| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* aich.c - an implementation of EMule AICH Algorithm. |
|
2
|
|
|
|
|
|
|
* Description: http://www.amule.org/wiki/index.php/AICH. |
|
3
|
|
|
|
|
|
|
* |
|
4
|
|
|
|
|
|
|
* Copyright: 2008-2012 Aleksey Kravchenko |
|
5
|
|
|
|
|
|
|
* |
|
6
|
|
|
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a |
|
7
|
|
|
|
|
|
|
* copy of this software and associated documentation files (the "Software"), |
|
8
|
|
|
|
|
|
|
* to deal in the Software without restriction, including without limitation |
|
9
|
|
|
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
10
|
|
|
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the |
|
11
|
|
|
|
|
|
|
* Software is furnished to do so. |
|
12
|
|
|
|
|
|
|
* |
|
13
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be useful, but |
|
14
|
|
|
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
15
|
|
|
|
|
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk! |
|
16
|
|
|
|
|
|
|
* |
|
17
|
|
|
|
|
|
|
* The AICH Algorithm: |
|
18
|
|
|
|
|
|
|
* |
|
19
|
|
|
|
|
|
|
* Each ed2k chunk (9728000 bytes) is divided into 53 parts (52x 180KB and |
|
20
|
|
|
|
|
|
|
* 1x 140KB) and each of these parts are hashed using the SHA1 algorithm. |
|
21
|
|
|
|
|
|
|
* Each of these hashes is called a Block Hash. By combining pairs of Block |
|
22
|
|
|
|
|
|
|
* Hashes (i.e. each part with the part next to it) algorithm will get a whole |
|
23
|
|
|
|
|
|
|
* tree of hashes (this tree which is therefore a hashset made of all of the |
|
24
|
|
|
|
|
|
|
* other Block Hashes is called the AICH Hashset). Each hash which is neither |
|
25
|
|
|
|
|
|
|
* a Block Hash nor the Root Hash, is a Verifying Hash. The hash at the top |
|
26
|
|
|
|
|
|
|
* level is the Root Hash and it is supposed to be provided by the ed2k link |
|
27
|
|
|
|
|
|
|
* when releasing. |
|
28
|
|
|
|
|
|
|
*/ |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
#include |
|
31
|
|
|
|
|
|
|
#include |
|
32
|
|
|
|
|
|
|
#include |
|
33
|
|
|
|
|
|
|
#include "byte_order.h" |
|
34
|
|
|
|
|
|
|
#include "algorithms.h" |
|
35
|
|
|
|
|
|
|
#include "aich.h" |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#define ED2K_CHUNK_SIZE 9728000 |
|
38
|
|
|
|
|
|
|
#define FULL_BLOCK_SIZE 184320 |
|
39
|
|
|
|
|
|
|
#define LAST_BLOCK_SIZE 143360 |
|
40
|
|
|
|
|
|
|
#define BLOCKS_PER_CHUNK 53 |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/* |
|
43
|
|
|
|
|
|
|
* The Algorithm could be a little faster if it knows a |
|
44
|
|
|
|
|
|
|
* hashed message size beforehand. This would allow |
|
45
|
|
|
|
|
|
|
* to build balanced tree while hashing the message. |
|
46
|
|
|
|
|
|
|
* |
|
47
|
|
|
|
|
|
|
* But this AICH implementation works with unknown |
|
48
|
|
|
|
|
|
|
* message size like other well-known hash algorithms |
|
49
|
|
|
|
|
|
|
* (it was fun to write a such one). |
|
50
|
|
|
|
|
|
|
* So, it just stores sha1 hashes and builds balanced tree |
|
51
|
|
|
|
|
|
|
* only on the last step, when the full message processed |
|
52
|
|
|
|
|
|
|
* and its size is already known. |
|
53
|
|
|
|
|
|
|
*/ |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
|
56
|
|
|
|
|
|
|
#define SHA1_INIT(ctx) ((pinit_t)ctx->sha_init)(&ctx->sha1_context) |
|
57
|
|
|
|
|
|
|
#define SHA1_UPDATE(ctx, msg, size) ((pupdate_t)ctx->sha_update)(&ctx->sha1_context, (msg), (size)) |
|
58
|
|
|
|
|
|
|
#define SHA1_FINAL(ctx, result) ((pfinal_t)ctx->sha_final)(&ctx->sha1_context, (result)) |
|
59
|
|
|
|
|
|
|
#else |
|
60
|
|
|
|
|
|
|
#define SHA1_INIT(ctx) rhash_sha1_init(&ctx->sha1_context) |
|
61
|
|
|
|
|
|
|
#define SHA1_UPDATE(ctx, msg, size) rhash_sha1_update(&ctx->sha1_context, (msg), (size)) |
|
62
|
|
|
|
|
|
|
#define SHA1_FINAL(ctx, result) rhash_sha1_final(&ctx->sha1_context, (result)) |
|
63
|
|
|
|
|
|
|
#endif |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
/** |
|
66
|
|
|
|
|
|
|
* Initialize algorithm context before calculaing hash. |
|
67
|
|
|
|
|
|
|
* |
|
68
|
|
|
|
|
|
|
* @param ctx context to initialize |
|
69
|
|
|
|
|
|
|
*/ |
|
70
|
2
|
|
|
|
|
|
void rhash_aich_init(aich_ctx *ctx) |
|
71
|
|
|
|
|
|
|
{ |
|
72
|
2
|
|
|
|
|
|
memset(ctx, 0, sizeof(aich_ctx)); |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
|
75
|
|
|
|
|
|
|
{ |
|
76
|
|
|
|
|
|
|
rhash_hash_info *sha1_info = &rhash_info_table[3]; |
|
77
|
|
|
|
|
|
|
assert(sha1_info->info->hash_id == RHASH_SHA1); |
|
78
|
|
|
|
|
|
|
assert(sha1_info->context_size <= (sizeof(sha1_ctx) + sizeof(unsigned long))); |
|
79
|
|
|
|
|
|
|
ctx->sha_init = sha1_info->init; |
|
80
|
|
|
|
|
|
|
ctx->sha_update = sha1_info->update; |
|
81
|
|
|
|
|
|
|
ctx->sha_final = sha1_info->final; |
|
82
|
|
|
|
|
|
|
} |
|
83
|
|
|
|
|
|
|
#endif |
|
84
|
|
|
|
|
|
|
|
|
85
|
2
|
|
|
|
|
|
SHA1_INIT(ctx); |
|
86
|
2
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
/* define macrosses to access chunk table */ |
|
89
|
|
|
|
|
|
|
#define CT_BITS 8 |
|
90
|
|
|
|
|
|
|
#define CT_GROUP_SIZE (1 << CT_BITS) |
|
91
|
|
|
|
|
|
|
typedef unsigned char hash_pair_t[2][sha1_hash_size]; |
|
92
|
|
|
|
|
|
|
typedef hash_pair_t hash_pairs_group_t[CT_GROUP_SIZE]; |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
#define CT_INDEX(chunk_num) ((chunk_num) & (CT_GROUP_SIZE - 1)) |
|
95
|
|
|
|
|
|
|
#define GET_HASH_PAIR(ctx, chunk_num) \ |
|
96
|
|
|
|
|
|
|
(((hash_pair_t*)(ctx->chunk_table[chunk_num >> CT_BITS]))[CT_INDEX(chunk_num)]) |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
/** |
|
99
|
|
|
|
|
|
|
* Resize the table if needed to ensure it contains space for given chunk_num. |
|
100
|
|
|
|
|
|
|
* and allocate hash_pairs_group_t element at this index. |
|
101
|
|
|
|
|
|
|
* |
|
102
|
|
|
|
|
|
|
* @param ctx algorithm context |
|
103
|
|
|
|
|
|
|
* @param chunk_num the number of chunks required |
|
104
|
|
|
|
|
|
|
*/ |
|
105
|
0
|
|
|
|
|
|
static void rhash_aich_chunk_table_extend(aich_ctx* ctx, unsigned chunk_num) |
|
106
|
|
|
|
|
|
|
{ |
|
107
|
0
|
|
|
|
|
|
unsigned index = (chunk_num >> CT_BITS); |
|
108
|
|
|
|
|
|
|
assert(sizeof(hash_pair_t) == 40); |
|
109
|
|
|
|
|
|
|
assert(sizeof(hash_pairs_group_t) == (40 * CT_GROUP_SIZE)); /* 10KiB */ |
|
110
|
|
|
|
|
|
|
assert(CT_GROUP_SIZE == 256); |
|
111
|
0
|
0
|
|
|
|
|
assert(CT_INDEX(chunk_num) == 0); |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
/* check main assumptions */ |
|
114
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table == 0 || ctx->chunk_table[index - 1] != 0); /* table is empty or full */ |
|
|
|
0
|
|
|
|
|
|
|
115
|
0
|
0
|
|
|
|
|
assert(index <= ctx->allocated); |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
/* check if there is enough space allocated */ |
|
118
|
0
|
0
|
|
|
|
|
if (index >= ctx->allocated) { |
|
119
|
|
|
|
|
|
|
/* resize the table by allocating some extra space */ |
|
120
|
0
|
0
|
|
|
|
|
size_t new_size = (ctx->allocated == 0 ? 64 : ctx->allocated * 2); |
|
121
|
0
|
0
|
|
|
|
|
assert(index == ctx->allocated); |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
/* re-allocate the chunk table to contain new_size void*-pointers */ |
|
124
|
0
|
|
|
|
|
|
ctx->chunk_table = (void**)realloc(ctx->chunk_table, new_size * sizeof(void*)); |
|
125
|
0
|
0
|
|
|
|
|
if (ctx->chunk_table == 0) { |
|
126
|
0
|
|
|
|
|
|
ctx->error = 1; |
|
127
|
0
|
|
|
|
|
|
return; |
|
128
|
|
|
|
|
|
|
} |
|
129
|
|
|
|
|
|
|
|
|
130
|
0
|
|
|
|
|
|
memset(ctx->chunk_table + ctx->allocated, 0, (new_size - ctx->allocated) * sizeof(void*)); |
|
131
|
0
|
|
|
|
|
|
ctx->allocated = new_size; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
/* add new hash_pairs_group_t block to the table */ |
|
135
|
0
|
0
|
|
|
|
|
assert(index < ctx->allocated); |
|
136
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table != 0); |
|
137
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table[index] == 0); |
|
138
|
|
|
|
|
|
|
|
|
139
|
0
|
|
|
|
|
|
ctx->chunk_table[index] = malloc(sizeof(hash_pairs_group_t)); |
|
140
|
0
|
0
|
|
|
|
|
if (ctx->chunk_table[index] == 0) ctx->error = 1; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
/** |
|
144
|
|
|
|
|
|
|
* Free dynamically allocated memory for internal structures |
|
145
|
|
|
|
|
|
|
* used by hashing algorithm. |
|
146
|
|
|
|
|
|
|
* |
|
147
|
|
|
|
|
|
|
* @param ctx AICH algorithm context to cleanup |
|
148
|
|
|
|
|
|
|
*/ |
|
149
|
1
|
|
|
|
|
|
void rhash_aich_cleanup(aich_ctx* ctx) |
|
150
|
|
|
|
|
|
|
{ |
|
151
|
|
|
|
|
|
|
size_t i; |
|
152
|
1
|
|
|
|
|
|
size_t table_size = (ctx->chunks_number + CT_GROUP_SIZE - 1) / CT_GROUP_SIZE; |
|
153
|
|
|
|
|
|
|
|
|
154
|
1
|
50
|
|
|
|
|
if (ctx->chunk_table != 0) { |
|
155
|
0
|
0
|
|
|
|
|
assert(table_size <= ctx->allocated); |
|
156
|
0
|
0
|
|
|
|
|
assert(table_size == ctx->allocated || ctx->chunk_table[table_size] == 0); |
|
|
|
0
|
|
|
|
|
|
|
157
|
0
|
0
|
|
|
|
|
for (i = 0; i < table_size; i++) free(ctx->chunk_table[i]); |
|
158
|
0
|
|
|
|
|
|
free(ctx->chunk_table); |
|
159
|
0
|
|
|
|
|
|
ctx->chunk_table = 0; |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
|
|
162
|
1
|
|
|
|
|
|
free(ctx->block_hashes); |
|
163
|
1
|
|
|
|
|
|
ctx->block_hashes = 0; |
|
164
|
1
|
|
|
|
|
|
} |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
#define AICH_HASH_FULL_TREE 0 |
|
167
|
|
|
|
|
|
|
#define AICH_HASH_LEFT_BRANCH 1 |
|
168
|
|
|
|
|
|
|
#define AICH_HASH_RIGHT_BRANCH 2 |
|
169
|
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
/** |
|
171
|
|
|
|
|
|
|
* Calculate an AICH tree hash, based ether on hashes of 180KB parts |
|
172
|
|
|
|
|
|
|
* (for an ed2k chunk) or on stored ed2k chunks (for the whole tree hash). |
|
173
|
|
|
|
|
|
|
* |
|
174
|
|
|
|
|
|
|
* @param ctx algorithm context |
|
175
|
|
|
|
|
|
|
* @param result pointer to receive calculated tree hash |
|
176
|
|
|
|
|
|
|
* @param type the type of hash to calculate, can be one of constants |
|
177
|
|
|
|
|
|
|
* AICH_HASH_LEFT_BRANCH, AICH_HASH_RIGHT_BRANCH or AICH_HASH_FULL_TREE. |
|
178
|
|
|
|
|
|
|
*/ |
|
179
|
0
|
|
|
|
|
|
static void rhash_aich_hash_tree(aich_ctx *ctx, unsigned char* result, int type) |
|
180
|
|
|
|
|
|
|
{ |
|
181
|
0
|
|
|
|
|
|
unsigned index = 0; /* leaf index */ |
|
182
|
|
|
|
|
|
|
unsigned blocks; |
|
183
|
0
|
|
|
|
|
|
int level = 0; |
|
184
|
0
|
|
|
|
|
|
unsigned is_left_branch = (type == AICH_HASH_RIGHT_BRANCH ? 0x0 : 0x1); |
|
185
|
0
|
|
|
|
|
|
uint64_t path = is_left_branch; |
|
186
|
|
|
|
|
|
|
unsigned blocks_stack[56]; |
|
187
|
|
|
|
|
|
|
unsigned char sha1_stack[56][sha1_hash_size]; |
|
188
|
|
|
|
|
|
|
|
|
189
|
0
|
0
|
|
|
|
|
if (ctx->error) return; |
|
190
|
0
|
0
|
|
|
|
|
assert(ctx->index <= ED2K_CHUNK_SIZE); |
|
191
|
0
|
0
|
|
|
|
|
assert(type == AICH_HASH_FULL_TREE ? ctx->chunk_table != 0 : ctx->block_hashes != 0); |
|
|
|
0
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
/* calculate number of leafs in the tree */ |
|
194
|
0
|
0
|
|
|
|
|
blocks_stack[0] = blocks = (unsigned)(type == AICH_HASH_FULL_TREE ? |
|
195
|
0
|
|
|
|
|
|
ctx->chunks_number : (ctx->index + FULL_BLOCK_SIZE - 1) / FULL_BLOCK_SIZE); |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
while (1) { |
|
198
|
|
|
|
|
|
|
unsigned char sha1_message[sha1_hash_size]; |
|
199
|
|
|
|
|
|
|
unsigned char* leaf_hash; |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
/* go into the left branches until a leaf block is reached */ |
|
202
|
0
|
0
|
|
|
|
|
while (blocks > 1) { |
|
203
|
|
|
|
|
|
|
/* step down into the left branch */ |
|
204
|
0
|
|
|
|
|
|
blocks = (blocks + ((unsigned)path & 0x1)) / 2; |
|
205
|
0
|
|
|
|
|
|
level++; |
|
206
|
0
|
0
|
|
|
|
|
assert(level < 56); /* assumption filesize < (2^56 * 9MiB) */ |
|
207
|
0
|
|
|
|
|
|
blocks_stack[level] = blocks; |
|
208
|
0
|
|
|
|
|
|
path = (path << 1) | 0x1; /* mark branch as left */ |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
/* read a leaf hash */ |
|
212
|
0
|
|
|
|
|
|
leaf_hash = &(ctx->block_hashes[index][0]); |
|
213
|
|
|
|
|
|
|
|
|
214
|
0
|
0
|
|
|
|
|
if (type == AICH_HASH_FULL_TREE) { |
|
215
|
0
|
|
|
|
|
|
is_left_branch = (unsigned)path & 0x1; |
|
216
|
|
|
|
|
|
|
|
|
217
|
0
|
|
|
|
|
|
leaf_hash = GET_HASH_PAIR(ctx, index)[is_left_branch]; |
|
218
|
|
|
|
|
|
|
} |
|
219
|
0
|
|
|
|
|
|
index++; |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
/* climb up the tree until a left branch is reached */ |
|
222
|
0
|
0
|
|
|
|
|
for (; level > 0 && (path & 0x01) == 0; path >>= 1) { |
|
|
|
0
|
|
|
|
|
|
|
223
|
0
|
|
|
|
|
|
SHA1_INIT(ctx); |
|
224
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, sha1_stack[level], sha1_hash_size); |
|
225
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, leaf_hash, sha1_hash_size); |
|
226
|
0
|
|
|
|
|
|
SHA1_FINAL(ctx, sha1_message); |
|
227
|
0
|
|
|
|
|
|
leaf_hash = sha1_message; |
|
228
|
0
|
|
|
|
|
|
level--; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
0
|
0
|
|
|
|
|
memcpy((level > 0 ? sha1_stack[level] : result), leaf_hash, 20); |
|
231
|
|
|
|
|
|
|
|
|
232
|
0
|
0
|
|
|
|
|
if (level == 0) break; |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
/* jump at the current level from left to right branch */ |
|
235
|
0
|
|
|
|
|
|
path &= ~0x1; /* mark branch as right */ |
|
236
|
0
|
|
|
|
|
|
is_left_branch = ((unsigned)path >> 1) & 1; |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
/* calculate number of blocks at right branch of the current level */ |
|
239
|
0
|
|
|
|
|
|
blocks_stack[level] = |
|
240
|
0
|
|
|
|
|
|
(blocks_stack[level - 1] + 1 - is_left_branch) / 2; |
|
241
|
0
|
|
|
|
|
|
blocks = blocks_stack[level]; |
|
242
|
0
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
} |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
#define AICH_PROCESS_FINAL_BLOCK 1 |
|
246
|
|
|
|
|
|
|
#define AICH_PROCESS_FLUSH_BLOCK 2 |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
/** |
|
249
|
|
|
|
|
|
|
* Calculate and store a hash for a 180K/140K block. |
|
250
|
|
|
|
|
|
|
* Also, if it is the last block of a 9.2MiB ed2k chunk or of the hashed message, |
|
251
|
|
|
|
|
|
|
* then also calculate the AICH tree-hash of the current ed2k chunk. |
|
252
|
|
|
|
|
|
|
* |
|
253
|
|
|
|
|
|
|
* @param ctx algorithm context |
|
254
|
|
|
|
|
|
|
* @param type the actions to take, can be combination of bits AICH_PROCESS_FINAL_BLOCK |
|
255
|
|
|
|
|
|
|
* and AICH_PROCESS_FLUSH_BLOCK |
|
256
|
|
|
|
|
|
|
*/ |
|
257
|
0
|
|
|
|
|
|
static void rhash_aich_process_block(aich_ctx *ctx, int type) |
|
258
|
|
|
|
|
|
|
{ |
|
259
|
0
|
0
|
|
|
|
|
assert(type != 0); |
|
260
|
0
|
0
|
|
|
|
|
assert(ctx->index <= ED2K_CHUNK_SIZE); |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
/* if there is unprocessed data left in the current 180K block. */ |
|
263
|
0
|
0
|
|
|
|
|
if ((type & AICH_PROCESS_FLUSH_BLOCK) != 0) |
|
264
|
|
|
|
|
|
|
{ |
|
265
|
|
|
|
|
|
|
/* ensure that the block_hashes array is allocated to save the result */ |
|
266
|
0
|
0
|
|
|
|
|
if (ctx->block_hashes == NULL) { |
|
267
|
0
|
|
|
|
|
|
ctx->block_hashes = (unsigned char (*)[sha1_hash_size])malloc(BLOCKS_PER_CHUNK * sha1_hash_size); |
|
268
|
0
|
0
|
|
|
|
|
if (ctx->block_hashes == NULL) { |
|
269
|
0
|
|
|
|
|
|
ctx->error = 1; |
|
270
|
0
|
|
|
|
|
|
return; |
|
271
|
|
|
|
|
|
|
} |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* store the 180-KiB block hash to the block_hashes array */ |
|
275
|
0
|
0
|
|
|
|
|
assert(((ctx->index - 1) / FULL_BLOCK_SIZE) < BLOCKS_PER_CHUNK); |
|
276
|
0
|
|
|
|
|
|
SHA1_FINAL(ctx, ctx->block_hashes[(ctx->index - 1) / FULL_BLOCK_SIZE]); |
|
277
|
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
/* check, if it's time to calculate the tree hash for the current ed2k chunk */ |
|
280
|
0
|
0
|
|
|
|
|
if (ctx->index >= ED2K_CHUNK_SIZE || (type & AICH_PROCESS_FINAL_BLOCK)) { |
|
|
|
0
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
unsigned char (*pair)[sha1_hash_size]; |
|
282
|
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
/* ensure, that we have the space to store tree hash */ |
|
284
|
0
|
0
|
|
|
|
|
if (CT_INDEX(ctx->chunks_number) == 0) { |
|
285
|
0
|
|
|
|
|
|
rhash_aich_chunk_table_extend(ctx, (unsigned)ctx->chunks_number); |
|
286
|
0
|
0
|
|
|
|
|
if (ctx->error) return; |
|
287
|
|
|
|
|
|
|
} |
|
288
|
0
|
0
|
|
|
|
|
assert(ctx->chunk_table != 0); |
|
289
|
0
|
0
|
|
|
|
|
assert(ctx->block_hashes != 0); |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
/* calculate tree hash and save results to chunk_table */ |
|
292
|
0
|
|
|
|
|
|
pair = GET_HASH_PAIR(ctx, ctx->chunks_number); |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
/* small optimization: skip a left-branch-hash for the last chunk */ |
|
295
|
0
|
0
|
|
|
|
|
if (!(type & AICH_PROCESS_FINAL_BLOCK) || ctx->chunks_number == 0) { |
|
|
|
0
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
/* calculate a tree hash to be used in left branch */ |
|
297
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, pair[1], AICH_HASH_LEFT_BRANCH); |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
/* small optimization: skip right-branch-hash for the very first chunk */ |
|
301
|
0
|
0
|
|
|
|
|
if (ctx->chunks_number > 0) { |
|
302
|
|
|
|
|
|
|
/* calculate a tree hash to be used in right branch */ |
|
303
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, pair[0], AICH_HASH_RIGHT_BRANCH); |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
0
|
|
|
|
|
|
ctx->index = 0; /* mark that the whole ed2k chunk was processed */ |
|
307
|
0
|
|
|
|
|
|
ctx->chunks_number++; |
|
308
|
|
|
|
|
|
|
} |
|
309
|
|
|
|
|
|
|
} |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
/** |
|
312
|
|
|
|
|
|
|
* Calculate message hash. |
|
313
|
|
|
|
|
|
|
* Can be called repeatedly with chunks of the message to be hashed. |
|
314
|
|
|
|
|
|
|
* |
|
315
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
|
316
|
|
|
|
|
|
|
* @param msg message chunk |
|
317
|
|
|
|
|
|
|
* @param size length of the message chunk |
|
318
|
|
|
|
|
|
|
*/ |
|
319
|
2
|
|
|
|
|
|
void rhash_aich_update(aich_ctx *ctx, const unsigned char* msg, size_t size) |
|
320
|
|
|
|
|
|
|
{ |
|
321
|
2
|
50
|
|
|
|
|
if (ctx->error) return; |
|
322
|
|
|
|
|
|
|
|
|
323
|
2
|
50
|
|
|
|
|
while (size > 0) { |
|
324
|
2
|
|
|
|
|
|
unsigned left_in_chunk = ED2K_CHUNK_SIZE - ctx->index; |
|
325
|
2
|
50
|
|
|
|
|
unsigned block_left = (left_in_chunk <= LAST_BLOCK_SIZE ? left_in_chunk : |
|
326
|
2
|
|
|
|
|
|
FULL_BLOCK_SIZE - ctx->index % FULL_BLOCK_SIZE); |
|
327
|
2
|
50
|
|
|
|
|
assert(block_left > 0); |
|
328
|
|
|
|
|
|
|
|
|
329
|
2
|
50
|
|
|
|
|
if (size >= block_left) { |
|
330
|
0
|
|
|
|
|
|
SHA1_UPDATE(ctx, msg, block_left); |
|
331
|
0
|
|
|
|
|
|
msg += block_left; |
|
332
|
0
|
|
|
|
|
|
size -= block_left; |
|
333
|
0
|
|
|
|
|
|
ctx->index += block_left; |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
/* process a 180KiB-blok */ |
|
336
|
0
|
|
|
|
|
|
rhash_aich_process_block(ctx, AICH_PROCESS_FLUSH_BLOCK); |
|
337
|
0
|
|
|
|
|
|
SHA1_INIT(ctx); |
|
338
|
|
|
|
|
|
|
} else { |
|
339
|
|
|
|
|
|
|
/* add to a leaf block */ |
|
340
|
2
|
|
|
|
|
|
SHA1_UPDATE(ctx, msg, size); |
|
341
|
2
|
|
|
|
|
|
ctx->index += (unsigned)size; |
|
342
|
2
|
|
|
|
|
|
break; |
|
343
|
|
|
|
|
|
|
} |
|
344
|
|
|
|
|
|
|
} |
|
345
|
2
|
50
|
|
|
|
|
assert(ctx->index < ED2K_CHUNK_SIZE); |
|
346
|
|
|
|
|
|
|
} |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
/** |
|
349
|
|
|
|
|
|
|
* Store calculated hash into the given array. |
|
350
|
|
|
|
|
|
|
* |
|
351
|
|
|
|
|
|
|
* @param ctx the algorithm context containing current hashing state |
|
352
|
|
|
|
|
|
|
* @param result calculated hash in binary form |
|
353
|
|
|
|
|
|
|
*/ |
|
354
|
2
|
|
|
|
|
|
void rhash_aich_final(aich_ctx *ctx, unsigned char result[20]) |
|
355
|
|
|
|
|
|
|
{ |
|
356
|
2
|
|
|
|
|
|
uint64_t total_size = |
|
357
|
2
|
|
|
|
|
|
((uint64_t)ctx->chunks_number * ED2K_CHUNK_SIZE) + ctx->index; |
|
358
|
2
|
|
|
|
|
|
unsigned char* const hash = (unsigned char*)ctx->sha1_context.hash; |
|
359
|
|
|
|
|
|
|
|
|
360
|
2
|
50
|
|
|
|
|
if (ctx->chunks_number == 0 && ctx->block_hashes == NULL) { |
|
|
|
50
|
|
|
|
|
|
|
361
|
2
|
50
|
|
|
|
|
assert(ctx->index < FULL_BLOCK_SIZE); |
|
362
|
|
|
|
|
|
|
#ifdef USE_OPENSSL |
|
363
|
|
|
|
|
|
|
SHA1_FINAL(ctx, hash); /* return just sha1 hash */ |
|
364
|
|
|
|
|
|
|
#else |
|
365
|
2
|
|
|
|
|
|
SHA1_FINAL(ctx, 0); /* return just sha1 hash */ |
|
366
|
|
|
|
|
|
|
#ifdef CPU_LITTLE_ENDIAN |
|
367
|
2
|
|
|
|
|
|
rhash_u32_mem_swap(ctx->sha1_context.hash, 5); |
|
368
|
|
|
|
|
|
|
#endif |
|
369
|
|
|
|
|
|
|
#endif |
|
370
|
2
|
50
|
|
|
|
|
if (result) memcpy(result, hash, sha1_hash_size); |
|
371
|
2
|
|
|
|
|
|
return; |
|
372
|
|
|
|
|
|
|
} |
|
373
|
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
/* if there is unprocessed data left in the last 180K block */ |
|
375
|
0
|
0
|
|
|
|
|
if ((ctx->index % FULL_BLOCK_SIZE) > 0) { |
|
376
|
|
|
|
|
|
|
/* then process the last block */ |
|
377
|
0
|
0
|
|
|
|
|
rhash_aich_process_block(ctx, ctx->block_hashes != NULL ? |
|
378
|
|
|
|
|
|
|
AICH_PROCESS_FINAL_BLOCK | AICH_PROCESS_FLUSH_BLOCK : AICH_PROCESS_FLUSH_BLOCK); |
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
/* if processed message was shorter than a ed2k chunk */ |
|
382
|
0
|
0
|
|
|
|
|
if (ctx->chunks_number == 0) { |
|
383
|
|
|
|
|
|
|
/* then return the aich hash for the first chunk */ |
|
384
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, hash, AICH_HASH_LEFT_BRANCH); |
|
385
|
|
|
|
|
|
|
} else { |
|
386
|
0
|
0
|
|
|
|
|
if (ctx->index > 0) { |
|
387
|
|
|
|
|
|
|
/* process the last block of the message */ |
|
388
|
0
|
|
|
|
|
|
rhash_aich_process_block(ctx, AICH_PROCESS_FINAL_BLOCK); |
|
389
|
|
|
|
|
|
|
} |
|
390
|
0
|
0
|
|
|
|
|
assert(ctx->chunks_number > 0); |
|
391
|
0
|
0
|
|
|
|
|
assert(ctx->block_hashes != NULL); |
|
392
|
|
|
|
|
|
|
|
|
393
|
0
|
|
|
|
|
|
rhash_aich_hash_tree(ctx, hash, AICH_HASH_FULL_TREE); |
|
394
|
|
|
|
|
|
|
} |
|
395
|
|
|
|
|
|
|
|
|
396
|
0
|
|
|
|
|
|
rhash_aich_cleanup(ctx); |
|
397
|
0
|
|
|
|
|
|
ctx->sha1_context.length = total_size; /* store total message size */ |
|
398
|
0
|
0
|
|
|
|
|
if (result) memcpy(result, hash, sha1_hash_size); |
|
399
|
|
|
|
|
|
|
} |