
|
|
|
|
|
1487
|
|
|
|
|
|
|
/* |
1488
|
|
|
|
|
|
|
** Move the cursor down to the left-most leaf entry beneath the |
1489
|
|
|
|
|
|
|
** entry to which it is currently pointing. |
1490
|
|
|
|
|
|
|
*/ |
1491
|
71
|
|
|
|
|
|
static int moveToLeftmost(BtCursor *pCur){ |
1492
|
|
|
|
|
|
|
Pgno pgno; |
1493
|
|
|
|
|
|
|
int rc; |
1494
|
|
|
|
|
|
|
|
1495
|
73
|
100
|
|
|
|
|
while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){ |
1496
|
2
|
|
|
|
|
|
rc = moveToChild(pCur, pgno); |
1497
|
2
|
50
|
|
|
|
|
if( rc ) return rc; |
1498
|
|
|
|
|
|
|
} |
1499
|
71
|
|
|
|
|
|
return SQLITE_OK; |
1500
|
|
|
|
|
|
|
} |
1501
|
|
|
|
|
|
|
|
1502
|
|
|
|
|
|
|
/* |
1503
|
|
|
|
|
|
|
** Move the cursor down to the right-most leaf entry beneath the |
1504
|
|
|
|
|
|
|
** page to which it is currently pointing. Notice the difference |
1505
|
|
|
|
|
|
|
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
1506
|
|
|
|
|
|
|
** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
1507
|
|
|
|
|
|
|
** finds the right-most entry beneath the *page*. |
1508
|
|
|
|
|
|
|
*/ |
1509
|
35
|
|
|
|
|
|
static int moveToRightmost(BtCursor *pCur){ |
1510
|
|
|
|
|
|
|
Pgno pgno; |
1511
|
|
|
|
|
|
|
int rc; |
1512
|
|
|
|
|
|
|
|
1513
|
35
|
50
|
|
|
|
|
while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){ |
1514
|
0
|
|
|
|
|
|
pCur->idx = pCur->pPage->nCell; |
1515
|
0
|
|
|
|
|
|
rc = moveToChild(pCur, pgno); |
1516
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
1517
|
|
|
|
|
|
|
} |
1518
|
35
|
|
|
|
|
|
pCur->idx = pCur->pPage->nCell - 1; |
1519
|
35
|
|
|
|
|
|
return SQLITE_OK; |
1520
|
|
|
|
|
|
|
} |
1521
|
|
|
|
|
|
|
|
1522
|
|
|
|
|
|
|
/* Move the cursor to the first entry in the table. Return SQLITE_OK |
1523
|
|
|
|
|
|
|
** on success. Set *pRes to 0 if the cursor actually points to something |
1524
|
|
|
|
|
|
|
** or set *pRes to 1 if the table is empty. |
1525
|
|
|
|
|
|
|
*/ |
1526
|
141
|
|
|
|
|
|
static int fileBtreeFirst(BtCursor *pCur, int *pRes){ |
1527
|
|
|
|
|
|
|
int rc; |
1528
|
141
|
50
|
|
|
|
|
if( pCur->pPage==0 ) return SQLITE_ABORT; |
1529
|
141
|
|
|
|
|
|
rc = moveToRoot(pCur); |
1530
|
141
|
50
|
|
|
|
|
if( rc ) return rc; |
1531
|
141
|
100
|
|
|
|
|
if( pCur->pPage->nCell==0 ){ |
1532
|
72
|
|
|
|
|
|
*pRes = 1; |
1533
|
72
|
|
|
|
|
|
return SQLITE_OK; |
1534
|
|
|
|
|
|
|
} |
1535
|
69
|
|
|
|
|
|
*pRes = 0; |
1536
|
69
|
|
|
|
|
|
rc = moveToLeftmost(pCur); |
1537
|
69
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1538
|
69
|
|
|
|
|
|
return rc; |
1539
|
|
|
|
|
|
|
} |
1540
|
|
|
|
|
|
|
|
1541
|
|
|
|
|
|
|
/* Move the cursor to the last entry in the table. Return SQLITE_OK |
1542
|
|
|
|
|
|
|
** on success. Set *pRes to 0 if the cursor actually points to something |
1543
|
|
|
|
|
|
|
** or set *pRes to 1 if the table is empty. |
1544
|
|
|
|
|
|
|
*/ |
1545
|
70
|
|
|
|
|
|
static int fileBtreeLast(BtCursor *pCur, int *pRes){ |
1546
|
|
|
|
|
|
|
int rc; |
1547
|
70
|
50
|
|
|
|
|
if( pCur->pPage==0 ) return SQLITE_ABORT; |
1548
|
70
|
|
|
|
|
|
rc = moveToRoot(pCur); |
1549
|
70
|
50
|
|
|
|
|
if( rc ) return rc; |
1550
|
|
|
|
|
|
|
assert( pCur->pPage->isInit ); |
1551
|
70
|
100
|
|
|
|
|
if( pCur->pPage->nCell==0 ){ |
1552
|
35
|
|
|
|
|
|
*pRes = 1; |
1553
|
35
|
|
|
|
|
|
return SQLITE_OK; |
1554
|
|
|
|
|
|
|
} |
1555
|
35
|
|
|
|
|
|
*pRes = 0; |
1556
|
35
|
|
|
|
|
|
rc = moveToRightmost(pCur); |
1557
|
35
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1558
|
35
|
|
|
|
|
|
return rc; |
1559
|
|
|
|
|
|
|
} |
1560
|
|
|
|
|
|
|
|
1561
|
|
|
|
|
|
|
/* Move the cursor so that it points to an entry near pKey. |
1562
|
|
|
|
|
|
|
** Return a success code. |
1563
|
|
|
|
|
|
|
** |
1564
|
|
|
|
|
|
|
** If an exact match is not found, then the cursor is always |
1565
|
|
|
|
|
|
|
** left pointing at a leaf page which would hold the entry if it |
1566
|
|
|
|
|
|
|
** were present. The cursor might point to an entry that comes |
1567
|
|
|
|
|
|
|
** before or after the key. |
1568
|
|
|
|
|
|
|
** |
1569
|
|
|
|
|
|
|
** The result of comparing the key with the entry to which the |
1570
|
|
|
|
|
|
|
** cursor is left pointing is stored in pCur->iMatch. The same |
1571
|
|
|
|
|
|
|
** value is also written to *pRes if pRes!=NULL. The meaning of |
1572
|
|
|
|
|
|
|
** this value is as follows: |
1573
|
|
|
|
|
|
|
** |
1574
|
|
|
|
|
|
|
** *pRes<0 The cursor is left pointing at an entry that |
1575
|
|
|
|
|
|
|
** is smaller than pKey or if the table is empty |
1576
|
|
|
|
|
|
|
** and the cursor is therefore left point to nothing. |
1577
|
|
|
|
|
|
|
** |
1578
|
|
|
|
|
|
|
** *pRes==0 The cursor is left pointing at an entry that |
1579
|
|
|
|
|
|
|
** exactly matches pKey. |
1580
|
|
|
|
|
|
|
** |
1581
|
|
|
|
|
|
|
** *pRes>0 The cursor is left pointing at an entry that |
1582
|
|
|
|
|
|
|
** is larger than pKey. |
1583
|
|
|
|
|
|
|
*/ |
1584
|
|
|
|
|
|
|
static |
1585
|
131
|
|
|
|
|
|
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){ |
1586
|
|
|
|
|
|
|
int rc; |
1587
|
131
|
50
|
|
|
|
|
if( pCur->pPage==0 ) return SQLITE_ABORT; |
1588
|
131
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1589
|
131
|
|
|
|
|
|
rc = moveToRoot(pCur); |
1590
|
131
|
50
|
|
|
|
|
if( rc ) return rc; |
1591
|
|
|
|
|
|
|
for(;;){ |
1592
|
|
|
|
|
|
|
int lwr, upr; |
1593
|
|
|
|
|
|
|
Pgno chldPg; |
1594
|
131
|
|
|
|
|
|
MemPage *pPage = pCur->pPage; |
1595
|
131
|
|
|
|
|
|
int c = -1; /* pRes return if table is empty must be -1 */ |
1596
|
131
|
|
|
|
|
|
lwr = 0; |
1597
|
131
|
|
|
|
|
|
upr = pPage->nCell-1; |
1598
|
283
|
100
|
|
|
|
|
while( lwr<=upr ){ |
1599
|
180
|
|
|
|
|
|
pCur->idx = (lwr+upr)/2; |
1600
|
180
|
|
|
|
|
|
rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c); |
1601
|
311
|
50
|
|
|
|
|
if( rc ) return rc; |
1602
|
180
|
100
|
|
|
|
|
if( c==0 ){ |
1603
|
28
|
|
|
|
|
|
pCur->iMatch = c; |
1604
|
28
|
50
|
|
|
|
|
if( pRes ) *pRes = 0; |
1605
|
28
|
|
|
|
|
|
return SQLITE_OK; |
1606
|
|
|
|
|
|
|
} |
1607
|
152
|
100
|
|
|
|
|
if( c<0 ){ |
1608
|
151
|
|
|
|
|
|
lwr = pCur->idx+1; |
1609
|
|
|
|
|
|
|
}else{ |
1610
|
1
|
|
|
|
|
|
upr = pCur->idx-1; |
1611
|
|
|
|
|
|
|
} |
1612
|
|
|
|
|
|
|
} |
1613
|
|
|
|
|
|
|
assert( lwr==upr+1 ); |
1614
|
|
|
|
|
|
|
assert( pPage->isInit ); |
1615
|
103
|
100
|
|
|
|
|
if( lwr>=pPage->nCell ){ |
1616
|
102
|
|
|
|
|
|
chldPg = pPage->u.hdr.rightChild; |
1617
|
|
|
|
|
|
|
}else{ |
1618
|
1
|
|
|
|
|
|
chldPg = pPage->apCell[lwr]->h.leftChild; |
1619
|
|
|
|
|
|
|
} |
1620
|
103
|
50
|
|
|
|
|
if( chldPg==0 ){ |
1621
|
103
|
|
|
|
|
|
pCur->iMatch = c; |
1622
|
103
|
50
|
|
|
|
|
if( pRes ) *pRes = c; |
1623
|
103
|
|
|
|
|
|
return SQLITE_OK; |
1624
|
|
|
|
|
|
|
} |
1625
|
0
|
|
|
|
|
|
pCur->idx = lwr; |
1626
|
0
|
|
|
|
|
|
rc = moveToChild(pCur, chldPg); |
1627
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
1628
|
0
|
|
|
|
|
|
} |
1629
|
|
|
|
|
|
|
/* NOT REACHED */ |
1630
|
|
|
|
|
|
|
} |
1631
|
|
|
|
|
|
|
|
1632
|
|
|
|
|
|
|
/* |
1633
|
|
|
|
|
|
|
** Advance the cursor to the next entry in the database. If |
1634
|
|
|
|
|
|
|
** successful then set *pRes=0. If the cursor |
1635
|
|
|
|
|
|
|
** was already pointing to the last entry in the database before |
1636
|
|
|
|
|
|
|
** this routine was called, then set *pRes=1. |
1637
|
|
|
|
|
|
|
*/ |
1638
|
170
|
|
|
|
|
|
static int fileBtreeNext(BtCursor *pCur, int *pRes){ |
1639
|
|
|
|
|
|
|
int rc; |
1640
|
170
|
|
|
|
|
|
MemPage *pPage = pCur->pPage; |
1641
|
|
|
|
|
|
|
assert( pRes!=0 ); |
1642
|
170
|
50
|
|
|
|
|
if( pPage==0 ){ |
1643
|
0
|
|
|
|
|
|
*pRes = 1; |
1644
|
0
|
|
|
|
|
|
return SQLITE_ABORT; |
1645
|
|
|
|
|
|
|
} |
1646
|
|
|
|
|
|
|
assert( pPage->isInit ); |
1647
|
|
|
|
|
|
|
assert( pCur->eSkip!=SKIP_INVALID ); |
1648
|
170
|
100
|
|
|
|
|
if( pPage->nCell==0 ){ |
1649
|
13
|
|
|
|
|
|
*pRes = 1; |
1650
|
13
|
|
|
|
|
|
return SQLITE_OK; |
1651
|
|
|
|
|
|
|
} |
1652
|
|
|
|
|
|
|
assert( pCur->idxnCell ); |
1653
|
157
|
50
|
|
|
|
|
if( pCur->eSkip==SKIP_NEXT ){ |
1654
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1655
|
0
|
|
|
|
|
|
*pRes = 0; |
1656
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1657
|
|
|
|
|
|
|
} |
1658
|
157
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1659
|
157
|
|
|
|
|
|
pCur->idx++; |
1660
|
157
|
100
|
|
|
|
|
if( pCur->idx>=pPage->nCell ){ |
1661
|
59
|
100
|
|
|
|
|
if( pPage->u.hdr.rightChild ){ |
1662
|
2
|
|
|
|
|
|
rc = moveToChild(pCur, pPage->u.hdr.rightChild); |
1663
|
2
|
50
|
|
|
|
|
if( rc ) return rc; |
1664
|
2
|
|
|
|
|
|
rc = moveToLeftmost(pCur); |
1665
|
2
|
|
|
|
|
|
*pRes = 0; |
1666
|
2
|
|
|
|
|
|
return rc; |
1667
|
|
|
|
|
|
|
} |
1668
|
|
|
|
|
|
|
do{ |
1669
|
59
|
100
|
|
|
|
|
if( pPage->pParent==0 ){ |
1670
|
55
|
|
|
|
|
|
*pRes = 1; |
1671
|
55
|
|
|
|
|
|
return SQLITE_OK; |
1672
|
|
|
|
|
|
|
} |
1673
|
4
|
|
|
|
|
|
moveToParent(pCur); |
1674
|
4
|
|
|
|
|
|
pPage = pCur->pPage; |
1675
|
4
|
100
|
|
|
|
|
}while( pCur->idx>=pPage->nCell ); |
1676
|
2
|
|
|
|
|
|
*pRes = 0; |
1677
|
2
|
|
|
|
|
|
return SQLITE_OK; |
1678
|
|
|
|
|
|
|
} |
1679
|
98
|
|
|
|
|
|
*pRes = 0; |
1680
|
98
|
50
|
|
|
|
|
if( pPage->u.hdr.rightChild==0 ){ |
1681
|
98
|
|
|
|
|
|
return SQLITE_OK; |
1682
|
|
|
|
|
|
|
} |
1683
|
0
|
|
|
|
|
|
rc = moveToLeftmost(pCur); |
1684
|
0
|
|
|
|
|
|
return rc; |
1685
|
|
|
|
|
|
|
} |
1686
|
|
|
|
|
|
|
|
1687
|
|
|
|
|
|
|
/* |
1688
|
|
|
|
|
|
|
** Step the cursor to the back to the previous entry in the database. If |
1689
|
|
|
|
|
|
|
** successful then set *pRes=0. If the cursor |
1690
|
|
|
|
|
|
|
** was already pointing to the first entry in the database before |
1691
|
|
|
|
|
|
|
** this routine was called, then set *pRes=1. |
1692
|
|
|
|
|
|
|
*/ |
1693
|
0
|
|
|
|
|
|
static int fileBtreePrevious(BtCursor *pCur, int *pRes){ |
1694
|
|
|
|
|
|
|
int rc; |
1695
|
|
|
|
|
|
|
Pgno pgno; |
1696
|
|
|
|
|
|
|
MemPage *pPage; |
1697
|
0
|
|
|
|
|
|
pPage = pCur->pPage; |
1698
|
0
|
0
|
|
|
|
|
if( pPage==0 ){ |
1699
|
0
|
|
|
|
|
|
*pRes = 1; |
1700
|
0
|
|
|
|
|
|
return SQLITE_ABORT; |
1701
|
|
|
|
|
|
|
} |
1702
|
|
|
|
|
|
|
assert( pPage->isInit ); |
1703
|
|
|
|
|
|
|
assert( pCur->eSkip!=SKIP_INVALID ); |
1704
|
0
|
0
|
|
|
|
|
if( pPage->nCell==0 ){ |
1705
|
0
|
|
|
|
|
|
*pRes = 1; |
1706
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1707
|
|
|
|
|
|
|
} |
1708
|
0
|
0
|
|
|
|
|
if( pCur->eSkip==SKIP_PREV ){ |
1709
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1710
|
0
|
|
|
|
|
|
*pRes = 0; |
1711
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1712
|
|
|
|
|
|
|
} |
1713
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NONE; |
1714
|
|
|
|
|
|
|
assert( pCur->idx>=0 ); |
1715
|
0
|
0
|
|
|
|
|
if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){ |
1716
|
0
|
|
|
|
|
|
rc = moveToChild(pCur, pgno); |
1717
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
1718
|
0
|
|
|
|
|
|
rc = moveToRightmost(pCur); |
1719
|
|
|
|
|
|
|
}else{ |
1720
|
0
|
0
|
|
|
|
|
while( pCur->idx==0 ){ |
1721
|
0
|
0
|
|
|
|
|
if( pPage->pParent==0 ){ |
1722
|
0
|
0
|
|
|
|
|
if( pRes ) *pRes = 1; |
1723
|
0
|
|
|
|
|
|
return SQLITE_OK; |
1724
|
|
|
|
|
|
|
} |
1725
|
0
|
|
|
|
|
|
moveToParent(pCur); |
1726
|
0
|
|
|
|
|
|
pPage = pCur->pPage; |
1727
|
|
|
|
|
|
|
} |
1728
|
0
|
|
|
|
|
|
pCur->idx--; |
1729
|
0
|
|
|
|
|
|
rc = SQLITE_OK; |
1730
|
|
|
|
|
|
|
} |
1731
|
0
|
|
|
|
|
|
*pRes = 0; |
1732
|
0
|
|
|
|
|
|
return rc; |
1733
|
|
|
|
|
|
|
} |
1734
|
|
|
|
|
|
|
|
1735
|
|
|
|
|
|
|
/* |
1736
|
|
|
|
|
|
|
** Allocate a new page from the database file. |
1737
|
|
|
|
|
|
|
** |
1738
|
|
|
|
|
|
|
** The new page is marked as dirty. (In other words, sqlitepager_write() |
1739
|
|
|
|
|
|
|
** has already been called on the new page.) The new page has also |
1740
|
|
|
|
|
|
|
** been referenced and the calling routine is responsible for calling |
1741
|
|
|
|
|
|
|
** sqlitepager_unref() on the new page when it is done. |
1742
|
|
|
|
|
|
|
** |
1743
|
|
|
|
|
|
|
** SQLITE_OK is returned on success. Any other return value indicates |
1744
|
|
|
|
|
|
|
** an error. *ppPage and *pPgno are undefined in the event of an error. |
1745
|
|
|
|
|
|
|
** Do not invoke sqlitepager_unref() on *ppPage if an error is returned. |
1746
|
|
|
|
|
|
|
** |
1747
|
|
|
|
|
|
|
** If the "nearby" parameter is not 0, then a (feeble) effort is made to |
1748
|
|
|
|
|
|
|
** locate a page close to the page number "nearby". This can be used in an |
1749
|
|
|
|
|
|
|
** attempt to keep related pages close to each other in the database file, |
1750
|
|
|
|
|
|
|
** which in turn can make database access faster. |
1751
|
|
|
|
|
|
|
*/ |
1752
|
62
|
|
|
|
|
|
static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){ |
1753
|
62
|
|
|
|
|
|
PageOne *pPage1 = pBt->page1; |
1754
|
|
|
|
|
|
|
int rc; |
1755
|
62
|
100
|
|
|
|
|
if( pPage1->freeList ){ |
1756
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
1757
|
|
|
|
|
|
|
FreelistInfo *pInfo; |
1758
|
|
|
|
|
|
|
|
1759
|
10
|
|
|
|
|
|
rc = sqlitepager_write(pPage1); |
1760
|
10
|
50
|
|
|
|
|
if( rc ) return rc; |
1761
|
10
|
50
|
|
|
|
|
SWAB_ADD(pBt, pPage1->nFree, -1); |
1762
|
10
|
50
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList), |
1763
|
|
|
|
|
|
|
(void**)&pOvfl); |
1764
|
10
|
50
|
|
|
|
|
if( rc ) return rc; |
1765
|
10
|
|
|
|
|
|
rc = sqlitepager_write(pOvfl); |
1766
|
10
|
50
|
|
|
|
|
if( rc ){ |
1767
|
0
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
1768
|
0
|
|
|
|
|
|
return rc; |
1769
|
|
|
|
|
|
|
} |
1770
|
10
|
|
|
|
|
|
pInfo = (FreelistInfo*)pOvfl->aPayload; |
1771
|
10
|
100
|
|
|
|
|
if( pInfo->nFree==0 ){ |
1772
|
3
|
50
|
|
|
|
|
*pPgno = SWAB32(pBt, pPage1->freeList); |
1773
|
3
|
|
|
|
|
|
pPage1->freeList = pOvfl->iNext; |
1774
|
3
|
|
|
|
|
|
*ppPage = (MemPage*)pOvfl; |
1775
|
|
|
|
|
|
|
}else{ |
1776
|
|
|
|
|
|
|
int closest, n; |
1777
|
7
|
50
|
|
|
|
|
n = SWAB32(pBt, pInfo->nFree); |
1778
|
7
|
50
|
|
|
|
|
if( n>1 && nearby>0 ){ |
|
|
50
|
|
|
|
|
|
1779
|
|
|
|
|
|
|
int i, dist; |
1780
|
0
|
|
|
|
|
|
closest = 0; |
1781
|
0
|
0
|
|
|
|
|
dist = SWAB32(pBt, pInfo->aFree[0]) - nearby; |
1782
|
0
|
0
|
|
|
|
|
if( dist<0 ) dist = -dist; |
1783
|
0
|
0
|
|
|
|
|
for(i=1; i
|
1784
|
0
|
0
|
|
|
|
|
int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby; |
1785
|
0
|
0
|
|
|
|
|
if( d2<0 ) d2 = -d2; |
1786
|
0
|
0
|
|
|
|
|
if( d2
|
1787
|
|
|
|
|
|
|
} |
1788
|
|
|
|
|
|
|
}else{ |
1789
|
7
|
|
|
|
|
|
closest = 0; |
1790
|
|
|
|
|
|
|
} |
1791
|
7
|
50
|
|
|
|
|
SWAB_ADD(pBt, pInfo->nFree, -1); |
1792
|
7
|
50
|
|
|
|
|
*pPgno = SWAB32(pBt, pInfo->aFree[closest]); |
1793
|
7
|
|
|
|
|
|
pInfo->aFree[closest] = pInfo->aFree[n-1]; |
1794
|
7
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage); |
1795
|
7
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
1796
|
7
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
1797
|
7
|
|
|
|
|
|
sqlitepager_dont_rollback(*ppPage); |
1798
|
10
|
|
|
|
|
|
rc = sqlitepager_write(*ppPage); |
1799
|
|
|
|
|
|
|
} |
1800
|
|
|
|
|
|
|
} |
1801
|
|
|
|
|
|
|
}else{ |
1802
|
52
|
|
|
|
|
|
*pPgno = sqlitepager_pagecount(pBt->pPager) + 1; |
1803
|
52
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage); |
1804
|
52
|
50
|
|
|
|
|
if( rc ) return rc; |
1805
|
52
|
|
|
|
|
|
rc = sqlitepager_write(*ppPage); |
1806
|
|
|
|
|
|
|
} |
1807
|
62
|
|
|
|
|
|
return rc; |
1808
|
|
|
|
|
|
|
} |
1809
|
|
|
|
|
|
|
|
1810
|
|
|
|
|
|
|
/* |
1811
|
|
|
|
|
|
|
** Add a page of the database file to the freelist. Either pgno or |
1812
|
|
|
|
|
|
|
** pPage but not both may be 0. |
1813
|
|
|
|
|
|
|
** |
1814
|
|
|
|
|
|
|
** sqlitepager_unref() is NOT called for pPage. |
1815
|
|
|
|
|
|
|
*/ |
1816
|
44
|
|
|
|
|
|
static int freePage(Btree *pBt, void *pPage, Pgno pgno){ |
1817
|
44
|
|
|
|
|
|
PageOne *pPage1 = pBt->page1; |
1818
|
44
|
|
|
|
|
|
OverflowPage *pOvfl = (OverflowPage*)pPage; |
1819
|
|
|
|
|
|
|
int rc; |
1820
|
44
|
|
|
|
|
|
int needUnref = 0; |
1821
|
|
|
|
|
|
|
MemPage *pMemPage; |
1822
|
|
|
|
|
|
|
|
1823
|
44
|
50
|
|
|
|
|
if( pgno==0 ){ |
1824
|
|
|
|
|
|
|
assert( pOvfl!=0 ); |
1825
|
0
|
|
|
|
|
|
pgno = sqlitepager_pagenumber(pOvfl); |
1826
|
|
|
|
|
|
|
} |
1827
|
|
|
|
|
|
|
assert( pgno>2 ); |
1828
|
|
|
|
|
|
|
assert( sqlitepager_pagenumber(pOvfl)==pgno ); |
1829
|
44
|
|
|
|
|
|
pMemPage = (MemPage*)pPage; |
1830
|
44
|
|
|
|
|
|
pMemPage->isInit = 0; |
1831
|
44
|
50
|
|
|
|
|
if( pMemPage->pParent ){ |
1832
|
0
|
|
|
|
|
|
sqlitepager_unref(pMemPage->pParent); |
1833
|
0
|
|
|
|
|
|
pMemPage->pParent = 0; |
1834
|
|
|
|
|
|
|
} |
1835
|
44
|
|
|
|
|
|
rc = sqlitepager_write(pPage1); |
1836
|
44
|
50
|
|
|
|
|
if( rc ){ |
1837
|
0
|
|
|
|
|
|
return rc; |
1838
|
|
|
|
|
|
|
} |
1839
|
44
|
50
|
|
|
|
|
SWAB_ADD(pBt, pPage1->nFree, 1); |
1840
|
44
|
50
|
|
|
|
|
if( pPage1->nFree!=0 && pPage1->freeList!=0 ){ |
|
|
100
|
|
|
|
|
|
1841
|
|
|
|
|
|
|
OverflowPage *pFreeIdx; |
1842
|
40
|
50
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList), |
1843
|
|
|
|
|
|
|
(void**)&pFreeIdx); |
1844
|
40
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
1845
|
40
|
|
|
|
|
|
FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload; |
1846
|
40
|
50
|
|
|
|
|
int n = SWAB32(pBt, pInfo->nFree); |
1847
|
40
|
50
|
|
|
|
|
if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){ |
1848
|
40
|
|
|
|
|
|
rc = sqlitepager_write(pFreeIdx); |
1849
|
40
|
50
|
|
|
|
|
if( rc==SQLITE_OK ){ |
1850
|
40
|
50
|
|
|
|
|
pInfo->aFree[n] = SWAB32(pBt, pgno); |
1851
|
40
|
50
|
|
|
|
|
SWAB_ADD(pBt, pInfo->nFree, 1); |
1852
|
40
|
|
|
|
|
|
sqlitepager_unref(pFreeIdx); |
1853
|
40
|
|
|
|
|
|
sqlitepager_dont_write(pBt->pPager, pgno); |
1854
|
40
|
|
|
|
|
|
return rc; |
1855
|
|
|
|
|
|
|
} |
1856
|
|
|
|
|
|
|
} |
1857
|
0
|
|
|
|
|
|
sqlitepager_unref(pFreeIdx); |
1858
|
|
|
|
|
|
|
} |
1859
|
|
|
|
|
|
|
} |
1860
|
4
|
50
|
|
|
|
|
if( pOvfl==0 ){ |
1861
|
|
|
|
|
|
|
assert( pgno>0 ); |
1862
|
0
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl); |
1863
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
1864
|
0
|
|
|
|
|
|
needUnref = 1; |
1865
|
|
|
|
|
|
|
} |
1866
|
4
|
|
|
|
|
|
rc = sqlitepager_write(pOvfl); |
1867
|
4
|
50
|
|
|
|
|
if( rc ){ |
1868
|
0
|
0
|
|
|
|
|
if( needUnref ) sqlitepager_unref(pOvfl); |
1869
|
0
|
|
|
|
|
|
return rc; |
1870
|
|
|
|
|
|
|
} |
1871
|
4
|
|
|
|
|
|
pOvfl->iNext = pPage1->freeList; |
1872
|
4
|
50
|
|
|
|
|
pPage1->freeList = SWAB32(pBt, pgno); |
1873
|
4
|
|
|
|
|
|
memset(pOvfl->aPayload, 0, OVERFLOW_SIZE); |
1874
|
4
|
50
|
|
|
|
|
if( needUnref ) rc = sqlitepager_unref(pOvfl); |
1875
|
44
|
|
|
|
|
|
return rc; |
1876
|
|
|
|
|
|
|
} |
1877
|
|
|
|
|
|
|
|
1878
|
|
|
|
|
|
|
/* |
1879
|
|
|
|
|
|
|
** Erase all the data out of a cell. This involves returning overflow |
1880
|
|
|
|
|
|
|
** pages back the freelist. |
1881
|
|
|
|
|
|
|
*/ |
1882
|
58
|
|
|
|
|
|
static int clearCell(Btree *pBt, Cell *pCell){ |
1883
|
58
|
|
|
|
|
|
Pager *pPager = pBt->pPager; |
1884
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
1885
|
|
|
|
|
|
|
Pgno ovfl, nextOvfl; |
1886
|
|
|
|
|
|
|
int rc; |
1887
|
|
|
|
|
|
|
|
1888
|
58
|
50
|
|
|
|
|
if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){ |
|
|
50
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
1889
|
57
|
|
|
|
|
|
return SQLITE_OK; |
1890
|
|
|
|
|
|
|
} |
1891
|
1
|
50
|
|
|
|
|
ovfl = SWAB32(pBt, pCell->ovfl); |
1892
|
1
|
|
|
|
|
|
pCell->ovfl = 0; |
1893
|
34
|
100
|
|
|
|
|
while( ovfl ){ |
1894
|
33
|
|
|
|
|
|
rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl); |
1895
|
33
|
50
|
|
|
|
|
if( rc ) return rc; |
1896
|
33
|
50
|
|
|
|
|
nextOvfl = SWAB32(pBt, pOvfl->iNext); |
1897
|
33
|
|
|
|
|
|
rc = freePage(pBt, pOvfl, ovfl); |
1898
|
33
|
50
|
|
|
|
|
if( rc ) return rc; |
1899
|
33
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
1900
|
33
|
|
|
|
|
|
ovfl = nextOvfl; |
1901
|
|
|
|
|
|
|
} |
1902
|
58
|
|
|
|
|
|
return SQLITE_OK; |
1903
|
|
|
|
|
|
|
} |
1904
|
|
|
|
|
|
|
|
1905
|
|
|
|
|
|
|
/* |
1906
|
|
|
|
|
|
|
** Create a new cell from key and data. Overflow pages are allocated as |
1907
|
|
|
|
|
|
|
** necessary and linked to this cell. |
1908
|
|
|
|
|
|
|
*/ |
1909
|
121
|
|
|
|
|
|
static int fillInCell( |
1910
|
|
|
|
|
|
|
Btree *pBt, /* The whole Btree. Needed to allocate pages */ |
1911
|
|
|
|
|
|
|
Cell *pCell, /* Populate this Cell structure */ |
1912
|
|
|
|
|
|
|
const void *pKey, int nKey, /* The key */ |
1913
|
|
|
|
|
|
|
const void *pData,int nData /* The data */ |
1914
|
|
|
|
|
|
|
){ |
1915
|
|
|
|
|
|
|
OverflowPage *pOvfl, *pPrior; |
1916
|
|
|
|
|
|
|
Pgno *pNext; |
1917
|
|
|
|
|
|
|
int spaceLeft; |
1918
|
|
|
|
|
|
|
int n, rc; |
1919
|
|
|
|
|
|
|
int nPayload; |
1920
|
|
|
|
|
|
|
const char *pPayload; |
1921
|
|
|
|
|
|
|
char *pSpace; |
1922
|
121
|
|
|
|
|
|
Pgno nearby = 0; |
1923
|
|
|
|
|
|
|
|
1924
|
121
|
|
|
|
|
|
pCell->h.leftChild = 0; |
1925
|
121
|
50
|
|
|
|
|
pCell->h.nKey = SWAB16(pBt, nKey & 0xffff); |
1926
|
121
|
|
|
|
|
|
pCell->h.nKeyHi = nKey >> 16; |
1927
|
121
|
50
|
|
|
|
|
pCell->h.nData = SWAB16(pBt, nData & 0xffff); |
1928
|
121
|
|
|
|
|
|
pCell->h.nDataHi = nData >> 16; |
1929
|
121
|
|
|
|
|
|
pCell->h.iNext = 0; |
1930
|
|
|
|
|
|
|
|
1931
|
121
|
|
|
|
|
|
pNext = &pCell->ovfl; |
1932
|
121
|
|
|
|
|
|
pSpace = pCell->aPayload; |
1933
|
121
|
|
|
|
|
|
spaceLeft = MX_LOCAL_PAYLOAD; |
1934
|
121
|
|
|
|
|
|
pPayload = pKey; |
1935
|
121
|
|
|
|
|
|
pKey = 0; |
1936
|
121
|
|
|
|
|
|
nPayload = nKey; |
1937
|
121
|
|
|
|
|
|
pPrior = 0; |
1938
|
371
|
100
|
|
|
|
|
while( nPayload>0 ){ |
1939
|
250
|
100
|
|
|
|
|
if( spaceLeft==0 ){ |
1940
|
33
|
|
|
|
|
|
rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby); |
1941
|
33
|
50
|
|
|
|
|
if( rc ){ |
1942
|
0
|
|
|
|
|
|
*pNext = 0; |
1943
|
|
|
|
|
|
|
}else{ |
1944
|
33
|
|
|
|
|
|
nearby = *pNext; |
1945
|
|
|
|
|
|
|
} |
1946
|
33
|
100
|
|
|
|
|
if( pPrior ) sqlitepager_unref(pPrior); |
1947
|
33
|
50
|
|
|
|
|
if( rc ){ |
1948
|
0
|
|
|
|
|
|
clearCell(pBt, pCell); |
1949
|
0
|
|
|
|
|
|
return rc; |
1950
|
|
|
|
|
|
|
} |
1951
|
33
|
50
|
|
|
|
|
if( pBt->needSwab ) *pNext = swab32(*pNext); |
1952
|
33
|
|
|
|
|
|
pPrior = pOvfl; |
1953
|
33
|
|
|
|
|
|
spaceLeft = OVERFLOW_SIZE; |
1954
|
33
|
|
|
|
|
|
pSpace = pOvfl->aPayload; |
1955
|
33
|
|
|
|
|
|
pNext = &pOvfl->iNext; |
1956
|
|
|
|
|
|
|
} |
1957
|
250
|
|
|
|
|
|
n = nPayload; |
1958
|
250
|
100
|
|
|
|
|
if( n>spaceLeft ) n = spaceLeft; |
1959
|
250
|
|
|
|
|
|
memcpy(pSpace, pPayload, n); |
1960
|
250
|
|
|
|
|
|
nPayload -= n; |
1961
|
250
|
100
|
|
|
|
|
if( nPayload==0 && pData ){ |
|
|
100
|
|
|
|
|
|
1962
|
99
|
|
|
|
|
|
pPayload = pData; |
1963
|
99
|
|
|
|
|
|
nPayload = nData; |
1964
|
99
|
|
|
|
|
|
pData = 0; |
1965
|
|
|
|
|
|
|
}else{ |
1966
|
151
|
|
|
|
|
|
pPayload += n; |
1967
|
|
|
|
|
|
|
} |
1968
|
250
|
|
|
|
|
|
spaceLeft -= n; |
1969
|
250
|
|
|
|
|
|
pSpace += n; |
1970
|
|
|
|
|
|
|
} |
1971
|
121
|
|
|
|
|
|
*pNext = 0; |
1972
|
121
|
100
|
|
|
|
|
if( pPrior ){ |
1973
|
1
|
|
|
|
|
|
sqlitepager_unref(pPrior); |
1974
|
|
|
|
|
|
|
} |
1975
|
121
|
|
|
|
|
|
return SQLITE_OK; |
1976
|
|
|
|
|
|
|
} |
1977
|
|
|
|
|
|
|
|
1978
|
|
|
|
|
|
|
/* |
1979
|
|
|
|
|
|
|
** Change the MemPage.pParent pointer on the page whose number is |
1980
|
|
|
|
|
|
|
** given in the second argument so that MemPage.pParent holds the |
1981
|
|
|
|
|
|
|
** pointer in the third argument. |
1982
|
|
|
|
|
|
|
*/ |
1983
|
15
|
|
|
|
|
|
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){ |
1984
|
|
|
|
|
|
|
MemPage *pThis; |
1985
|
|
|
|
|
|
|
|
1986
|
15
|
100
|
|
|
|
|
if( pgno==0 ) return; |
1987
|
|
|
|
|
|
|
assert( pPager!=0 ); |
1988
|
2
|
|
|
|
|
|
pThis = sqlitepager_lookup(pPager, pgno); |
1989
|
2
|
50
|
|
|
|
|
if( pThis && pThis->isInit ){ |
|
|
50
|
|
|
|
|
|
1990
|
2
|
100
|
|
|
|
|
if( pThis->pParent!=pNewParent ){ |
1991
|
1
|
50
|
|
|
|
|
if( pThis->pParent ) sqlitepager_unref(pThis->pParent); |
1992
|
1
|
|
|
|
|
|
pThis->pParent = pNewParent; |
1993
|
1
|
50
|
|
|
|
|
if( pNewParent ) sqlitepager_ref(pNewParent); |
1994
|
|
|
|
|
|
|
} |
1995
|
2
|
|
|
|
|
|
pThis->idxParent = idx; |
1996
|
2
|
|
|
|
|
|
sqlitepager_unref(pThis); |
1997
|
|
|
|
|
|
|
} |
1998
|
|
|
|
|
|
|
} |
1999
|
|
|
|
|
|
|
|
2000
|
|
|
|
|
|
|
/* |
2001
|
|
|
|
|
|
|
** Reparent all children of the given page to be the given page. |
2002
|
|
|
|
|
|
|
** In other words, for every child of pPage, invoke reparentPage() |
2003
|
|
|
|
|
|
|
** to make sure that each child knows that pPage is its parent. |
2004
|
|
|
|
|
|
|
** |
2005
|
|
|
|
|
|
|
** This routine gets called after you memcpy() one page into |
2006
|
|
|
|
|
|
|
** another. |
2007
|
|
|
|
|
|
|
*/ |
2008
|
3
|
|
|
|
|
|
static void reparentChildPages(Btree *pBt, MemPage *pPage){ |
2009
|
|
|
|
|
|
|
int i; |
2010
|
3
|
|
|
|
|
|
Pager *pPager = pBt->pPager; |
2011
|
15
|
100
|
|
|
|
|
for(i=0; inCell; i++){ |
2012
|
12
|
50
|
|
|
|
|
reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i); |
2013
|
|
|
|
|
|
|
} |
2014
|
3
|
50
|
|
|
|
|
reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i); |
2015
|
3
|
|
|
|
|
|
pPage->idxShift = 0; |
2016
|
3
|
|
|
|
|
|
} |
2017
|
|
|
|
|
|
|
|
2018
|
|
|
|
|
|
|
/* |
2019
|
|
|
|
|
|
|
** Remove the i-th cell from pPage. This routine effects pPage only. |
2020
|
|
|
|
|
|
|
** The cell content is not freed or deallocated. It is assumed that |
2021
|
|
|
|
|
|
|
** the cell content has been copied someplace else. This routine just |
2022
|
|
|
|
|
|
|
** removes the reference to the cell from pPage. |
2023
|
|
|
|
|
|
|
** |
2024
|
|
|
|
|
|
|
** "sz" must be the number of bytes in the cell. |
2025
|
|
|
|
|
|
|
** |
2026
|
|
|
|
|
|
|
** Do not bother maintaining the integrity of the linked list of Cells. |
2027
|
|
|
|
|
|
|
** Only the pPage->apCell[] array is important. The relinkCellList() |
2028
|
|
|
|
|
|
|
** routine will be called soon after this routine in order to rebuild |
2029
|
|
|
|
|
|
|
** the linked list. |
2030
|
|
|
|
|
|
|
*/ |
2031
|
39
|
|
|
|
|
|
static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){ |
2032
|
|
|
|
|
|
|
int j; |
2033
|
|
|
|
|
|
|
assert( idx>=0 && idxnCell ); |
2034
|
|
|
|
|
|
|
assert( sz==cellSize(pBt, pPage->apCell[idx]) ); |
2035
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
2036
|
39
|
|
|
|
|
|
freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz); |
2037
|
46
|
100
|
|
|
|
|
for(j=idx; jnCell-1; j++){ |
2038
|
7
|
|
|
|
|
|
pPage->apCell[j] = pPage->apCell[j+1]; |
2039
|
|
|
|
|
|
|
} |
2040
|
39
|
|
|
|
|
|
pPage->nCell--; |
2041
|
39
|
|
|
|
|
|
pPage->idxShift = 1; |
2042
|
39
|
|
|
|
|
|
} |
2043
|
|
|
|
|
|
|
|
2044
|
|
|
|
|
|
|
/* |
2045
|
|
|
|
|
|
|
** Insert a new cell on pPage at cell index "i". pCell points to the |
2046
|
|
|
|
|
|
|
** content of the cell. |
2047
|
|
|
|
|
|
|
** |
2048
|
|
|
|
|
|
|
** If the cell content will fit on the page, then put it there. If it |
2049
|
|
|
|
|
|
|
** will not fit, then just make pPage->apCell[i] point to the content |
2050
|
|
|
|
|
|
|
** and set pPage->isOverfull. |
2051
|
|
|
|
|
|
|
** |
2052
|
|
|
|
|
|
|
** Do not bother maintaining the integrity of the linked list of Cells. |
2053
|
|
|
|
|
|
|
** Only the pPage->apCell[] array is important. The relinkCellList() |
2054
|
|
|
|
|
|
|
** routine will be called soon after this routine in order to rebuild |
2055
|
|
|
|
|
|
|
** the linked list. |
2056
|
|
|
|
|
|
|
*/ |
2057
|
133
|
|
|
|
|
|
static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){ |
2058
|
|
|
|
|
|
|
int idx, j; |
2059
|
|
|
|
|
|
|
assert( i>=0 && i<=pPage->nCell ); |
2060
|
|
|
|
|
|
|
assert( sz==cellSize(pBt, pCell) ); |
2061
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
2062
|
133
|
|
|
|
|
|
idx = allocateSpace(pBt, pPage, sz); |
2063
|
137
|
100
|
|
|
|
|
for(j=pPage->nCell; j>i; j--){ |
2064
|
4
|
|
|
|
|
|
pPage->apCell[j] = pPage->apCell[j-1]; |
2065
|
|
|
|
|
|
|
} |
2066
|
133
|
|
|
|
|
|
pPage->nCell++; |
2067
|
133
|
100
|
|
|
|
|
if( idx<=0 ){ |
2068
|
1
|
|
|
|
|
|
pPage->isOverfull = 1; |
2069
|
1
|
|
|
|
|
|
pPage->apCell[i] = pCell; |
2070
|
|
|
|
|
|
|
}else{ |
2071
|
132
|
|
|
|
|
|
memcpy(&pPage->u.aDisk[idx], pCell, sz); |
2072
|
132
|
|
|
|
|
|
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx]; |
2073
|
|
|
|
|
|
|
} |
2074
|
133
|
|
|
|
|
|
pPage->idxShift = 1; |
2075
|
133
|
|
|
|
|
|
} |
2076
|
|
|
|
|
|
|
|
2077
|
|
|
|
|
|
|
/* |
2078
|
|
|
|
|
|
|
** Rebuild the linked list of cells on a page so that the cells |
2079
|
|
|
|
|
|
|
** occur in the order specified by the pPage->apCell[] array. |
2080
|
|
|
|
|
|
|
** Invoke this routine once to repair damage after one or more |
2081
|
|
|
|
|
|
|
** invocations of either insertCell() or dropCell(). |
2082
|
|
|
|
|
|
|
*/ |
2083
|
140
|
|
|
|
|
|
static void relinkCellList(Btree *pBt, MemPage *pPage){ |
2084
|
|
|
|
|
|
|
int i; |
2085
|
|
|
|
|
|
|
u16 *pIdx; |
2086
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
2087
|
140
|
|
|
|
|
|
pIdx = &pPage->u.hdr.firstCell; |
2088
|
523
|
100
|
|
|
|
|
for(i=0; inCell; i++){ |
2089
|
383
|
|
|
|
|
|
int idx = Addr(pPage->apCell[i]) - Addr(pPage); |
2090
|
|
|
|
|
|
|
assert( idx>0 && idx
|
2091
|
383
|
50
|
|
|
|
|
*pIdx = SWAB16(pBt, idx); |
2092
|
383
|
|
|
|
|
|
pIdx = &pPage->apCell[i]->h.iNext; |
2093
|
|
|
|
|
|
|
} |
2094
|
140
|
|
|
|
|
|
*pIdx = 0; |
2095
|
140
|
|
|
|
|
|
} |
2096
|
|
|
|
|
|
|
|
2097
|
|
|
|
|
|
|
/* |
2098
|
|
|
|
|
|
|
** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[] |
2099
|
|
|
|
|
|
|
** pointers that point into pFrom->u.aDisk[] must be adjusted to point |
2100
|
|
|
|
|
|
|
** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might |
2101
|
|
|
|
|
|
|
** not point to pFrom->u.aDisk[]. Those are unchanged. |
2102
|
|
|
|
|
|
|
*/ |
2103
|
2
|
|
|
|
|
|
static void copyPage(MemPage *pTo, MemPage *pFrom){ |
2104
|
|
|
|
|
|
|
uptr from, to; |
2105
|
|
|
|
|
|
|
int i; |
2106
|
2
|
|
|
|
|
|
memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE); |
2107
|
2
|
|
|
|
|
|
pTo->pParent = 0; |
2108
|
2
|
|
|
|
|
|
pTo->isInit = 1; |
2109
|
2
|
|
|
|
|
|
pTo->nCell = pFrom->nCell; |
2110
|
2
|
|
|
|
|
|
pTo->nFree = pFrom->nFree; |
2111
|
2
|
|
|
|
|
|
pTo->isOverfull = pFrom->isOverfull; |
2112
|
2
|
|
|
|
|
|
to = Addr(pTo); |
2113
|
2
|
|
|
|
|
|
from = Addr(pFrom); |
2114
|
26
|
100
|
|
|
|
|
for(i=0; inCell; i++){ |
2115
|
24
|
|
|
|
|
|
uptr x = Addr(pFrom->apCell[i]); |
2116
|
24
|
50
|
|
|
|
|
if( x>from && x
|
|
|
100
|
|
|
|
|
|
2117
|
22
|
|
|
|
|
|
*((uptr*)&pTo->apCell[i]) = x + to - from; |
2118
|
|
|
|
|
|
|
}else{ |
2119
|
2
|
|
|
|
|
|
pTo->apCell[i] = pFrom->apCell[i]; |
2120
|
|
|
|
|
|
|
} |
2121
|
|
|
|
|
|
|
} |
2122
|
2
|
|
|
|
|
|
} |
2123
|
|
|
|
|
|
|
|
2124
|
|
|
|
|
|
|
/* |
2125
|
|
|
|
|
|
|
** The following parameters determine how many adjacent pages get involved |
2126
|
|
|
|
|
|
|
** in a balancing operation. NN is the number of neighbors on either side |
2127
|
|
|
|
|
|
|
** of the page that participate in the balancing operation. NB is the |
2128
|
|
|
|
|
|
|
** total number of pages that participate, including the target page and |
2129
|
|
|
|
|
|
|
** NN neighbors on either side. |
2130
|
|
|
|
|
|
|
** |
2131
|
|
|
|
|
|
|
** The minimum value of NN is 1 (of course). Increasing NN above 1 |
2132
|
|
|
|
|
|
|
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
2133
|
|
|
|
|
|
|
** in exchange for a larger degradation in INSERT and UPDATE performance. |
2134
|
|
|
|
|
|
|
** The value of NN appears to give the best results overall. |
2135
|
|
|
|
|
|
|
*/ |
2136
|
|
|
|
|
|
|
#define NN 1 /* Number of neighbors on either side of pPage */ |
2137
|
|
|
|
|
|
|
#define NB (NN*2+1) /* Total pages involved in the balance */ |
2138
|
|
|
|
|
|
|
|
2139
|
|
|
|
|
|
|
/* |
2140
|
|
|
|
|
|
|
** This routine redistributes Cells on pPage and up to two siblings |
2141
|
|
|
|
|
|
|
** of pPage so that all pages have about the same amount of free space. |
2142
|
|
|
|
|
|
|
** Usually one sibling on either side of pPage is used in the balancing, |
2143
|
|
|
|
|
|
|
** though both siblings might come from one side if pPage is the first |
2144
|
|
|
|
|
|
|
** or last child of its parent. If pPage has fewer than two siblings |
2145
|
|
|
|
|
|
|
** (something which can only happen if pPage is the root page or a |
2146
|
|
|
|
|
|
|
** child of root) then all available siblings participate in the balancing. |
2147
|
|
|
|
|
|
|
** |
2148
|
|
|
|
|
|
|
** The number of siblings of pPage might be increased or decreased by |
2149
|
|
|
|
|
|
|
** one in an effort to keep pages between 66% and 100% full. The root page |
2150
|
|
|
|
|
|
|
** is special and is allowed to be less than 66% full. If pPage is |
2151
|
|
|
|
|
|
|
** the root page, then the depth of the tree might be increased |
2152
|
|
|
|
|
|
|
** or decreased by one, as necessary, to keep the root page from being |
2153
|
|
|
|
|
|
|
** overfull or empty. |
2154
|
|
|
|
|
|
|
** |
2155
|
|
|
|
|
|
|
** This routine calls relinkCellList() on its input page regardless of |
2156
|
|
|
|
|
|
|
** whether or not it does any real balancing. Client routines will typically |
2157
|
|
|
|
|
|
|
** invoke insertCell() or dropCell() before calling this routine, so we |
2158
|
|
|
|
|
|
|
** need to call relinkCellList() to clean up the mess that those other |
2159
|
|
|
|
|
|
|
** routines left behind. |
2160
|
|
|
|
|
|
|
** |
2161
|
|
|
|
|
|
|
** pCur is left pointing to the same cell as when this routine was called |
2162
|
|
|
|
|
|
|
** even if that cell gets moved to a different page. pCur may be NULL. |
2163
|
|
|
|
|
|
|
** Set the pCur parameter to NULL if you do not care about keeping track |
2164
|
|
|
|
|
|
|
** of a cell as that will save this routine the work of keeping track of it. |
2165
|
|
|
|
|
|
|
** |
2166
|
|
|
|
|
|
|
** Note that when this routine is called, some of the Cells on pPage |
2167
|
|
|
|
|
|
|
** might not actually be stored in pPage->u.aDisk[]. This can happen |
2168
|
|
|
|
|
|
|
** if the page is overfull. Part of the job of this routine is to |
2169
|
|
|
|
|
|
|
** make sure all Cells for pPage once again fit in pPage->u.aDisk[]. |
2170
|
|
|
|
|
|
|
** |
2171
|
|
|
|
|
|
|
** In the course of balancing the siblings of pPage, the parent of pPage |
2172
|
|
|
|
|
|
|
** might become overfull or underfull. If that happens, then this routine |
2173
|
|
|
|
|
|
|
** is called recursively on the parent. |
2174
|
|
|
|
|
|
|
** |
2175
|
|
|
|
|
|
|
** If this routine fails for any reason, it might leave the database |
2176
|
|
|
|
|
|
|
** in a corrupted state. So if this routine fails, the database should |
2177
|
|
|
|
|
|
|
** be rolled back. |
2178
|
|
|
|
|
|
|
*/ |
2179
|
139
|
|
|
|
|
|
static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){ |
2180
|
|
|
|
|
|
|
MemPage *pParent; /* The parent of pPage */ |
2181
|
|
|
|
|
|
|
int nCell; /* Number of cells in apCell[] */ |
2182
|
|
|
|
|
|
|
int nOld; /* Number of pages in apOld[] */ |
2183
|
|
|
|
|
|
|
int nNew; /* Number of pages in apNew[] */ |
2184
|
|
|
|
|
|
|
int nDiv; /* Number of cells in apDiv[] */ |
2185
|
|
|
|
|
|
|
int i, j, k; /* Loop counters */ |
2186
|
|
|
|
|
|
|
int idx; /* Index of pPage in pParent->apCell[] */ |
2187
|
|
|
|
|
|
|
int nxDiv; /* Next divider slot in pParent->apCell[] */ |
2188
|
|
|
|
|
|
|
int rc; /* The return code */ |
2189
|
|
|
|
|
|
|
int iCur; /* apCell[iCur] is the cell of the cursor */ |
2190
|
|
|
|
|
|
|
MemPage *pOldCurPage; /* The cursor originally points to this page */ |
2191
|
|
|
|
|
|
|
int subtotal; /* Subtotal of bytes in cells on one page */ |
2192
|
139
|
|
|
|
|
|
MemPage *extraUnref = 0; /* A page that needs to be unref-ed */ |
2193
|
|
|
|
|
|
|
MemPage *apOld[NB]; /* pPage and up to two siblings */ |
2194
|
|
|
|
|
|
|
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ |
2195
|
|
|
|
|
|
|
MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */ |
2196
|
|
|
|
|
|
|
Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */ |
2197
|
|
|
|
|
|
|
int idxDiv[NB]; /* Indices of divider cells in pParent */ |
2198
|
|
|
|
|
|
|
Cell *apDiv[NB]; /* Divider cells in pParent */ |
2199
|
|
|
|
|
|
|
Cell aTemp[NB]; /* Temporary holding area for apDiv[] */ |
2200
|
|
|
|
|
|
|
int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */ |
2201
|
|
|
|
|
|
|
int szNew[NB+1]; /* Combined size of cells place on i-th page */ |
2202
|
|
|
|
|
|
|
MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */ |
2203
|
|
|
|
|
|
|
Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */ |
2204
|
|
|
|
|
|
|
int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */ |
2205
|
|
|
|
|
|
|
|
2206
|
|
|
|
|
|
|
/* |
2207
|
|
|
|
|
|
|
** Return without doing any work if pPage is neither overfull nor |
2208
|
|
|
|
|
|
|
** underfull. |
2209
|
|
|
|
|
|
|
*/ |
2210
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pPage) ); |
2211
|
139
|
100
|
|
|
|
|
if( !pPage->isOverfull && pPage->nFree
|
|
|
100
|
|
|
|
|
|
2212
|
20
|
50
|
|
|
|
|
&& pPage->nCell>=2){ |
2213
|
20
|
|
|
|
|
|
relinkCellList(pBt, pPage); |
2214
|
20
|
|
|
|
|
|
return SQLITE_OK; |
2215
|
|
|
|
|
|
|
} |
2216
|
|
|
|
|
|
|
|
2217
|
|
|
|
|
|
|
/* |
2218
|
|
|
|
|
|
|
** Find the parent of the page to be balanceed. |
2219
|
|
|
|
|
|
|
** If there is no parent, it means this page is the root page and |
2220
|
|
|
|
|
|
|
** special rules apply. |
2221
|
|
|
|
|
|
|
*/ |
2222
|
119
|
|
|
|
|
|
pParent = pPage->pParent; |
2223
|
119
|
50
|
|
|
|
|
if( pParent==0 ){ |
2224
|
|
|
|
|
|
|
Pgno pgnoChild; |
2225
|
|
|
|
|
|
|
MemPage *pChild; |
2226
|
|
|
|
|
|
|
assert( pPage->isInit ); |
2227
|
119
|
100
|
|
|
|
|
if( pPage->nCell==0 ){ |
2228
|
13
|
50
|
|
|
|
|
if( pPage->u.hdr.rightChild ){ |
2229
|
|
|
|
|
|
|
/* |
2230
|
|
|
|
|
|
|
** The root page is empty. Copy the one child page |
2231
|
|
|
|
|
|
|
** into the root page and return. This reduces the depth |
2232
|
|
|
|
|
|
|
** of the BTree by one. |
2233
|
|
|
|
|
|
|
*/ |
2234
|
0
|
0
|
|
|
|
|
pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild); |
2235
|
0
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild); |
2236
|
118
|
0
|
|
|
|
|
if( rc ) return rc; |
2237
|
0
|
|
|
|
|
|
memcpy(pPage, pChild, SQLITE_USABLE_SIZE); |
2238
|
0
|
|
|
|
|
|
pPage->isInit = 0; |
2239
|
0
|
|
|
|
|
|
rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0); |
2240
|
|
|
|
|
|
|
assert( rc==SQLITE_OK ); |
2241
|
0
|
|
|
|
|
|
reparentChildPages(pBt, pPage); |
2242
|
0
|
0
|
|
|
|
|
if( pCur && pCur->pPage==pChild ){ |
|
|
0
|
|
|
|
|
|
2243
|
0
|
|
|
|
|
|
sqlitepager_unref(pChild); |
2244
|
0
|
|
|
|
|
|
pCur->pPage = pPage; |
2245
|
0
|
|
|
|
|
|
sqlitepager_ref(pPage); |
2246
|
|
|
|
|
|
|
} |
2247
|
0
|
|
|
|
|
|
freePage(pBt, pChild, pgnoChild); |
2248
|
0
|
|
|
|
|
|
sqlitepager_unref(pChild); |
2249
|
|
|
|
|
|
|
}else{ |
2250
|
13
|
|
|
|
|
|
relinkCellList(pBt, pPage); |
2251
|
|
|
|
|
|
|
} |
2252
|
13
|
|
|
|
|
|
return SQLITE_OK; |
2253
|
|
|
|
|
|
|
} |
2254
|
106
|
100
|
|
|
|
|
if( !pPage->isOverfull ){ |
2255
|
|
|
|
|
|
|
/* It is OK for the root page to be less than half full. |
2256
|
|
|
|
|
|
|
*/ |
2257
|
105
|
|
|
|
|
|
relinkCellList(pBt, pPage); |
2258
|
105
|
|
|
|
|
|
return SQLITE_OK; |
2259
|
|
|
|
|
|
|
} |
2260
|
|
|
|
|
|
|
/* |
2261
|
|
|
|
|
|
|
** If we get to here, it means the root page is overfull. |
2262
|
|
|
|
|
|
|
** When this happens, Create a new child page and copy the |
2263
|
|
|
|
|
|
|
** contents of the root into the child. Then make the root |
2264
|
|
|
|
|
|
|
** page an empty page with rightChild pointing to the new |
2265
|
|
|
|
|
|
|
** child. Then fall thru to the code below which will cause |
2266
|
|
|
|
|
|
|
** the overfull child page to be split. |
2267
|
|
|
|
|
|
|
*/ |
2268
|
1
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
2269
|
1
|
50
|
|
|
|
|
if( rc ) return rc; |
2270
|
1
|
|
|
|
|
|
rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage)); |
2271
|
1
|
50
|
|
|
|
|
if( rc ) return rc; |
2272
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pChild) ); |
2273
|
1
|
|
|
|
|
|
copyPage(pChild, pPage); |
2274
|
1
|
|
|
|
|
|
pChild->pParent = pPage; |
2275
|
1
|
|
|
|
|
|
pChild->idxParent = 0; |
2276
|
1
|
|
|
|
|
|
sqlitepager_ref(pPage); |
2277
|
1
|
|
|
|
|
|
pChild->isOverfull = 1; |
2278
|
1
|
50
|
|
|
|
|
if( pCur && pCur->pPage==pPage ){ |
|
|
50
|
|
|
|
|
|
2279
|
1
|
|
|
|
|
|
sqlitepager_unref(pPage); |
2280
|
1
|
|
|
|
|
|
pCur->pPage = pChild; |
2281
|
|
|
|
|
|
|
}else{ |
2282
|
0
|
|
|
|
|
|
extraUnref = pChild; |
2283
|
|
|
|
|
|
|
} |
2284
|
1
|
|
|
|
|
|
zeroPage(pBt, pPage); |
2285
|
1
|
50
|
|
|
|
|
pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild); |
2286
|
1
|
|
|
|
|
|
pParent = pPage; |
2287
|
1
|
|
|
|
|
|
pPage = pChild; |
2288
|
|
|
|
|
|
|
} |
2289
|
1
|
|
|
|
|
|
rc = sqlitepager_write(pParent); |
2290
|
1
|
50
|
|
|
|
|
if( rc ) return rc; |
2291
|
|
|
|
|
|
|
assert( pParent->isInit ); |
2292
|
|
|
|
|
|
|
|
2293
|
|
|
|
|
|
|
/* |
2294
|
|
|
|
|
|
|
** Find the Cell in the parent page whose h.leftChild points back |
2295
|
|
|
|
|
|
|
** to pPage. The "idx" variable is the index of that cell. If pPage |
2296
|
|
|
|
|
|
|
** is the rightmost child of pParent then set idx to pParent->nCell |
2297
|
|
|
|
|
|
|
*/ |
2298
|
1
|
50
|
|
|
|
|
if( pParent->idxShift ){ |
2299
|
|
|
|
|
|
|
Pgno pgno, swabPgno; |
2300
|
1
|
|
|
|
|
|
pgno = sqlitepager_pagenumber(pPage); |
2301
|
1
|
50
|
|
|
|
|
swabPgno = SWAB32(pBt, pgno); |
2302
|
1
|
50
|
|
|
|
|
for(idx=0; idxnCell; idx++){ |
2303
|
0
|
0
|
|
|
|
|
if( pParent->apCell[idx]->h.leftChild==swabPgno ){ |
2304
|
0
|
|
|
|
|
|
break; |
2305
|
|
|
|
|
|
|
} |
2306
|
|
|
|
|
|
|
} |
2307
|
|
|
|
|
|
|
assert( idxnCell || pParent->u.hdr.rightChild==swabPgno ); |
2308
|
|
|
|
|
|
|
}else{ |
2309
|
0
|
|
|
|
|
|
idx = pPage->idxParent; |
2310
|
|
|
|
|
|
|
} |
2311
|
|
|
|
|
|
|
|
2312
|
|
|
|
|
|
|
/* |
2313
|
|
|
|
|
|
|
** Initialize variables so that it will be safe to jump |
2314
|
|
|
|
|
|
|
** directly to balance_cleanup at any moment. |
2315
|
|
|
|
|
|
|
*/ |
2316
|
1
|
|
|
|
|
|
nOld = nNew = 0; |
2317
|
1
|
|
|
|
|
|
sqlitepager_ref(pParent); |
2318
|
|
|
|
|
|
|
|
2319
|
|
|
|
|
|
|
/* |
2320
|
|
|
|
|
|
|
** Find sibling pages to pPage and the Cells in pParent that divide |
2321
|
|
|
|
|
|
|
** the siblings. An attempt is made to find NN siblings on either |
2322
|
|
|
|
|
|
|
** side of pPage. More siblings are taken from one side, however, if |
2323
|
|
|
|
|
|
|
** pPage there are fewer than NN siblings on the other side. If pParent |
2324
|
|
|
|
|
|
|
** has NB or fewer children then all children of pParent are taken. |
2325
|
|
|
|
|
|
|
*/ |
2326
|
1
|
|
|
|
|
|
nxDiv = idx - NN; |
2327
|
1
|
50
|
|
|
|
|
if( nxDiv + NB > pParent->nCell ){ |
2328
|
1
|
|
|
|
|
|
nxDiv = pParent->nCell - NB + 1; |
2329
|
|
|
|
|
|
|
} |
2330
|
1
|
50
|
|
|
|
|
if( nxDiv<0 ){ |
2331
|
1
|
|
|
|
|
|
nxDiv = 0; |
2332
|
|
|
|
|
|
|
} |
2333
|
1
|
|
|
|
|
|
nDiv = 0; |
2334
|
2
|
50
|
|
|
|
|
for(i=0, k=nxDiv; i
|
2335
|
2
|
50
|
|
|
|
|
if( knCell ){ |
2336
|
0
|
|
|
|
|
|
idxDiv[i] = k; |
2337
|
0
|
|
|
|
|
|
apDiv[i] = pParent->apCell[k]; |
2338
|
0
|
|
|
|
|
|
nDiv++; |
2339
|
0
|
0
|
|
|
|
|
pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild); |
2340
|
2
|
100
|
|
|
|
|
}else if( k==pParent->nCell ){ |
2341
|
1
|
50
|
|
|
|
|
pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild); |
2342
|
|
|
|
|
|
|
}else{ |
2343
|
1
|
|
|
|
|
|
break; |
2344
|
|
|
|
|
|
|
} |
2345
|
1
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]); |
2346
|
1
|
50
|
|
|
|
|
if( rc ) goto balance_cleanup; |
2347
|
1
|
|
|
|
|
|
rc = initPage(pBt, apOld[i], pgnoOld[i], pParent); |
2348
|
1
|
50
|
|
|
|
|
if( rc ) goto balance_cleanup; |
2349
|
1
|
|
|
|
|
|
apOld[i]->idxParent = k; |
2350
|
1
|
|
|
|
|
|
nOld++; |
2351
|
|
|
|
|
|
|
} |
2352
|
|
|
|
|
|
|
|
2353
|
|
|
|
|
|
|
/* |
2354
|
|
|
|
|
|
|
** Set iCur to be the index in apCell[] of the cell that the cursor |
2355
|
|
|
|
|
|
|
** is pointing to. We will need this later on in order to keep the |
2356
|
|
|
|
|
|
|
** cursor pointing at the same cell. If pCur points to a page that |
2357
|
|
|
|
|
|
|
** has no involvement with this rebalancing, then set iCur to a large |
2358
|
|
|
|
|
|
|
** number so that the iCur==j tests always fail in the main cell |
2359
|
|
|
|
|
|
|
** distribution loop below. |
2360
|
|
|
|
|
|
|
*/ |
2361
|
1
|
50
|
|
|
|
|
if( pCur ){ |
2362
|
1
|
|
|
|
|
|
iCur = 0; |
2363
|
1
|
50
|
|
|
|
|
for(i=0; i
|
2364
|
1
|
50
|
|
|
|
|
if( pCur->pPage==apOld[i] ){ |
2365
|
1
|
|
|
|
|
|
iCur += pCur->idx; |
2366
|
1
|
|
|
|
|
|
break; |
2367
|
|
|
|
|
|
|
} |
2368
|
0
|
|
|
|
|
|
iCur += apOld[i]->nCell; |
2369
|
0
|
0
|
|
|
|
|
if( ipPage==pParent && pCur->idx==idxDiv[i] ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2370
|
0
|
|
|
|
|
|
break; |
2371
|
|
|
|
|
|
|
} |
2372
|
0
|
|
|
|
|
|
iCur++; |
2373
|
|
|
|
|
|
|
} |
2374
|
1
|
|
|
|
|
|
pOldCurPage = pCur->pPage; |
2375
|
|
|
|
|
|
|
} |
2376
|
|
|
|
|
|
|
|
2377
|
|
|
|
|
|
|
/* |
2378
|
|
|
|
|
|
|
** Make copies of the content of pPage and its siblings into aOld[]. |
2379
|
|
|
|
|
|
|
** The rest of this function will use data from the copies rather |
2380
|
|
|
|
|
|
|
** that the original pages since the original pages will be in the |
2381
|
|
|
|
|
|
|
** process of being overwritten. |
2382
|
|
|
|
|
|
|
*/ |
2383
|
2
|
100
|
|
|
|
|
for(i=0; i
|
2384
|
1
|
|
|
|
|
|
copyPage(&aOld[i], apOld[i]); |
2385
|
|
|
|
|
|
|
} |
2386
|
|
|
|
|
|
|
|
2387
|
|
|
|
|
|
|
/* |
2388
|
|
|
|
|
|
|
** Load pointers to all cells on sibling pages and the divider cells |
2389
|
|
|
|
|
|
|
** into the local apCell[] array. Make copies of the divider cells |
2390
|
|
|
|
|
|
|
** into aTemp[] and remove the the divider Cells from pParent. |
2391
|
|
|
|
|
|
|
*/ |
2392
|
1
|
|
|
|
|
|
nCell = 0; |
2393
|
2
|
100
|
|
|
|
|
for(i=0; i
|
2394
|
1
|
|
|
|
|
|
MemPage *pOld = &aOld[i]; |
2395
|
13
|
100
|
|
|
|
|
for(j=0; jnCell; j++){ |
2396
|
12
|
|
|
|
|
|
apCell[nCell] = pOld->apCell[j]; |
2397
|
12
|
|
|
|
|
|
szCell[nCell] = cellSize(pBt, apCell[nCell]); |
2398
|
12
|
|
|
|
|
|
nCell++; |
2399
|
|
|
|
|
|
|
} |
2400
|
1
|
50
|
|
|
|
|
if( i
|
2401
|
0
|
|
|
|
|
|
szCell[nCell] = cellSize(pBt, apDiv[i]); |
2402
|
0
|
|
|
|
|
|
memcpy(&aTemp[i], apDiv[i], szCell[nCell]); |
2403
|
0
|
|
|
|
|
|
apCell[nCell] = &aTemp[i]; |
2404
|
0
|
|
|
|
|
|
dropCell(pBt, pParent, nxDiv, szCell[nCell]); |
2405
|
|
|
|
|
|
|
assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] ); |
2406
|
0
|
|
|
|
|
|
apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild; |
2407
|
0
|
|
|
|
|
|
nCell++; |
2408
|
|
|
|
|
|
|
} |
2409
|
|
|
|
|
|
|
} |
2410
|
|
|
|
|
|
|
|
2411
|
|
|
|
|
|
|
/* |
2412
|
|
|
|
|
|
|
** Figure out the number of pages needed to hold all nCell cells. |
2413
|
|
|
|
|
|
|
** Store this number in "k". Also compute szNew[] which is the total |
2414
|
|
|
|
|
|
|
** size of all cells on the i-th page and cntNew[] which is the index |
2415
|
|
|
|
|
|
|
** in apCell[] of the cell that divides path i from path i+1. |
2416
|
|
|
|
|
|
|
** cntNew[k] should equal nCell. |
2417
|
|
|
|
|
|
|
** |
2418
|
|
|
|
|
|
|
** This little patch of code is critical for keeping the tree |
2419
|
|
|
|
|
|
|
** balanced. |
2420
|
|
|
|
|
|
|
*/ |
2421
|
13
|
100
|
|
|
|
|
for(subtotal=k=i=0; i
|
2422
|
12
|
|
|
|
|
|
subtotal += szCell[i]; |
2423
|
12
|
100
|
|
|
|
|
if( subtotal > USABLE_SPACE ){ |
2424
|
1
|
|
|
|
|
|
szNew[k] = subtotal - szCell[i]; |
2425
|
1
|
|
|
|
|
|
cntNew[k] = i; |
2426
|
1
|
|
|
|
|
|
subtotal = 0; |
2427
|
1
|
|
|
|
|
|
k++; |
2428
|
|
|
|
|
|
|
} |
2429
|
|
|
|
|
|
|
} |
2430
|
1
|
|
|
|
|
|
szNew[k] = subtotal; |
2431
|
1
|
|
|
|
|
|
cntNew[k] = nCell; |
2432
|
1
|
|
|
|
|
|
k++; |
2433
|
2
|
100
|
|
|
|
|
for(i=k-1; i>0; i--){ |
2434
|
8
|
100
|
|
|
|
|
while( szNew[i]
|
2435
|
7
|
|
|
|
|
|
cntNew[i-1]--; |
2436
|
|
|
|
|
|
|
assert( cntNew[i-1]>0 ); |
2437
|
7
|
|
|
|
|
|
szNew[i] += szCell[cntNew[i-1]]; |
2438
|
7
|
|
|
|
|
|
szNew[i-1] -= szCell[cntNew[i-1]-1]; |
2439
|
|
|
|
|
|
|
} |
2440
|
|
|
|
|
|
|
} |
2441
|
|
|
|
|
|
|
assert( cntNew[0]>0 ); |
2442
|
|
|
|
|
|
|
|
2443
|
|
|
|
|
|
|
/* |
2444
|
|
|
|
|
|
|
** Allocate k new pages. Reuse old pages where possible. |
2445
|
|
|
|
|
|
|
*/ |
2446
|
3
|
100
|
|
|
|
|
for(i=0; i
|
2447
|
2
|
100
|
|
|
|
|
if( i
|
2448
|
1
|
|
|
|
|
|
apNew[i] = apOld[i]; |
2449
|
1
|
|
|
|
|
|
pgnoNew[i] = pgnoOld[i]; |
2450
|
1
|
|
|
|
|
|
apOld[i] = 0; |
2451
|
1
|
|
|
|
|
|
sqlitepager_write(apNew[i]); |
2452
|
|
|
|
|
|
|
}else{ |
2453
|
1
|
|
|
|
|
|
rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]); |
2454
|
1
|
50
|
|
|
|
|
if( rc ) goto balance_cleanup; |
2455
|
|
|
|
|
|
|
} |
2456
|
2
|
|
|
|
|
|
nNew++; |
2457
|
2
|
|
|
|
|
|
zeroPage(pBt, apNew[i]); |
2458
|
2
|
|
|
|
|
|
apNew[i]->isInit = 1; |
2459
|
|
|
|
|
|
|
} |
2460
|
|
|
|
|
|
|
|
2461
|
|
|
|
|
|
|
/* Free any old pages that were not reused as new pages. |
2462
|
|
|
|
|
|
|
*/ |
2463
|
1
|
50
|
|
|
|
|
while( i
|
2464
|
0
|
|
|
|
|
|
rc = freePage(pBt, apOld[i], pgnoOld[i]); |
2465
|
0
|
0
|
|
|
|
|
if( rc ) goto balance_cleanup; |
2466
|
0
|
|
|
|
|
|
sqlitepager_unref(apOld[i]); |
2467
|
0
|
|
|
|
|
|
apOld[i] = 0; |
2468
|
0
|
|
|
|
|
|
i++; |
2469
|
|
|
|
|
|
|
} |
2470
|
|
|
|
|
|
|
|
2471
|
|
|
|
|
|
|
/* |
2472
|
|
|
|
|
|
|
** Put the new pages in accending order. This helps to |
2473
|
|
|
|
|
|
|
** keep entries in the disk file in order so that a scan |
2474
|
|
|
|
|
|
|
** of the table is a linear scan through the file. That |
2475
|
|
|
|
|
|
|
** in turn helps the operating system to deliver pages |
2476
|
|
|
|
|
|
|
** from the disk more rapidly. |
2477
|
|
|
|
|
|
|
** |
2478
|
|
|
|
|
|
|
** An O(n^2) insertion sort algorithm is used, but since |
2479
|
|
|
|
|
|
|
** n is never more than NB (a small constant), that should |
2480
|
|
|
|
|
|
|
** not be a problem. |
2481
|
|
|
|
|
|
|
** |
2482
|
|
|
|
|
|
|
** When NB==3, this one optimization makes the database |
2483
|
|
|
|
|
|
|
** about 25% faster for large insertions and deletions. |
2484
|
|
|
|
|
|
|
*/ |
2485
|
2
|
100
|
|
|
|
|
for(i=0; i
|
2486
|
1
|
|
|
|
|
|
int minV = pgnoNew[i]; |
2487
|
1
|
|
|
|
|
|
int minI = i; |
2488
|
2
|
100
|
|
|
|
|
for(j=i+1; j
|
2489
|
1
|
50
|
|
|
|
|
if( pgnoNew[j]<(unsigned)minV ){ |
2490
|
0
|
|
|
|
|
|
minI = j; |
2491
|
0
|
|
|
|
|
|
minV = pgnoNew[j]; |
2492
|
|
|
|
|
|
|
} |
2493
|
|
|
|
|
|
|
} |
2494
|
1
|
50
|
|
|
|
|
if( minI>i ){ |
2495
|
|
|
|
|
|
|
int t; |
2496
|
|
|
|
|
|
|
MemPage *pT; |
2497
|
0
|
|
|
|
|
|
t = pgnoNew[i]; |
2498
|
0
|
|
|
|
|
|
pT = apNew[i]; |
2499
|
0
|
|
|
|
|
|
pgnoNew[i] = pgnoNew[minI]; |
2500
|
0
|
|
|
|
|
|
apNew[i] = apNew[minI]; |
2501
|
0
|
|
|
|
|
|
pgnoNew[minI] = t; |
2502
|
0
|
|
|
|
|
|
apNew[minI] = pT; |
2503
|
|
|
|
|
|
|
} |
2504
|
|
|
|
|
|
|
} |
2505
|
|
|
|
|
|
|
|
2506
|
|
|
|
|
|
|
/* |
2507
|
|
|
|
|
|
|
** Evenly distribute the data in apCell[] across the new pages. |
2508
|
|
|
|
|
|
|
** Insert divider cells into pParent as necessary. |
2509
|
|
|
|
|
|
|
*/ |
2510
|
1
|
|
|
|
|
|
j = 0; |
2511
|
3
|
100
|
|
|
|
|
for(i=0; i
|
2512
|
2
|
|
|
|
|
|
MemPage *pNew = apNew[i]; |
2513
|
13
|
100
|
|
|
|
|
while( j
|
2514
|
|
|
|
|
|
|
assert( pNew->nFree>=szCell[j] ); |
2515
|
11
|
50
|
|
|
|
|
if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; } |
|
|
100
|
|
|
|
|
|
2516
|
11
|
|
|
|
|
|
insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]); |
2517
|
11
|
|
|
|
|
|
j++; |
2518
|
|
|
|
|
|
|
} |
2519
|
|
|
|
|
|
|
assert( pNew->nCell>0 ); |
2520
|
|
|
|
|
|
|
assert( !pNew->isOverfull ); |
2521
|
2
|
|
|
|
|
|
relinkCellList(pBt, pNew); |
2522
|
2
|
100
|
|
|
|
|
if( i
|
|
|
50
|
|
|
|
|
|
2523
|
1
|
|
|
|
|
|
pNew->u.hdr.rightChild = apCell[j]->h.leftChild; |
2524
|
1
|
50
|
|
|
|
|
apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]); |
2525
|
1
|
50
|
|
|
|
|
if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; } |
|
|
50
|
|
|
|
|
|
2526
|
1
|
|
|
|
|
|
insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]); |
2527
|
1
|
|
|
|
|
|
j++; |
2528
|
1
|
|
|
|
|
|
nxDiv++; |
2529
|
|
|
|
|
|
|
} |
2530
|
|
|
|
|
|
|
} |
2531
|
|
|
|
|
|
|
assert( j==nCell ); |
2532
|
1
|
|
|
|
|
|
apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild; |
2533
|
1
|
50
|
|
|
|
|
if( nxDiv==pParent->nCell ){ |
2534
|
1
|
50
|
|
|
|
|
pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]); |
2535
|
|
|
|
|
|
|
}else{ |
2536
|
0
|
0
|
|
|
|
|
pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]); |
2537
|
|
|
|
|
|
|
} |
2538
|
1
|
50
|
|
|
|
|
if( pCur ){ |
2539
|
1
|
50
|
|
|
|
|
if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){ |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
2540
|
|
|
|
|
|
|
assert( pCur->pPage==pOldCurPage ); |
2541
|
0
|
|
|
|
|
|
pCur->idx += nNew - nOld; |
2542
|
|
|
|
|
|
|
}else{ |
2543
|
|
|
|
|
|
|
assert( pOldCurPage!=0 ); |
2544
|
1
|
|
|
|
|
|
sqlitepager_ref(pCur->pPage); |
2545
|
1
|
|
|
|
|
|
sqlitepager_unref(pOldCurPage); |
2546
|
|
|
|
|
|
|
} |
2547
|
|
|
|
|
|
|
} |
2548
|
|
|
|
|
|
|
|
2549
|
|
|
|
|
|
|
/* |
2550
|
|
|
|
|
|
|
** Reparent children of all cells. |
2551
|
|
|
|
|
|
|
*/ |
2552
|
3
|
100
|
|
|
|
|
for(i=0; i
|
2553
|
2
|
|
|
|
|
|
reparentChildPages(pBt, apNew[i]); |
2554
|
|
|
|
|
|
|
} |
2555
|
1
|
|
|
|
|
|
reparentChildPages(pBt, pParent); |
2556
|
|
|
|
|
|
|
|
2557
|
|
|
|
|
|
|
/* |
2558
|
|
|
|
|
|
|
** balance the parent page. |
2559
|
|
|
|
|
|
|
*/ |
2560
|
1
|
|
|
|
|
|
rc = balance(pBt, pParent, pCur); |
2561
|
|
|
|
|
|
|
|
2562
|
|
|
|
|
|
|
/* |
2563
|
|
|
|
|
|
|
** Cleanup before returning. |
2564
|
|
|
|
|
|
|
*/ |
2565
|
|
|
|
|
|
|
balance_cleanup: |
2566
|
1
|
50
|
|
|
|
|
if( extraUnref ){ |
2567
|
0
|
|
|
|
|
|
sqlitepager_unref(extraUnref); |
2568
|
|
|
|
|
|
|
} |
2569
|
2
|
100
|
|
|
|
|
for(i=0; i
|
2570
|
1
|
50
|
|
|
|
|
if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]); |
|
|
0
|
|
|
|
|
|
2571
|
|
|
|
|
|
|
} |
2572
|
3
|
100
|
|
|
|
|
for(i=0; i
|
2573
|
2
|
|
|
|
|
|
sqlitepager_unref(apNew[i]); |
2574
|
|
|
|
|
|
|
} |
2575
|
1
|
50
|
|
|
|
|
if( pCur && pCur->pPage==0 ){ |
|
|
50
|
|
|
|
|
|
2576
|
0
|
|
|
|
|
|
pCur->pPage = pParent; |
2577
|
0
|
|
|
|
|
|
pCur->idx = 0; |
2578
|
|
|
|
|
|
|
}else{ |
2579
|
1
|
|
|
|
|
|
sqlitepager_unref(pParent); |
2580
|
|
|
|
|
|
|
} |
2581
|
139
|
|
|
|
|
|
return rc; |
2582
|
|
|
|
|
|
|
} |
2583
|
|
|
|
|
|
|
|
2584
|
|
|
|
|
|
|
/* |
2585
|
|
|
|
|
|
|
** This routine checks all cursors that point to the same table |
2586
|
|
|
|
|
|
|
** as pCur points to. If any of those cursors were opened with |
2587
|
|
|
|
|
|
|
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all |
2588
|
|
|
|
|
|
|
** cursors point to the same table were opened with wrFlag==1 |
2589
|
|
|
|
|
|
|
** then this routine returns SQLITE_OK. |
2590
|
|
|
|
|
|
|
** |
2591
|
|
|
|
|
|
|
** In addition to checking for read-locks (where a read-lock |
2592
|
|
|
|
|
|
|
** means a cursor opened with wrFlag==0) this routine also moves |
2593
|
|
|
|
|
|
|
** all cursors other than pCur so that they are pointing to the |
2594
|
|
|
|
|
|
|
** first Cell on root page. This is necessary because an insert |
2595
|
|
|
|
|
|
|
** or delete might change the number of cells on a page or delete |
2596
|
|
|
|
|
|
|
** a page entirely and we do not want to leave any cursors |
2597
|
|
|
|
|
|
|
** pointing to non-existant pages or cells. |
2598
|
|
|
|
|
|
|
*/ |
2599
|
138
|
|
|
|
|
|
static int checkReadLocks(BtCursor *pCur){ |
2600
|
|
|
|
|
|
|
BtCursor *p; |
2601
|
|
|
|
|
|
|
assert( pCur->wrFlag ); |
2602
|
138
|
50
|
|
|
|
|
for(p=pCur->pShared; p!=pCur; p=p->pShared){ |
2603
|
|
|
|
|
|
|
assert( p ); |
2604
|
|
|
|
|
|
|
assert( p->pgnoRoot==pCur->pgnoRoot ); |
2605
|
0
|
0
|
|
|
|
|
if( p->wrFlag==0 ) return SQLITE_LOCKED; |
2606
|
0
|
0
|
|
|
|
|
if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){ |
2607
|
0
|
|
|
|
|
|
moveToRoot(p); |
2608
|
|
|
|
|
|
|
} |
2609
|
|
|
|
|
|
|
} |
2610
|
138
|
|
|
|
|
|
return SQLITE_OK; |
2611
|
|
|
|
|
|
|
} |
2612
|
|
|
|
|
|
|
|
2613
|
|
|
|
|
|
|
/* |
2614
|
|
|
|
|
|
|
** Insert a new record into the BTree. The key is given by (pKey,nKey) |
2615
|
|
|
|
|
|
|
** and the data is given by (pData,nData). The cursor is used only to |
2616
|
|
|
|
|
|
|
** define what database the record should be inserted into. The cursor |
2617
|
|
|
|
|
|
|
** is left pointing at the new record. |
2618
|
|
|
|
|
|
|
*/ |
2619
|
121
|
|
|
|
|
|
static int fileBtreeInsert( |
2620
|
|
|
|
|
|
|
BtCursor *pCur, /* Insert data into the table of this cursor */ |
2621
|
|
|
|
|
|
|
const void *pKey, int nKey, /* The key of the new record */ |
2622
|
|
|
|
|
|
|
const void *pData, int nData /* The data of the new record */ |
2623
|
|
|
|
|
|
|
){ |
2624
|
|
|
|
|
|
|
Cell newCell; |
2625
|
|
|
|
|
|
|
int rc; |
2626
|
|
|
|
|
|
|
int loc; |
2627
|
|
|
|
|
|
|
int szNew; |
2628
|
|
|
|
|
|
|
MemPage *pPage; |
2629
|
121
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
2630
|
|
|
|
|
|
|
|
2631
|
121
|
50
|
|
|
|
|
if( pCur->pPage==0 ){ |
2632
|
0
|
|
|
|
|
|
return SQLITE_ABORT; /* A rollback destroyed this cursor */ |
2633
|
|
|
|
|
|
|
} |
2634
|
121
|
50
|
|
|
|
|
if( !pBt->inTrans || nKey+nData==0 ){ |
|
|
50
|
|
|
|
|
|
2635
|
|
|
|
|
|
|
/* Must start a transaction before doing an insert */ |
2636
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
2637
|
|
|
|
|
|
|
} |
2638
|
|
|
|
|
|
|
assert( !pBt->readOnly ); |
2639
|
121
|
50
|
|
|
|
|
if( !pCur->wrFlag ){ |
2640
|
0
|
|
|
|
|
|
return SQLITE_PERM; /* Cursor not open for writing */ |
2641
|
|
|
|
|
|
|
} |
2642
|
121
|
50
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
2643
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
2644
|
|
|
|
|
|
|
} |
2645
|
121
|
|
|
|
|
|
rc = fileBtreeMoveto(pCur, pKey, nKey, &loc); |
2646
|
121
|
50
|
|
|
|
|
if( rc ) return rc; |
2647
|
121
|
|
|
|
|
|
pPage = pCur->pPage; |
2648
|
|
|
|
|
|
|
assert( pPage->isInit ); |
2649
|
121
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
2650
|
121
|
50
|
|
|
|
|
if( rc ) return rc; |
2651
|
121
|
|
|
|
|
|
rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData); |
2652
|
121
|
50
|
|
|
|
|
if( rc ) return rc; |
2653
|
121
|
|
|
|
|
|
szNew = cellSize(pBt, &newCell); |
2654
|
121
|
100
|
|
|
|
|
if( loc==0 ){ |
2655
|
22
|
|
|
|
|
|
newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild; |
2656
|
22
|
|
|
|
|
|
rc = clearCell(pBt, pPage->apCell[pCur->idx]); |
2657
|
22
|
50
|
|
|
|
|
if( rc ) return rc; |
2658
|
22
|
|
|
|
|
|
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx])); |
2659
|
99
|
50
|
|
|
|
|
}else if( loc<0 && pPage->nCell>0 ){ |
|
|
100
|
|
|
|
|
|
2660
|
|
|
|
|
|
|
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */ |
2661
|
62
|
|
|
|
|
|
pCur->idx++; |
2662
|
|
|
|
|
|
|
}else{ |
2663
|
|
|
|
|
|
|
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */ |
2664
|
|
|
|
|
|
|
} |
2665
|
121
|
|
|
|
|
|
insertCell(pBt, pPage, pCur->idx, &newCell, szNew); |
2666
|
121
|
|
|
|
|
|
rc = balance(pCur->pBt, pPage, pCur); |
2667
|
|
|
|
|
|
|
/* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ |
2668
|
|
|
|
|
|
|
/* fflush(stdout); */ |
2669
|
121
|
|
|
|
|
|
pCur->eSkip = SKIP_INVALID; |
2670
|
121
|
|
|
|
|
|
return rc; |
2671
|
|
|
|
|
|
|
} |
2672
|
|
|
|
|
|
|
|
2673
|
|
|
|
|
|
|
/* |
2674
|
|
|
|
|
|
|
** Delete the entry that the cursor is pointing to. |
2675
|
|
|
|
|
|
|
** |
2676
|
|
|
|
|
|
|
** The cursor is left pointing at either the next or the previous |
2677
|
|
|
|
|
|
|
** entry. If the cursor is left pointing to the next entry, then |
2678
|
|
|
|
|
|
|
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to |
2679
|
|
|
|
|
|
|
** sqliteBtreeNext() to be a no-op. That way, you can always call |
2680
|
|
|
|
|
|
|
** sqliteBtreeNext() after a delete and the cursor will be left |
2681
|
|
|
|
|
|
|
** pointing to the first entry after the deleted entry. Similarly, |
2682
|
|
|
|
|
|
|
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to |
2683
|
|
|
|
|
|
|
** the entry prior to the deleted entry so that a subsequent call to |
2684
|
|
|
|
|
|
|
** sqliteBtreePrevious() will always leave the cursor pointing at the |
2685
|
|
|
|
|
|
|
** entry immediately before the one that was deleted. |
2686
|
|
|
|
|
|
|
*/ |
2687
|
17
|
|
|
|
|
|
static int fileBtreeDelete(BtCursor *pCur){ |
2688
|
17
|
|
|
|
|
|
MemPage *pPage = pCur->pPage; |
2689
|
|
|
|
|
|
|
Cell *pCell; |
2690
|
|
|
|
|
|
|
int rc; |
2691
|
|
|
|
|
|
|
Pgno pgnoChild; |
2692
|
17
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
2693
|
|
|
|
|
|
|
|
2694
|
|
|
|
|
|
|
assert( pPage->isInit ); |
2695
|
17
|
50
|
|
|
|
|
if( pCur->pPage==0 ){ |
2696
|
0
|
|
|
|
|
|
return SQLITE_ABORT; /* A rollback destroyed this cursor */ |
2697
|
|
|
|
|
|
|
} |
2698
|
17
|
50
|
|
|
|
|
if( !pBt->inTrans ){ |
2699
|
|
|
|
|
|
|
/* Must start a transaction before doing a delete */ |
2700
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
2701
|
|
|
|
|
|
|
} |
2702
|
|
|
|
|
|
|
assert( !pBt->readOnly ); |
2703
|
17
|
50
|
|
|
|
|
if( pCur->idx >= pPage->nCell ){ |
2704
|
0
|
|
|
|
|
|
return SQLITE_ERROR; /* The cursor is not pointing to anything */ |
2705
|
|
|
|
|
|
|
} |
2706
|
17
|
50
|
|
|
|
|
if( !pCur->wrFlag ){ |
2707
|
0
|
|
|
|
|
|
return SQLITE_PERM; /* Did not open this cursor for writing */ |
2708
|
|
|
|
|
|
|
} |
2709
|
17
|
50
|
|
|
|
|
if( checkReadLocks(pCur) ){ |
2710
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* The table pCur points to has a read lock */ |
2711
|
|
|
|
|
|
|
} |
2712
|
17
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
2713
|
17
|
50
|
|
|
|
|
if( rc ) return rc; |
2714
|
17
|
|
|
|
|
|
pCell = pPage->apCell[pCur->idx]; |
2715
|
17
|
50
|
|
|
|
|
pgnoChild = SWAB32(pBt, pCell->h.leftChild); |
2716
|
17
|
|
|
|
|
|
clearCell(pBt, pCell); |
2717
|
17
|
50
|
|
|
|
|
if( pgnoChild ){ |
2718
|
|
|
|
|
|
|
/* |
2719
|
|
|
|
|
|
|
** The entry we are about to delete is not a leaf so if we do not |
2720
|
|
|
|
|
|
|
** do something we will leave a hole on an internal page. |
2721
|
|
|
|
|
|
|
** We have to fill the hole by moving in a cell from a leaf. The |
2722
|
|
|
|
|
|
|
** next Cell after the one to be deleted is guaranteed to exist and |
2723
|
|
|
|
|
|
|
** to be a leaf so we can use it. |
2724
|
|
|
|
|
|
|
*/ |
2725
|
|
|
|
|
|
|
BtCursor leafCur; |
2726
|
|
|
|
|
|
|
Cell *pNext; |
2727
|
|
|
|
|
|
|
int szNext; |
2728
|
|
|
|
|
|
|
int notUsed; |
2729
|
0
|
|
|
|
|
|
getTempCursor(pCur, &leafCur); |
2730
|
0
|
|
|
|
|
|
rc = fileBtreeNext(&leafCur, ¬Used); |
2731
|
0
|
0
|
|
|
|
|
if( rc!=SQLITE_OK ){ |
2732
|
0
|
0
|
|
|
|
|
if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT; |
2733
|
0
|
|
|
|
|
|
return rc; |
2734
|
|
|
|
|
|
|
} |
2735
|
0
|
|
|
|
|
|
rc = sqlitepager_write(leafCur.pPage); |
2736
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
2737
|
0
|
|
|
|
|
|
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell)); |
2738
|
0
|
|
|
|
|
|
pNext = leafCur.pPage->apCell[leafCur.idx]; |
2739
|
0
|
|
|
|
|
|
szNext = cellSize(pBt, pNext); |
2740
|
0
|
0
|
|
|
|
|
pNext->h.leftChild = SWAB32(pBt, pgnoChild); |
2741
|
0
|
|
|
|
|
|
insertCell(pBt, pPage, pCur->idx, pNext, szNext); |
2742
|
0
|
|
|
|
|
|
rc = balance(pBt, pPage, pCur); |
2743
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
2744
|
0
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
2745
|
0
|
|
|
|
|
|
dropCell(pBt, leafCur.pPage, leafCur.idx, szNext); |
2746
|
0
|
|
|
|
|
|
rc = balance(pBt, leafCur.pPage, pCur); |
2747
|
0
|
|
|
|
|
|
releaseTempCursor(&leafCur); |
2748
|
|
|
|
|
|
|
}else{ |
2749
|
17
|
|
|
|
|
|
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell)); |
2750
|
17
|
100
|
|
|
|
|
if( pCur->idx>=pPage->nCell ){ |
2751
|
15
|
|
|
|
|
|
pCur->idx = pPage->nCell-1; |
2752
|
15
|
100
|
|
|
|
|
if( pCur->idx<0 ){ |
2753
|
13
|
|
|
|
|
|
pCur->idx = 0; |
2754
|
13
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
2755
|
|
|
|
|
|
|
}else{ |
2756
|
15
|
|
|
|
|
|
pCur->eSkip = SKIP_PREV; |
2757
|
|
|
|
|
|
|
} |
2758
|
|
|
|
|
|
|
}else{ |
2759
|
2
|
|
|
|
|
|
pCur->eSkip = SKIP_NEXT; |
2760
|
|
|
|
|
|
|
} |
2761
|
17
|
|
|
|
|
|
rc = balance(pBt, pPage, pCur); |
2762
|
|
|
|
|
|
|
} |
2763
|
17
|
|
|
|
|
|
return rc; |
2764
|
|
|
|
|
|
|
} |
2765
|
|
|
|
|
|
|
|
2766
|
|
|
|
|
|
|
/* |
2767
|
|
|
|
|
|
|
** Create a new BTree table. Write into *piTable the page |
2768
|
|
|
|
|
|
|
** number for the root page of the new table. |
2769
|
|
|
|
|
|
|
** |
2770
|
|
|
|
|
|
|
** In the current implementation, BTree tables and BTree indices are the |
2771
|
|
|
|
|
|
|
** the same. In the future, we may change this so that BTree tables |
2772
|
|
|
|
|
|
|
** are restricted to having a 4-byte integer key and arbitrary data and |
2773
|
|
|
|
|
|
|
** BTree indices are restricted to having an arbitrary key and no data. |
2774
|
|
|
|
|
|
|
** But for now, this routine also serves to create indices. |
2775
|
|
|
|
|
|
|
*/ |
2776
|
27
|
|
|
|
|
|
static int fileBtreeCreateTable(Btree *pBt, int *piTable){ |
2777
|
|
|
|
|
|
|
MemPage *pRoot; |
2778
|
|
|
|
|
|
|
Pgno pgnoRoot; |
2779
|
|
|
|
|
|
|
int rc; |
2780
|
27
|
50
|
|
|
|
|
if( !pBt->inTrans ){ |
2781
|
|
|
|
|
|
|
/* Must start a transaction first */ |
2782
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
2783
|
|
|
|
|
|
|
} |
2784
|
27
|
50
|
|
|
|
|
if( pBt->readOnly ){ |
2785
|
0
|
|
|
|
|
|
return SQLITE_READONLY; |
2786
|
|
|
|
|
|
|
} |
2787
|
27
|
|
|
|
|
|
rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0); |
2788
|
27
|
50
|
|
|
|
|
if( rc ) return rc; |
2789
|
|
|
|
|
|
|
assert( sqlitepager_iswriteable(pRoot) ); |
2790
|
27
|
|
|
|
|
|
zeroPage(pBt, pRoot); |
2791
|
27
|
|
|
|
|
|
sqlitepager_unref(pRoot); |
2792
|
27
|
|
|
|
|
|
*piTable = (int)pgnoRoot; |
2793
|
27
|
|
|
|
|
|
return SQLITE_OK; |
2794
|
|
|
|
|
|
|
} |
2795
|
|
|
|
|
|
|
|
2796
|
|
|
|
|
|
|
/* |
2797
|
|
|
|
|
|
|
** Erase the given database page and all its children. Return |
2798
|
|
|
|
|
|
|
** the page to the freelist. |
2799
|
|
|
|
|
|
|
*/ |
2800
|
11
|
|
|
|
|
|
static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){ |
2801
|
|
|
|
|
|
|
MemPage *pPage; |
2802
|
|
|
|
|
|
|
int rc; |
2803
|
|
|
|
|
|
|
Cell *pCell; |
2804
|
|
|
|
|
|
|
int idx; |
2805
|
|
|
|
|
|
|
|
2806
|
11
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage); |
2807
|
11
|
50
|
|
|
|
|
if( rc ) return rc; |
2808
|
11
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
2809
|
11
|
50
|
|
|
|
|
if( rc ) return rc; |
2810
|
11
|
|
|
|
|
|
rc = initPage(pBt, pPage, pgno, 0); |
2811
|
11
|
50
|
|
|
|
|
if( rc ) return rc; |
2812
|
11
|
50
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstCell); |
2813
|
30
|
100
|
|
|
|
|
while( idx>0 ){ |
2814
|
19
|
|
|
|
|
|
pCell = (Cell*)&pPage->u.aDisk[idx]; |
2815
|
19
|
50
|
|
|
|
|
idx = SWAB16(pBt, pCell->h.iNext); |
2816
|
19
|
50
|
|
|
|
|
if( pCell->h.leftChild ){ |
2817
|
0
|
0
|
|
|
|
|
rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1); |
2818
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
2819
|
|
|
|
|
|
|
} |
2820
|
19
|
|
|
|
|
|
rc = clearCell(pBt, pCell); |
2821
|
19
|
50
|
|
|
|
|
if( rc ) return rc; |
2822
|
|
|
|
|
|
|
} |
2823
|
11
|
50
|
|
|
|
|
if( pPage->u.hdr.rightChild ){ |
2824
|
0
|
0
|
|
|
|
|
rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1); |
2825
|
0
|
0
|
|
|
|
|
if( rc ) return rc; |
2826
|
|
|
|
|
|
|
} |
2827
|
11
|
50
|
|
|
|
|
if( freePageFlag ){ |
2828
|
0
|
|
|
|
|
|
rc = freePage(pBt, pPage, pgno); |
2829
|
|
|
|
|
|
|
}else{ |
2830
|
11
|
|
|
|
|
|
zeroPage(pBt, pPage); |
2831
|
|
|
|
|
|
|
} |
2832
|
11
|
|
|
|
|
|
sqlitepager_unref(pPage); |
2833
|
11
|
|
|
|
|
|
return rc; |
2834
|
|
|
|
|
|
|
} |
2835
|
|
|
|
|
|
|
|
2836
|
|
|
|
|
|
|
/* |
2837
|
|
|
|
|
|
|
** Delete all information from a single table in the database. |
2838
|
|
|
|
|
|
|
*/ |
2839
|
11
|
|
|
|
|
|
static int fileBtreeClearTable(Btree *pBt, int iTable){ |
2840
|
|
|
|
|
|
|
int rc; |
2841
|
|
|
|
|
|
|
BtCursor *pCur; |
2842
|
11
|
50
|
|
|
|
|
if( !pBt->inTrans ){ |
2843
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
2844
|
|
|
|
|
|
|
} |
2845
|
11
|
50
|
|
|
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
2846
|
0
|
0
|
|
|
|
|
if( pCur->pgnoRoot==(Pgno)iTable ){ |
2847
|
0
|
0
|
|
|
|
|
if( pCur->wrFlag==0 ) return SQLITE_LOCKED; |
2848
|
0
|
|
|
|
|
|
moveToRoot(pCur); |
2849
|
|
|
|
|
|
|
} |
2850
|
|
|
|
|
|
|
} |
2851
|
11
|
|
|
|
|
|
rc = clearDatabasePage(pBt, (Pgno)iTable, 0); |
2852
|
11
|
50
|
|
|
|
|
if( rc ){ |
2853
|
0
|
|
|
|
|
|
fileBtreeRollback(pBt); |
2854
|
|
|
|
|
|
|
} |
2855
|
11
|
|
|
|
|
|
return rc; |
2856
|
|
|
|
|
|
|
} |
2857
|
|
|
|
|
|
|
|
2858
|
|
|
|
|
|
|
/* |
2859
|
|
|
|
|
|
|
** Erase all information in a table and add the root of the table to |
2860
|
|
|
|
|
|
|
** the freelist. Except, the root of the principle table (the one on |
2861
|
|
|
|
|
|
|
** page 2) is never added to the freelist. |
2862
|
|
|
|
|
|
|
*/ |
2863
|
11
|
|
|
|
|
|
static int fileBtreeDropTable(Btree *pBt, int iTable){ |
2864
|
|
|
|
|
|
|
int rc; |
2865
|
|
|
|
|
|
|
MemPage *pPage; |
2866
|
|
|
|
|
|
|
BtCursor *pCur; |
2867
|
11
|
50
|
|
|
|
|
if( !pBt->inTrans ){ |
2868
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
2869
|
|
|
|
|
|
|
} |
2870
|
11
|
50
|
|
|
|
|
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
2871
|
0
|
0
|
|
|
|
|
if( pCur->pgnoRoot==(Pgno)iTable ){ |
2872
|
0
|
|
|
|
|
|
return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */ |
2873
|
|
|
|
|
|
|
} |
2874
|
|
|
|
|
|
|
} |
2875
|
11
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage); |
2876
|
11
|
50
|
|
|
|
|
if( rc ) return rc; |
2877
|
11
|
|
|
|
|
|
rc = fileBtreeClearTable(pBt, iTable); |
2878
|
11
|
50
|
|
|
|
|
if( rc ) return rc; |
2879
|
11
|
50
|
|
|
|
|
if( iTable>2 ){ |
2880
|
11
|
|
|
|
|
|
rc = freePage(pBt, pPage, iTable); |
2881
|
|
|
|
|
|
|
}else{ |
2882
|
0
|
|
|
|
|
|
zeroPage(pBt, pPage); |
2883
|
|
|
|
|
|
|
} |
2884
|
11
|
|
|
|
|
|
sqlitepager_unref(pPage); |
2885
|
11
|
|
|
|
|
|
return rc; |
2886
|
|
|
|
|
|
|
} |
2887
|
|
|
|
|
|
|
|
2888
|
|
|
|
|
|
|
#if 0 /* UNTESTED */ |
2889
|
|
|
|
|
|
|
/* |
2890
|
|
|
|
|
|
|
** Copy all cell data from one database file into another. |
2891
|
|
|
|
|
|
|
** pages back the freelist. |
2892
|
|
|
|
|
|
|
*/ |
2893
|
|
|
|
|
|
|
static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){ |
2894
|
|
|
|
|
|
|
Pager *pFromPager = pBtFrom->pPager; |
2895
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
2896
|
|
|
|
|
|
|
Pgno ovfl, nextOvfl; |
2897
|
|
|
|
|
|
|
Pgno *pPrev; |
2898
|
|
|
|
|
|
|
int rc = SQLITE_OK; |
2899
|
|
|
|
|
|
|
MemPage *pNew, *pPrevPg; |
2900
|
|
|
|
|
|
|
Pgno new; |
2901
|
|
|
|
|
|
|
|
2902
|
|
|
|
|
|
|
if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){ |
2903
|
|
|
|
|
|
|
return SQLITE_OK; |
2904
|
|
|
|
|
|
|
} |
2905
|
|
|
|
|
|
|
pPrev = &pCell->ovfl; |
2906
|
|
|
|
|
|
|
pPrevPg = 0; |
2907
|
|
|
|
|
|
|
ovfl = SWAB32(pBtTo, pCell->ovfl); |
2908
|
|
|
|
|
|
|
while( ovfl && rc==SQLITE_OK ){ |
2909
|
|
|
|
|
|
|
rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl); |
2910
|
|
|
|
|
|
|
if( rc ) return rc; |
2911
|
|
|
|
|
|
|
nextOvfl = SWAB32(pBtFrom, pOvfl->iNext); |
2912
|
|
|
|
|
|
|
rc = allocatePage(pBtTo, &pNew, &new, 0); |
2913
|
|
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2914
|
|
|
|
|
|
|
rc = sqlitepager_write(pNew); |
2915
|
|
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2916
|
|
|
|
|
|
|
memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE); |
2917
|
|
|
|
|
|
|
*pPrev = SWAB32(pBtTo, new); |
2918
|
|
|
|
|
|
|
if( pPrevPg ){ |
2919
|
|
|
|
|
|
|
sqlitepager_unref(pPrevPg); |
2920
|
|
|
|
|
|
|
} |
2921
|
|
|
|
|
|
|
pPrev = &pOvfl->iNext; |
2922
|
|
|
|
|
|
|
pPrevPg = pNew; |
2923
|
|
|
|
|
|
|
} |
2924
|
|
|
|
|
|
|
} |
2925
|
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
2926
|
|
|
|
|
|
|
ovfl = nextOvfl; |
2927
|
|
|
|
|
|
|
} |
2928
|
|
|
|
|
|
|
if( pPrevPg ){ |
2929
|
|
|
|
|
|
|
sqlitepager_unref(pPrevPg); |
2930
|
|
|
|
|
|
|
} |
2931
|
|
|
|
|
|
|
return rc; |
2932
|
|
|
|
|
|
|
} |
2933
|
|
|
|
|
|
|
#endif |
2934
|
|
|
|
|
|
|
|
2935
|
|
|
|
|
|
|
|
2936
|
|
|
|
|
|
|
#if 0 /* UNTESTED */ |
2937
|
|
|
|
|
|
|
/* |
2938
|
|
|
|
|
|
|
** Copy a page of data from one database over to another. |
2939
|
|
|
|
|
|
|
*/ |
2940
|
|
|
|
|
|
|
static int copyDatabasePage( |
2941
|
|
|
|
|
|
|
Btree *pBtFrom, |
2942
|
|
|
|
|
|
|
Pgno pgnoFrom, |
2943
|
|
|
|
|
|
|
Btree *pBtTo, |
2944
|
|
|
|
|
|
|
Pgno *pTo |
2945
|
|
|
|
|
|
|
){ |
2946
|
|
|
|
|
|
|
MemPage *pPageFrom, *pPage; |
2947
|
|
|
|
|
|
|
Pgno to; |
2948
|
|
|
|
|
|
|
int rc; |
2949
|
|
|
|
|
|
|
Cell *pCell; |
2950
|
|
|
|
|
|
|
int idx; |
2951
|
|
|
|
|
|
|
|
2952
|
|
|
|
|
|
|
rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom); |
2953
|
|
|
|
|
|
|
if( rc ) return rc; |
2954
|
|
|
|
|
|
|
rc = allocatePage(pBt, &pPage, pTo, 0); |
2955
|
|
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2956
|
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
2957
|
|
|
|
|
|
|
} |
2958
|
|
|
|
|
|
|
if( rc==SQLITE_OK ){ |
2959
|
|
|
|
|
|
|
memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE); |
2960
|
|
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstCell); |
2961
|
|
|
|
|
|
|
while( idx>0 ){ |
2962
|
|
|
|
|
|
|
pCell = (Cell*)&pPage->u.aDisk[idx]; |
2963
|
|
|
|
|
|
|
idx = SWAB16(pBt, pCell->h.iNext); |
2964
|
|
|
|
|
|
|
if( pCell->h.leftChild ){ |
2965
|
|
|
|
|
|
|
Pgno newChld; |
2966
|
|
|
|
|
|
|
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild), |
2967
|
|
|
|
|
|
|
pBtTo, &newChld); |
2968
|
|
|
|
|
|
|
if( rc ) return rc; |
2969
|
|
|
|
|
|
|
pCell->h.leftChild = SWAB32(pBtFrom, newChld); |
2970
|
|
|
|
|
|
|
} |
2971
|
|
|
|
|
|
|
rc = copyCell(pBtFrom, pBtTo, pCell); |
2972
|
|
|
|
|
|
|
if( rc ) return rc; |
2973
|
|
|
|
|
|
|
} |
2974
|
|
|
|
|
|
|
if( pPage->u.hdr.rightChild ){ |
2975
|
|
|
|
|
|
|
Pgno newChld; |
2976
|
|
|
|
|
|
|
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild), |
2977
|
|
|
|
|
|
|
pBtTo, &newChld); |
2978
|
|
|
|
|
|
|
if( rc ) return rc; |
2979
|
|
|
|
|
|
|
pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild); |
2980
|
|
|
|
|
|
|
} |
2981
|
|
|
|
|
|
|
} |
2982
|
|
|
|
|
|
|
sqlitepager_unref(pPage); |
2983
|
|
|
|
|
|
|
return rc; |
2984
|
|
|
|
|
|
|
} |
2985
|
|
|
|
|
|
|
#endif |
2986
|
|
|
|
|
|
|
|
2987
|
|
|
|
|
|
|
/* |
2988
|
|
|
|
|
|
|
** Read the meta-information out of a database file. |
2989
|
|
|
|
|
|
|
*/ |
2990
|
254
|
|
|
|
|
|
static int fileBtreeGetMeta(Btree *pBt, int *aMeta){ |
2991
|
|
|
|
|
|
|
PageOne *pP1; |
2992
|
|
|
|
|
|
|
int rc; |
2993
|
|
|
|
|
|
|
int i; |
2994
|
|
|
|
|
|
|
|
2995
|
254
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1); |
2996
|
254
|
50
|
|
|
|
|
if( rc ) return rc; |
2997
|
254
|
50
|
|
|
|
|
aMeta[0] = SWAB32(pBt, pP1->nFree); |
2998
|
2540
|
100
|
|
|
|
|
for(i=0; iaMeta)/sizeof(pP1->aMeta[0]); i++){ |
2999
|
2286
|
50
|
|
|
|
|
aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]); |
3000
|
|
|
|
|
|
|
} |
3001
|
254
|
|
|
|
|
|
sqlitepager_unref(pP1); |
3002
|
254
|
|
|
|
|
|
return SQLITE_OK; |
3003
|
|
|
|
|
|
|
} |
3004
|
|
|
|
|
|
|
|
3005
|
|
|
|
|
|
|
/* |
3006
|
|
|
|
|
|
|
** Write meta-information back into the database. |
3007
|
|
|
|
|
|
|
*/ |
3008
|
53
|
|
|
|
|
|
static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){ |
3009
|
|
|
|
|
|
|
PageOne *pP1; |
3010
|
|
|
|
|
|
|
int rc, i; |
3011
|
53
|
50
|
|
|
|
|
if( !pBt->inTrans ){ |
3012
|
0
|
0
|
|
|
|
|
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; |
3013
|
|
|
|
|
|
|
} |
3014
|
53
|
|
|
|
|
|
pP1 = pBt->page1; |
3015
|
53
|
|
|
|
|
|
rc = sqlitepager_write(pP1); |
3016
|
53
|
50
|
|
|
|
|
if( rc ) return rc; |
3017
|
530
|
100
|
|
|
|
|
for(i=0; iaMeta)/sizeof(pP1->aMeta[0]); i++){ |
3018
|
477
|
50
|
|
|
|
|
pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]); |
3019
|
|
|
|
|
|
|
} |
3020
|
53
|
|
|
|
|
|
return SQLITE_OK; |
3021
|
|
|
|
|
|
|
} |
3022
|
|
|
|
|
|
|
|
3023
|
|
|
|
|
|
|
/****************************************************************************** |
3024
|
|
|
|
|
|
|
** The complete implementation of the BTree subsystem is above this line. |
3025
|
|
|
|
|
|
|
** All the code the follows is for testing and troubleshooting the BTree |
3026
|
|
|
|
|
|
|
** subsystem. None of the code that follows is used during normal operation. |
3027
|
|
|
|
|
|
|
******************************************************************************/ |
3028
|
|
|
|
|
|
|
|
3029
|
|
|
|
|
|
|
/* |
3030
|
|
|
|
|
|
|
** Print a disassembly of the given page on standard output. This routine |
3031
|
|
|
|
|
|
|
** is used for debugging and testing only. |
3032
|
|
|
|
|
|
|
*/ |
3033
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
3034
|
|
|
|
|
|
|
static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){ |
3035
|
|
|
|
|
|
|
int rc; |
3036
|
|
|
|
|
|
|
MemPage *pPage; |
3037
|
|
|
|
|
|
|
int i, j; |
3038
|
|
|
|
|
|
|
int nFree; |
3039
|
|
|
|
|
|
|
u16 idx; |
3040
|
|
|
|
|
|
|
char range[20]; |
3041
|
|
|
|
|
|
|
unsigned char payload[20]; |
3042
|
|
|
|
|
|
|
rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage); |
3043
|
|
|
|
|
|
|
if( rc ){ |
3044
|
|
|
|
|
|
|
return rc; |
3045
|
|
|
|
|
|
|
} |
3046
|
|
|
|
|
|
|
if( recursive ) printf("PAGE %d:\n", pgno); |
3047
|
|
|
|
|
|
|
i = 0; |
3048
|
|
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstCell); |
3049
|
|
|
|
|
|
|
while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){ |
3050
|
|
|
|
|
|
|
Cell *pCell = (Cell*)&pPage->u.aDisk[idx]; |
3051
|
|
|
|
|
|
|
int sz = cellSize(pBt, pCell); |
3052
|
|
|
|
|
|
|
sprintf(range,"%d..%d", idx, idx+sz-1); |
3053
|
|
|
|
|
|
|
sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h); |
3054
|
|
|
|
|
|
|
if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; |
3055
|
|
|
|
|
|
|
memcpy(payload, pCell->aPayload, sz); |
3056
|
|
|
|
|
|
|
for(j=0; j
|
3057
|
|
|
|
|
|
|
if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; |
3058
|
|
|
|
|
|
|
} |
3059
|
|
|
|
|
|
|
payload[sz] = 0; |
3060
|
|
|
|
|
|
|
printf( |
3061
|
|
|
|
|
|
|
"cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n", |
3062
|
|
|
|
|
|
|
i, range, (int)pCell->h.leftChild, |
3063
|
|
|
|
|
|
|
NKEY(pBt, pCell->h), NDATA(pBt, pCell->h), |
3064
|
|
|
|
|
|
|
payload |
3065
|
|
|
|
|
|
|
); |
3066
|
|
|
|
|
|
|
if( pPage->isInit && pPage->apCell[i]!=pCell ){ |
3067
|
|
|
|
|
|
|
printf("**** apCell[%d] does not match on prior entry ****\n", i); |
3068
|
|
|
|
|
|
|
} |
3069
|
|
|
|
|
|
|
i++; |
3070
|
|
|
|
|
|
|
idx = SWAB16(pBt, pCell->h.iNext); |
3071
|
|
|
|
|
|
|
} |
3072
|
|
|
|
|
|
|
if( idx!=0 ){ |
3073
|
|
|
|
|
|
|
printf("ERROR: next cell index out of range: %d\n", idx); |
3074
|
|
|
|
|
|
|
} |
3075
|
|
|
|
|
|
|
printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild)); |
3076
|
|
|
|
|
|
|
nFree = 0; |
3077
|
|
|
|
|
|
|
i = 0; |
3078
|
|
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstFree); |
3079
|
|
|
|
|
|
|
while( idx>0 && idx
|
3080
|
|
|
|
|
|
|
FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx]; |
3081
|
|
|
|
|
|
|
sprintf(range,"%d..%d", idx, idx+p->iSize-1); |
3082
|
|
|
|
|
|
|
nFree += SWAB16(pBt, p->iSize); |
3083
|
|
|
|
|
|
|
printf("freeblock %2d: i=%-10s size=%-4d total=%d\n", |
3084
|
|
|
|
|
|
|
i, range, SWAB16(pBt, p->iSize), nFree); |
3085
|
|
|
|
|
|
|
idx = SWAB16(pBt, p->iNext); |
3086
|
|
|
|
|
|
|
i++; |
3087
|
|
|
|
|
|
|
} |
3088
|
|
|
|
|
|
|
if( idx!=0 ){ |
3089
|
|
|
|
|
|
|
printf("ERROR: next freeblock index out of range: %d\n", idx); |
3090
|
|
|
|
|
|
|
} |
3091
|
|
|
|
|
|
|
if( recursive && pPage->u.hdr.rightChild!=0 ){ |
3092
|
|
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstCell); |
3093
|
|
|
|
|
|
|
while( idx>0 && idx
|
3094
|
|
|
|
|
|
|
Cell *pCell = (Cell*)&pPage->u.aDisk[idx]; |
3095
|
|
|
|
|
|
|
fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1); |
3096
|
|
|
|
|
|
|
idx = SWAB16(pBt, pCell->h.iNext); |
3097
|
|
|
|
|
|
|
} |
3098
|
|
|
|
|
|
|
fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1); |
3099
|
|
|
|
|
|
|
} |
3100
|
|
|
|
|
|
|
sqlitepager_unref(pPage); |
3101
|
|
|
|
|
|
|
return SQLITE_OK; |
3102
|
|
|
|
|
|
|
} |
3103
|
|
|
|
|
|
|
#endif |
3104
|
|
|
|
|
|
|
|
3105
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
3106
|
|
|
|
|
|
|
/* |
3107
|
|
|
|
|
|
|
** Fill aResult[] with information about the entry and page that the |
3108
|
|
|
|
|
|
|
** cursor is pointing to. |
3109
|
|
|
|
|
|
|
** |
3110
|
|
|
|
|
|
|
** aResult[0] = The page number |
3111
|
|
|
|
|
|
|
** aResult[1] = The entry number |
3112
|
|
|
|
|
|
|
** aResult[2] = Total number of entries on this page |
3113
|
|
|
|
|
|
|
** aResult[3] = Size of this entry |
3114
|
|
|
|
|
|
|
** aResult[4] = Number of free bytes on this page |
3115
|
|
|
|
|
|
|
** aResult[5] = Number of free blocks on the page |
3116
|
|
|
|
|
|
|
** aResult[6] = Page number of the left child of this entry |
3117
|
|
|
|
|
|
|
** aResult[7] = Page number of the right child for the whole page |
3118
|
|
|
|
|
|
|
** |
3119
|
|
|
|
|
|
|
** This routine is used for testing and debugging only. |
3120
|
|
|
|
|
|
|
*/ |
3121
|
|
|
|
|
|
|
static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){ |
3122
|
|
|
|
|
|
|
int cnt, idx; |
3123
|
|
|
|
|
|
|
MemPage *pPage = pCur->pPage; |
3124
|
|
|
|
|
|
|
Btree *pBt = pCur->pBt; |
3125
|
|
|
|
|
|
|
aResult[0] = sqlitepager_pagenumber(pPage); |
3126
|
|
|
|
|
|
|
aResult[1] = pCur->idx; |
3127
|
|
|
|
|
|
|
aResult[2] = pPage->nCell; |
3128
|
|
|
|
|
|
|
if( pCur->idx>=0 && pCur->idxnCell ){ |
3129
|
|
|
|
|
|
|
aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]); |
3130
|
|
|
|
|
|
|
aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild); |
3131
|
|
|
|
|
|
|
}else{ |
3132
|
|
|
|
|
|
|
aResult[3] = 0; |
3133
|
|
|
|
|
|
|
aResult[6] = 0; |
3134
|
|
|
|
|
|
|
} |
3135
|
|
|
|
|
|
|
aResult[4] = pPage->nFree; |
3136
|
|
|
|
|
|
|
cnt = 0; |
3137
|
|
|
|
|
|
|
idx = SWAB16(pBt, pPage->u.hdr.firstFree); |
3138
|
|
|
|
|
|
|
while( idx>0 && idx
|
3139
|
|
|
|
|
|
|
cnt++; |
3140
|
|
|
|
|
|
|
idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext); |
3141
|
|
|
|
|
|
|
} |
3142
|
|
|
|
|
|
|
aResult[5] = cnt; |
3143
|
|
|
|
|
|
|
aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild); |
3144
|
|
|
|
|
|
|
return SQLITE_OK; |
3145
|
|
|
|
|
|
|
} |
3146
|
|
|
|
|
|
|
#endif |
3147
|
|
|
|
|
|
|
|
3148
|
|
|
|
|
|
|
/* |
3149
|
|
|
|
|
|
|
** Return the pager associated with a BTree. This routine is used for |
3150
|
|
|
|
|
|
|
** testing and debugging only. |
3151
|
|
|
|
|
|
|
*/ |
3152
|
0
|
|
|
|
|
|
static Pager *fileBtreePager(Btree *pBt){ |
3153
|
0
|
|
|
|
|
|
return pBt->pPager; |
3154
|
|
|
|
|
|
|
} |
3155
|
|
|
|
|
|
|
|
3156
|
|
|
|
|
|
|
/* |
3157
|
|
|
|
|
|
|
** This structure is passed around through all the sanity checking routines |
3158
|
|
|
|
|
|
|
** in order to keep track of some global state information. |
3159
|
|
|
|
|
|
|
*/ |
3160
|
|
|
|
|
|
|
typedef struct IntegrityCk IntegrityCk; |
3161
|
|
|
|
|
|
|
struct IntegrityCk { |
3162
|
|
|
|
|
|
|
Btree *pBt; /* The tree being checked out */ |
3163
|
|
|
|
|
|
|
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ |
3164
|
|
|
|
|
|
|
int nPage; /* Number of pages in the database */ |
3165
|
|
|
|
|
|
|
int *anRef; /* Number of times each page is referenced */ |
3166
|
|
|
|
|
|
|
char *zErrMsg; /* An error message. NULL of no errors seen. */ |
3167
|
|
|
|
|
|
|
}; |
3168
|
|
|
|
|
|
|
|
3169
|
|
|
|
|
|
|
/* |
3170
|
|
|
|
|
|
|
** Append a message to the error message string. |
3171
|
|
|
|
|
|
|
*/ |
3172
|
0
|
|
|
|
|
|
static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){ |
3173
|
0
|
0
|
|
|
|
|
if( pCheck->zErrMsg ){ |
3174
|
0
|
|
|
|
|
|
char *zOld = pCheck->zErrMsg; |
3175
|
0
|
|
|
|
|
|
pCheck->zErrMsg = 0; |
3176
|
0
|
|
|
|
|
|
sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); |
3177
|
0
|
|
|
|
|
|
sqliteFree(zOld); |
3178
|
|
|
|
|
|
|
}else{ |
3179
|
0
|
|
|
|
|
|
sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); |
3180
|
|
|
|
|
|
|
} |
3181
|
0
|
|
|
|
|
|
} |
3182
|
|
|
|
|
|
|
|
3183
|
|
|
|
|
|
|
/* |
3184
|
|
|
|
|
|
|
** Add 1 to the reference count for page iPage. If this is the second |
3185
|
|
|
|
|
|
|
** reference to the page, add an error message to pCheck->zErrMsg. |
3186
|
|
|
|
|
|
|
** Return 1 if there are 2 ore more references to the page and 0 if |
3187
|
|
|
|
|
|
|
** if this is the first reference to the page. |
3188
|
|
|
|
|
|
|
** |
3189
|
|
|
|
|
|
|
** Also check that the page number is in bounds. |
3190
|
|
|
|
|
|
|
*/ |
3191
|
0
|
|
|
|
|
|
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ |
3192
|
0
|
0
|
|
|
|
|
if( iPage==0 ) return 1; |
3193
|
0
|
0
|
|
|
|
|
if( iPage>pCheck->nPage || iPage<0 ){ |
|
|
0
|
|
|
|
|
|
3194
|
|
|
|
|
|
|
char zBuf[100]; |
3195
|
0
|
|
|
|
|
|
sprintf(zBuf, "invalid page number %d", iPage); |
3196
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zBuf); |
3197
|
0
|
|
|
|
|
|
return 1; |
3198
|
|
|
|
|
|
|
} |
3199
|
0
|
0
|
|
|
|
|
if( pCheck->anRef[iPage]==1 ){ |
3200
|
|
|
|
|
|
|
char zBuf[100]; |
3201
|
0
|
|
|
|
|
|
sprintf(zBuf, "2nd reference to page %d", iPage); |
3202
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zBuf); |
3203
|
0
|
|
|
|
|
|
return 1; |
3204
|
|
|
|
|
|
|
} |
3205
|
0
|
|
|
|
|
|
return (pCheck->anRef[iPage]++)>1; |
3206
|
|
|
|
|
|
|
} |
3207
|
|
|
|
|
|
|
|
3208
|
|
|
|
|
|
|
/* |
3209
|
|
|
|
|
|
|
** Check the integrity of the freelist or of an overflow page list. |
3210
|
|
|
|
|
|
|
** Verify that the number of pages on the list is N. |
3211
|
|
|
|
|
|
|
*/ |
3212
|
0
|
|
|
|
|
|
static void checkList( |
3213
|
|
|
|
|
|
|
IntegrityCk *pCheck, /* Integrity checking context */ |
3214
|
|
|
|
|
|
|
int isFreeList, /* True for a freelist. False for overflow page list */ |
3215
|
|
|
|
|
|
|
int iPage, /* Page number for first page in the list */ |
3216
|
|
|
|
|
|
|
int N, /* Expected number of pages in the list */ |
3217
|
|
|
|
|
|
|
char *zContext /* Context for error messages */ |
3218
|
|
|
|
|
|
|
){ |
3219
|
|
|
|
|
|
|
int i; |
3220
|
|
|
|
|
|
|
char zMsg[100]; |
3221
|
0
|
0
|
|
|
|
|
while( N-- > 0 ){ |
3222
|
|
|
|
|
|
|
OverflowPage *pOvfl; |
3223
|
0
|
0
|
|
|
|
|
if( iPage<1 ){ |
3224
|
0
|
|
|
|
|
|
sprintf(zMsg, "%d pages missing from overflow list", N+1); |
3225
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zMsg); |
3226
|
0
|
|
|
|
|
|
break; |
3227
|
|
|
|
|
|
|
} |
3228
|
0
|
0
|
|
|
|
|
if( checkRef(pCheck, iPage, zContext) ) break; |
3229
|
0
|
0
|
|
|
|
|
if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ |
3230
|
0
|
|
|
|
|
|
sprintf(zMsg, "failed to get page %d", iPage); |
3231
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zMsg); |
3232
|
0
|
|
|
|
|
|
break; |
3233
|
|
|
|
|
|
|
} |
3234
|
0
|
0
|
|
|
|
|
if( isFreeList ){ |
3235
|
0
|
|
|
|
|
|
FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload; |
3236
|
0
|
0
|
|
|
|
|
int n = SWAB32(pCheck->pBt, pInfo->nFree); |
3237
|
0
|
0
|
|
|
|
|
for(i=0; i
|
3238
|
0
|
0
|
|
|
|
|
checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext); |
3239
|
|
|
|
|
|
|
} |
3240
|
0
|
|
|
|
|
|
N -= n; |
3241
|
|
|
|
|
|
|
} |
3242
|
0
|
0
|
|
|
|
|
iPage = SWAB32(pCheck->pBt, pOvfl->iNext); |
3243
|
0
|
|
|
|
|
|
sqlitepager_unref(pOvfl); |
3244
|
|
|
|
|
|
|
} |
3245
|
0
|
|
|
|
|
|
} |
3246
|
|
|
|
|
|
|
|
3247
|
|
|
|
|
|
|
/* |
3248
|
|
|
|
|
|
|
** Return negative if zKey1
|
3249
|
|
|
|
|
|
|
** Return zero if zKey1==zKey2. |
3250
|
|
|
|
|
|
|
** Return positive if zKey1>zKey2. |
3251
|
|
|
|
|
|
|
*/ |
3252
|
0
|
|
|
|
|
|
static int keyCompare( |
3253
|
|
|
|
|
|
|
const char *zKey1, int nKey1, |
3254
|
|
|
|
|
|
|
const char *zKey2, int nKey2 |
3255
|
|
|
|
|
|
|
){ |
3256
|
0
|
|
|
|
|
|
int min = nKey1>nKey2 ? nKey2 : nKey1; |
3257
|
0
|
|
|
|
|
|
int c = memcmp(zKey1, zKey2, min); |
3258
|
0
|
0
|
|
|
|
|
if( c==0 ){ |
3259
|
0
|
|
|
|
|
|
c = nKey1 - nKey2; |
3260
|
|
|
|
|
|
|
} |
3261
|
0
|
|
|
|
|
|
return c; |
3262
|
|
|
|
|
|
|
} |
3263
|
|
|
|
|
|
|
|
3264
|
|
|
|
|
|
|
/* |
3265
|
|
|
|
|
|
|
** Do various sanity checks on a single page of a tree. Return |
3266
|
|
|
|
|
|
|
** the tree depth. Root pages return 0. Parents of root pages |
3267
|
|
|
|
|
|
|
** return 1, and so forth. |
3268
|
|
|
|
|
|
|
** |
3269
|
|
|
|
|
|
|
** These checks are done: |
3270
|
|
|
|
|
|
|
** |
3271
|
|
|
|
|
|
|
** 1. Make sure that cells and freeblocks do not overlap |
3272
|
|
|
|
|
|
|
** but combine to completely cover the page. |
3273
|
|
|
|
|
|
|
** 2. Make sure cell keys are in order. |
3274
|
|
|
|
|
|
|
** 3. Make sure no key is less than or equal to zLowerBound. |
3275
|
|
|
|
|
|
|
** 4. Make sure no key is greater than or equal to zUpperBound. |
3276
|
|
|
|
|
|
|
** 5. Check the integrity of overflow pages. |
3277
|
|
|
|
|
|
|
** 6. Recursively call checkTreePage on all children. |
3278
|
|
|
|
|
|
|
** 7. Verify that the depth of all children is the same. |
3279
|
|
|
|
|
|
|
** 8. Make sure this page is at least 33% full or else it is |
3280
|
|
|
|
|
|
|
** the root of the tree. |
3281
|
|
|
|
|
|
|
*/ |
3282
|
0
|
|
|
|
|
|
static int checkTreePage( |
3283
|
|
|
|
|
|
|
IntegrityCk *pCheck, /* Context for the sanity check */ |
3284
|
|
|
|
|
|
|
int iPage, /* Page number of the page to check */ |
3285
|
|
|
|
|
|
|
MemPage *pParent, /* Parent page */ |
3286
|
|
|
|
|
|
|
char *zParentContext, /* Parent context */ |
3287
|
|
|
|
|
|
|
char *zLowerBound, /* All keys should be greater than this, if not NULL */ |
3288
|
|
|
|
|
|
|
int nLower, /* Number of characters in zLowerBound */ |
3289
|
|
|
|
|
|
|
char *zUpperBound, /* All keys should be less than this, if not NULL */ |
3290
|
|
|
|
|
|
|
int nUpper /* Number of characters in zUpperBound */ |
3291
|
|
|
|
|
|
|
){ |
3292
|
|
|
|
|
|
|
MemPage *pPage; |
3293
|
|
|
|
|
|
|
int i, rc, depth, d2, pgno; |
3294
|
|
|
|
|
|
|
char *zKey1, *zKey2; |
3295
|
|
|
|
|
|
|
int nKey1, nKey2; |
3296
|
|
|
|
|
|
|
BtCursor cur; |
3297
|
|
|
|
|
|
|
Btree *pBt; |
3298
|
|
|
|
|
|
|
char zMsg[100]; |
3299
|
|
|
|
|
|
|
char zContext[100]; |
3300
|
|
|
|
|
|
|
char hit[SQLITE_USABLE_SIZE]; |
3301
|
|
|
|
|
|
|
|
3302
|
|
|
|
|
|
|
/* Check that the page exists |
3303
|
|
|
|
|
|
|
*/ |
3304
|
0
|
|
|
|
|
|
cur.pBt = pBt = pCheck->pBt; |
3305
|
0
|
0
|
|
|
|
|
if( iPage==0 ) return 0; |
3306
|
0
|
0
|
|
|
|
|
if( checkRef(pCheck, iPage, zParentContext) ) return 0; |
3307
|
0
|
|
|
|
|
|
sprintf(zContext, "On tree page %d: ", iPage); |
3308
|
0
|
0
|
|
|
|
|
if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){ |
3309
|
0
|
|
|
|
|
|
sprintf(zMsg, "unable to get the page. error code=%d", rc); |
3310
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zMsg); |
3311
|
0
|
|
|
|
|
|
return 0; |
3312
|
|
|
|
|
|
|
} |
3313
|
0
|
0
|
|
|
|
|
if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){ |
3314
|
0
|
|
|
|
|
|
sprintf(zMsg, "initPage() returns error code %d", rc); |
3315
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zMsg); |
3316
|
0
|
|
|
|
|
|
sqlitepager_unref(pPage); |
3317
|
0
|
|
|
|
|
|
return 0; |
3318
|
|
|
|
|
|
|
} |
3319
|
|
|
|
|
|
|
|
3320
|
|
|
|
|
|
|
/* Check out all the cells. |
3321
|
|
|
|
|
|
|
*/ |
3322
|
0
|
|
|
|
|
|
depth = 0; |
3323
|
0
|
0
|
|
|
|
|
if( zLowerBound ){ |
3324
|
0
|
|
|
|
|
|
zKey1 = sqliteMalloc( nLower+1 ); |
3325
|
0
|
|
|
|
|
|
memcpy(zKey1, zLowerBound, nLower); |
3326
|
0
|
|
|
|
|
|
zKey1[nLower] = 0; |
3327
|
|
|
|
|
|
|
}else{ |
3328
|
0
|
|
|
|
|
|
zKey1 = 0; |
3329
|
|
|
|
|
|
|
} |
3330
|
0
|
|
|
|
|
|
nKey1 = nLower; |
3331
|
0
|
|
|
|
|
|
cur.pPage = pPage; |
3332
|
0
|
0
|
|
|
|
|
for(i=0; inCell; i++){ |
3333
|
0
|
|
|
|
|
|
Cell *pCell = pPage->apCell[i]; |
3334
|
|
|
|
|
|
|
int sz; |
3335
|
|
|
|
|
|
|
|
3336
|
|
|
|
|
|
|
/* Check payload overflow pages |
3337
|
|
|
|
|
|
|
*/ |
3338
|
0
|
0
|
|
|
|
|
nKey2 = NKEY(pBt, pCell->h); |
3339
|
0
|
0
|
|
|
|
|
sz = nKey2 + NDATA(pBt, pCell->h); |
3340
|
0
|
|
|
|
|
|
sprintf(zContext, "On page %d cell %d: ", iPage, i); |
3341
|
0
|
0
|
|
|
|
|
if( sz>MX_LOCAL_PAYLOAD ){ |
3342
|
0
|
|
|
|
|
|
int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE; |
3343
|
0
|
0
|
|
|
|
|
checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext); |
3344
|
|
|
|
|
|
|
} |
3345
|
|
|
|
|
|
|
|
3346
|
|
|
|
|
|
|
/* Check that keys are in the right order |
3347
|
|
|
|
|
|
|
*/ |
3348
|
0
|
|
|
|
|
|
cur.idx = i; |
3349
|
0
|
|
|
|
|
|
zKey2 = sqliteMallocRaw( nKey2+1 ); |
3350
|
0
|
|
|
|
|
|
getPayload(&cur, 0, nKey2, zKey2); |
3351
|
0
|
0
|
|
|
|
|
if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){ |
|
|
0
|
|
|
|
|
|
3352
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, "Key is out of order"); |
3353
|
|
|
|
|
|
|
} |
3354
|
|
|
|
|
|
|
|
3355
|
|
|
|
|
|
|
/* Check sanity of left child page. |
3356
|
|
|
|
|
|
|
*/ |
3357
|
0
|
0
|
|
|
|
|
pgno = SWAB32(pBt, pCell->h.leftChild); |
3358
|
0
|
|
|
|
|
|
d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2); |
3359
|
0
|
0
|
|
|
|
|
if( i>0 && d2!=depth ){ |
|
|
0
|
|
|
|
|
|
3360
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, "Child page depth differs"); |
3361
|
|
|
|
|
|
|
} |
3362
|
0
|
|
|
|
|
|
depth = d2; |
3363
|
0
|
|
|
|
|
|
sqliteFree(zKey1); |
3364
|
0
|
|
|
|
|
|
zKey1 = zKey2; |
3365
|
0
|
|
|
|
|
|
nKey1 = nKey2; |
3366
|
|
|
|
|
|
|
} |
3367
|
0
|
0
|
|
|
|
|
pgno = SWAB32(pBt, pPage->u.hdr.rightChild); |
3368
|
0
|
|
|
|
|
|
sprintf(zContext, "On page %d at right child: ", iPage); |
3369
|
0
|
|
|
|
|
|
checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper); |
3370
|
0
|
|
|
|
|
|
sqliteFree(zKey1); |
3371
|
|
|
|
|
|
|
|
3372
|
|
|
|
|
|
|
/* Check for complete coverage of the page |
3373
|
|
|
|
|
|
|
*/ |
3374
|
0
|
|
|
|
|
|
memset(hit, 0, sizeof(hit)); |
3375
|
0
|
|
|
|
|
|
memset(hit, 1, sizeof(PageHdr)); |
3376
|
0
|
0
|
|
|
|
|
for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
3377
|
0
|
|
|
|
|
|
Cell *pCell = (Cell*)&pPage->u.aDisk[i]; |
3378
|
|
|
|
|
|
|
int j; |
3379
|
0
|
0
|
|
|
|
|
for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++; |
3380
|
0
|
0
|
|
|
|
|
i = SWAB16(pBt, pCell->h.iNext); |
3381
|
|
|
|
|
|
|
} |
3382
|
0
|
0
|
|
|
|
|
for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
3383
|
0
|
|
|
|
|
|
FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i]; |
3384
|
|
|
|
|
|
|
int j; |
3385
|
0
|
0
|
|
|
|
|
for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++; |
|
|
0
|
|
|
|
|
|
3386
|
0
|
0
|
|
|
|
|
i = SWAB16(pBt,pFBlk->iNext); |
3387
|
|
|
|
|
|
|
} |
3388
|
0
|
0
|
|
|
|
|
for(i=0; i
|
3389
|
0
|
0
|
|
|
|
|
if( hit[i]==0 ){ |
3390
|
0
|
|
|
|
|
|
sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage); |
3391
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zMsg, 0); |
3392
|
0
|
|
|
|
|
|
break; |
3393
|
0
|
0
|
|
|
|
|
}else if( hit[i]>1 ){ |
3394
|
0
|
|
|
|
|
|
sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage); |
3395
|
0
|
|
|
|
|
|
checkAppendMsg(pCheck, zMsg, 0); |
3396
|
0
|
|
|
|
|
|
break; |
3397
|
|
|
|
|
|
|
} |
3398
|
|
|
|
|
|
|
} |
3399
|
|
|
|
|
|
|
|
3400
|
|
|
|
|
|
|
/* Check that free space is kept to a minimum |
3401
|
|
|
|
|
|
|
*/ |
3402
|
|
|
|
|
|
|
#if 0 |
3403
|
|
|
|
|
|
|
if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){ |
3404
|
|
|
|
|
|
|
sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree, |
3405
|
|
|
|
|
|
|
SQLITE_USABLE_SIZE/3); |
3406
|
|
|
|
|
|
|
checkAppendMsg(pCheck, zContext, zMsg); |
3407
|
|
|
|
|
|
|
} |
3408
|
|
|
|
|
|
|
#endif |
3409
|
|
|
|
|
|
|
|
3410
|
0
|
|
|
|
|
|
sqlitepager_unref(pPage); |
3411
|
0
|
|
|
|
|
|
return depth; |
3412
|
|
|
|
|
|
|
} |
3413
|
|
|
|
|
|
|
|
3414
|
|
|
|
|
|
|
/* |
3415
|
|
|
|
|
|
|
** This routine does a complete check of the given BTree file. aRoot[] is |
3416
|
|
|
|
|
|
|
** an array of pages numbers were each page number is the root page of |
3417
|
|
|
|
|
|
|
** a table. nRoot is the number of entries in aRoot. |
3418
|
|
|
|
|
|
|
** |
3419
|
|
|
|
|
|
|
** If everything checks out, this routine returns NULL. If something is |
3420
|
|
|
|
|
|
|
** amiss, an error message is written into memory obtained from malloc() |
3421
|
|
|
|
|
|
|
** and a pointer to that error message is returned. The calling function |
3422
|
|
|
|
|
|
|
** is responsible for freeing the error message when it is done. |
3423
|
|
|
|
|
|
|
*/ |
3424
|
0
|
|
|
|
|
|
char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){ |
3425
|
|
|
|
|
|
|
int i; |
3426
|
|
|
|
|
|
|
int nRef; |
3427
|
|
|
|
|
|
|
IntegrityCk sCheck; |
3428
|
|
|
|
|
|
|
|
3429
|
0
|
|
|
|
|
|
nRef = *sqlitepager_stats(pBt->pPager); |
3430
|
0
|
0
|
|
|
|
|
if( lockBtree(pBt)!=SQLITE_OK ){ |
3431
|
0
|
|
|
|
|
|
return sqliteStrDup("Unable to acquire a read lock on the database"); |
3432
|
|
|
|
|
|
|
} |
3433
|
0
|
|
|
|
|
|
sCheck.pBt = pBt; |
3434
|
0
|
|
|
|
|
|
sCheck.pPager = pBt->pPager; |
3435
|
0
|
|
|
|
|
|
sCheck.nPage = sqlitepager_pagecount(sCheck.pPager); |
3436
|
0
|
0
|
|
|
|
|
if( sCheck.nPage==0 ){ |
3437
|
0
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
3438
|
0
|
|
|
|
|
|
return 0; |
3439
|
|
|
|
|
|
|
} |
3440
|
0
|
|
|
|
|
|
sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); |
3441
|
0
|
|
|
|
|
|
sCheck.anRef[1] = 1; |
3442
|
0
|
0
|
|
|
|
|
for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } |
3443
|
0
|
|
|
|
|
|
sCheck.zErrMsg = 0; |
3444
|
|
|
|
|
|
|
|
3445
|
|
|
|
|
|
|
/* Check the integrity of the freelist |
3446
|
|
|
|
|
|
|
*/ |
3447
|
0
|
0
|
|
|
|
|
checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList), |
|
|
0
|
|
|
|
|
|
3448
|
0
|
|
|
|
|
|
SWAB32(pBt, pBt->page1->nFree), "Main freelist: "); |
3449
|
|
|
|
|
|
|
|
3450
|
|
|
|
|
|
|
/* Check all the tables. |
3451
|
|
|
|
|
|
|
*/ |
3452
|
0
|
0
|
|
|
|
|
for(i=0; i
|
3453
|
0
|
0
|
|
|
|
|
if( aRoot[i]==0 ) continue; |
3454
|
0
|
|
|
|
|
|
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0); |
3455
|
|
|
|
|
|
|
} |
3456
|
|
|
|
|
|
|
|
3457
|
|
|
|
|
|
|
/* Make sure every page in the file is referenced |
3458
|
|
|
|
|
|
|
*/ |
3459
|
0
|
0
|
|
|
|
|
for(i=1; i<=sCheck.nPage; i++){ |
3460
|
0
|
0
|
|
|
|
|
if( sCheck.anRef[i]==0 ){ |
3461
|
|
|
|
|
|
|
char zBuf[100]; |
3462
|
0
|
|
|
|
|
|
sprintf(zBuf, "Page %d is never used", i); |
3463
|
0
|
|
|
|
|
|
checkAppendMsg(&sCheck, zBuf, 0); |
3464
|
|
|
|
|
|
|
} |
3465
|
|
|
|
|
|
|
} |
3466
|
|
|
|
|
|
|
|
3467
|
|
|
|
|
|
|
/* Make sure this analysis did not leave any unref() pages |
3468
|
|
|
|
|
|
|
*/ |
3469
|
0
|
|
|
|
|
|
unlockBtreeIfUnused(pBt); |
3470
|
0
|
0
|
|
|
|
|
if( nRef != *sqlitepager_stats(pBt->pPager) ){ |
3471
|
|
|
|
|
|
|
char zBuf[100]; |
3472
|
0
|
|
|
|
|
|
sprintf(zBuf, |
3473
|
|
|
|
|
|
|
"Outstanding page count goes from %d to %d during this analysis", |
3474
|
0
|
|
|
|
|
|
nRef, *sqlitepager_stats(pBt->pPager) |
3475
|
|
|
|
|
|
|
); |
3476
|
0
|
|
|
|
|
|
checkAppendMsg(&sCheck, zBuf, 0); |
3477
|
|
|
|
|
|
|
} |
3478
|
|
|
|
|
|
|
|
3479
|
|
|
|
|
|
|
/* Clean up and report errors. |
3480
|
|
|
|
|
|
|
*/ |
3481
|
0
|
|
|
|
|
|
sqliteFree(sCheck.anRef); |
3482
|
0
|
|
|
|
|
|
return sCheck.zErrMsg; |
3483
|
|
|
|
|
|
|
} |
3484
|
|
|
|
|
|
|
|
3485
|
|
|
|
|
|
|
/* |
3486
|
|
|
|
|
|
|
** Return the full pathname of the underlying database file. |
3487
|
|
|
|
|
|
|
*/ |
3488
|
0
|
|
|
|
|
|
static const char *fileBtreeGetFilename(Btree *pBt){ |
3489
|
|
|
|
|
|
|
assert( pBt->pPager!=0 ); |
3490
|
0
|
|
|
|
|
|
return sqlitepager_filename(pBt->pPager); |
3491
|
|
|
|
|
|
|
} |
3492
|
|
|
|
|
|
|
|
3493
|
|
|
|
|
|
|
/* |
3494
|
|
|
|
|
|
|
** Copy the complete content of pBtFrom into pBtTo. A transaction |
3495
|
|
|
|
|
|
|
** must be active for both files. |
3496
|
|
|
|
|
|
|
** |
3497
|
|
|
|
|
|
|
** The size of file pBtFrom may be reduced by this operation. |
3498
|
|
|
|
|
|
|
** If anything goes wrong, the transaction on pBtFrom is rolled back. |
3499
|
|
|
|
|
|
|
*/ |
3500
|
0
|
|
|
|
|
|
static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ |
3501
|
0
|
|
|
|
|
|
int rc = SQLITE_OK; |
3502
|
|
|
|
|
|
|
Pgno i, nPage, nToPage; |
3503
|
|
|
|
|
|
|
|
3504
|
0
|
0
|
|
|
|
|
if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR; |
|
|
0
|
|
|
|
|
|
3505
|
0
|
0
|
|
|
|
|
if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR; |
3506
|
0
|
0
|
|
|
|
|
if( pBtTo->pCursor ) return SQLITE_BUSY; |
3507
|
0
|
|
|
|
|
|
memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE); |
3508
|
0
|
|
|
|
|
|
rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1); |
3509
|
0
|
|
|
|
|
|
nToPage = sqlitepager_pagecount(pBtTo->pPager); |
3510
|
0
|
|
|
|
|
|
nPage = sqlitepager_pagecount(pBtFrom->pPager); |
3511
|
0
|
0
|
|
|
|
|
for(i=2; rc==SQLITE_OK && i<=nPage; i++){ |
|
|
0
|
|
|
|
|
|
3512
|
|
|
|
|
|
|
void *pPage; |
3513
|
0
|
|
|
|
|
|
rc = sqlitepager_get(pBtFrom->pPager, i, &pPage); |
3514
|
0
|
0
|
|
|
|
|
if( rc ) break; |
3515
|
0
|
|
|
|
|
|
rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage); |
3516
|
0
|
0
|
|
|
|
|
if( rc ) break; |
3517
|
0
|
|
|
|
|
|
sqlitepager_unref(pPage); |
3518
|
|
|
|
|
|
|
} |
3519
|
0
|
0
|
|
|
|
|
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ |
|
|
0
|
|
|
|
|
|
3520
|
|
|
|
|
|
|
void *pPage; |
3521
|
0
|
|
|
|
|
|
rc = sqlitepager_get(pBtTo->pPager, i, &pPage); |
3522
|
0
|
0
|
|
|
|
|
if( rc ) break; |
3523
|
0
|
|
|
|
|
|
rc = sqlitepager_write(pPage); |
3524
|
0
|
|
|
|
|
|
sqlitepager_unref(pPage); |
3525
|
0
|
|
|
|
|
|
sqlitepager_dont_write(pBtTo->pPager, i); |
3526
|
|
|
|
|
|
|
} |
3527
|
0
|
0
|
|
|
|
|
if( !rc && nPage
|
|
|
0
|
|
|
|
|
|
3528
|
0
|
|
|
|
|
|
rc = sqlitepager_truncate(pBtTo->pPager, nPage); |
3529
|
|
|
|
|
|
|
} |
3530
|
0
|
0
|
|
|
|
|
if( rc ){ |
3531
|
0
|
|
|
|
|
|
fileBtreeRollback(pBtTo); |
3532
|
|
|
|
|
|
|
} |
3533
|
0
|
|
|
|
|
|
return rc; |
3534
|
|
|
|
|
|
|
} |
3535
|
|
|
|
|
|
|
|
3536
|
|
|
|
|
|
|
/* |
3537
|
|
|
|
|
|
|
** The following tables contain pointers to all of the interface |
3538
|
|
|
|
|
|
|
** routines for this implementation of the B*Tree backend. To |
3539
|
|
|
|
|
|
|
** substitute a different implemention of the backend, one has merely |
3540
|
|
|
|
|
|
|
** to provide pointers to alternative functions in similar tables. |
3541
|
|
|
|
|
|
|
*/ |
3542
|
|
|
|
|
|
|
static BtOps sqliteBtreeOps = { |
3543
|
|
|
|
|
|
|
fileBtreeClose, |
3544
|
|
|
|
|
|
|
fileBtreeSetCacheSize, |
3545
|
|
|
|
|
|
|
fileBtreeSetSafetyLevel, |
3546
|
|
|
|
|
|
|
fileBtreeBeginTrans, |
3547
|
|
|
|
|
|
|
fileBtreeCommit, |
3548
|
|
|
|
|
|
|
fileBtreeRollback, |
3549
|
|
|
|
|
|
|
fileBtreeBeginCkpt, |
3550
|
|
|
|
|
|
|
fileBtreeCommitCkpt, |
3551
|
|
|
|
|
|
|
fileBtreeRollbackCkpt, |
3552
|
|
|
|
|
|
|
fileBtreeCreateTable, |
3553
|
|
|
|
|
|
|
fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */ |
3554
|
|
|
|
|
|
|
fileBtreeDropTable, |
3555
|
|
|
|
|
|
|
fileBtreeClearTable, |
3556
|
|
|
|
|
|
|
fileBtreeCursor, |
3557
|
|
|
|
|
|
|
fileBtreeGetMeta, |
3558
|
|
|
|
|
|
|
fileBtreeUpdateMeta, |
3559
|
|
|
|
|
|
|
fileBtreeIntegrityCheck, |
3560
|
|
|
|
|
|
|
fileBtreeGetFilename, |
3561
|
|
|
|
|
|
|
fileBtreeCopyFile, |
3562
|
|
|
|
|
|
|
fileBtreePager, |
3563
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
3564
|
|
|
|
|
|
|
fileBtreePageDump, |
3565
|
|
|
|
|
|
|
#endif |
3566
|
|
|
|
|
|
|
}; |
3567
|
|
|
|
|
|
|
static BtCursorOps sqliteBtreeCursorOps = { |
3568
|
|
|
|
|
|
|
fileBtreeMoveto, |
3569
|
|
|
|
|
|
|
fileBtreeDelete, |
3570
|
|
|
|
|
|
|
fileBtreeInsert, |
3571
|
|
|
|
|
|
|
fileBtreeFirst, |
3572
|
|
|
|
|
|
|
fileBtreeLast, |
3573
|
|
|
|
|
|
|
fileBtreeNext, |
3574
|
|
|
|
|
|
|
fileBtreePrevious, |
3575
|
|
|
|
|
|
|
fileBtreeKeySize, |
3576
|
|
|
|
|
|
|
fileBtreeKey, |
3577
|
|
|
|
|
|
|
fileBtreeKeyCompare, |
3578
|
|
|
|
|
|
|
fileBtreeDataSize, |
3579
|
|
|
|
|
|
|
fileBtreeData, |
3580
|
|
|
|
|
|
|
fileBtreeCloseCursor, |
3581
|
|
|
|
|
|
|
#ifdef SQLITE_TEST |
3582
|
|
|
|
|
|
|
fileBtreeCursorDump, |
3583
|
|
|
|
|
|
|
#endif |
3584
|
|
|
|
|
|
|
}; |