line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* aich.c - an implementation of EMule AICH Algorithm. |
2
|
|
|
|
|
|
|
* Description: http://www.amule.org/wiki/index.php/AICH. |
3
|
|
|
|
|
|
|
* |
4
|
|
|
|
|
|
|
* Copyright (c) 2008, Aleksey Kravchenko |
5
|
|
|
|
|
|
|
* |
6
|
|
|
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any |
7
|
|
|
|
|
|
|
* purpose with or without fee is hereby granted. |
8
|
|
|
|
|
|
|
* |
9
|
|
|
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH |
10
|
|
|
|
|
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY |
11
|
|
|
|
|
|
|
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, |
12
|
|
|
|
|
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM |
13
|
|
|
|
|
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE |
14
|
|
|
|
|
|
|
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR |
15
|
|
|
|
|
|
|
* PERFORMANCE OF THIS SOFTWARE. |
16
|
|
|
|
|
|
|
* |
17
|
|
|
|
|
|
|
* The AICH Algorithm: |
18
|
|
|
|
|
|
|
* |
19
|
|
|
|
|
|
|
* Each ed2k chunk (9728000 bytes) is divided into 53 parts (52x 180KB and |
20
|
|
|
|
|
|
|
* 1x 140KB) and each of these parts are hashed using the SHA1 algorithm. |
21
|
|
|
|
|
|
|
* Each of these hashes is called a Block Hash. By combining pairs of Block |
22
|
|
|
|
|
|
|
* Hashes (i.e. each part with the part next to it) algorithm will get a whole |
23
|
|
|
|
|
|
|
* tree of hashes (this tree which is therefore a hashset made of all of the |
24
|
|
|
|
|
|
|
* other Block Hashes is called the AICH Hashset). Each hash which is neither |
25
|
|
|
|
|
|
|
* a Block Hash nor the Root Hash, is a Verifying Hash. The hash at the top |
26
|
|
|
|
|
|
|
* level is the Root Hash and it is supposed to be provided by the ed2k link |
27
|
|
|
|
|
|
|
* when releasing. |
28
|
|
|
|
|
|
|
*/ |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
#include |
31
|
|
|
|
|
|
|
#include |
32
|
|
|
|
|
|
|
#include |
33
|
|
|
|
|
|
|
#include "byte_order.h" |
34
|
|
|
|
|
|
|
#include "algorithms.h" |
35
|
|
|
|
|
|
|
#include "aich.h" |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#define ED2K_CHUNK_SIZE 9728000 |
38
|
|
|
|
|
|
|
#define FULL_BLOCK_SIZE 184320 |
39
|
|
|
|
|
|
|
#define LAST_BLOCK_SIZE 143360 |
40
|
|
|
|
|
|
|
#define BLOCKS_PER_CHUNK 53 |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/* |
43
|
|
|
|
|
|
|
* The Algorithm could be a little faster if it knows a |
44
|
|
|
|
|
|
|
* hashed message size beforehand. This would allow |
45
|
|
|
|
|
|
|
* to build balanced tree while hashing the message. |
46
|
|
|
|
|
|
|
* |
47
|
|
|
|
|
|
|
* But this AICH implementation works with unknown |
48
|
|
|
|
|
|
|
* message size like other well-known hash algorithms |
49
|
|
|
|
|
|
|
* (it was fun to write a such one). |
50
|
|
|
|
|
|
|
* So, it just stores sha1 hashes and builds balanced tree |
51
|
|
|
|
|
|
|
* only on the last step, when the full message processed |
52
|
|
|
|
|
|
|
* and its size is already known. |
53
|
|
|
|
|
|
|
*/ |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
56
|
|
|
|
|
|
|
#define SHA1_INIT(ctx) ((pinit_t)ctx->sha_init)(&ctx->sha1_context) |
57
|
|
|
|
|
|
|
#define SHA1_UPDATE(ctx, msg, size) ((pupdate_t)ctx->sha_update)(&ctx->sha1_context, (msg), (size)) |
58
|
|
|
|
|
|
|
#define SHA1_FINAL(ctx, result) ((pfinal_t)ctx->sha_final)(&ctx->sha1_context, (result)) |
59
|
|
|
|
|
|
|
#else |
60
|
|
|
|
|
|
|
#define SHA1_INIT(ctx) rhash_sha1_init(&ctx->sha1_context) |
61
|
|
|
|
|
|
|
#define SHA1_UPDATE(ctx, msg, size) rhash_sha1_update(&ctx->sha1_context, (msg), (size)) |
62
|
|
|
|
|
|
|
#define SHA1_FINAL(ctx, result) rhash_sha1_final(&ctx->sha1_context, (result)) |
63
|
|
|
|
|
|
|
#endif |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
/** |
66
|
|
|
|
|
|
|
* Initialize algorithm context before calculaing hash. |
67
|
|
|
|
|
|
|
* |
68
|
|
|
|
|
|
|
* @param ctx context to initialize |
69
|
|
|
|
|
|
|
*/ |
70
|
2
|
|
|
|
|
|
void rhash_aich_init(aich_ctx* ctx) |
71
|
|
|
|
|
|
|
{ |
72
|
2
|
|
|
|
|
|
memset(ctx, 0, sizeof(aich_ctx)); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
75
|
|
|
|
|
|
|
{ |
76
|
|
|
|
|
|
|
rhash_hash_info* sha1_info = &rhash_info_table[3]; |
77
|
|
|
|
|
|
|
assert(sha1_info->info->hash_id == RHASH_SHA1); |
78
|
|
|
|
|
|
|
assert(sha1_info->context_size <= (sizeof(sha1_ctx) + sizeof(unsigned long))); |
79
|
|
|
|
|
|
|
ctx->sha_init = sha1_info->init; |
80
|
|
|
|
|
|
|
ctx->sha_update = sha1_info->update; |
81
|
|
|
|
|
|
|
ctx->sha_final = sha1_info->final; |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
#endif |
84
|
|
|
|
|
|
|
|
85
|
2
|
|
|
|
|
|
SHA1_INIT(ctx); |
86
|
2
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
/* define macrosses to access chunk table */ |
89
|
|
|
|
|
|
|
#define CT_BITS 8 |
90
|
|
|
|
|
|
|
#define CT_GROUP_SIZE (1 << CT_BITS) |
91
|
|
|
|
|
|
|
typedef unsigned char hash_pair_t[2][sha1_hash_size]; |
92
|
|
|
|
|
|
|
typedef hash_pair_t hash_pairs_group_t[CT_GROUP_SIZE]; |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
#define CT_INDEX(chunk_num) ((chunk_num) & (CT_GROUP_SIZE - 1)) |
95
|
|
|
|
|
|
|
#define GET_HASH_PAIR(ctx, chunk_num) \ |
96
|
|
|
|
|
|
|
(((hash_pair_t*)(ctx->chunk_table[chunk_num >> CT_BITS]))[CT_INDEX(chunk_num)]) |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
/** |
99
|
|
|
|
|
|
|
* Resize the table if needed to ensure it contains space for given chunk_num. |
100
|
|
|
|
|
|
|
* and allocate hash_pairs_group_t element at this index. |
101
|
|
|
|
|
|
|
* |
102
|
|
|
|
|
|
|
* @param ctx algorithm context |
103
|
|
|
|
|
|
|
* @param chunk_num the number of chunks required |
104
|
|
|
|
|
|
|
*/ |
105
|
0
|
|
|
|
|
|
static void rhash_aich_chunk_table_extend(aich_ctx* ctx, unsigned chunk_num) |
106
|
|
|
|
|
|
|
{ |
107
|
0
|
|
|
|
|
|
unsigned index = (chunk_num >> CT_BITS); |
108
|
|
|
|
|
|
|
assert(sizeof(hash_pair_t) == 40); |
109
|
|
|
|
|
|
|
assert(sizeof(hash_pairs_group_t) == (40 * CT_GROUP_SIZE)); /* 10KiB */ |
110
|
|
|
|
|
|
|
assert(CT_GROUP_SIZE == 256); |
111
|
0
|
0
|
|
|
|
|
assert(CT_INDEX(chunk_num) == 0); |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
/* check main assumptions */ |
114
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table == 0 || ctx->chunk_table[index - 1] != 0); /* table is empty or full */ |
|
|
0
|
|
|
|
|
|
115
|
0
|
0
|
|
|
|
|
assert(index <= ctx->allocated); |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
/* check if there is enough space allocated */ |
118
|
0
|
0
|
|
|
|
|
if (index >= ctx->allocated) { |
119
|
|
|
|
|
|
|
/* resize the table by allocating some extra space */ |
120
|
0
|
0
|
|
|
|
|
size_t new_size = (ctx->allocated == 0 ? 64 : ctx->allocated * 2); |
121
|
|
|
|
|
|
|
void** new_block; |
122
|
0
|
0
|
|
|
|
|
assert(index == ctx->allocated); |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
/* re-size the chunk table to new_size */ |
125
|
0
|
|
|
|
|
|
new_block = (void**)realloc(ctx->chunk_table, new_size * sizeof(void*)); |
126
|
0
|
0
|
|
|
|
|
if (new_block == 0) { |
127
|
0
|
|
|
|
|
|
free(ctx->chunk_table); |
128
|
0
|
|
|
|
|
|
ctx->chunk_table = 0; |
129
|
0
|
|
|
|
|
|
ctx->error = 1; |
130
|
0
|
|
|
|
|
|
return; |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
|
133
|
0
|
|
|
|
|
|
memset(new_block + ctx->allocated, 0, (new_size - ctx->allocated) * sizeof(void*)); |
134
|
0
|
|
|
|
|
|
ctx->chunk_table = new_block; |
135
|
0
|
|
|
|
|
|
ctx->allocated = new_size; |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
/* add new hash_pairs_group_t block to the table */ |
139
|
0
|
0
|
|
|
|
|
assert(index < ctx->allocated); |
140
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table != 0); |
141
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table[index] == 0); |
142
|
|
|
|
|
|
|
|
143
|
0
|
|
|
|
|
|
ctx->chunk_table[index] = malloc(sizeof(hash_pairs_group_t)); |
144
|
0
|
0
|
|
|
|
|
if (ctx->chunk_table[index] == 0) ctx->error = 1; |
145
|
|
|
|
|
|
|
} |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
/** |
148
|
|
|
|
|
|
|
* Free dynamically allocated memory for internal structures |
149
|
|
|
|
|
|
|
* used by hashing algorithm. |
150
|
|
|
|
|
|
|
* |
151
|
|
|
|
|
|
|
* @param ctx AICH algorithm context to cleanup |
152
|
|
|
|
|
|
|
*/ |
153
|
1
|
|
|
|
|
|
void rhash_aich_cleanup(aich_ctx* ctx) |
154
|
|
|
|
|
|
|
{ |
155
|
|
|
|
|
|
|
size_t i; |
156
|
1
|
|
|
|
|
|
size_t table_size = (ctx->chunks_number + CT_GROUP_SIZE - 1) / CT_GROUP_SIZE; |
157
|
|
|
|
|
|
|
|
158
|
1
|
50
|
|
|
|
|
if (ctx->chunk_table != 0) { |
159
|
0
|
0
|
|
|
|
|
assert(table_size <= ctx->allocated); |
160
|
0
|
0
|
|
|
|
|
assert(table_size == ctx->allocated || ctx->chunk_table[table_size] == 0); |
|
|
0
|
|
|
|
|
|
161
|
0
|
0
|
|
|
|
|
for (i = 0; i < table_size; i++) free(ctx->chunk_table[i]); |
162
|
0
|
|
|
|
|
|
free(ctx->chunk_table); |
163
|
0
|
|
|
|
|
|
ctx->chunk_table = 0; |
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
|
166
|
1
|
|
|
|
|
|
free(ctx->block_hashes); |
167
|
1
|
|
|
|
|
|
ctx->block_hashes = 0; |
168
|
1
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
#define AICH_HASH_FULL_TREE 0 |
171
|
|
|
|
|
|
|
#define AICH_HASH_LEFT_BRANCH 1 |
172
|
|
|
|
|
|
|
#define AICH_HASH_RIGHT_BRANCH 2 |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
/** |
175
|
|
|
|
|
|
|
* Calculate an AICH tree hash, based ether on hashes of 180KB parts |
176
|
|
|
|
|
|
|
* (for an ed2k chunk) or on stored ed2k chunks (for the whole tree hash). |
177
|
|
|
|
|
|
|
* |
178
|
|
|
|
|
|
|
* @param ctx algorithm context |
179
|
|
|
|
|
|
|
* @param result pointer to receive calculated tree hash |
180
|
|
|
|
|
|
|
* @param type the type of hash to calculate, can be one of constants |
181
|
|
|
|
|
|
|
* AICH_HASH_LEFT_BRANCH, AICH_HASH_RIGHT_BRANCH or AICH_HASH_FULL_TREE. |
182
|
|
|
|
|
|
|
*/ |
183
|
0
|
|
|
|
|
|
static void rhash_aich_hash_tree(aich_ctx* ctx, unsigned char* result, int type) |
184
|
|
|
|
|
|
|
{ |
185
|
0
|
|
|
|
|
|
unsigned index = 0; /* leaf index */ |
186
|
|
|
|
|
|
|
unsigned blocks; |
187
|
0
|
|
|
|
|
|
int level = 0; |
188
|
0
|
|
|
|
|
|
unsigned is_left_branch = (type == AICH_HASH_RIGHT_BRANCH ? 0x0 : 0x1); |
189
|
0
|
|
|
|
|
|
uint64_t path = is_left_branch; |
190
|
|
|
|
|
|
|
unsigned blocks_stack[56]; |
191
|
|
|
|
|
|
|
unsigned char sha1_stack[56][sha1_hash_size]; |
192
|
|
|
|
|
|
|
|
193
|
0
|
0
|
|
|
|
|
if (ctx->error) return; |
194
|
0
|
0
|
|
|
|
|
assert(ctx->index <= ED2K_CHUNK_SIZE); |
195
|
0
|
0
|
|
|
|
|
assert(type == AICH_HASH_FULL_TREE ? ctx->chunk_table != 0 : ctx->block_hashes != 0); |
|
|
0
|
|
|
|
|
|
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
/* calculate number of leafs in the tree */ |
198
|
0
|
0
|
|
|
|
|
blocks_stack[0] = blocks = (unsigned)(type == AICH_HASH_FULL_TREE ? |
199
|
0
|
|
|
|
|
|
ctx->chunks_number : (ctx->index + FULL_BLOCK_SIZE - 1) / FULL_BLOCK_SIZE); |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
while (1) { |
202
|
|
|
|
|
|
|
unsigned char sha1_message[sha1_hash_size]; |
203
|
|
|
|
|
|
|
unsigned char* leaf_hash; |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
/* go into the left branches until a leaf block is reached */ |
206
|
0
|
0
|
|
|
|
|
while (blocks > 1) { |
207
|
|
|
|
|
|
|
/* step down into the left branch */ |
208
|
0
|
|
|
|
|
|
blocks = (blocks + ((unsigned)path & 0x1)) / 2; |
209
|
0
|
|
|
|
|
|
level++; |
210
|
0
|
0
|
|
|
|
|
assert(level < 56); /* assumption filesize < (2^56 * 9MiB) */ |
211
|
0
|
|
|
|
|
|
blocks_stack[level] = blocks; |
212
|
0
|
|
|
|
|
|
path = (path << 1) | 0x1; /* mark branch as left */ |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
/* read a leaf hash */ |
216
|
0
|
|
|
|
|
|
leaf_hash = &(ctx->block_hashes[index][0]); |
217
|
|
|
|
|
|
|
|
218
|
0
|
0
|
|
|
|
|
if (type == AICH_HASH_FULL_TREE) { |
219
|
0
|
|
|
|
|
|
is_left_branch = (unsigned)path & 0x1; |
220
|
|
|
|
|
|
|
|
221
|
0
|
|
|
|
|
|
leaf_hash = GET_HASH_PAIR(ctx, index)[is_left_branch]; |
222
|
|
|
|
|
|
|
} |
223
|
0
|
|
|
|
|
|
index++; |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
/* climb up the tree until a left branch is reached */ |
226
|
0
|
0
|
|
|
|
|
for (; level > 0 && (path & 0x01) == 0; path >>= 1) { |
|
|
0
|
|
|
|
|
|
227
|
0
|
|
|
|
|
|
SHA1_INIT(ctx); |
228
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, sha1_stack[level], sha1_hash_size); |
229
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, leaf_hash, sha1_hash_size); |
230
|
0
|
|
|
|
|
|
SHA1_FINAL(ctx, sha1_message); |
231
|
0
|
|
|
|
|
|
leaf_hash = sha1_message; |
232
|
0
|
|
|
|
|
|
level--; |
233
|
|
|
|
|
|
|
} |
234
|
0
|
0
|
|
|
|
|
memcpy((level > 0 ? sha1_stack[level] : result), leaf_hash, 20); |
235
|
|
|
|
|
|
|
|
236
|
0
|
0
|
|
|
|
|
if (level == 0) break; |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
/* jump at the current level from left to right branch */ |
239
|
0
|
|
|
|
|
|
path &= ~0x1; /* mark branch as right */ |
240
|
0
|
|
|
|
|
|
is_left_branch = ((unsigned)path >> 1) & 1; |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
/* calculate number of blocks at right branch of the current level */ |
243
|
0
|
|
|
|
|
|
blocks_stack[level] = |
244
|
0
|
|
|
|
|
|
(blocks_stack[level - 1] + 1 - is_left_branch) / 2; |
245
|
0
|
|
|
|
|
|
blocks = blocks_stack[level]; |
246
|
0
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
} |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
#define AICH_PROCESS_FINAL_BLOCK 1 |
250
|
|
|
|
|
|
|
#define AICH_PROCESS_FLUSH_BLOCK 2 |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
/** |
253
|
|
|
|
|
|
|
* Calculate and store a hash for a 180K/140K block. |
254
|
|
|
|
|
|
|
* Also, if it is the last block of a 9.2MiB ed2k chunk or of the hashed message, |
255
|
|
|
|
|
|
|
* then also calculate the AICH tree-hash of the current ed2k chunk. |
256
|
|
|
|
|
|
|
* |
257
|
|
|
|
|
|
|
* @param ctx algorithm context |
258
|
|
|
|
|
|
|
* @param type the actions to take, can be combination of bits AICH_PROCESS_FINAL_BLOCK |
259
|
|
|
|
|
|
|
* and AICH_PROCESS_FLUSH_BLOCK |
260
|
|
|
|
|
|
|
*/ |
261
|
0
|
|
|
|
|
|
static void rhash_aich_process_block(aich_ctx* ctx, int type) |
262
|
|
|
|
|
|
|
{ |
263
|
0
|
0
|
|
|
|
|
assert(type != 0); |
264
|
0
|
0
|
|
|
|
|
assert(ctx->index <= ED2K_CHUNK_SIZE); |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
/* if there is unprocessed data left in the current 180K block. */ |
267
|
0
|
0
|
|
|
|
|
if ((type & AICH_PROCESS_FLUSH_BLOCK) != 0) |
268
|
|
|
|
|
|
|
{ |
269
|
|
|
|
|
|
|
/* ensure that the block_hashes array is allocated to save the result */ |
270
|
0
|
0
|
|
|
|
|
if (ctx->block_hashes == NULL) { |
271
|
0
|
|
|
|
|
|
ctx->block_hashes = (unsigned char (*)[sha1_hash_size])malloc(BLOCKS_PER_CHUNK * sha1_hash_size); |
272
|
0
|
0
|
|
|
|
|
if (ctx->block_hashes == NULL) { |
273
|
0
|
|
|
|
|
|
ctx->error = 1; |
274
|
0
|
|
|
|
|
|
return; |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
/* store the 180-KiB block hash to the block_hashes array */ |
279
|
0
|
0
|
|
|
|
|
assert(((ctx->index - 1) / FULL_BLOCK_SIZE) < BLOCKS_PER_CHUNK); |
280
|
0
|
|
|
|
|
|
SHA1_FINAL(ctx, ctx->block_hashes[(ctx->index - 1) / FULL_BLOCK_SIZE]); |
281
|
|
|
|
|
|
|
} |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
/* check, if it's time to calculate the tree hash for the current ed2k chunk */ |
284
|
0
|
0
|
|
|
|
|
if (ctx->index >= ED2K_CHUNK_SIZE || (type & AICH_PROCESS_FINAL_BLOCK)) { |
|
|
0
|
|
|
|
|
|
285
|
|
|
|
|
|
|
unsigned char (*pair)[sha1_hash_size]; |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
/* ensure, that we have the space to store tree hash */ |
288
|
0
|
0
|
|
|
|
|
if (CT_INDEX(ctx->chunks_number) == 0) { |
289
|
0
|
|
|
|
|
|
rhash_aich_chunk_table_extend(ctx, (unsigned)ctx->chunks_number); |
290
|
0
|
0
|
|
|
|
|
if (ctx->error) return; |
291
|
|
|
|
|
|
|
} |
292
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table != 0); |
293
|
0
|
0
|
|
|
|
|
assert(ctx->block_hashes != 0); |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
/* calculate tree hash and save results to chunk_table */ |
296
|
0
|
|
|
|
|
|
pair = GET_HASH_PAIR(ctx, ctx->chunks_number); |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
/* small optimization: skip a left-branch-hash for the last chunk */ |
299
|
0
|
0
|
|
|
|
|
if (!(type & AICH_PROCESS_FINAL_BLOCK) || ctx->chunks_number == 0) { |
|
|
0
|
|
|
|
|
|
300
|
|
|
|
|
|
|
/* calculate a tree hash to be used in left branch */ |
301
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, pair[1], AICH_HASH_LEFT_BRANCH); |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
/* small optimization: skip right-branch-hash for the very first chunk */ |
305
|
0
|
0
|
|
|
|
|
if (ctx->chunks_number > 0) { |
306
|
|
|
|
|
|
|
/* calculate a tree hash to be used in right branch */ |
307
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, pair[0], AICH_HASH_RIGHT_BRANCH); |
308
|
|
|
|
|
|
|
} |
309
|
|
|
|
|
|
|
|
310
|
0
|
|
|
|
|
|
ctx->index = 0; /* mark that the whole ed2k chunk was processed */ |
311
|
0
|
|
|
|
|
|
ctx->chunks_number++; |
312
|
|
|
|
|
|
|
} |
313
|
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
/** |
316
|
|
|
|
|
|
|
* Calculate message hash. |
317
|
|
|
|
|
|
|
* Can be called repeatedly with chunks of the message to be hashed. |
318
|
|
|
|
|
|
|
* |
319
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
320
|
|
|
|
|
|
|
* @param msg message chunk |
321
|
|
|
|
|
|
|
* @param size length of the message chunk |
322
|
|
|
|
|
|
|
*/ |
323
|
2
|
|
|
|
|
|
void rhash_aich_update(aich_ctx* ctx, const unsigned char* msg, size_t size) |
324
|
|
|
|
|
|
|
{ |
325
|
2
|
50
|
|
|
|
|
if (ctx->error) return; |
326
|
|
|
|
|
|
|
|
327
|
2
|
50
|
|
|
|
|
while (size > 0) { |
328
|
2
|
|
|
|
|
|
unsigned left_in_chunk = ED2K_CHUNK_SIZE - ctx->index; |
329
|
2
|
50
|
|
|
|
|
unsigned block_left = (left_in_chunk <= LAST_BLOCK_SIZE ? left_in_chunk : |
330
|
2
|
|
|
|
|
|
FULL_BLOCK_SIZE - ctx->index % FULL_BLOCK_SIZE); |
331
|
2
|
50
|
|
|
|
|
assert(block_left > 0); |
332
|
|
|
|
|
|
|
|
333
|
2
|
50
|
|
|
|
|
if (size >= block_left) { |
334
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, msg, block_left); |
335
|
0
|
|
|
|
|
|
msg += block_left; |
336
|
0
|
|
|
|
|
|
size -= block_left; |
337
|
0
|
|
|
|
|
|
ctx->index += block_left; |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
/* process a 180KiB-blok */ |
340
|
0
|
|
|
|
|
|
rhash_aich_process_block(ctx, AICH_PROCESS_FLUSH_BLOCK); |
341
|
0
|
|
|
|
|
|
SHA1_INIT(ctx); |
342
|
|
|
|
|
|
|
} else { |
343
|
|
|
|
|
|
|
/* add to a leaf block */ |
344
|
2
|
|
|
|
|
|
SHA1_UPDATE(ctx, msg, size); |
345
|
2
|
|
|
|
|
|
ctx->index += (unsigned)size; |
346
|
2
|
|
|
|
|
|
break; |
347
|
|
|
|
|
|
|
} |
348
|
|
|
|
|
|
|
} |
349
|
2
|
50
|
|
|
|
|
assert(ctx->index < ED2K_CHUNK_SIZE); |
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
/** |
353
|
|
|
|
|
|
|
* Store calculated hash into the given array. |
354
|
|
|
|
|
|
|
* |
355
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
356
|
|
|
|
|
|
|
* @param result calculated hash in binary form |
357
|
|
|
|
|
|
|
*/ |
358
|
2
|
|
|
|
|
|
void rhash_aich_final(aich_ctx* ctx, unsigned char result[20]) |
359
|
|
|
|
|
|
|
{ |
360
|
2
|
|
|
|
|
|
uint64_t total_size = |
361
|
2
|
|
|
|
|
|
((uint64_t)ctx->chunks_number * ED2K_CHUNK_SIZE) + ctx->index; |
362
|
2
|
|
|
|
|
|
unsigned char* const hash = (unsigned char*)ctx->sha1_context.hash; |
363
|
|
|
|
|
|
|
|
364
|
2
|
50
|
|
|
|
|
if (ctx->chunks_number == 0 && ctx->block_hashes == NULL) { |
|
|
50
|
|
|
|
|
|
365
|
2
|
50
|
|
|
|
|
assert(ctx->index < FULL_BLOCK_SIZE); |
366
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
367
|
|
|
|
|
|
|
SHA1_FINAL(ctx, hash); /* return just sha1 hash */ |
368
|
|
|
|
|
|
|
#else |
369
|
2
|
|
|
|
|
|
SHA1_FINAL(ctx, 0); /* return just sha1 hash */ |
370
|
|
|
|
|
|
|
#if IS_LITTLE_ENDIAN |
371
|
2
|
|
|
|
|
|
rhash_u32_mem_swap(ctx->sha1_context.hash, 5); |
372
|
|
|
|
|
|
|
#endif |
373
|
|
|
|
|
|
|
#endif |
374
|
2
|
50
|
|
|
|
|
if (result) memcpy(result, hash, sha1_hash_size); |
375
|
2
|
|
|
|
|
|
return; |
376
|
|
|
|
|
|
|
} |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
/* if there is unprocessed data left in the last 180K block */ |
379
|
0
|
0
|
|
|
|
|
if ((ctx->index % FULL_BLOCK_SIZE) > 0) { |
380
|
|
|
|
|
|
|
/* then process the last block */ |
381
|
0
|
0
|
|
|
|
|
rhash_aich_process_block(ctx, ctx->block_hashes != NULL ? |
382
|
|
|
|
|
|
|
AICH_PROCESS_FINAL_BLOCK | AICH_PROCESS_FLUSH_BLOCK : AICH_PROCESS_FLUSH_BLOCK); |
383
|
|
|
|
|
|
|
} |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
/* if processed message was shorter than a ed2k chunk */ |
386
|
0
|
0
|
|
|
|
|
if (ctx->chunks_number == 0) { |
387
|
|
|
|
|
|
|
/* then return the aich hash for the first chunk */ |
388
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, hash, AICH_HASH_LEFT_BRANCH); |
389
|
|
|
|
|
|
|
} else { |
390
|
0
|
0
|
|
|
|
|
if (ctx->index > 0) { |
391
|
|
|
|
|
|
|
/* process the last block of the message */ |
392
|
0
|
|
|
|
|
|
rhash_aich_process_block(ctx, AICH_PROCESS_FINAL_BLOCK); |
393
|
|
|
|
|
|
|
} |
394
|
0
|
0
|
|
|
|
|
assert(ctx->chunks_number > 0); |
395
|
0
|
0
|
|
|
|
|
assert(ctx->block_hashes != NULL); |
396
|
|
|
|
|
|
|
|
397
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, hash, AICH_HASH_FULL_TREE); |
398
|
|
|
|
|
|
|
} |
399
|
|
|
|
|
|
|
|
400
|
0
|
|
|
|
|
|
rhash_aich_cleanup(ctx); |
401
|
0
|
|
|
|
|
|
ctx->sha1_context.length = total_size; /* store total message size */ |
402
|
0
|
0
|
|
|
|
|
if (result) memcpy(result, hash, sha1_hash_size); |
403
|
|
|
|
|
|
|
} |