| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | /* aich.c - an implementation of EMule AICH Algorithm. | 
| 2 |  |  |  |  |  |  | * Description: http://www.amule.org/wiki/index.php/AICH. | 
| 3 |  |  |  |  |  |  | * | 
| 4 |  |  |  |  |  |  | * Copyright (c) 2008, Aleksey Kravchenko | 
| 5 |  |  |  |  |  |  | * | 
| 6 |  |  |  |  |  |  | * Permission to use, copy, modify, and/or distribute this software for any | 
| 7 |  |  |  |  |  |  | * purpose with or without fee is hereby granted. | 
| 8 |  |  |  |  |  |  | * | 
| 9 |  |  |  |  |  |  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH | 
| 10 |  |  |  |  |  |  | * REGARD TO THIS SOFTWARE  INCLUDING ALL IMPLIED WARRANTIES OF  MERCHANTABILITY | 
| 11 |  |  |  |  |  |  | * AND FITNESS.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, | 
| 12 |  |  |  |  |  |  | * INDIRECT,  OR CONSEQUENTIAL DAMAGES  OR ANY DAMAGES WHATSOEVER RESULTING FROM | 
| 13 |  |  |  |  |  |  | * LOSS OF USE,  DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT,  NEGLIGENCE | 
| 14 |  |  |  |  |  |  | * OR OTHER TORTIOUS ACTION,  ARISING OUT OF  OR IN CONNECTION  WITH THE USE  OR | 
| 15 |  |  |  |  |  |  | * PERFORMANCE OF THIS SOFTWARE. | 
| 16 |  |  |  |  |  |  | * | 
| 17 |  |  |  |  |  |  | * The AICH Algorithm: | 
| 18 |  |  |  |  |  |  | * | 
| 19 |  |  |  |  |  |  | * Each ed2k chunk (9728000 bytes) is divided into 53 parts (52x 180KB and | 
| 20 |  |  |  |  |  |  | * 1x 140KB) and each of these parts are hashed using the SHA1 algorithm. | 
| 21 |  |  |  |  |  |  | * Each of these hashes is called a Block Hash. By combining pairs of Block | 
| 22 |  |  |  |  |  |  | * Hashes (i.e. each part with the part next to it) algorithm will get a whole | 
| 23 |  |  |  |  |  |  | * tree of hashes (this tree which is therefore a hashset made of all of the | 
| 24 |  |  |  |  |  |  | * other Block Hashes is called the AICH Hashset). Each hash which is neither | 
| 25 |  |  |  |  |  |  | * a Block Hash nor the Root Hash, is a Verifying Hash. The hash at the top | 
| 26 |  |  |  |  |  |  | * level is the Root Hash and it is supposed to be provided by the ed2k link | 
| 27 |  |  |  |  |  |  | * when releasing. | 
| 28 |  |  |  |  |  |  | */ | 
| 29 |  |  |  |  |  |  |  | 
| 30 |  |  |  |  |  |  | #include | 
| 31 |  |  |  |  |  |  | #include | 
| 32 |  |  |  |  |  |  | #include | 
| 33 |  |  |  |  |  |  | #include "byte_order.h" | 
| 34 |  |  |  |  |  |  | #include "algorithms.h" | 
| 35 |  |  |  |  |  |  | #include "aich.h" | 
| 36 |  |  |  |  |  |  |  | 
| 37 |  |  |  |  |  |  | #define ED2K_CHUNK_SIZE  9728000 | 
| 38 |  |  |  |  |  |  | #define FULL_BLOCK_SIZE  184320 | 
| 39 |  |  |  |  |  |  | #define LAST_BLOCK_SIZE  143360 | 
| 40 |  |  |  |  |  |  | #define BLOCKS_PER_CHUNK 53 | 
| 41 |  |  |  |  |  |  |  | 
| 42 |  |  |  |  |  |  | /* | 
| 43 |  |  |  |  |  |  | * The Algorithm could be a little faster if it knows a | 
| 44 |  |  |  |  |  |  | * hashed message size beforehand. This would allow | 
| 45 |  |  |  |  |  |  | * to build balanced tree while hashing the message. | 
| 46 |  |  |  |  |  |  | * | 
| 47 |  |  |  |  |  |  | * But this AICH implementation works with unknown | 
| 48 |  |  |  |  |  |  | * message size like other well-known hash algorithms | 
| 49 |  |  |  |  |  |  | * (it was fun to write a such one). | 
| 50 |  |  |  |  |  |  | * So, it just stores sha1 hashes and builds balanced tree | 
| 51 |  |  |  |  |  |  | * only on the last step, when the full message processed | 
| 52 |  |  |  |  |  |  | * and its size is already known. | 
| 53 |  |  |  |  |  |  | */ | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | #ifdef USE_OPENSSL | 
| 56 |  |  |  |  |  |  | #define SHA1_INIT(ctx) ((pinit_t)ctx->sha_init)(&ctx->sha1_context) | 
| 57 |  |  |  |  |  |  | #define SHA1_UPDATE(ctx, msg, size) ((pupdate_t)ctx->sha_update)(&ctx->sha1_context, (msg), (size)) | 
| 58 |  |  |  |  |  |  | #define SHA1_FINAL(ctx, result) ((pfinal_t)ctx->sha_final)(&ctx->sha1_context, (result)) | 
| 59 |  |  |  |  |  |  | #else | 
| 60 |  |  |  |  |  |  | #define SHA1_INIT(ctx) rhash_sha1_init(&ctx->sha1_context) | 
| 61 |  |  |  |  |  |  | #define SHA1_UPDATE(ctx, msg, size) rhash_sha1_update(&ctx->sha1_context, (msg), (size)) | 
| 62 |  |  |  |  |  |  | #define SHA1_FINAL(ctx, result) rhash_sha1_final(&ctx->sha1_context, (result)) | 
| 63 |  |  |  |  |  |  | #endif | 
| 64 |  |  |  |  |  |  |  | 
| 65 |  |  |  |  |  |  | /** | 
| 66 |  |  |  |  |  |  | * Initialize algorithm context before calculaing hash. | 
| 67 |  |  |  |  |  |  | * | 
| 68 |  |  |  |  |  |  | * @param ctx context to initialize | 
| 69 |  |  |  |  |  |  | */ | 
| 70 | 2 |  |  |  |  |  | void rhash_aich_init(aich_ctx* ctx) | 
| 71 |  |  |  |  |  |  | { | 
| 72 | 2 |  |  |  |  |  | memset(ctx, 0, sizeof(aich_ctx)); | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | #ifdef USE_OPENSSL | 
| 75 |  |  |  |  |  |  | { | 
| 76 |  |  |  |  |  |  | rhash_hash_info* sha1_info = &rhash_info_table[3]; | 
| 77 |  |  |  |  |  |  | assert(sha1_info->info->hash_id == RHASH_SHA1); | 
| 78 |  |  |  |  |  |  | assert(sha1_info->context_size <= (sizeof(sha1_ctx) + sizeof(unsigned long))); | 
| 79 |  |  |  |  |  |  | ctx->sha_init = sha1_info->init; | 
| 80 |  |  |  |  |  |  | ctx->sha_update = sha1_info->update; | 
| 81 |  |  |  |  |  |  | ctx->sha_final = sha1_info->final; | 
| 82 |  |  |  |  |  |  | } | 
| 83 |  |  |  |  |  |  | #endif | 
| 84 |  |  |  |  |  |  |  | 
| 85 | 2 |  |  |  |  |  | SHA1_INIT(ctx); | 
| 86 | 2 |  |  |  |  |  | } | 
| 87 |  |  |  |  |  |  |  | 
| 88 |  |  |  |  |  |  | /* define macrosses to access chunk table */ | 
| 89 |  |  |  |  |  |  | #define CT_BITS 8 | 
| 90 |  |  |  |  |  |  | #define CT_GROUP_SIZE (1 << CT_BITS) | 
| 91 |  |  |  |  |  |  | typedef unsigned char hash_pair_t[2][sha1_hash_size]; | 
| 92 |  |  |  |  |  |  | typedef hash_pair_t hash_pairs_group_t[CT_GROUP_SIZE]; | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | #define CT_INDEX(chunk_num) ((chunk_num) & (CT_GROUP_SIZE - 1)) | 
| 95 |  |  |  |  |  |  | #define GET_HASH_PAIR(ctx, chunk_num) \ | 
| 96 |  |  |  |  |  |  | (((hash_pair_t*)(ctx->chunk_table[chunk_num >> CT_BITS]))[CT_INDEX(chunk_num)]) | 
| 97 |  |  |  |  |  |  |  | 
| 98 |  |  |  |  |  |  | /** | 
| 99 |  |  |  |  |  |  | * Resize the table if needed to ensure it contains space for given chunk_num. | 
| 100 |  |  |  |  |  |  | * and allocate hash_pairs_group_t element at this index. | 
| 101 |  |  |  |  |  |  | * | 
| 102 |  |  |  |  |  |  | * @param ctx algorithm context | 
| 103 |  |  |  |  |  |  | * @param chunk_num the number of chunks required | 
| 104 |  |  |  |  |  |  | */ | 
| 105 | 0 |  |  |  |  |  | static void rhash_aich_chunk_table_extend(aich_ctx* ctx, unsigned chunk_num) | 
| 106 |  |  |  |  |  |  | { | 
| 107 | 0 |  |  |  |  |  | unsigned index = (chunk_num >> CT_BITS); | 
| 108 |  |  |  |  |  |  | assert(sizeof(hash_pair_t) == 40); | 
| 109 |  |  |  |  |  |  | assert(sizeof(hash_pairs_group_t) == (40 * CT_GROUP_SIZE)); /* 10KiB */ | 
| 110 |  |  |  |  |  |  | assert(CT_GROUP_SIZE == 256); | 
| 111 | 0 | 0 |  |  |  |  | assert(CT_INDEX(chunk_num) == 0); | 
| 112 |  |  |  |  |  |  |  | 
| 113 |  |  |  |  |  |  | /* check main assumptions */ | 
| 114 | 0 | 0 |  |  |  |  | assert(ctx->chunk_table == 0 || ctx->chunk_table[index - 1] != 0); /* table is empty or full */ | 
|  |  | 0 |  |  |  |  |  | 
| 115 | 0 | 0 |  |  |  |  | assert(index <= ctx->allocated); | 
| 116 |  |  |  |  |  |  |  | 
| 117 |  |  |  |  |  |  | /* check if there is enough space allocated */ | 
| 118 | 0 | 0 |  |  |  |  | if (index >= ctx->allocated) { | 
| 119 |  |  |  |  |  |  | /* resize the table by allocating some extra space */ | 
| 120 | 0 | 0 |  |  |  |  | size_t new_size = (ctx->allocated == 0 ? 64 : ctx->allocated * 2); | 
| 121 |  |  |  |  |  |  | void** new_block; | 
| 122 | 0 | 0 |  |  |  |  | assert(index == ctx->allocated); | 
| 123 |  |  |  |  |  |  |  | 
| 124 |  |  |  |  |  |  | /* re-size the chunk table to new_size */ | 
| 125 | 0 |  |  |  |  |  | new_block = (void**)realloc(ctx->chunk_table, new_size * sizeof(void*)); | 
| 126 | 0 | 0 |  |  |  |  | if (new_block == 0) { | 
| 127 | 0 |  |  |  |  |  | free(ctx->chunk_table); | 
| 128 | 0 |  |  |  |  |  | ctx->chunk_table = 0; | 
| 129 | 0 |  |  |  |  |  | ctx->error = 1; | 
| 130 | 0 |  |  |  |  |  | return; | 
| 131 |  |  |  |  |  |  | } | 
| 132 |  |  |  |  |  |  |  | 
| 133 | 0 |  |  |  |  |  | memset(new_block + ctx->allocated, 0, (new_size - ctx->allocated) * sizeof(void*)); | 
| 134 | 0 |  |  |  |  |  | ctx->chunk_table = new_block; | 
| 135 | 0 |  |  |  |  |  | ctx->allocated = new_size; | 
| 136 |  |  |  |  |  |  | } | 
| 137 |  |  |  |  |  |  |  | 
| 138 |  |  |  |  |  |  | /* add new hash_pairs_group_t block to the table */ | 
| 139 | 0 | 0 |  |  |  |  | assert(index < ctx->allocated); | 
| 140 | 0 | 0 |  |  |  |  | assert(ctx->chunk_table != 0); | 
| 141 | 0 | 0 |  |  |  |  | assert(ctx->chunk_table[index] == 0); | 
| 142 |  |  |  |  |  |  |  | 
| 143 | 0 |  |  |  |  |  | ctx->chunk_table[index] = malloc(sizeof(hash_pairs_group_t)); | 
| 144 | 0 | 0 |  |  |  |  | if (ctx->chunk_table[index] == 0) ctx->error = 1; | 
| 145 |  |  |  |  |  |  | } | 
| 146 |  |  |  |  |  |  |  | 
| 147 |  |  |  |  |  |  | /** | 
| 148 |  |  |  |  |  |  | * Free dynamically allocated memory for internal structures | 
| 149 |  |  |  |  |  |  | * used by hashing algorithm. | 
| 150 |  |  |  |  |  |  | * | 
| 151 |  |  |  |  |  |  | * @param ctx AICH algorithm context to cleanup | 
| 152 |  |  |  |  |  |  | */ | 
| 153 | 1 |  |  |  |  |  | void rhash_aich_cleanup(aich_ctx* ctx) | 
| 154 |  |  |  |  |  |  | { | 
| 155 |  |  |  |  |  |  | size_t i; | 
| 156 | 1 |  |  |  |  |  | size_t table_size = (ctx->chunks_number + CT_GROUP_SIZE - 1) / CT_GROUP_SIZE; | 
| 157 |  |  |  |  |  |  |  | 
| 158 | 1 | 50 |  |  |  |  | if (ctx->chunk_table != 0) { | 
| 159 | 0 | 0 |  |  |  |  | assert(table_size <= ctx->allocated); | 
| 160 | 0 | 0 |  |  |  |  | assert(table_size == ctx->allocated || ctx->chunk_table[table_size] == 0); | 
|  |  | 0 |  |  |  |  |  | 
| 161 | 0 | 0 |  |  |  |  | for (i = 0;  i < table_size; i++) free(ctx->chunk_table[i]); | 
| 162 | 0 |  |  |  |  |  | free(ctx->chunk_table); | 
| 163 | 0 |  |  |  |  |  | ctx->chunk_table = 0; | 
| 164 |  |  |  |  |  |  | } | 
| 165 |  |  |  |  |  |  |  | 
| 166 | 1 |  |  |  |  |  | free(ctx->block_hashes); | 
| 167 | 1 |  |  |  |  |  | ctx->block_hashes = 0; | 
| 168 | 1 |  |  |  |  |  | } | 
| 169 |  |  |  |  |  |  |  | 
| 170 |  |  |  |  |  |  | #define AICH_HASH_FULL_TREE 0 | 
| 171 |  |  |  |  |  |  | #define AICH_HASH_LEFT_BRANCH 1 | 
| 172 |  |  |  |  |  |  | #define AICH_HASH_RIGHT_BRANCH 2 | 
| 173 |  |  |  |  |  |  |  | 
| 174 |  |  |  |  |  |  | /** | 
| 175 |  |  |  |  |  |  | * Calculate an AICH tree hash, based ether on hashes of 180KB parts | 
| 176 |  |  |  |  |  |  | * (for an ed2k chunk) or on stored ed2k chunks (for the whole tree hash). | 
| 177 |  |  |  |  |  |  | * | 
| 178 |  |  |  |  |  |  | * @param ctx algorithm context | 
| 179 |  |  |  |  |  |  | * @param result pointer to receive calculated tree hash | 
| 180 |  |  |  |  |  |  | * @param type the type of hash to calculate, can be one of constants | 
| 181 |  |  |  |  |  |  | *   AICH_HASH_LEFT_BRANCH, AICH_HASH_RIGHT_BRANCH or AICH_HASH_FULL_TREE. | 
| 182 |  |  |  |  |  |  | */ | 
| 183 | 0 |  |  |  |  |  | static void rhash_aich_hash_tree(aich_ctx* ctx, unsigned char* result, int type) | 
| 184 |  |  |  |  |  |  | { | 
| 185 | 0 |  |  |  |  |  | unsigned index = 0; /* leaf index */ | 
| 186 |  |  |  |  |  |  | unsigned blocks; | 
| 187 | 0 |  |  |  |  |  | int      level = 0; | 
| 188 | 0 |  |  |  |  |  | unsigned is_left_branch = (type == AICH_HASH_RIGHT_BRANCH ? 0x0 : 0x1); | 
| 189 | 0 |  |  |  |  |  | uint64_t path  = is_left_branch; | 
| 190 |  |  |  |  |  |  | unsigned blocks_stack[56]; | 
| 191 |  |  |  |  |  |  | unsigned char sha1_stack[56][sha1_hash_size]; | 
| 192 |  |  |  |  |  |  |  | 
| 193 | 0 | 0 |  |  |  |  | if (ctx->error) return; | 
| 194 | 0 | 0 |  |  |  |  | assert(ctx->index <= ED2K_CHUNK_SIZE); | 
| 195 | 0 | 0 |  |  |  |  | assert(type == AICH_HASH_FULL_TREE ? ctx->chunk_table != 0 : ctx->block_hashes != 0); | 
|  |  | 0 |  |  |  |  |  | 
| 196 |  |  |  |  |  |  |  | 
| 197 |  |  |  |  |  |  | /* calculate number of leafs in the tree */ | 
| 198 | 0 | 0 |  |  |  |  | blocks_stack[0] = blocks = (unsigned)(type == AICH_HASH_FULL_TREE ? | 
| 199 | 0 |  |  |  |  |  | ctx->chunks_number : (ctx->index + FULL_BLOCK_SIZE - 1) / FULL_BLOCK_SIZE); | 
| 200 |  |  |  |  |  |  |  | 
| 201 |  |  |  |  |  |  | while (1) { | 
| 202 |  |  |  |  |  |  | unsigned char sha1_message[sha1_hash_size]; | 
| 203 |  |  |  |  |  |  | unsigned char* leaf_hash; | 
| 204 |  |  |  |  |  |  |  | 
| 205 |  |  |  |  |  |  | /* go into the left branches until a leaf block is reached */ | 
| 206 | 0 | 0 |  |  |  |  | while (blocks > 1) { | 
| 207 |  |  |  |  |  |  | /* step down into the left branch */ | 
| 208 | 0 |  |  |  |  |  | blocks = (blocks + ((unsigned)path & 0x1)) / 2; | 
| 209 | 0 |  |  |  |  |  | level++; | 
| 210 | 0 | 0 |  |  |  |  | assert(level < 56); /* assumption filesize < (2^56 * 9MiB) */ | 
| 211 | 0 |  |  |  |  |  | blocks_stack[level] = blocks; | 
| 212 | 0 |  |  |  |  |  | path = (path << 1) | 0x1; /* mark branch as left */ | 
| 213 |  |  |  |  |  |  | } | 
| 214 |  |  |  |  |  |  |  | 
| 215 |  |  |  |  |  |  | /* read a leaf hash */ | 
| 216 | 0 |  |  |  |  |  | leaf_hash = &(ctx->block_hashes[index][0]); | 
| 217 |  |  |  |  |  |  |  | 
| 218 | 0 | 0 |  |  |  |  | if (type == AICH_HASH_FULL_TREE) { | 
| 219 | 0 |  |  |  |  |  | is_left_branch = (unsigned)path & 0x1; | 
| 220 |  |  |  |  |  |  |  | 
| 221 | 0 |  |  |  |  |  | leaf_hash = GET_HASH_PAIR(ctx, index)[is_left_branch]; | 
| 222 |  |  |  |  |  |  | } | 
| 223 | 0 |  |  |  |  |  | index++; | 
| 224 |  |  |  |  |  |  |  | 
| 225 |  |  |  |  |  |  | /* climb up the tree until a left branch is reached */ | 
| 226 | 0 | 0 |  |  |  |  | for (; level > 0 && (path & 0x01) == 0; path >>= 1) { | 
|  |  | 0 |  |  |  |  |  | 
| 227 | 0 |  |  |  |  |  | SHA1_INIT(ctx); | 
| 228 | 0 |  |  |  |  |  | SHA1_UPDATE(ctx, sha1_stack[level], sha1_hash_size); | 
| 229 | 0 |  |  |  |  |  | SHA1_UPDATE(ctx, leaf_hash, sha1_hash_size); | 
| 230 | 0 |  |  |  |  |  | SHA1_FINAL(ctx, sha1_message); | 
| 231 | 0 |  |  |  |  |  | leaf_hash = sha1_message; | 
| 232 | 0 |  |  |  |  |  | level--; | 
| 233 |  |  |  |  |  |  | } | 
| 234 | 0 | 0 |  |  |  |  | memcpy((level > 0 ? sha1_stack[level] : result), leaf_hash, 20); | 
| 235 |  |  |  |  |  |  |  | 
| 236 | 0 | 0 |  |  |  |  | if (level == 0) break; | 
| 237 |  |  |  |  |  |  |  | 
| 238 |  |  |  |  |  |  | /* jump at the current level from left to right branch */ | 
| 239 | 0 |  |  |  |  |  | path &= ~0x1; /* mark branch as right */ | 
| 240 | 0 |  |  |  |  |  | is_left_branch = ((unsigned)path >> 1) & 1; | 
| 241 |  |  |  |  |  |  |  | 
| 242 |  |  |  |  |  |  | /* calculate number of blocks at right branch of the current level */ | 
| 243 | 0 |  |  |  |  |  | blocks_stack[level] = | 
| 244 | 0 |  |  |  |  |  | (blocks_stack[level - 1] + 1 - is_left_branch) / 2; | 
| 245 | 0 |  |  |  |  |  | blocks = blocks_stack[level]; | 
| 246 | 0 |  |  |  |  |  | } | 
| 247 |  |  |  |  |  |  | } | 
| 248 |  |  |  |  |  |  |  | 
| 249 |  |  |  |  |  |  | #define AICH_PROCESS_FINAL_BLOCK 1 | 
| 250 |  |  |  |  |  |  | #define AICH_PROCESS_FLUSH_BLOCK 2 | 
| 251 |  |  |  |  |  |  |  | 
| 252 |  |  |  |  |  |  | /** | 
| 253 |  |  |  |  |  |  | * Calculate and store a hash for a 180K/140K block. | 
| 254 |  |  |  |  |  |  | * Also, if it is the last block of a 9.2MiB ed2k chunk or of the hashed message, | 
| 255 |  |  |  |  |  |  | * then also calculate the AICH tree-hash of the current ed2k chunk. | 
| 256 |  |  |  |  |  |  | * | 
| 257 |  |  |  |  |  |  | * @param ctx algorithm context | 
| 258 |  |  |  |  |  |  | * @param type the actions to take, can be combination of bits AICH_PROCESS_FINAL_BLOCK | 
| 259 |  |  |  |  |  |  | *             and AICH_PROCESS_FLUSH_BLOCK | 
| 260 |  |  |  |  |  |  | */ | 
| 261 | 0 |  |  |  |  |  | static void rhash_aich_process_block(aich_ctx* ctx, int type) | 
| 262 |  |  |  |  |  |  | { | 
| 263 | 0 | 0 |  |  |  |  | assert(type != 0); | 
| 264 | 0 | 0 |  |  |  |  | assert(ctx->index <= ED2K_CHUNK_SIZE); | 
| 265 |  |  |  |  |  |  |  | 
| 266 |  |  |  |  |  |  | /* if there is unprocessed data left in the current 180K block. */ | 
| 267 | 0 | 0 |  |  |  |  | if ((type & AICH_PROCESS_FLUSH_BLOCK) != 0) | 
| 268 |  |  |  |  |  |  | { | 
| 269 |  |  |  |  |  |  | /* ensure that the block_hashes array is allocated to save the result */ | 
| 270 | 0 | 0 |  |  |  |  | if (ctx->block_hashes == NULL) { | 
| 271 | 0 |  |  |  |  |  | ctx->block_hashes = (unsigned char (*)[sha1_hash_size])malloc(BLOCKS_PER_CHUNK * sha1_hash_size); | 
| 272 | 0 | 0 |  |  |  |  | if (ctx->block_hashes == NULL) { | 
| 273 | 0 |  |  |  |  |  | ctx->error = 1; | 
| 274 | 0 |  |  |  |  |  | return; | 
| 275 |  |  |  |  |  |  | } | 
| 276 |  |  |  |  |  |  | } | 
| 277 |  |  |  |  |  |  |  | 
| 278 |  |  |  |  |  |  | /* store the 180-KiB block hash to the block_hashes array */ | 
| 279 | 0 | 0 |  |  |  |  | assert(((ctx->index - 1) / FULL_BLOCK_SIZE) < BLOCKS_PER_CHUNK); | 
| 280 | 0 |  |  |  |  |  | SHA1_FINAL(ctx, ctx->block_hashes[(ctx->index - 1) / FULL_BLOCK_SIZE]); | 
| 281 |  |  |  |  |  |  | } | 
| 282 |  |  |  |  |  |  |  | 
| 283 |  |  |  |  |  |  | /* check, if it's time to calculate the tree hash for the current ed2k chunk */ | 
| 284 | 0 | 0 |  |  |  |  | if (ctx->index >= ED2K_CHUNK_SIZE || (type & AICH_PROCESS_FINAL_BLOCK)) { | 
|  |  | 0 |  |  |  |  |  | 
| 285 |  |  |  |  |  |  | unsigned char (*pair)[sha1_hash_size]; | 
| 286 |  |  |  |  |  |  |  | 
| 287 |  |  |  |  |  |  | /* ensure, that we have the space to store tree hash */ | 
| 288 | 0 | 0 |  |  |  |  | if (CT_INDEX(ctx->chunks_number) == 0) { | 
| 289 | 0 |  |  |  |  |  | rhash_aich_chunk_table_extend(ctx, (unsigned)ctx->chunks_number); | 
| 290 | 0 | 0 |  |  |  |  | if (ctx->error) return; | 
| 291 |  |  |  |  |  |  | } | 
| 292 | 0 | 0 |  |  |  |  | assert(ctx->chunk_table  != 0); | 
| 293 | 0 | 0 |  |  |  |  | assert(ctx->block_hashes != 0); | 
| 294 |  |  |  |  |  |  |  | 
| 295 |  |  |  |  |  |  | /* calculate tree hash and save results to chunk_table */ | 
| 296 | 0 |  |  |  |  |  | pair = GET_HASH_PAIR(ctx, ctx->chunks_number); | 
| 297 |  |  |  |  |  |  |  | 
| 298 |  |  |  |  |  |  | /* small optimization: skip a left-branch-hash for the last chunk */ | 
| 299 | 0 | 0 |  |  |  |  | if (!(type & AICH_PROCESS_FINAL_BLOCK) || ctx->chunks_number == 0) { | 
|  |  | 0 |  |  |  |  |  | 
| 300 |  |  |  |  |  |  | /* calculate a tree hash to be used in left branch */ | 
| 301 | 0 |  |  |  |  |  | rhash_aich_hash_tree(ctx, pair[1], AICH_HASH_LEFT_BRANCH); | 
| 302 |  |  |  |  |  |  | } | 
| 303 |  |  |  |  |  |  |  | 
| 304 |  |  |  |  |  |  | /* small optimization: skip right-branch-hash for the very first chunk */ | 
| 305 | 0 | 0 |  |  |  |  | if (ctx->chunks_number > 0) { | 
| 306 |  |  |  |  |  |  | /* calculate a tree hash to be used in right branch */ | 
| 307 | 0 |  |  |  |  |  | rhash_aich_hash_tree(ctx, pair[0], AICH_HASH_RIGHT_BRANCH); | 
| 308 |  |  |  |  |  |  | } | 
| 309 |  |  |  |  |  |  |  | 
| 310 | 0 |  |  |  |  |  | ctx->index = 0; /* mark that the whole ed2k chunk was processed */ | 
| 311 | 0 |  |  |  |  |  | ctx->chunks_number++; | 
| 312 |  |  |  |  |  |  | } | 
| 313 |  |  |  |  |  |  | } | 
| 314 |  |  |  |  |  |  |  | 
| 315 |  |  |  |  |  |  | /** | 
| 316 |  |  |  |  |  |  | * Calculate message hash. | 
| 317 |  |  |  |  |  |  | * Can be called repeatedly with chunks of the message to be hashed. | 
| 318 |  |  |  |  |  |  | * | 
| 319 |  |  |  |  |  |  | * @param ctx the algorithm context containing current hashing state | 
| 320 |  |  |  |  |  |  | * @param msg message chunk | 
| 321 |  |  |  |  |  |  | * @param size length of the message chunk | 
| 322 |  |  |  |  |  |  | */ | 
| 323 | 2 |  |  |  |  |  | void rhash_aich_update(aich_ctx* ctx, const unsigned char* msg, size_t size) | 
| 324 |  |  |  |  |  |  | { | 
| 325 | 2 | 50 |  |  |  |  | if (ctx->error) return; | 
| 326 |  |  |  |  |  |  |  | 
| 327 | 2 | 50 |  |  |  |  | while (size > 0) { | 
| 328 | 2 |  |  |  |  |  | unsigned left_in_chunk = ED2K_CHUNK_SIZE - ctx->index; | 
| 329 | 2 | 50 |  |  |  |  | unsigned block_left = (left_in_chunk <= LAST_BLOCK_SIZE ? left_in_chunk : | 
| 330 | 2 |  |  |  |  |  | FULL_BLOCK_SIZE - ctx->index % FULL_BLOCK_SIZE); | 
| 331 | 2 | 50 |  |  |  |  | assert(block_left > 0); | 
| 332 |  |  |  |  |  |  |  | 
| 333 | 2 | 50 |  |  |  |  | if (size >= block_left) { | 
| 334 | 0 |  |  |  |  |  | SHA1_UPDATE(ctx, msg, block_left); | 
| 335 | 0 |  |  |  |  |  | msg  += block_left; | 
| 336 | 0 |  |  |  |  |  | size -= block_left; | 
| 337 | 0 |  |  |  |  |  | ctx->index += block_left; | 
| 338 |  |  |  |  |  |  |  | 
| 339 |  |  |  |  |  |  | /* process a 180KiB-blok */ | 
| 340 | 0 |  |  |  |  |  | rhash_aich_process_block(ctx, AICH_PROCESS_FLUSH_BLOCK); | 
| 341 | 0 |  |  |  |  |  | SHA1_INIT(ctx); | 
| 342 |  |  |  |  |  |  | } else { | 
| 343 |  |  |  |  |  |  | /* add to a leaf block */ | 
| 344 | 2 |  |  |  |  |  | SHA1_UPDATE(ctx, msg, size); | 
| 345 | 2 |  |  |  |  |  | ctx->index += (unsigned)size; | 
| 346 | 2 |  |  |  |  |  | break; | 
| 347 |  |  |  |  |  |  | } | 
| 348 |  |  |  |  |  |  | } | 
| 349 | 2 | 50 |  |  |  |  | assert(ctx->index < ED2K_CHUNK_SIZE); | 
| 350 |  |  |  |  |  |  | } | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  | /** | 
| 353 |  |  |  |  |  |  | * Store calculated hash into the given array. | 
| 354 |  |  |  |  |  |  | * | 
| 355 |  |  |  |  |  |  | * @param ctx the algorithm context containing current hashing state | 
| 356 |  |  |  |  |  |  | * @param result calculated hash in binary form | 
| 357 |  |  |  |  |  |  | */ | 
| 358 | 2 |  |  |  |  |  | void rhash_aich_final(aich_ctx* ctx, unsigned char result[20]) | 
| 359 |  |  |  |  |  |  | { | 
| 360 | 2 |  |  |  |  |  | uint64_t total_size = | 
| 361 | 2 |  |  |  |  |  | ((uint64_t)ctx->chunks_number * ED2K_CHUNK_SIZE) + ctx->index; | 
| 362 | 2 |  |  |  |  |  | unsigned char* const hash = (unsigned char*)ctx->sha1_context.hash; | 
| 363 |  |  |  |  |  |  |  | 
| 364 | 2 | 50 |  |  |  |  | if (ctx->chunks_number == 0 && ctx->block_hashes == NULL) { | 
|  |  | 50 |  |  |  |  |  | 
| 365 | 2 | 50 |  |  |  |  | assert(ctx->index < FULL_BLOCK_SIZE); | 
| 366 |  |  |  |  |  |  | #ifdef USE_OPENSSL | 
| 367 |  |  |  |  |  |  | SHA1_FINAL(ctx, hash); /* return just sha1 hash */ | 
| 368 |  |  |  |  |  |  | #else | 
| 369 | 2 |  |  |  |  |  | SHA1_FINAL(ctx, 0); /* return just sha1 hash */ | 
| 370 |  |  |  |  |  |  | #if IS_LITTLE_ENDIAN | 
| 371 | 2 |  |  |  |  |  | rhash_u32_mem_swap(ctx->sha1_context.hash, 5); | 
| 372 |  |  |  |  |  |  | #endif | 
| 373 |  |  |  |  |  |  | #endif | 
| 374 | 2 | 50 |  |  |  |  | if (result) memcpy(result, hash, sha1_hash_size); | 
| 375 | 2 |  |  |  |  |  | return; | 
| 376 |  |  |  |  |  |  | } | 
| 377 |  |  |  |  |  |  |  | 
| 378 |  |  |  |  |  |  | /* if there is unprocessed data left in the last 180K block */ | 
| 379 | 0 | 0 |  |  |  |  | if ((ctx->index % FULL_BLOCK_SIZE) > 0) { | 
| 380 |  |  |  |  |  |  | /* then process the last block */ | 
| 381 | 0 | 0 |  |  |  |  | rhash_aich_process_block(ctx, ctx->block_hashes != NULL ? | 
| 382 |  |  |  |  |  |  | AICH_PROCESS_FINAL_BLOCK | AICH_PROCESS_FLUSH_BLOCK : AICH_PROCESS_FLUSH_BLOCK); | 
| 383 |  |  |  |  |  |  | } | 
| 384 |  |  |  |  |  |  |  | 
| 385 |  |  |  |  |  |  | /* if processed message was shorter than a ed2k chunk */ | 
| 386 | 0 | 0 |  |  |  |  | if (ctx->chunks_number == 0) { | 
| 387 |  |  |  |  |  |  | /* then return the aich hash for the first chunk */ | 
| 388 | 0 |  |  |  |  |  | rhash_aich_hash_tree(ctx, hash, AICH_HASH_LEFT_BRANCH); | 
| 389 |  |  |  |  |  |  | } else { | 
| 390 | 0 | 0 |  |  |  |  | if (ctx->index > 0) { | 
| 391 |  |  |  |  |  |  | /* process the last block of the message */ | 
| 392 | 0 |  |  |  |  |  | rhash_aich_process_block(ctx, AICH_PROCESS_FINAL_BLOCK); | 
| 393 |  |  |  |  |  |  | } | 
| 394 | 0 | 0 |  |  |  |  | assert(ctx->chunks_number > 0); | 
| 395 | 0 | 0 |  |  |  |  | assert(ctx->block_hashes != NULL); | 
| 396 |  |  |  |  |  |  |  | 
| 397 | 0 |  |  |  |  |  | rhash_aich_hash_tree(ctx, hash, AICH_HASH_FULL_TREE); | 
| 398 |  |  |  |  |  |  | } | 
| 399 |  |  |  |  |  |  |  | 
| 400 | 0 |  |  |  |  |  | rhash_aich_cleanup(ctx); | 
| 401 | 0 |  |  |  |  |  | ctx->sha1_context.length = total_size; /* store total message size  */ | 
| 402 | 0 | 0 |  |  |  |  | if (result) memcpy(result, hash, sha1_hash_size); | 
| 403 |  |  |  |  |  |  | } |