File Coverage

blib/lib/Coro.pm
Criterion Covered Total %
statement 24 40 60.0
branch 1 8 12.5
condition 0 3 0.0
subroutine 9 15 60.0
pod 5 6 83.3
total 39 72 54.1


line stmt bran cond sub pod time code
1             =head1 NAME
2              
3             Coro - the only real threads in perl
4              
5             =head1 SYNOPSIS
6              
7             use Coro;
8            
9             async {
10             # some asynchronous thread of execution
11             print "2\n";
12             cede; # yield back to main
13             print "4\n";
14             };
15             print "1\n";
16             cede; # yield to coro
17             print "3\n";
18             cede; # and again
19            
20             # use locking
21             my $lock = new Coro::Semaphore;
22             my $locked;
23            
24             $lock->down;
25             $locked = 1;
26             $lock->up;
27              
28             =head1 DESCRIPTION
29              
30             For a tutorial-style introduction, please read the L
31             manpage. This manpage mainly contains reference information.
32              
33             This module collection manages continuations in general, most often in
34             the form of cooperative threads (also called coros, or simply "coro"
35             in the documentation). They are similar to kernel threads but don't (in
36             general) run in parallel at the same time even on SMP machines. The
37             specific flavor of thread offered by this module also guarantees you that
38             it will not switch between threads unless necessary, at easily-identified
39             points in your program, so locking and parallel access are rarely an
40             issue, making thread programming much safer and easier than using other
41             thread models.
42              
43             Unlike the so-called "Perl threads" (which are not actually real threads
44             but only the windows process emulation (see section of same name for
45             more details) ported to UNIX, and as such act as processes), Coro
46             provides a full shared address space, which makes communication between
47             threads very easy. And coro threads are fast, too: disabling the Windows
48             process emulation code in your perl and using Coro can easily result in
49             a two to four times speed increase for your programs. A parallel matrix
50             multiplication benchmark (very communication-intensive) runs over 300
51             times faster on a single core than perls pseudo-threads on a quad core
52             using all four cores.
53              
54             Coro achieves that by supporting multiple running interpreters that share
55             data, which is especially useful to code pseudo-parallel processes and
56             for event-based programming, such as multiple HTTP-GET requests running
57             concurrently. See L to learn more on how to integrate Coro
58             into an event-based environment.
59              
60             In this module, a thread is defined as "callchain + lexical variables +
61             some package variables + C stack), that is, a thread has its own callchain,
62             its own set of lexicals and its own set of perls most important global
63             variables (see L for more configuration and background info).
64              
65             See also the C section at the end of this document - the Coro
66             module family is quite large.
67              
68             =head1 CORO THREAD LIFE CYCLE
69              
70             During the long and exciting (or not) life of a coro thread, it goes
71             through a number of states:
72              
73             =over 4
74              
75             =item 1. Creation
76              
77             The first thing in the life of a coro thread is it's creation -
78             obviously. The typical way to create a thread is to call the C
79             BLOCK> function:
80              
81             async {
82             # thread code goes here
83             };
84              
85             You can also pass arguments, which are put in C<@_>:
86              
87             async {
88             print $_[1]; # prints 2
89             } 1, 2, 3;
90              
91             This creates a new coro thread and puts it into the ready queue, meaning
92             it will run as soon as the CPU is free for it.
93              
94             C will return a Coro object - you can store this for future
95             reference or ignore it - a thread that is running, ready to run or waiting
96             for some event is alive on it's own.
97              
98             Another way to create a thread is to call the C constructor with a
99             code-reference:
100              
101             new Coro sub {
102             # thread code goes here
103             }, @optional_arguments;
104              
105             This is quite similar to calling C, but the important difference is
106             that the new thread is not put into the ready queue, so the thread will
107             not run until somebody puts it there. C is, therefore, identical to
108             this sequence:
109              
110             my $coro = new Coro sub {
111             # thread code goes here
112             };
113             $coro->ready;
114             return $coro;
115              
116             =item 2. Startup
117              
118             When a new coro thread is created, only a copy of the code reference
119             and the arguments are stored, no extra memory for stacks and so on is
120             allocated, keeping the coro thread in a low-memory state.
121              
122             Only when it actually starts executing will all the resources be finally
123             allocated.
124              
125             The optional arguments specified at coro creation are available in C<@_>,
126             similar to function calls.
127              
128             =item 3. Running / Blocking
129              
130             A lot can happen after the coro thread has started running. Quite usually,
131             it will not run to the end in one go (because you could use a function
132             instead), but it will give up the CPU regularly because it waits for
133             external events.
134              
135             As long as a coro thread runs, its Coro object is available in the global
136             variable C<$Coro::current>.
137              
138             The low-level way to give up the CPU is to call the scheduler, which
139             selects a new coro thread to run:
140              
141             Coro::schedule;
142              
143             Since running threads are not in the ready queue, calling the scheduler
144             without doing anything else will block the coro thread forever - you need
145             to arrange either for the coro to put woken up (readied) by some other
146             event or some other thread, or you can put it into the ready queue before
147             scheduling:
148              
149             # this is exactly what Coro::cede does
150             $Coro::current->ready;
151             Coro::schedule;
152              
153             All the higher-level synchronisation methods (Coro::Semaphore,
154             Coro::rouse_*...) are actually implemented via C<< ->ready >> and C<<
155             Coro::schedule >>.
156              
157             While the coro thread is running it also might get assigned a C-level
158             thread, or the C-level thread might be unassigned from it, as the Coro
159             runtime wishes. A C-level thread needs to be assigned when your perl
160             thread calls into some C-level function and that function in turn calls
161             perl and perl then wants to switch coroutines. This happens most often
162             when you run an event loop and block in the callback, or when perl
163             itself calls some function such as C or methods via the C
164             mechanism.
165              
166             =item 4. Termination
167              
168             Many threads actually terminate after some time. There are a number of
169             ways to terminate a coro thread, the simplest is returning from the
170             top-level code reference:
171              
172             async {
173             # after returning from here, the coro thread is terminated
174             };
175              
176             async {
177             return if 0.5 < rand; # terminate a little earlier, maybe
178             print "got a chance to print this\n";
179             # or here
180             };
181              
182             Any values returned from the coroutine can be recovered using C<< ->join
183             >>:
184              
185             my $coro = async {
186             "hello, world\n" # return a string
187             };
188              
189             my $hello_world = $coro->join;
190              
191             print $hello_world;
192              
193             Another way to terminate is to call C<< Coro::terminate >>, which at any
194             subroutine call nesting level:
195              
196             async {
197             Coro::terminate "return value 1", "return value 2";
198             };
199              
200             Yet another way is to C<< ->cancel >> (or C<< ->safe_cancel >>) the coro
201             thread from another thread:
202              
203             my $coro = async {
204             exit 1;
205             };
206              
207             $coro->cancel; # also accepts values for ->join to retrieve
208              
209             Cancellation I be dangerous - it's a bit like calling C without
210             actually exiting, and might leave C libraries and XS modules in a weird
211             state. Unlike other thread implementations, however, Coro is exceptionally
212             safe with regards to cancellation, as perl will always be in a consistent
213             state, and for those cases where you want to do truly marvellous things
214             with your coro while it is being cancelled - that is, make sure all
215             cleanup code is executed from the thread being cancelled - there is even a
216             C<< ->safe_cancel >> method.
217              
218             So, cancelling a thread that runs in an XS event loop might not be the
219             best idea, but any other combination that deals with perl only (cancelling
220             when a thread is in a C method or an C for example) is
221             safe.
222              
223             Last not least, a coro thread object that isn't referenced is C<<
224             ->cancel >>'ed automatically - just like other objects in Perl. This
225             is not such a common case, however - a running thread is referencedy by
226             C<$Coro::current>, a thread ready to run is referenced by the ready queue,
227             a thread waiting on a lock or semaphore is referenced by being in some
228             wait list and so on. But a thread that isn't in any of those queues gets
229             cancelled:
230              
231             async {
232             schedule; # cede to other coros, don't go into the ready queue
233             };
234              
235             cede;
236             # now the async above is destroyed, as it is not referenced by anything.
237              
238             A slightly embellished example might make it clearer:
239              
240             async {
241             my $guard = Guard::guard { print "destroyed\n" };
242             schedule while 1;
243             };
244              
245             cede;
246              
247             Superficially one might not expect any output - since the C
248             implements an endless loop, the C<$guard> will not be cleaned up. However,
249             since the thread object returned by C is not stored anywhere, the
250             thread is initially referenced because it is in the ready queue, when it
251             runs it is referenced by C<$Coro::current>, but when it calls C,
252             it gets Ced causing the guard object to be destroyed (see the next
253             section), and printing it's message.
254              
255             If this seems a bit drastic, remember that this only happens when nothing
256             references the thread anymore, which means there is no way to further
257             execute it, ever. The only options at this point are leaking the thread,
258             or cleaning it up, which brings us to...
259              
260             =item 5. Cleanup
261              
262             Threads will allocate various resources. Most but not all will be returned
263             when a thread terminates, during clean-up.
264              
265             Cleanup is quite similar to throwing an uncaught exception: perl will
266             work it's way up through all subroutine calls and blocks. On it's way, it
267             will release all C variables, undo all C's and free any other
268             resources truly local to the thread.
269              
270             So, a common way to free resources is to keep them referenced only by my
271             variables:
272              
273             async {
274             my $big_cache = new Cache ...;
275             };
276              
277             If there are no other references, then the C<$big_cache> object will be
278             freed when the thread terminates, regardless of how it does so.
279              
280             What it does C do is unlock any Coro::Semaphores or similar
281             resources, but that's where the C methods come in handy:
282              
283             my $sem = new Coro::Semaphore;
284              
285             async {
286             my $lock_guard = $sem->guard;
287             # if we return, or die or get cancelled, here,
288             # then the semaphore will be "up"ed.
289             };
290              
291             The C function comes in handy for any custom cleanup you
292             might want to do (but you cannot switch to other coroutines from those
293             code blocks):
294              
295             async {
296             my $window = new Gtk2::Window "toplevel";
297             # The window will not be cleaned up automatically, even when $window
298             # gets freed, so use a guard to ensure it's destruction
299             # in case of an error:
300             my $window_guard = Guard::guard { $window->destroy };
301              
302             # we are safe here
303             };
304              
305             Last not least, C can often be handy, too, e.g. when temporarily
306             replacing the coro thread description:
307              
308             sub myfunction {
309             local $Coro::current->{desc} = "inside myfunction(@_)";
310              
311             # if we return or die here, the description will be restored
312             }
313              
314             =item 6. Viva La Zombie Muerte
315              
316             Even after a thread has terminated and cleaned up its resources, the Coro
317             object still is there and stores the return values of the thread.
318              
319             When there are no other references, it will simply be cleaned up and
320             freed.
321              
322             If there areany references, the Coro object will stay around, and you
323             can call C<< ->join >> as many times as you wish to retrieve the result
324             values:
325              
326             async {
327             print "hi\n";
328             1
329             };
330              
331             # run the async above, and free everything before returning
332             # from Coro::cede:
333             Coro::cede;
334              
335             {
336             my $coro = async {
337             print "hi\n";
338             1
339             };
340              
341             # run the async above, and clean up, but do not free the coro
342             # object:
343             Coro::cede;
344              
345             # optionally retrieve the result values
346             my @results = $coro->join;
347              
348             # now $coro goes out of scope, and presumably gets freed
349             };
350              
351             =back
352              
353             =cut
354              
355             package Coro;
356              
357 20     20   39979 use common::sense;
  20         255  
  20         110  
358              
359 20     20   1163 use Carp ();
  20         43  
  20         309  
360              
361 20     20   7696 use Guard ();
  20         8118  
  20         413  
362              
363 20     20   7659 use Coro::State;
  20         68  
  20         882  
364              
365 20     20   135 use base qw(Coro::State Exporter);
  20         45  
  20         15104  
366              
367             our $idle; # idle handler
368             our $main; # main coro
369             our $current; # current coro
370              
371             our $VERSION = 6.513;
372              
373             our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub rouse_cb rouse_wait);
374             our %EXPORT_TAGS = (
375             prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
376             );
377             our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
378              
379             =head1 GLOBAL VARIABLES
380              
381             =over 4
382              
383             =item $Coro::main
384              
385             This variable stores the Coro object that represents the main
386             program. While you can C it and do most other things you can do to
387             coro, it is mainly useful to compare again C<$Coro::current>, to see
388             whether you are running in the main program or not.
389              
390             =cut
391              
392             # $main is now being initialised by Coro::State
393              
394             =item $Coro::current
395              
396             The Coro object representing the current coro (the last
397             coro that the Coro scheduler switched to). The initial value is
398             C<$Coro::main> (of course).
399              
400             This variable is B I. You can take copies of the
401             value stored in it and use it as any other Coro object, but you must
402             not otherwise modify the variable itself.
403              
404             =cut
405              
406 1     1 1 601 sub current() { $current } # [DEPRECATED]
407              
408             =item $Coro::idle
409              
410             This variable is mainly useful to integrate Coro into event loops. It is
411             usually better to rely on L or L, as this is
412             pretty low-level functionality.
413              
414             This variable stores a Coro object that is put into the ready queue when
415             there are no other ready threads (without invoking any ready hooks).
416              
417             The default implementation dies with "FATAL: deadlock detected.", followed
418             by a thread listing, because the program has no other way to continue.
419              
420             This hook is overwritten by modules such as C and
421             C to wait on an external event that hopefully wakes up a
422             coro so the scheduler can run it.
423              
424             See L or L for examples of using this technique.
425              
426             =cut
427              
428             # ||= because other modules could have provided their own by now
429             $idle ||= new Coro sub {
430             require Coro::Debug;
431             die "FATAL: deadlock detected.\n"
432             . Coro::Debug::ps_listing ();
433             };
434              
435             # this coro is necessary because a coro
436             # cannot destroy itself.
437             our @destroy;
438             our $manager;
439              
440             $manager = new Coro sub {
441             while () {
442             _destroy shift @destroy
443             while @destroy;
444              
445             &schedule;
446             }
447             };
448             $manager->{desc} = "[coro manager]";
449             $manager->prio (PRIO_MAX);
450              
451             =back
452              
453             =head1 SIMPLE CORO CREATION
454              
455             =over 4
456              
457             =item async { ... } [@args...]
458              
459             Create a new coro and return its Coro object (usually
460             unused). The coro will be put into the ready queue, so
461             it will start running automatically on the next scheduler run.
462              
463             The first argument is a codeblock/closure that should be executed in the
464             coro. When it returns argument returns the coro is automatically
465             terminated.
466              
467             The remaining arguments are passed as arguments to the closure.
468              
469             See the C constructor for info about the coro
470             environment in which coro are executed.
471              
472             Calling C in a coro will do the same as calling exit outside
473             the coro. Likewise, when the coro dies, the program will exit,
474             just as it would in the main program.
475              
476             If you do not want that, you can provide a default C handler, or
477             simply avoid dieing (by use of C).
478              
479             Example: Create a new coro that just prints its arguments.
480              
481             async {
482             print "@_\n";
483             } 1,2,3,4;
484              
485             =item async_pool { ... } [@args...]
486              
487             Similar to C, but uses a coro pool, so you should not call
488             terminate or join on it (although you are allowed to), and you get a
489             coro that might have executed other code already (which can be good
490             or bad :).
491              
492             On the plus side, this function is about twice as fast as creating (and
493             destroying) a completely new coro, so if you need a lot of generic
494             coros in quick successsion, use C, not C.
495              
496             The code block is executed in an C context and a warning will be
497             issued in case of an exception instead of terminating the program, as
498             C does. As the coro is being reused, stuff like C
499             will not work in the expected way, unless you call terminate or cancel,
500             which somehow defeats the purpose of pooling (but is fine in the
501             exceptional case).
502              
503             The priority will be reset to C<0> after each run, all C calls
504             will be undone, tracing will be disabled, the description will be reset
505             and the default output filehandle gets restored, so you can change all
506             these. Otherwise the coro will be re-used "as-is": most notably if you
507             change other per-coro global stuff such as C<$/> you I revert
508             that change, which is most simply done by using local as in: C<< local $/
509             >>.
510              
511             The idle pool size is limited to C<8> idle coros (this can be
512             adjusted by changing $Coro::POOL_SIZE), but there can be as many non-idle
513             coros as required.
514              
515             If you are concerned about pooled coros growing a lot because a
516             single C used a lot of stackspace you can e.g. C
517             { terminate }> once per second or so to slowly replenish the pool. In
518             addition to that, when the stacks used by a handler grows larger than 32kb
519             (adjustable via $Coro::POOL_RSS) it will also be destroyed.
520              
521             =cut
522              
523             our $POOL_SIZE = 8;
524             our $POOL_RSS = 32 * 1024;
525             our @async_pool;
526              
527             sub pool_handler {
528 0     0 0 0 while () {
529 0         0 eval {
530 0         0 &{&_pool_handler} while 1;
  0         0  
531             };
532              
533 0 0       0 warn $@ if $@;
534             }
535             }
536              
537             =back
538              
539             =head1 STATIC METHODS
540              
541             Static methods are actually functions that implicitly operate on the
542             current coro.
543              
544             =over 4
545              
546             =item schedule
547              
548             Calls the scheduler. The scheduler will find the next coro that is
549             to be run from the ready queue and switches to it. The next coro
550             to be run is simply the one with the highest priority that is longest
551             in its ready queue. If there is no coro ready, it will call the
552             C<$Coro::idle> hook.
553              
554             Please note that the current coro will I be put into the ready
555             queue, so calling this function usually means you will never be called
556             again unless something else (e.g. an event handler) calls C<< ->ready >>,
557             thus waking you up.
558              
559             This makes C I generic method to use to block the current
560             coro and wait for events: first you remember the current coro in
561             a variable, then arrange for some callback of yours to call C<< ->ready
562             >> on that once some event happens, and last you call C to put
563             yourself to sleep. Note that a lot of things can wake your coro up,
564             so you need to check whether the event indeed happened, e.g. by storing the
565             status in a variable.
566              
567             See B, below, for some ways to wait for callbacks.
568              
569             =item cede
570              
571             "Cede" to other coros. This function puts the current coro into
572             the ready queue and calls C, which has the effect of giving
573             up the current "timeslice" to other coros of the same or higher
574             priority. Once your coro gets its turn again it will automatically be
575             resumed.
576              
577             This function is often called C in other languages.
578              
579             =item Coro::cede_notself
580              
581             Works like cede, but is not exported by default and will cede to I
582             coro, regardless of priority. This is useful sometimes to ensure
583             progress is made.
584              
585             =item terminate [arg...]
586              
587             Terminates the current coro with the given status values (see
588             L). The values will not be copied, but referenced directly.
589              
590             =item Coro::on_enter BLOCK, Coro::on_leave BLOCK
591              
592             These function install enter and leave winders in the current scope. The
593             enter block will be executed when on_enter is called and whenever the
594             current coro is re-entered by the scheduler, while the leave block is
595             executed whenever the current coro is blocked by the scheduler, and
596             also when the containing scope is exited (by whatever means, be it exit,
597             die, last etc.).
598              
599             I
600             BLOCKs>. That means: do not even think about calling C without an
601             eval, and do not even think of entering the scheduler in any way.
602              
603             Since both BLOCKs are tied to the current scope, they will automatically
604             be removed when the current scope exits.
605              
606             These functions implement the same concept as C in scheme
607             does, and are useful when you want to localise some resource to a specific
608             coro.
609              
610             They slow down thread switching considerably for coros that use them
611             (about 40% for a BLOCK with a single assignment, so thread switching is
612             still reasonably fast if the handlers are fast).
613              
614             These functions are best understood by an example: The following function
615             will change the current timezone to "Antarctica/South_Pole", which
616             requires a call to C, but by using C and C,
617             which remember/change the current timezone and restore the previous
618             value, respectively, the timezone is only changed for the coro that
619             installed those handlers.
620              
621             use POSIX qw(tzset);
622              
623             async {
624             my $old_tz; # store outside TZ value here
625              
626             Coro::on_enter {
627             $old_tz = $ENV{TZ}; # remember the old value
628              
629             $ENV{TZ} = "Antarctica/South_Pole";
630             tzset; # enable new value
631             };
632              
633             Coro::on_leave {
634             $ENV{TZ} = $old_tz;
635             tzset; # restore old value
636             };
637              
638             # at this place, the timezone is Antarctica/South_Pole,
639             # without disturbing the TZ of any other coro.
640             };
641              
642             This can be used to localise about any resource (locale, uid, current
643             working directory etc.) to a block, despite the existence of other
644             coros.
645              
646             Another interesting example implements time-sliced multitasking using
647             interval timers (this could obviously be optimised, but does the job):
648              
649             # "timeslice" the given block
650             sub timeslice(&) {
651             use Time::HiRes ();
652              
653             Coro::on_enter {
654             # on entering the thread, we set an VTALRM handler to cede
655             $SIG{VTALRM} = sub { cede };
656             # and then start the interval timer
657             Time::HiRes::setitimer &Time::HiRes::ITIMER_VIRTUAL, 0.01, 0.01;
658             };
659             Coro::on_leave {
660             # on leaving the thread, we stop the interval timer again
661             Time::HiRes::setitimer &Time::HiRes::ITIMER_VIRTUAL, 0, 0;
662             };
663              
664             &{+shift};
665             }
666              
667             # use like this:
668             timeslice {
669             # The following is an endless loop that would normally
670             # monopolise the process. Since it runs in a timesliced
671             # environment, it will regularly cede to other threads.
672             while () { }
673             };
674              
675              
676             =item killall
677              
678             Kills/terminates/cancels all coros except the currently running one.
679              
680             Note that while this will try to free some of the main interpreter
681             resources if the calling coro isn't the main coro, but one
682             cannot free all of them, so if a coro that is not the main coro
683             calls this function, there will be some one-time resource leak.
684              
685             =cut
686              
687             sub killall {
688 0     0 1 0 for (Coro::State::list) {
689 0 0 0     0 $_->cancel
690             if $_ != $current && UNIVERSAL::isa $_, "Coro";
691             }
692             }
693              
694             =back
695              
696             =head1 CORO OBJECT METHODS
697              
698             These are the methods you can call on coro objects (or to create
699             them).
700              
701             =over 4
702              
703             =item new Coro \&sub [, @args...]
704              
705             Create a new coro and return it. When the sub returns, the coro
706             automatically terminates as if C with the returned values were
707             called. To make the coro run you must first put it into the ready
708             queue by calling the ready method.
709              
710             See C and C for additional info about the
711             coro environment.
712              
713             =cut
714              
715             sub _coro_run {
716 68     68   8470 terminate &{+shift};
  68         254  
717             }
718              
719             =item $success = $coro->ready
720              
721             Put the given coro into the end of its ready queue (there is one
722             queue for each priority) and return true. If the coro is already in
723             the ready queue, do nothing and return false.
724              
725             This ensures that the scheduler will resume this coro automatically
726             once all the coro of higher priority and all coro of the same
727             priority that were put into the ready queue earlier have been resumed.
728              
729             =item $coro->suspend
730              
731             Suspends the specified coro. A suspended coro works just like any other
732             coro, except that the scheduler will not select a suspended coro for
733             execution.
734              
735             Suspending a coro can be useful when you want to keep the coro from
736             running, but you don't want to destroy it, or when you want to temporarily
737             freeze a coro (e.g. for debugging) to resume it later.
738              
739             A scenario for the former would be to suspend all (other) coros after a
740             fork and keep them alive, so their destructors aren't called, but new
741             coros can be created.
742              
743             =item $coro->resume
744              
745             If the specified coro was suspended, it will be resumed. Note that when
746             the coro was in the ready queue when it was suspended, it might have been
747             unreadied by the scheduler, so an activation might have been lost.
748              
749             To avoid this, it is best to put a suspended coro into the ready queue
750             unconditionally, as every synchronisation mechanism must protect itself
751             against spurious wakeups, and the one in the Coro family certainly do
752             that.
753              
754             =item $state->is_new
755              
756             Returns true iff this Coro object is "new", i.e. has never been run
757             yet. Those states basically consist of only the code reference to call and
758             the arguments, but consumes very little other resources. New states will
759             automatically get assigned a perl interpreter when they are transferred to.
760              
761             =item $state->is_zombie
762              
763             Returns true iff the Coro object has been cancelled, i.e.
764             it's resources freed because they were C'ed, C'd,
765             C'ed or simply went out of scope.
766              
767             The name "zombie" stems from UNIX culture, where a process that has
768             exited and only stores and exit status and no other resources is called a
769             "zombie".
770              
771             =item $is_ready = $coro->is_ready
772              
773             Returns true iff the Coro object is in the ready queue. Unless the Coro
774             object gets destroyed, it will eventually be scheduled by the scheduler.
775              
776             =item $is_running = $coro->is_running
777              
778             Returns true iff the Coro object is currently running. Only one Coro object
779             can ever be in the running state (but it currently is possible to have
780             multiple running Coro::States).
781              
782             =item $is_suspended = $coro->is_suspended
783              
784             Returns true iff this Coro object has been suspended. Suspended Coros will
785             not ever be scheduled.
786              
787             =item $coro->cancel (arg...)
788              
789             Terminates the given Coro thread and makes it return the given arguments as
790             status (default: an empty list). Never returns if the Coro is the
791             current Coro.
792              
793             This is a rather brutal way to free a coro, with some limitations - if
794             the thread is inside a C callback that doesn't expect to be canceled,
795             bad things can happen, or if the cancelled thread insists on running
796             complicated cleanup handlers that rely on its thread context, things will
797             not work.
798              
799             Any cleanup code being run (e.g. from C blocks, destructors and so
800             on) will be run without a thread context, and is not allowed to switch
801             to other threads. A common mistake is to call C<< ->cancel >> from a
802             destructor called by die'ing inside the thread to be cancelled for
803             example.
804              
805             On the plus side, C<< ->cancel >> will always clean up the thread, no
806             matter what. If your cleanup code is complex or you want to avoid
807             cancelling a C-thread that doesn't know how to clean up itself, it can be
808             better to C<< ->throw >> an exception, or use C<< ->safe_cancel >>.
809              
810             The arguments to C<< ->cancel >> are not copied, but instead will
811             be referenced directly (e.g. if you pass C<$var> and after the call
812             change that variable, then you might change the return values passed to
813             e.g. C, so don't do that).
814              
815             The resources of the Coro are usually freed (or destructed) before this
816             call returns, but this can be delayed for an indefinite amount of time, as
817             in some cases the manager thread has to run first to actually destruct the
818             Coro object.
819              
820             =item $coro->safe_cancel ($arg...)
821              
822             Works mostly like C<< ->cancel >>, but is inherently "safer", and
823             consequently, can fail with an exception in cases the thread is not in a
824             cancellable state. Essentially, C<< ->safe_cancel >> is a C<< ->cancel >>
825             with extra checks before canceling.
826              
827             It works a bit like throwing an exception that cannot be caught -
828             specifically, it will clean up the thread from within itself, so all
829             cleanup handlers (e.g. C blocks) are run with full thread
830             context and can block if they wish. The downside is that there is no
831             guarantee that the thread can be cancelled when you call this method, and
832             therefore, it might fail. It is also considerably slower than C or
833             C.
834              
835             A thread is in a safe-cancellable state if it either hasn't been run yet,
836             or it has no C context attached and is inside an SLF function.
837              
838             The latter two basically mean that the thread isn't currently inside a
839             perl callback called from some C function (usually via some XS modules)
840             and isn't currently executing inside some C function itself (via Coro's XS
841             API).
842              
843             This call returns true when it could cancel the thread, or croaks with an
844             error otherwise (i.e. it either returns true or doesn't return at all).
845              
846             Why the weird interface? Well, there are two common models on how and
847             when to cancel things. In the first, you have the expectation that your
848             coro thread can be cancelled when you want to cancel it - if the thread
849             isn't cancellable, this would be a bug somewhere, so C<< ->safe_cancel >>
850             croaks to notify of the bug.
851              
852             In the second model you sometimes want to ask nicely to cancel a thread,
853             but if it's not a good time, well, then don't cancel. This can be done
854             relatively easy like this:
855              
856             if (! eval { $coro->safe_cancel }) {
857             warn "unable to cancel thread: $@";
858             }
859              
860             However, what you never should do is first try to cancel "safely" and
861             if that fails, cancel the "hard" way with C<< ->cancel >>. That makes
862             no sense: either you rely on being able to execute cleanup code in your
863             thread context, or you don't. If you do, then C<< ->safe_cancel >> is the
864             only way, and if you don't, then C<< ->cancel >> is always faster and more
865             direct.
866              
867             =item $coro->schedule_to
868              
869             Puts the current coro to sleep (like C), but instead
870             of continuing with the next coro from the ready queue, always switch to
871             the given coro object (regardless of priority etc.). The readyness
872             state of that coro isn't changed.
873              
874             This is an advanced method for special cases - I'd love to hear about any
875             uses for this one.
876              
877             =item $coro->cede_to
878              
879             Like C, but puts the current coro into the ready
880             queue. This has the effect of temporarily switching to the given
881             coro, and continuing some time later.
882              
883             This is an advanced method for special cases - I'd love to hear about any
884             uses for this one.
885              
886             =item $coro->throw ([$scalar])
887              
888             If C<$throw> is specified and defined, it will be thrown as an exception
889             inside the coro at the next convenient point in time. Otherwise
890             clears the exception object.
891              
892             Coro will check for the exception each time a schedule-like-function
893             returns, i.e. after each C, C, C<< Coro::Semaphore->down
894             >>, C<< Coro::Handle->readable >> and so on. Most of those functions (all
895             that are part of Coro itself) detect this case and return early in case an
896             exception is pending.
897              
898             The exception object will be thrown "as is" with the specified scalar in
899             C<$@>, i.e. if it is a string, no line number or newline will be appended
900             (unlike with C).
901              
902             This can be used as a softer means than either C or C
903             >to ask a coro to end itself, although there is no guarantee that the
904             exception will lead to termination, and if the exception isn't caught it
905             might well end the whole program.
906              
907             You might also think of C as being the moral equivalent of
908             Cing a coro with a signal (in this case, a scalar).
909              
910             =item $coro->join
911              
912             Wait until the coro terminates and return any values given to the
913             C or C functions. C can be called concurrently
914             from multiple threads, and all will be resumed and given the status
915             return once the C<$coro> terminates.
916              
917             =item $coro->on_destroy (\&cb)
918              
919             Registers a callback that is called when this coro thread gets destroyed,
920             that is, after it's resources have been freed but before it is joined. The
921             callback gets passed the terminate/cancel arguments, if any, and I
922             not> die, under any circumstances.
923              
924             There can be any number of C callbacks per coro, and there is
925             currently no way to remove a callback once added.
926              
927             =item $oldprio = $coro->prio ($newprio)
928              
929             Sets (or gets, if the argument is missing) the priority of the
930             coro thread. Higher priority coro get run before lower priority
931             coros. Priorities are small signed integers (currently -4 .. +3),
932             that you can refer to using PRIO_xxx constants (use the import tag :prio
933             to get then):
934              
935             PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
936             3 > 1 > 0 > -1 > -3 > -4
937              
938             # set priority to HIGH
939             current->prio (PRIO_HIGH);
940              
941             The idle coro thread ($Coro::idle) always has a lower priority than any
942             existing coro.
943              
944             Changing the priority of the current coro will take effect immediately,
945             but changing the priority of a coro in the ready queue (but not running)
946             will only take effect after the next schedule (of that coro). This is a
947             bug that will be fixed in some future version.
948              
949             =item $newprio = $coro->nice ($change)
950              
951             Similar to C, but subtract the given value from the priority (i.e.
952             higher values mean lower priority, just as in UNIX's nice command).
953              
954             =item $olddesc = $coro->desc ($newdesc)
955              
956             Sets (or gets in case the argument is missing) the description for this
957             coro thread. This is just a free-form string you can associate with a
958             coro.
959              
960             This method simply sets the C<< $coro->{desc} >> member to the given
961             string. You can modify this member directly if you wish, and in fact, this
962             is often preferred to indicate major processing states that can then be
963             seen for example in a L session:
964              
965             sub my_long_function {
966             local $Coro::current->{desc} = "now in my_long_function";
967             ...
968             $Coro::current->{desc} = "my_long_function: phase 1";
969             ...
970             $Coro::current->{desc} = "my_long_function: phase 2";
971             ...
972             }
973              
974             =cut
975              
976             sub desc {
977 0     0 1 0 my $old = $_[0]{desc};
978 0 0       0 $_[0]{desc} = $_[1] if @_ > 1;
979 0         0 $old;
980             }
981              
982             sub transfer {
983 0     0 1 0 require Carp;
984 0         0 Carp::croak ("You must not call ->transfer on Coro objects. Use Coro::State objects or the ->schedule_to method. Caught");
985             }
986              
987             =back
988              
989             =head1 GLOBAL FUNCTIONS
990              
991             =over 4
992              
993             =item Coro::nready
994              
995             Returns the number of coro that are currently in the ready state,
996             i.e. that can be switched to by calling C directory or
997             indirectly. The value C<0> means that the only runnable coro is the
998             currently running one, so C would have no effect, and C
999             would cause a deadlock unless there is an idle handler that wakes up some
1000             coro.
1001              
1002             =item my $guard = Coro::guard { ... }
1003              
1004             This function still exists, but is deprecated. Please use the
1005             C function instead.
1006              
1007             =cut
1008              
1009 20     20   8682 BEGIN { *guard = \&Guard::guard }
1010              
1011             =item unblock_sub { ... }
1012              
1013             This utility function takes a BLOCK or code reference and "unblocks" it,
1014             returning a new coderef. Unblocking means that calling the new coderef
1015             will return immediately without blocking, returning nothing, while the
1016             original code ref will be called (with parameters) from within another
1017             coro.
1018              
1019             The reason this function exists is that many event libraries (such as
1020             the venerable L module) are not thread-safe (a weaker form
1021             of reentrancy). This means you must not block within event callbacks,
1022             otherwise you might suffer from crashes or worse. The only event library
1023             currently known that is safe to use without C is L (but
1024             you might still run into deadlocks if all event loops are blocked).
1025              
1026             Coro will try to catch you when you block in the event loop
1027             ("FATAL: $Coro::idle blocked itself"), but this is just best effort and
1028             only works when you do not run your own event loop.
1029              
1030             This function allows your callbacks to block by executing them in another
1031             coro where it is safe to block. One example where blocking is handy
1032             is when you use the L functions to save results to
1033             disk, for example.
1034              
1035             In short: simply use C instead of C when
1036             creating event callbacks that want to block.
1037              
1038             If your handler does not plan to block (e.g. simply sends a message to
1039             another coro, or puts some other coro into the ready queue), there is
1040             no reason to use C.
1041              
1042             Note that you also need to use C for any other callbacks that
1043             are indirectly executed by any C-based event loop. For example, when you
1044             use a module that uses L (and you use L) and it
1045             provides callbacks that are the result of some event callback, then you
1046             must not block either, or use C.
1047              
1048             =cut
1049              
1050             our @unblock_queue;
1051              
1052             # we create a special coro because we want to cede,
1053             # to reduce pressure on the coro pool (because most callbacks
1054             # return immediately and can be reused) and because we cannot cede
1055             # inside an event callback.
1056             our $unblock_scheduler = new Coro sub {
1057             while () {
1058             while (my $cb = pop @unblock_queue) {
1059             &async_pool (@$cb);
1060              
1061             # for short-lived callbacks, this reduces pressure on the coro pool
1062             # as the chance is very high that the async_poll coro will be back
1063             # in the idle state when cede returns
1064             cede;
1065             }
1066             schedule; # sleep well
1067             }
1068             };
1069             $unblock_scheduler->{desc} = "[unblock_sub scheduler]";
1070              
1071             sub unblock_sub(&) {
1072 0     0 1 0 my $cb = shift;
1073              
1074             sub {
1075 0     0   0 unshift @unblock_queue, [$cb, @_];
1076 0         0 $unblock_scheduler->ready;
1077             }
1078 0         0 }
1079              
1080             =item $cb = rouse_cb
1081              
1082             Create and return a "rouse callback". That's a code reference that,
1083             when called, will remember a copy of its arguments and notify the owner
1084             coro of the callback.
1085              
1086             See the next function.
1087              
1088             =item @args = rouse_wait [$cb]
1089              
1090             Wait for the specified rouse callback (or the last one that was created in
1091             this coro).
1092              
1093             As soon as the callback is invoked (or when the callback was invoked
1094             before C), it will return the arguments originally passed to
1095             the rouse callback. In scalar context, that means you get the I
1096             argument, just as if C had a C
1097             statement at the end.
1098              
1099             See the section B for an actual usage example.
1100              
1101             =back
1102              
1103             =cut
1104              
1105             for my $module (qw(Channel RWLock Semaphore SemaphoreSet Signal Specific)) {
1106             my $old = defined &{"Coro::$module\::new"} && \&{"Coro::$module\::new"};
1107              
1108             *{"Coro::$module\::new"} = sub {
1109 3     3   972 require "Coro/$module.pm";
1110              
1111             # some modules have their new predefined in State.xs, some don't
1112 3 50       21 *{"Coro::$module\::new"} = $old
  3         36  
1113             if $old;
1114              
1115 3         10 goto &{"Coro::$module\::new"};
  3         61  
1116             };
1117             }
1118              
1119             1;
1120              
1121             =head1 HOW TO WAIT FOR A CALLBACK
1122              
1123             It is very common for a coro to wait for some callback to be
1124             called. This occurs naturally when you use coro in an otherwise
1125             event-based program, or when you use event-based libraries.
1126              
1127             These typically register a callback for some event, and call that callback
1128             when the event occurred. In a coro, however, you typically want to
1129             just wait for the event, simplyifying things.
1130              
1131             For example C<< AnyEvent->child >> registers a callback to be called when
1132             a specific child has exited:
1133              
1134             my $child_watcher = AnyEvent->child (pid => $pid, cb => sub { ... });
1135              
1136             But from within a coro, you often just want to write this:
1137              
1138             my $status = wait_for_child $pid;
1139              
1140             Coro offers two functions specifically designed to make this easy,
1141             C and C.
1142              
1143             The first function, C, generates and returns a callback that,
1144             when invoked, will save its arguments and notify the coro that
1145             created the callback.
1146              
1147             The second function, C, waits for the callback to be called
1148             (by calling C to go to sleep) and returns the arguments
1149             originally passed to the callback.
1150              
1151             Using these functions, it becomes easy to write the C
1152             function mentioned above:
1153              
1154             sub wait_for_child($) {
1155             my ($pid) = @_;
1156              
1157             my $watcher = AnyEvent->child (pid => $pid, cb => rouse_cb);
1158              
1159             my ($rpid, $rstatus) = rouse_wait;
1160             $rstatus
1161             }
1162              
1163             In the case where C and C are not flexible enough,
1164             you can roll your own, using C and C:
1165              
1166             sub wait_for_child($) {
1167             my ($pid) = @_;
1168              
1169             # store the current coro in $current,
1170             # and provide result variables for the closure passed to ->child
1171             my $current = $Coro::current;
1172             my ($done, $rstatus);
1173              
1174             # pass a closure to ->child
1175             my $watcher = AnyEvent->child (pid => $pid, cb => sub {
1176             $rstatus = $_[1]; # remember rstatus
1177             $done = 1; # mark $rstatus as valid
1178             $current->ready; # wake up the waiting thread
1179             });
1180              
1181             # wait until the closure has been called
1182             schedule while !$done;
1183              
1184             $rstatus
1185             }
1186              
1187              
1188             =head1 BUGS/LIMITATIONS
1189              
1190             =over 4
1191              
1192             =item fork with pthread backend
1193              
1194             When Coro is compiled using the pthread backend (which isn't recommended
1195             but required on many BSDs as their libcs are completely broken), then
1196             coro will not survive a fork. There is no known workaround except to
1197             fix your libc and use a saner backend.
1198              
1199             =item perl process emulation ("threads")
1200              
1201             This module is not perl-pseudo-thread-safe. You should only ever use this
1202             module from the first thread (this requirement might be removed in the
1203             future to allow per-thread schedulers, but Coro::State does not yet allow
1204             this). I recommend disabling thread support and using processes, as having
1205             the windows process emulation enabled under unix roughly halves perl
1206             performance, even when not used.
1207              
1208             Attempts to use threads created in another emulated process will crash
1209             ("cleanly", with a null pointer exception).
1210              
1211             =item coro switching is not signal safe
1212              
1213             You must not switch to another coro from within a signal handler (only
1214             relevant with %SIG - most event libraries provide safe signals), I
1215             you are sure you are not interrupting a Coro function.
1216              
1217             That means you I call any function that might "block" the
1218             current coro - C, C C<< Coro::Semaphore->down >> or
1219             anything that calls those. Everything else, including calling C,
1220             works.
1221              
1222             =back
1223              
1224              
1225             =head1 WINDOWS PROCESS EMULATION
1226              
1227             A great many people seem to be confused about ithreads (for example, Chip
1228             Salzenberg called me unintelligent, incapable, stupid and gullible,
1229             while in the same mail making rather confused statements about perl
1230             ithreads (for example, that memory or files would be shared), showing his
1231             lack of understanding of this area - if it is hard to understand for Chip,
1232             it is probably not obvious to everybody).
1233              
1234             What follows is an ultra-condensed version of my talk about threads in
1235             scripting languages given on the perl workshop 2009:
1236              
1237             The so-called "ithreads" were originally implemented for two reasons:
1238             first, to (badly) emulate unix processes on native win32 perls, and
1239             secondly, to replace the older, real thread model ("5.005-threads").
1240              
1241             It does that by using threads instead of OS processes. The difference
1242             between processes and threads is that threads share memory (and other
1243             state, such as files) between threads within a single process, while
1244             processes do not share anything (at least not semantically). That
1245             means that modifications done by one thread are seen by others, while
1246             modifications by one process are not seen by other processes.
1247              
1248             The "ithreads" work exactly like that: when creating a new ithreads
1249             process, all state is copied (memory is copied physically, files and code
1250             is copied logically). Afterwards, it isolates all modifications. On UNIX,
1251             the same behaviour can be achieved by using operating system processes,
1252             except that UNIX typically uses hardware built into the system to do this
1253             efficiently, while the windows process emulation emulates this hardware in
1254             software (rather efficiently, but of course it is still much slower than
1255             dedicated hardware).
1256              
1257             As mentioned before, loading code, modifying code, modifying data
1258             structures and so on is only visible in the ithreads process doing the
1259             modification, not in other ithread processes within the same OS process.
1260              
1261             This is why "ithreads" do not implement threads for perl at all, only
1262             processes. What makes it so bad is that on non-windows platforms, you can
1263             actually take advantage of custom hardware for this purpose (as evidenced
1264             by the forks module, which gives you the (i-) threads API, just much
1265             faster).
1266              
1267             Sharing data is in the i-threads model is done by transferring data
1268             structures between threads using copying semantics, which is very slow -
1269             shared data simply does not exist. Benchmarks using i-threads which are
1270             communication-intensive show extremely bad behaviour with i-threads (in
1271             fact, so bad that Coro, which cannot take direct advantage of multiple
1272             CPUs, is often orders of magnitude faster because it shares data using
1273             real threads, refer to my talk for details).
1274              
1275             As summary, i-threads *use* threads to implement processes, while
1276             the compatible forks module *uses* processes to emulate, uhm,
1277             processes. I-threads slow down every perl program when enabled, and
1278             outside of windows, serve no (or little) practical purpose, but
1279             disadvantages every single-threaded Perl program.
1280              
1281             This is the reason that I try to avoid the name "ithreads", as it is
1282             misleading as it implies that it implements some kind of thread model for
1283             perl, and prefer the name "windows process emulation", which describes the
1284             actual use and behaviour of it much better.
1285              
1286             =head1 SEE ALSO
1287              
1288             Event-Loop integration: L, L, L.
1289              
1290             Debugging: L.
1291              
1292             Support/Utility: L, L.
1293              
1294             Locking and IPC: L, L, L,
1295             L, L.
1296              
1297             I/O and Timers: L, L, L, L.
1298              
1299             Compatibility with other modules: L (but see also L for
1300             a better-working alternative), L, L,
1301             L.
1302              
1303             XS API: L.
1304              
1305             Low level Configuration, Thread Environment, Continuations: L.
1306              
1307             =head1 AUTHOR/SUPPORT/CONTACT
1308              
1309             Marc A. Lehmann
1310             http://software.schmorp.de/pkg/Coro.html
1311              
1312             =cut
1313