line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* hash.c - an implementation of HAS-160 Algorithm. |
2
|
|
|
|
|
|
|
* |
3
|
|
|
|
|
|
|
* Copyright (c) 2009, Aleksey Kravchenko |
4
|
|
|
|
|
|
|
* |
5
|
|
|
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any |
6
|
|
|
|
|
|
|
* purpose with or without fee is hereby granted. |
7
|
|
|
|
|
|
|
* |
8
|
|
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH |
9
|
|
|
|
|
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY |
10
|
|
|
|
|
|
|
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, |
11
|
|
|
|
|
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM |
12
|
|
|
|
|
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE |
13
|
|
|
|
|
|
|
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
14
|
|
|
|
|
|
|
* PERFORMANCE OF THIS SOFTWARE. |
15
|
|
|
|
|
|
|
* |
16
|
|
|
|
|
|
|
* HAS-160 is a cryptographic hash function designed for use with the |
17
|
|
|
|
|
|
|
* Korean KCDSA digital signature algorithm. It derives from SHA-1, |
18
|
|
|
|
|
|
|
* with assorted changes intended to increase its security. |
19
|
|
|
|
|
|
|
* It produces a 160-bit message digest. |
20
|
|
|
|
|
|
|
* |
21
|
|
|
|
|
|
|
* HAS-160 was developed in 1998 by KISA |
22
|
|
|
|
|
|
|
* (Korea Information Security Agency) + Academic. |
23
|
|
|
|
|
|
|
*/ |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
#include |
26
|
|
|
|
|
|
|
#include "byte_order.h" |
27
|
|
|
|
|
|
|
#include "has160.h" |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
/** |
30
|
|
|
|
|
|
|
* Initialize algorithm context before calculaing hash. |
31
|
|
|
|
|
|
|
* |
32
|
|
|
|
|
|
|
* @param ctx context to initialize |
33
|
|
|
|
|
|
|
*/ |
34
|
2
|
|
|
|
|
|
void rhash_has160_init(has160_ctx* ctx) |
35
|
|
|
|
|
|
|
{ |
36
|
2
|
|
|
|
|
|
ctx->length = 0; |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
/* initialize algorithm state */ |
39
|
2
|
|
|
|
|
|
ctx->hash[0] = 0x67452301; |
40
|
2
|
|
|
|
|
|
ctx->hash[1] = 0xefcdab89; |
41
|
2
|
|
|
|
|
|
ctx->hash[2] = 0x98badcfe; |
42
|
2
|
|
|
|
|
|
ctx->hash[3] = 0x10325476; |
43
|
2
|
|
|
|
|
|
ctx->hash[4] = 0xc3d2e1f0; |
44
|
2
|
|
|
|
|
|
} |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
/* HAS-160 boolean functions: |
47
|
|
|
|
|
|
|
* F1(x,y,z) == (x AND y) OR ((NOT x) AND z) = ((y XOR z) AND x) XOR z |
48
|
|
|
|
|
|
|
* F2(x,y,z) == x XOR y XOR z |
49
|
|
|
|
|
|
|
* F3(x,y,z) == y XOR (x OR (NOT Z)) |
50
|
|
|
|
|
|
|
* F4(x,y,z) == x XOR y XOR z */ |
51
|
|
|
|
|
|
|
#define STEP_F1(A, B, C, D, E, msg, rot) \ |
52
|
|
|
|
|
|
|
E += ROTL32(A, rot) + (D ^ (B & (C ^ D))) + msg; \ |
53
|
|
|
|
|
|
|
B = ROTL32(B, 10); |
54
|
|
|
|
|
|
|
#define STEP_F2(A, B, C, D, E, msg, rot) \ |
55
|
|
|
|
|
|
|
E += ROTL32(A, rot) + (B ^ C ^ D) + msg + 0x5A827999; \ |
56
|
|
|
|
|
|
|
B = ROTL32(B, 17); |
57
|
|
|
|
|
|
|
#define STEP_F3(A, B, C, D, E, msg, rot) \ |
58
|
|
|
|
|
|
|
E += ROTL32(A, rot) + (C ^ (B | ~D)) + msg + 0x6ED9EBA1; \ |
59
|
|
|
|
|
|
|
B = ROTL32(B, 25); |
60
|
|
|
|
|
|
|
#define STEP_F4(A, B, C, D, E, msg, rot) \ |
61
|
|
|
|
|
|
|
E += ROTL32(A, rot) + (B ^ C ^ D) + msg + 0x8F1BBCDC; \ |
62
|
|
|
|
|
|
|
B = ROTL32(B, 30); |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
/** |
65
|
|
|
|
|
|
|
* The core transformation. Process a 512-bit block. |
66
|
|
|
|
|
|
|
* |
67
|
|
|
|
|
|
|
* @param hash algorithm state |
68
|
|
|
|
|
|
|
* @param block the message block to process |
69
|
|
|
|
|
|
|
*/ |
70
|
2
|
|
|
|
|
|
static void rhash_has160_process_block(unsigned* hash, const unsigned* block) |
71
|
|
|
|
|
|
|
{ |
72
|
|
|
|
|
|
|
unsigned X[32]; |
73
|
|
|
|
|
|
|
{ |
74
|
|
|
|
|
|
|
unsigned j; |
75
|
34
|
100
|
|
|
|
|
for (j = 0; j < 16; j++) { |
76
|
32
|
|
|
|
|
|
X[j] = le2me_32(block[j]); |
77
|
|
|
|
|
|
|
} |
78
|
|
|
|
|
|
|
|
79
|
2
|
|
|
|
|
|
X[16] = X[ 0] ^ X[ 1] ^ X[ 2] ^ X[ 3]; /* for rounds 1..20 */ |
80
|
2
|
|
|
|
|
|
X[17] = X[ 4] ^ X[ 5] ^ X[ 6] ^ X[ 7]; |
81
|
2
|
|
|
|
|
|
X[18] = X[ 8] ^ X[ 9] ^ X[10] ^ X[11]; |
82
|
2
|
|
|
|
|
|
X[19] = X[12] ^ X[13] ^ X[14] ^ X[15]; |
83
|
2
|
|
|
|
|
|
X[20] = X[ 3] ^ X[ 6] ^ X[ 9] ^ X[12]; /* for rounds 21..40 */ |
84
|
2
|
|
|
|
|
|
X[21] = X[ 2] ^ X[ 5] ^ X[ 8] ^ X[15]; |
85
|
2
|
|
|
|
|
|
X[22] = X[ 1] ^ X[ 4] ^ X[11] ^ X[14]; |
86
|
2
|
|
|
|
|
|
X[23] = X[ 0] ^ X[ 7] ^ X[10] ^ X[13]; |
87
|
2
|
|
|
|
|
|
X[24] = X[ 5] ^ X[ 7] ^ X[12] ^ X[14]; /* for rounds 41..60 */ |
88
|
2
|
|
|
|
|
|
X[25] = X[ 0] ^ X[ 2] ^ X[ 9] ^ X[11]; |
89
|
2
|
|
|
|
|
|
X[26] = X[ 4] ^ X[ 6] ^ X[13] ^ X[15]; |
90
|
2
|
|
|
|
|
|
X[27] = X[ 1] ^ X[ 3] ^ X[ 8] ^ X[10]; |
91
|
2
|
|
|
|
|
|
X[28] = X[ 2] ^ X[ 7] ^ X[ 8] ^ X[13]; /* for rounds 61..80 */ |
92
|
2
|
|
|
|
|
|
X[29] = X[ 3] ^ X[ 4] ^ X[ 9] ^ X[14]; |
93
|
2
|
|
|
|
|
|
X[30] = X[ 0] ^ X[ 5] ^ X[10] ^ X[15]; |
94
|
2
|
|
|
|
|
|
X[31] = X[ 1] ^ X[ 6] ^ X[11] ^ X[12]; |
95
|
|
|
|
|
|
|
} |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
{ |
99
|
|
|
|
|
|
|
unsigned A, B, C, D, E; |
100
|
|
|
|
|
|
|
|
101
|
2
|
|
|
|
|
|
A = hash[0]; |
102
|
2
|
|
|
|
|
|
B = hash[1]; |
103
|
2
|
|
|
|
|
|
C = hash[2]; |
104
|
2
|
|
|
|
|
|
D = hash[3]; |
105
|
2
|
|
|
|
|
|
E = hash[4]; |
106
|
|
|
|
|
|
|
|
107
|
2
|
|
|
|
|
|
STEP_F1(A,B,C,D,E,X[18], 5); |
108
|
2
|
|
|
|
|
|
STEP_F1(E,A,B,C,D,X[ 0],11); |
109
|
2
|
|
|
|
|
|
STEP_F1(D,E,A,B,C,X[ 1], 7); |
110
|
2
|
|
|
|
|
|
STEP_F1(C,D,E,A,B,X[ 2],15); |
111
|
2
|
|
|
|
|
|
STEP_F1(B,C,D,E,A,X[ 3], 6); |
112
|
2
|
|
|
|
|
|
STEP_F1(A,B,C,D,E,X[19],13); |
113
|
2
|
|
|
|
|
|
STEP_F1(E,A,B,C,D,X[ 4], 8); |
114
|
2
|
|
|
|
|
|
STEP_F1(D,E,A,B,C,X[ 5],14); |
115
|
2
|
|
|
|
|
|
STEP_F1(C,D,E,A,B,X[ 6], 7); |
116
|
2
|
|
|
|
|
|
STEP_F1(B,C,D,E,A,X[ 7],12); |
117
|
2
|
|
|
|
|
|
STEP_F1(A,B,C,D,E,X[16], 9); |
118
|
2
|
|
|
|
|
|
STEP_F1(E,A,B,C,D,X[ 8],11); |
119
|
2
|
|
|
|
|
|
STEP_F1(D,E,A,B,C,X[ 9], 8); |
120
|
2
|
|
|
|
|
|
STEP_F1(C,D,E,A,B,X[10],15); |
121
|
2
|
|
|
|
|
|
STEP_F1(B,C,D,E,A,X[11], 6); |
122
|
2
|
|
|
|
|
|
STEP_F1(A,B,C,D,E,X[17],12); |
123
|
2
|
|
|
|
|
|
STEP_F1(E,A,B,C,D,X[12], 9); |
124
|
2
|
|
|
|
|
|
STEP_F1(D,E,A,B,C,X[13],14); |
125
|
2
|
|
|
|
|
|
STEP_F1(C,D,E,A,B,X[14], 5); |
126
|
2
|
|
|
|
|
|
STEP_F1(B,C,D,E,A,X[15],13); |
127
|
|
|
|
|
|
|
|
128
|
2
|
|
|
|
|
|
STEP_F2(A,B,C,D,E,X[22], 5); |
129
|
2
|
|
|
|
|
|
STEP_F2(E,A,B,C,D,X[ 3],11); |
130
|
2
|
|
|
|
|
|
STEP_F2(D,E,A,B,C,X[ 6], 7); |
131
|
2
|
|
|
|
|
|
STEP_F2(C,D,E,A,B,X[ 9],15); |
132
|
2
|
|
|
|
|
|
STEP_F2(B,C,D,E,A,X[12], 6); |
133
|
2
|
|
|
|
|
|
STEP_F2(A,B,C,D,E,X[23],13); |
134
|
2
|
|
|
|
|
|
STEP_F2(E,A,B,C,D,X[15], 8); |
135
|
2
|
|
|
|
|
|
STEP_F2(D,E,A,B,C,X[ 2],14); |
136
|
2
|
|
|
|
|
|
STEP_F2(C,D,E,A,B,X[ 5], 7); |
137
|
2
|
|
|
|
|
|
STEP_F2(B,C,D,E,A,X[ 8],12); |
138
|
2
|
|
|
|
|
|
STEP_F2(A,B,C,D,E,X[20], 9); |
139
|
2
|
|
|
|
|
|
STEP_F2(E,A,B,C,D,X[11],11); |
140
|
2
|
|
|
|
|
|
STEP_F2(D,E,A,B,C,X[14], 8); |
141
|
2
|
|
|
|
|
|
STEP_F2(C,D,E,A,B,X[ 1],15); |
142
|
2
|
|
|
|
|
|
STEP_F2(B,C,D,E,A,X[ 4], 6); |
143
|
2
|
|
|
|
|
|
STEP_F2(A,B,C,D,E,X[21],12); |
144
|
2
|
|
|
|
|
|
STEP_F2(E,A,B,C,D,X[ 7], 9); |
145
|
2
|
|
|
|
|
|
STEP_F2(D,E,A,B,C,X[10],14); |
146
|
2
|
|
|
|
|
|
STEP_F2(C,D,E,A,B,X[13], 5); |
147
|
2
|
|
|
|
|
|
STEP_F2(B,C,D,E,A,X[ 0],13); |
148
|
|
|
|
|
|
|
|
149
|
2
|
|
|
|
|
|
STEP_F3(A,B,C,D,E,X[26], 5); |
150
|
2
|
|
|
|
|
|
STEP_F3(E,A,B,C,D,X[12],11); |
151
|
2
|
|
|
|
|
|
STEP_F3(D,E,A,B,C,X[ 5], 7); |
152
|
2
|
|
|
|
|
|
STEP_F3(C,D,E,A,B,X[14],15); |
153
|
2
|
|
|
|
|
|
STEP_F3(B,C,D,E,A,X[ 7], 6); |
154
|
2
|
|
|
|
|
|
STEP_F3(A,B,C,D,E,X[27],13); |
155
|
2
|
|
|
|
|
|
STEP_F3(E,A,B,C,D,X[ 0], 8); |
156
|
2
|
|
|
|
|
|
STEP_F3(D,E,A,B,C,X[ 9],14); |
157
|
2
|
|
|
|
|
|
STEP_F3(C,D,E,A,B,X[ 2], 7); |
158
|
2
|
|
|
|
|
|
STEP_F3(B,C,D,E,A,X[11],12); |
159
|
2
|
|
|
|
|
|
STEP_F3(A,B,C,D,E,X[24], 9); |
160
|
2
|
|
|
|
|
|
STEP_F3(E,A,B,C,D,X[ 4],11); |
161
|
2
|
|
|
|
|
|
STEP_F3(D,E,A,B,C,X[13], 8); |
162
|
2
|
|
|
|
|
|
STEP_F3(C,D,E,A,B,X[ 6],15); |
163
|
2
|
|
|
|
|
|
STEP_F3(B,C,D,E,A,X[15], 6); |
164
|
2
|
|
|
|
|
|
STEP_F3(A,B,C,D,E,X[25],12); |
165
|
2
|
|
|
|
|
|
STEP_F3(E,A,B,C,D,X[ 8], 9); |
166
|
2
|
|
|
|
|
|
STEP_F3(D,E,A,B,C,X[ 1],14); |
167
|
2
|
|
|
|
|
|
STEP_F3(C,D,E,A,B,X[10], 5); |
168
|
2
|
|
|
|
|
|
STEP_F3(B,C,D,E,A,X[ 3],13); |
169
|
|
|
|
|
|
|
|
170
|
2
|
|
|
|
|
|
STEP_F4(A,B,C,D,E,X[30], 5); |
171
|
2
|
|
|
|
|
|
STEP_F4(E,A,B,C,D,X[ 7],11); |
172
|
2
|
|
|
|
|
|
STEP_F4(D,E,A,B,C,X[ 2], 7); |
173
|
2
|
|
|
|
|
|
STEP_F4(C,D,E,A,B,X[13],15); |
174
|
2
|
|
|
|
|
|
STEP_F4(B,C,D,E,A,X[ 8], 6); |
175
|
2
|
|
|
|
|
|
STEP_F4(A,B,C,D,E,X[31],13); |
176
|
2
|
|
|
|
|
|
STEP_F4(E,A,B,C,D,X[ 3], 8); |
177
|
2
|
|
|
|
|
|
STEP_F4(D,E,A,B,C,X[14],14); |
178
|
2
|
|
|
|
|
|
STEP_F4(C,D,E,A,B,X[ 9], 7); |
179
|
2
|
|
|
|
|
|
STEP_F4(B,C,D,E,A,X[ 4],12); |
180
|
2
|
|
|
|
|
|
STEP_F4(A,B,C,D,E,X[28], 9); |
181
|
2
|
|
|
|
|
|
STEP_F4(E,A,B,C,D,X[15],11); |
182
|
2
|
|
|
|
|
|
STEP_F4(D,E,A,B,C,X[10], 8); |
183
|
2
|
|
|
|
|
|
STEP_F4(C,D,E,A,B,X[ 5],15); |
184
|
2
|
|
|
|
|
|
STEP_F4(B,C,D,E,A,X[ 0], 6); |
185
|
2
|
|
|
|
|
|
STEP_F4(A,B,C,D,E,X[29],12); |
186
|
2
|
|
|
|
|
|
STEP_F4(E,A,B,C,D,X[11], 9); |
187
|
2
|
|
|
|
|
|
STEP_F4(D,E,A,B,C,X[ 6],14); |
188
|
2
|
|
|
|
|
|
STEP_F4(C,D,E,A,B,X[ 1], 5); |
189
|
2
|
|
|
|
|
|
STEP_F4(B,C,D,E,A,X[12],13); |
190
|
|
|
|
|
|
|
|
191
|
2
|
|
|
|
|
|
hash[0] += A; |
192
|
2
|
|
|
|
|
|
hash[1] += B; |
193
|
2
|
|
|
|
|
|
hash[2] += C; |
194
|
2
|
|
|
|
|
|
hash[3] += D; |
195
|
2
|
|
|
|
|
|
hash[4] += E; |
196
|
|
|
|
|
|
|
} |
197
|
2
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
/** |
200
|
|
|
|
|
|
|
* Calculate message hash. |
201
|
|
|
|
|
|
|
* Can be called repeatedly with chunks of the message to be hashed. |
202
|
|
|
|
|
|
|
* |
203
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
204
|
|
|
|
|
|
|
* @param msg message chunk |
205
|
|
|
|
|
|
|
* @param size length of the message chunk |
206
|
|
|
|
|
|
|
*/ |
207
|
2
|
|
|
|
|
|
void rhash_has160_update(has160_ctx* ctx, const unsigned char* msg, size_t size) |
208
|
|
|
|
|
|
|
{ |
209
|
2
|
|
|
|
|
|
unsigned index = (unsigned)ctx->length & 63; |
210
|
2
|
|
|
|
|
|
ctx->length += size; |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
/* fill partial block */ |
213
|
2
|
50
|
|
|
|
|
if (index) { |
214
|
0
|
|
|
|
|
|
unsigned left = has160_block_size - index; |
215
|
0
|
|
|
|
|
|
memcpy((char*)ctx->message + index, msg, (size < left ? size : left)); |
216
|
0
|
0
|
|
|
|
|
if (size < left) return; |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
/* process partial block */ |
219
|
0
|
|
|
|
|
|
rhash_has160_process_block(ctx->hash, ctx->message); |
220
|
0
|
|
|
|
|
|
msg += left; |
221
|
0
|
|
|
|
|
|
size -= left; |
222
|
|
|
|
|
|
|
} |
223
|
2
|
50
|
|
|
|
|
while (size >= has160_block_size) { |
224
|
|
|
|
|
|
|
unsigned* aligned_message_block; |
225
|
0
|
0
|
|
|
|
|
if (IS_ALIGNED_32(msg)) { |
226
|
|
|
|
|
|
|
/* the most common case is processing a 32-bit aligned message |
227
|
|
|
|
|
|
|
without copying it */ |
228
|
0
|
|
|
|
|
|
aligned_message_block = (unsigned*)msg; |
229
|
|
|
|
|
|
|
} else { |
230
|
0
|
|
|
|
|
|
memcpy(ctx->message, msg, has160_block_size); |
231
|
0
|
|
|
|
|
|
aligned_message_block = ctx->message; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
0
|
|
|
|
|
|
rhash_has160_process_block(ctx->hash, aligned_message_block); |
235
|
0
|
|
|
|
|
|
msg += has160_block_size; |
236
|
0
|
|
|
|
|
|
size -= has160_block_size; |
237
|
|
|
|
|
|
|
} |
238
|
2
|
50
|
|
|
|
|
if (size) { |
239
|
|
|
|
|
|
|
/* save leftovers */ |
240
|
2
|
|
|
|
|
|
memcpy(ctx->message, msg, size); |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
} |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
/** |
245
|
|
|
|
|
|
|
* Compute and save calculated hash into the given array. |
246
|
|
|
|
|
|
|
* |
247
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
248
|
|
|
|
|
|
|
* @param result calculated hash in binary form |
249
|
|
|
|
|
|
|
*/ |
250
|
2
|
|
|
|
|
|
void rhash_has160_final(has160_ctx* ctx, unsigned char* result) |
251
|
|
|
|
|
|
|
{ |
252
|
2
|
|
|
|
|
|
unsigned shift = ((unsigned)ctx->length & 3) * 8; |
253
|
2
|
|
|
|
|
|
unsigned index = ((unsigned)ctx->length & 63) >> 2; |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
/* pad message and run for last block */ |
256
|
|
|
|
|
|
|
#if IS_LITTLE_ENDIAN |
257
|
2
|
|
|
|
|
|
ctx->message[index] &= ~(0xFFFFFFFFu << shift); |
258
|
2
|
|
|
|
|
|
ctx->message[index++] ^= 0x80u << shift; |
259
|
|
|
|
|
|
|
#else |
260
|
|
|
|
|
|
|
ctx->message[index] &= ~(0xFFFFFFFFu >> shift); |
261
|
|
|
|
|
|
|
ctx->message[index++] ^= 0x80000000u >> shift; |
262
|
|
|
|
|
|
|
#endif |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
/* if no room left in the message to store 64-bit message length */ |
265
|
2
|
50
|
|
|
|
|
if (index > 14) { |
266
|
|
|
|
|
|
|
/* then fill the rest with zeros and process it */ |
267
|
0
|
0
|
|
|
|
|
while (index < 16) { |
268
|
0
|
|
|
|
|
|
ctx->message[index++] = 0; |
269
|
|
|
|
|
|
|
} |
270
|
0
|
|
|
|
|
|
rhash_has160_process_block(ctx->hash, ctx->message); |
271
|
0
|
|
|
|
|
|
index = 0; |
272
|
|
|
|
|
|
|
} |
273
|
28
|
100
|
|
|
|
|
while (index < 14) { |
274
|
26
|
|
|
|
|
|
ctx->message[index++] = 0; |
275
|
|
|
|
|
|
|
} |
276
|
2
|
|
|
|
|
|
ctx->message[14] = le2me_32( (unsigned)(ctx->length << 3) ); |
277
|
2
|
|
|
|
|
|
ctx->message[15] = le2me_32( (unsigned)(ctx->length >> 29) ); |
278
|
2
|
|
|
|
|
|
rhash_has160_process_block(ctx->hash, ctx->message); |
279
|
|
|
|
|
|
|
|
280
|
2
|
|
|
|
|
|
le32_copy(result, 0, &ctx->hash, has160_hash_size); |
281
|
2
|
|
|
|
|
|
} |