File Coverage

blib/lib/Config/Model/models/Systemd/Common/Exec.pl
Criterion Covered Total %
statement 18 18 100.0
branch n/a
condition n/a
subroutine 6 6 100.0
pod n/a
total 24 24 100.0


line stmt bran cond sub pod time code
1             #
2             # This file is part of Config-Model-Systemd
3             #
4             # This software is Copyright (c) 2008-2022 by Dominique Dumont.
5             #
6             # This is free software, licensed under:
7             #
8             # The GNU Lesser General Public License, Version 2.1, February 1999
9             #
10 4     4   18050 use strict;
  4     1   9  
  4     1   101  
  1         3144  
  1         2  
  1         19  
  1         3116  
  1         2  
  1         19  
11 4     4   18 use warnings;
  4     1   8  
  4     1   15822  
  1         5  
  1         2  
  1         3830  
  1         4  
  1         3  
  1         4241  
12              
13             return [
14             {
15             'accept' => [
16             '.*',
17             {
18             'type' => 'leaf',
19             'value_type' => 'uniline',
20             'warn' => 'Unexpected systemd parameter. Please contact cme author to update systemd model.'
21             }
22             ],
23             'class_description' => 'Unit configuration files for services, sockets, mount points, and swap devices share a subset of
24             configuration options which define the execution environment of spawned processes.
25              
26             This man page lists the configuration options shared by these four unit types. See
27             L<systemd.unit(5)> for the common
28             options of all unit configuration files, and
29             L<systemd.service(5)>,
30             L<systemd.socket(5)>,
31             L<systemd.swap(5)>, and
32             L<systemd.mount(5)> for more
33             information on the specific unit configuration files. The execution specific configuration options are configured
34             in the [Service], [Socket], [Mount], or [Swap] sections, depending on the unit type.
35              
36             In addition, options which control resources through Linux Control Groups (cgroups) are listed in
37             L<systemd.resource-control(5)>.
38             Those options complement options listed here.
39              
40             The following service exit codes are defined by the L<LSB specification|https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html>.
41              
42              
43              
44             The LSB specification suggests that error codes 200 and above are reserved for implementations. Some of them are
45             used by the service manager to indicate problems during process invocation:
46              
47              
48             Finally, the BSD operating systems define a set of exit codes, typically defined on Linux systems too:
49             This configuration class was generated from systemd documentation.
50             by L<parse-man.pl|https://github.com/dod38fr/config-model-systemd/contrib/parse-man.pl>
51             ',
52             'copyright' => [
53             '2010-2016 Lennart Poettering and others',
54             '2016 Dominique Dumont'
55             ],
56             'element' => [
57             'ExecSearchPath',
58             {
59             'cargo' => {
60             'type' => 'leaf',
61             'value_type' => 'uniline'
62             },
63             'description' => 'Takes a colon separated list of absolute paths relative to which the executable
64             used by the C<Exec*=> (e.g. C<ExecStart>,
65             C<ExecStop>, etc.) properties can be found. C<ExecSearchPath>
66             overrides C<$PATH> if C<$PATH> is not supplied by the user through
67             C<Environment>, C<EnvironmentFile> or
68             C<PassEnvironment>. Assigning an empty string removes previous assignments
69             and setting C<ExecSearchPath> to a value multiple times will append
70             to the previous setting.
71             ',
72             'type' => 'list'
73             },
74             'WorkingDirectory',
75             {
76             'description' => 'Takes a directory path relative to the service\'s root directory specified by
77             C<RootDirectory>, or the special value C<~>. Sets the working directory for
78             executed processes. If set to C<~>, the home directory of the user specified in
79             C<User> is used. If not set, defaults to the root directory when systemd is running as a
80             system instance and the respective user\'s home directory if run as user. If the setting is prefixed with the
81             C<-> character, a missing working directory is not considered fatal. If
82             C<RootDirectory>/C<RootImage> is not set, then
83             C<WorkingDirectory> is relative to the root of the system running the service manager. Note
84             that setting this parameter might result in additional dependencies to be added to the unit (see
85             above).',
86             'type' => 'leaf',
87             'value_type' => 'uniline'
88             },
89             'RootDirectory',
90             {
91             'description' => 'Takes a directory path relative to the host\'s root directory (i.e. the root of the system
92             running the service manager). Sets the root directory for executed processes, with the L<chroot(2)> system
93             call. If this is used, it must be ensured that the process binary and all its auxiliary files are available in
94             the chroot() jail. Note that setting this parameter might result in additional
95             dependencies to be added to the unit (see above).
96              
97             The C<MountAPIVFS> and C<PrivateUsers> settings are particularly useful
98             in conjunction with C<RootDirectory>. For details, see below.
99              
100             If C<RootDirectory>/C<RootImage> are used together with
101             C<NotifyAccess> the notification socket is automatically mounted from the host into
102             the root environment, to ensure the notification interface can work correctly.
103              
104             Note that services using C<RootDirectory>/C<RootImage> will
105             not be able to log via the syslog or journal protocols to the host logging infrastructure, unless the
106             relevant sockets are mounted from the host, specifically:',
107             'type' => 'leaf',
108             'value_type' => 'uniline'
109             },
110             'RootImage',
111             {
112             'description' => 'Takes a path to a block device node or regular file as argument. This call is similar
113             to C<RootDirectory> however mounts a file system hierarchy from a block device node
114             or loopback file instead of a directory. The device node or file system image file needs to contain a
115             file system without a partition table, or a file system within an MBR/MS-DOS or GPT partition table
116             with only a single Linux-compatible partition, or a set of file systems within a GPT partition table
117             that follows the L<Discoverable Partitions
118             Specification|https://systemd.io/DISCOVERABLE_PARTITIONS>.
119              
120             When C<DevicePolicy> is set to C<closed> or
121             C<strict>, or set to C<auto> and C<DeviceAllow> is
122             set, then this setting adds C</dev/loop-control> with C<rw> mode,
123             C<block-loop> and C<block-blkext> with C<rwm> mode
124             to C<DeviceAllow>. See
125             L<systemd.resource-control(5)>
126             for the details about C<DevicePolicy> or C<DeviceAllow>. Also, see
127             C<PrivateDevices> below, as it may change the setting of
128             C<DevicePolicy>.
129              
130             Units making use of C<RootImage> automatically gain an
131             C<After> dependency on C<systemd-udevd.service>.',
132             'type' => 'leaf',
133             'value_type' => 'uniline'
134             },
135             'RootImageOptions',
136             {
137             'description' => 'Takes a comma-separated list of mount options that will be used on disk images specified by
138             C<RootImage>. Optionally a partition name can be prefixed, followed by colon, in
139             case the image has multiple partitions, otherwise partition name C<root> is implied.
140             Options for multiple partitions can be specified in a single line with space separators. Assigning an empty
141             string removes previous assignments. Duplicated options are ignored. For a list of valid mount options, please
142             refer to
143             L<mount(8)>.
144              
145             Valid partition names follow the L<Discoverable Partitions Specification|https://systemd.io/DISCOVERABLE_PARTITIONS>:
146             C<root>, C<usr>, C<home>, C<srv>,
147             C<esp>, C<xbootldr>, C<tmp>,
148             C<var>.',
149             'type' => 'leaf',
150             'value_type' => 'uniline'
151             },
152             'RootHash',
153             {
154             'description' => 'Takes a data integrity (dm-verity) root hash specified in hexadecimal, or the path to a file
155             containing a root hash in ASCII hexadecimal format. This option enables data integrity checks using dm-verity,
156             if the used image contains the appropriate integrity data (see above) or if C<RootVerity> is used.
157             The specified hash must match the root hash of integrity data, and is usually at least 256 bits (and hence 64
158             formatted hexadecimal characters) long (in case of SHA256 for example). If this option is not specified, but
159             the image file carries the C<user.verity.roothash> extended file attribute (see L<xattr(7)>), then the root
160             hash is read from it, also as formatted hexadecimal characters. If the extended file attribute is not found (or
161             is not supported by the underlying file system), but a file with the C<.roothash> suffix is
162             found next to the image file, bearing otherwise the same name (except if the image has the
163             C<.raw> suffix, in which case the root hash file must not have it in its name), the root hash
164             is read from it and automatically used, also as formatted hexadecimal characters.
165              
166             If the disk image contains a separate C</usr/> partition it may also be
167             Verity protected, in which case the root hash may configured via an extended attribute
168             C<user.verity.usrhash> or a C<.usrhash> file adjacent to the disk
169             image. There\'s currently no option to configure the root hash for the C</usr/> file
170             system via the unit file directly.',
171             'type' => 'leaf',
172             'value_type' => 'uniline'
173             },
174             'RootHashSignature',
175             {
176             'description' => 'Takes a PKCS7 signature of the C<RootHash> option as a path to a
177             DER-encoded signature file, or as an ASCII base64 string encoding of a DER-encoded signature prefixed
178             by C<base64:>. The dm-verity volume will only be opened if the signature of the root
179             hash is valid and signed by a public key present in the kernel keyring. If this option is not
180             specified, but a file with the C<.roothash.p7s> suffix is found next to the image
181             file, bearing otherwise the same name (except if the image has the C<.raw> suffix,
182             in which case the signature file must not have it in its name), the signature is read from it and
183             automatically used.
184              
185             If the disk image contains a separate C</usr/> partition it may also be
186             Verity protected, in which case the signature for the root hash may configured via a
187             C<.usrhash.p7s> file adjacent to the disk image. There\'s currently no option to
188             configure the root hash signature for the C</usr/> via the unit file
189             directly.',
190             'type' => 'leaf',
191             'value_type' => 'uniline'
192             },
193             'RootVerity',
194             {
195             'description' => 'Takes the path to a data integrity (dm-verity) file. This option enables data integrity checks
196             using dm-verity, if C<RootImage> is used and a root-hash is passed and if the used image itself
197             does not contains the integrity data. The integrity data must be matched by the root hash. If this option is not
198             specified, but a file with the C<.verity> suffix is found next to the image file, bearing otherwise
199             the same name (except if the image has the C<.raw> suffix, in which case the verity data file must
200             not have it in its name), the verity data is read from it and automatically used.
201              
202             This option is supported only for disk images that contain a single file system, without an
203             enveloping partition table. Images that contain a GPT partition table should instead include both
204             root file system and matching Verity data in the same image, implementing the L<Discoverable Partitions
205             Specification|https://systemd.io/DISCOVERABLE_PARTITIONS>.',
206             'type' => 'leaf',
207             'value_type' => 'uniline'
208             },
209             'MountAPIVFS',
210             {
211             'description' => 'Takes a boolean argument. If on, a private mount namespace for the unit\'s processes is created
212             and the API file systems C</proc/>, C</sys/>, C</dev/> and
213             C</run/> (as an empty C<tmpfs>) are mounted inside of it, unless they are
214             already mounted. Note that this option has no effect unless used in conjunction with
215             C<RootDirectory>/C<RootImage> as these four mounts are
216             generally mounted in the host anyway, and unless the root directory is changed, the private mount namespace
217             will be a 1:1 copy of the host\'s, and include these four mounts. Note that the C</dev/> file
218             system of the host is bind mounted if this option is used without C<PrivateDevices>. To run
219             the service with a private, minimal version of C</dev/>, combine this option with
220             C<PrivateDevices>.
221              
222             In order to allow propagating mounts at runtime in a safe manner, C</run/systemd/propagate>
223             on the host will be used to set up new mounts, and C</run/host/incoming/> in the private namespace
224             will be used as an intermediate step to store them before being moved to the final mount point.',
225             'type' => 'leaf',
226             'value_type' => 'boolean',
227             'write_as' => [
228             'no',
229             'yes'
230             ]
231             },
232             'ProtectProc',
233             {
234             'choice' => [
235             'noaccess',
236             'invisible',
237             'ptraceable',
238             'default'
239             ],
240             'description' => 'Takes one of C<noaccess>, C<invisible>,
241             C<ptraceable> or C<default> (which it defaults to). When set, this
242             controls the C<hidepid=> mount option of the C<procfs> instance for
243             the unit that controls which directories with process metainformation
244             (C</proc/PID>) are visible and accessible: when set to
245             C<noaccess> the ability to access most of other users\' process metadata in
246             C</proc/> is taken away for processes of the service. When set to
247             C<invisible> processes owned by other users are hidden from
248             C</proc/>. If C<ptraceable> all processes that cannot be
249             ptrace()\'ed by a process are hidden to it. If C<default> no
250             restrictions on C</proc/> access or visibility are made. For further details see
251             L<The /proc
252             Filesystem|https://docs.kernel.org/filesystems/proc.html#mount-options>. It is generally recommended to run most system
253             services with this option set to
254             C<invisible>. This option is implemented via file system namespacing, and thus cannot
255             be used with services that shall be able to install mount points in the host file system
256             hierarchy. Note that the root user is unaffected by this option, so to be effective it has to be used
257             together with C<User> or C<DynamicUser=yes>, and also without the
258             C<CAP_SYS_PTRACE> capability, which also allows a process to bypass this feature. It
259             cannot be used for services that need to access metainformation about other users\' processes. This
260             option implies C<MountAPIVFS>.
261              
262             If the kernel doesn\'t support per-mount point C<hidepid=> mount options this
263             setting remains without effect, and the unit\'s processes will be able to access and see other process
264             as if the option was not used.',
265             'type' => 'leaf',
266             'value_type' => 'enum'
267             },
268             'ProcSubset',
269             {
270             'choice' => [
271             'all',
272             'pid'
273             ],
274             'description' => 'Takes one of C<all> (the default) and C<pid>. If
275             C<pid>, all files and directories not directly associated with process management and
276             introspection are made invisible in the C</proc/> file system configured for the
277             unit\'s processes. This controls the C<subset=> mount option of the
278             C<procfs> instance for the unit. For further details see L<The /proc
279             Filesystem|https://docs.kernel.org/filesystems/proc.html#mount-options>. Note that Linux exposes various kernel APIs
280             via C</proc/>,
281             which are made unavailable with this setting. Since these APIs are used frequently this option is
282             useful only in a few, specific cases, and is not suitable for most non-trivial programs.
283              
284             Much like C<ProtectProc> above, this is implemented via file system mount
285             namespacing, and hence the same restrictions apply: it is only available to system services, it
286             disables mount propagation to the host mount table, and it implies
287             C<MountAPIVFS>. Also, like C<ProtectProc> this setting is gracefully
288             disabled if the used kernel does not support the C<subset=> mount option of
289             C<procfs>.',
290             'type' => 'leaf',
291             'value_type' => 'enum'
292             },
293             'BindPaths',
294             {
295             'cargo' => {
296             'type' => 'leaf',
297             'value_type' => 'uniline'
298             },
299             'description' => 'Configures unit-specific bind mounts. A bind mount makes a particular file or directory
300             available at an additional place in the unit\'s view of the file system. Any bind mounts created with this
301             option are specific to the unit, and are not visible in the host\'s mount table. This option expects a
302             whitespace separated list of bind mount definitions. Each definition consists of a colon-separated triple of
303             source path, destination path and option string, where the latter two are optional. If only a source path is
304             specified the source and destination is taken to be the same. The option string may be either
305             C<rbind> or C<norbind> for configuring a recursive or non-recursive bind
306             mount. If the destination path is omitted, the option string must be omitted too.
307             Each bind mount definition may be prefixed with C<->, in which case it will be ignored
308             when its source path does not exist.
309              
310             C<BindPaths> creates regular writable bind mounts (unless the source file system mount
311             is already marked read-only), while C<BindReadOnlyPaths> creates read-only bind mounts. These
312             settings may be used more than once, each usage appends to the unit\'s list of bind mounts. If the empty string
313             is assigned to either of these two options the entire list of bind mounts defined prior to this is reset. Note
314             that in this case both read-only and regular bind mounts are reset, regardless which of the two settings is
315             used.
316              
317             This option is particularly useful when C<RootDirectory>/C<RootImage>
318             is used. In this case the source path refers to a path on the host file system, while the destination path
319             refers to a path below the root directory of the unit.
320              
321             Note that the destination directory must exist or systemd must be able to create it. Thus, it
322             is not possible to use those options for mount points nested underneath paths specified in
323             C<InaccessiblePaths>, or under C</home/> and other protected
324             directories if C<ProtectHome=yes> is
325             specified. C<TemporaryFileSystem> with C<:ro> or
326             C<ProtectHome=tmpfs> should be used instead.',
327             'type' => 'list'
328             },
329             'BindReadOnlyPaths',
330             {
331             'cargo' => {
332             'type' => 'leaf',
333             'value_type' => 'uniline'
334             },
335             'description' => 'Configures unit-specific bind mounts. A bind mount makes a particular file or directory
336             available at an additional place in the unit\'s view of the file system. Any bind mounts created with this
337             option are specific to the unit, and are not visible in the host\'s mount table. This option expects a
338             whitespace separated list of bind mount definitions. Each definition consists of a colon-separated triple of
339             source path, destination path and option string, where the latter two are optional. If only a source path is
340             specified the source and destination is taken to be the same. The option string may be either
341             C<rbind> or C<norbind> for configuring a recursive or non-recursive bind
342             mount. If the destination path is omitted, the option string must be omitted too.
343             Each bind mount definition may be prefixed with C<->, in which case it will be ignored
344             when its source path does not exist.
345              
346             C<BindPaths> creates regular writable bind mounts (unless the source file system mount
347             is already marked read-only), while C<BindReadOnlyPaths> creates read-only bind mounts. These
348             settings may be used more than once, each usage appends to the unit\'s list of bind mounts. If the empty string
349             is assigned to either of these two options the entire list of bind mounts defined prior to this is reset. Note
350             that in this case both read-only and regular bind mounts are reset, regardless which of the two settings is
351             used.
352              
353             This option is particularly useful when C<RootDirectory>/C<RootImage>
354             is used. In this case the source path refers to a path on the host file system, while the destination path
355             refers to a path below the root directory of the unit.
356              
357             Note that the destination directory must exist or systemd must be able to create it. Thus, it
358             is not possible to use those options for mount points nested underneath paths specified in
359             C<InaccessiblePaths>, or under C</home/> and other protected
360             directories if C<ProtectHome=yes> is
361             specified. C<TemporaryFileSystem> with C<:ro> or
362             C<ProtectHome=tmpfs> should be used instead.',
363             'type' => 'list'
364             },
365             'MountImages',
366             {
367             'cargo' => {
368             'type' => 'leaf',
369             'value_type' => 'uniline'
370             },
371             'description' => 'This setting is similar to C<RootImage> in that it mounts a file
372             system hierarchy from a block device node or loopback file, but the destination directory can be
373             specified as well as mount options. This option expects a whitespace separated list of mount
374             definitions. Each definition consists of a colon-separated tuple of source path and destination
375             definitions, optionally followed by another colon and a list of mount options.
376              
377             Mount options may be defined as a single comma-separated list of options, in which case they
378             will be implicitly applied to the root partition on the image, or a series of colon-separated tuples
379             of partition name and mount options. Valid partition names and mount options are the same as for
380             C<RootImageOptions> setting described above.
381              
382             Each mount definition may be prefixed with C<->, in which case it will be
383             ignored when its source path does not exist. The source argument is a path to a block device node or
384             regular file. If source or destination contain a C<:>, it needs to be escaped as
385             C<\\:>. The device node or file system image file needs to follow the same rules as
386             specified for C<RootImage>. Any mounts created with this option are specific to the
387             unit, and are not visible in the host\'s mount table.
388              
389             These settings may be used more than once, each usage appends to the unit\'s list of mount
390             paths. If the empty string is assigned, the entire list of mount paths defined prior to this is
391             reset.
392              
393             Note that the destination directory must exist or systemd must be able to create it. Thus, it
394             is not possible to use those options for mount points nested underneath paths specified in
395             C<InaccessiblePaths>, or under C</home/> and other protected
396             directories if C<ProtectHome=yes> is specified.
397              
398             When C<DevicePolicy> is set to C<closed> or
399             C<strict>, or set to C<auto> and C<DeviceAllow> is
400             set, then this setting adds C</dev/loop-control> with C<rw> mode,
401             C<block-loop> and C<block-blkext> with C<rwm> mode
402             to C<DeviceAllow>. See
403             L<systemd.resource-control(5)>
404             for the details about C<DevicePolicy> or C<DeviceAllow>. Also, see
405             C<PrivateDevices> below, as it may change the setting of
406             C<DevicePolicy>.',
407             'type' => 'list'
408             },
409             'ExtensionImages',
410             {
411             'cargo' => {
412             'type' => 'leaf',
413             'value_type' => 'uniline'
414             },
415             'description' => 'This setting is similar to C<MountImages> in that it mounts a file
416             system hierarchy from a block device node or loopback file, but instead of providing a destination
417             path, an overlay will be set up. This option expects a whitespace separated list of mount
418             definitions. Each definition consists of a source path, optionally followed by a colon and a list of
419             mount options.
420              
421             A read-only OverlayFS will be set up on top of C</usr/> and
422             C</opt/> hierarchies. The order in which the images are listed will determine the
423             order in which the overlay is laid down: images specified first to last will result in overlayfs
424             layers bottom to top.
425              
426             Mount options may be defined as a single comma-separated list of options, in which case they
427             will be implicitly applied to the root partition on the image, or a series of colon-separated tuples
428             of partition name and mount options. Valid partition names and mount options are the same as for
429             C<RootImageOptions> setting described above.
430              
431             Each mount definition may be prefixed with C<->, in which case it will be
432             ignored when its source path does not exist. The source argument is a path to a block device node or
433             regular file. If the source path contains a C<:>, it needs to be escaped as
434             C<\\:>. The device node or file system image file needs to follow the same rules as
435             specified for C<RootImage>. Any mounts created with this option are specific to the
436             unit, and are not visible in the host\'s mount table.
437              
438             These settings may be used more than once, each usage appends to the unit\'s list of image
439             paths. If the empty string is assigned, the entire list of mount paths defined prior to this is
440             reset.
441              
442             Each image must carry a C</usr/lib/extension-release.d/extension-release.IMAGE>
443             file, with the appropriate metadata which matches C<RootImage>/C<RootDirectory>
444             or the host. See:
445             L<os-release(5)>.
446             To disable the safety check that the extension-release file name matches the image file name, the
447             C<x-systemd.relax-extension-release-check> mount option may be appended.
448              
449             When C<DevicePolicy> is set to C<closed> or
450             C<strict>, or set to C<auto> and C<DeviceAllow> is
451             set, then this setting adds C</dev/loop-control> with C<rw> mode,
452             C<block-loop> and C<block-blkext> with C<rwm> mode
453             to C<DeviceAllow>. See
454             L<systemd.resource-control(5)>
455             for the details about C<DevicePolicy> or C<DeviceAllow>. Also, see
456             C<PrivateDevices> below, as it may change the setting of
457             C<DevicePolicy>.',
458             'type' => 'list'
459             },
460             'ExtensionDirectories',
461             {
462             'cargo' => {
463             'type' => 'leaf',
464             'value_type' => 'uniline'
465             },
466             'description' => 'This setting is similar to C<BindReadOnlyPaths> in that it mounts a file
467             system hierarchy from a directory, but instead of providing a destination path, an overlay will be set
468             up. This option expects a whitespace separated list of source directories.
469              
470             A read-only OverlayFS will be set up on top of C</usr/> and
471             C</opt/> hierarchies. The order in which the directories are listed will determine
472             the order in which the overlay is laid down: directories specified first to last will result in overlayfs
473             layers bottom to top.
474              
475             Each directory listed in C<ExtensionDirectories> may be prefixed with C<->,
476             in which case it will be ignored when its source path does not exist. Any mounts created with this option are
477             specific to the unit, and are not visible in the host\'s mount table.
478              
479             These settings may be used more than once, each usage appends to the unit\'s list of directories
480             paths. If the empty string is assigned, the entire list of mount paths defined prior to this is
481             reset.
482              
483             Each directory must contain a C</usr/lib/extension-release.d/extension-release.IMAGE>
484             file, with the appropriate metadata which matches C<RootImage>/C<RootDirectory>
485             or the host. See:
486             L<os-release(5)>.
487              
488             Note that usage from user units requires overlayfs support in unprivileged user namespaces,
489             which was first introduced in kernel v5.11.',
490             'type' => 'list'
491             },
492             'User',
493             {
494             'description' => "Set the UNIX user or group that the processes are executed as, respectively. Takes a single
495             user or group name, or a numeric ID as argument. For system services (services run by the system service
496             manager, i.e. managed by PID 1) and for user services of the root user (services managed by root's instance of
497             systemd --user), the default is C<root>, but C<User> may be
498             used to specify a different user. For user services of any other user, switching user identity is not
499             permitted, hence the only valid setting is the same user the user's service manager is running as. If no group
500             is set, the default group of the user is used. This setting does not affect commands whose command line is
501             prefixed with C<+>.
502              
503             Note that this enforces only weak restrictions on the user/group name syntax, but will generate
504             warnings in many cases where user/group names do not adhere to the following rules: the specified
505             name should consist only of the characters a-z, A-Z, 0-9, C<_> and
506             C<->, except for the first character which must be one of a-z, A-Z and
507             C<_> (i.e. digits and C<-> are not permitted as first character). The
508             user/group name must have at least one character, and at most 31. These restrictions are made in
509             order to avoid ambiguities and to ensure user/group names and unit files remain portable among Linux
510             systems. For further details on the names accepted and the names warned about see L<User/Group Name
511             Syntax|https://systemd.io/USER_NAMES>.
512              
513             When used in conjunction with C<DynamicUser> the user/group name specified is
514             dynamically allocated at the time the service is started, and released at the time the service is
515             stopped \x{2014} unless it is already allocated statically (see below). If C<DynamicUser>
516             is not used the specified user and group must have been created statically in the user database no
517             later than the moment the service is started, for example using the
518             L<sysusers.d(5)>
519             facility, which is applied at boot or package install time. If the user does not exist by then
520             program invocation will fail.
521              
522             If the C<User> setting is used the supplementary group list is initialized
523             from the specified user's default group list, as defined in the system's user and group
524             database. Additional groups may be configured through the C<SupplementaryGroups>
525             setting (see below).",
526             'type' => 'leaf',
527             'value_type' => 'uniline'
528             },
529             'Group',
530             {
531             'description' => "Set the UNIX user or group that the processes are executed as, respectively. Takes a single
532             user or group name, or a numeric ID as argument. For system services (services run by the system service
533             manager, i.e. managed by PID 1) and for user services of the root user (services managed by root's instance of
534             systemd --user), the default is C<root>, but C<User> may be
535             used to specify a different user. For user services of any other user, switching user identity is not
536             permitted, hence the only valid setting is the same user the user's service manager is running as. If no group
537             is set, the default group of the user is used. This setting does not affect commands whose command line is
538             prefixed with C<+>.
539              
540             Note that this enforces only weak restrictions on the user/group name syntax, but will generate
541             warnings in many cases where user/group names do not adhere to the following rules: the specified
542             name should consist only of the characters a-z, A-Z, 0-9, C<_> and
543             C<->, except for the first character which must be one of a-z, A-Z and
544             C<_> (i.e. digits and C<-> are not permitted as first character). The
545             user/group name must have at least one character, and at most 31. These restrictions are made in
546             order to avoid ambiguities and to ensure user/group names and unit files remain portable among Linux
547             systems. For further details on the names accepted and the names warned about see L<User/Group Name
548             Syntax|https://systemd.io/USER_NAMES>.
549              
550             When used in conjunction with C<DynamicUser> the user/group name specified is
551             dynamically allocated at the time the service is started, and released at the time the service is
552             stopped \x{2014} unless it is already allocated statically (see below). If C<DynamicUser>
553             is not used the specified user and group must have been created statically in the user database no
554             later than the moment the service is started, for example using the
555             L<sysusers.d(5)>
556             facility, which is applied at boot or package install time. If the user does not exist by then
557             program invocation will fail.
558              
559             If the C<User> setting is used the supplementary group list is initialized
560             from the specified user's default group list, as defined in the system's user and group
561             database. Additional groups may be configured through the C<SupplementaryGroups>
562             setting (see below).",
563             'type' => 'leaf',
564             'value_type' => 'uniline'
565             },
566             'DynamicUser',
567             {
568             'description' => "Takes a boolean parameter. If set, a UNIX user and group pair is allocated
569             dynamically when the unit is started, and released as soon as it is stopped. The user and group will
570             not be added to C</etc/passwd> or C</etc/group>, but are managed
571             transiently during runtime. The
572             L<nss-systemd(8)> glibc
573             NSS module provides integration of these dynamic users/groups into the system's user and group
574             databases. The user and group name to use may be configured via C<User> and
575             C<Group> (see above). If these options are not used and dynamic user/group
576             allocation is enabled for a unit, the name of the dynamic user/group is implicitly derived from the
577             unit name. If the unit name without the type suffix qualifies as valid user name it is used directly,
578             otherwise a name incorporating a hash of it is used. If a statically allocated user or group of the
579             configured name already exists, it is used and no dynamic user/group is allocated. Note that if
580             C<User> is specified and the static group with the name exists, then it is required
581             that the static user with the name already exists. Similarly, if C<Group> is
582             specified and the static user with the name exists, then it is required that the static group with
583             the name already exists. Dynamic users/groups are allocated from the UID/GID range 61184\x{2026}65519. It is
584             recommended to avoid this range for regular system or login users. At any point in time each UID/GID
585             from this range is only assigned to zero or one dynamically allocated users/groups in use. However,
586             UID/GIDs are recycled after a unit is terminated. Care should be taken that any processes running as
587             part of a unit for which dynamic users/groups are enabled do not leave files or directories owned by
588             these users/groups around, as a different unit might get the same UID/GID assigned later on, and thus
589             gain access to these files or directories. If C<DynamicUser> is enabled,
590             C<RemoveIPC> and C<PrivateTmp> are implied (and cannot be turned
591             off). This ensures that the lifetime of IPC objects and temporary files created by the executed
592             processes is bound to the runtime of the service, and hence the lifetime of the dynamic
593             user/group. Since C</tmp/> and C</var/tmp/> are usually the only
594             world-writable directories on a system this ensures that a unit making use of dynamic user/group
595             allocation cannot leave files around after unit termination. Furthermore
596             C<NoNewPrivileges> and C<RestrictSUIDSGID> are implicitly enabled
597             (and cannot be disabled), to ensure that processes invoked cannot take benefit or create SUID/SGID
598             files or directories. Moreover C<ProtectSystem=strict> and
599             C<ProtectHome=read-only> are implied, thus prohibiting the service to write to
600             arbitrary file system locations. In order to allow the service to write to certain directories, they
601             have to be allow-listed using C<ReadWritePaths>, but care must be taken so that
602             UID/GID recycling doesn't create security issues involving files created by the service. Use
603             C<RuntimeDirectory> (see below) in order to assign a writable runtime directory to a
604             service, owned by the dynamic user/group and removed automatically when the unit is terminated. Use
605             C<StateDirectory>, C<CacheDirectory> and
606             C<LogsDirectory> in order to assign a set of writable directories for specific
607             purposes to the service in a way that they are protected from vulnerabilities due to UID reuse (see
608             below). If this option is enabled, care should be taken that the unit's processes do not get access
609             to directories outside of these explicitly configured and managed ones. Specifically, do not use
610             C<BindPaths> and be careful with C<AF_UNIX> file descriptor
611             passing for directory file descriptors, as this would permit processes to create files or directories
612             owned by the dynamic user/group that are not subject to the lifecycle and access guarantees of the
613             service. Defaults to off.",
614             'type' => 'leaf',
615             'value_type' => 'boolean',
616             'write_as' => [
617             'no',
618             'yes'
619             ]
620             },
621             'SupplementaryGroups',
622             {
623             'cargo' => {
624             'type' => 'leaf',
625             'value_type' => 'uniline'
626             },
627             'description' => 'Sets the supplementary Unix groups the processes are executed as. This takes a space-separated
628             list of group names or IDs. This option may be specified more than once, in which case all listed groups are
629             set as supplementary groups. When the empty string is assigned, the list of supplementary groups is reset, and
630             all assignments prior to this one will have no effect. In any way, this option does not override, but extends
631             the list of supplementary groups configured in the system group database for the user. This does not affect
632             commands prefixed with C<+>.',
633             'type' => 'list'
634             },
635             'PAMName',
636             {
637             'description' => 'Sets the PAM service name to set up a session as. If set, the executed process will be
638             registered as a PAM session under the specified service name. This is only useful in conjunction with the
639             C<User> setting, and is otherwise ignored. If not set, no PAM session will be opened for the
640             executed processes. See L<pam(8)> for
641             details.
642              
643             Note that for each unit making use of this option a PAM session handler process will be maintained as
644             part of the unit and stays around as long as the unit is active, to ensure that appropriate actions can be
645             taken when the unit and hence the PAM session terminates. This process is named C<(sd-pam)> and
646             is an immediate child process of the unit\'s main process.
647              
648             Note that when this option is used for a unit it is very likely (depending on PAM configuration) that the
649             main unit process will be migrated to its own session scope unit when it is activated. This process will hence
650             be associated with two units: the unit it was originally started from (and for which
651             C<PAMName> was configured), and the session scope unit. Any child processes of that process
652             will however be associated with the session scope unit only. This has implications when used in combination
653             with C<NotifyAccess>C<all>, as these child processes will not be able to affect
654             changes in the original unit through notification messages. These messages will be considered belonging to the
655             session scope unit and not the original unit. It is hence not recommended to use C<PAMName> in
656             combination with C<NotifyAccess>C<all>.',
657             'type' => 'leaf',
658             'value_type' => 'uniline'
659             },
660             'CapabilityBoundingSet',
661             {
662             'description' => 'Controls which capabilities to include in the capability bounding set for the
663             executed process. See L<capabilities(7)>
664             for details. Takes a whitespace-separated list of capability names,
665             e.g. C<CAP_SYS_ADMIN>, C<CAP_DAC_OVERRIDE>,
666             C<CAP_SYS_PTRACE>. Capabilities listed will be included in the bounding set, all
667             others are removed. If the list of capabilities is prefixed with C<~>, all but the
668             listed capabilities will be included, the effect of the assignment inverted. Note that this option
669             also affects the respective capabilities in the effective, permitted and inheritable capability
670             sets. If this option is not used, the capability bounding set is not modified on process execution,
671             hence no limits on the capabilities of the process are enforced. This option may appear more than
672             once, in which case the bounding sets are merged by C<OR>, or by
673             C<AND> if the lines are prefixed with C<~> (see below). If the
674             empty string is assigned to this option, the bounding set is reset to the empty capability set, and
675             all prior settings have no effect. If set to C<~> (without any further argument),
676             the bounding set is reset to the full set of available capabilities, also undoing any previous
677             settings. This does not affect commands prefixed with C<+>.
678              
679             Use
680             L<systemd-analyze(1)>\'s
681             capability command to retrieve a list of capabilities defined on the local
682             system.
683              
684             Example: if a unit has the following,
685              
686             CapabilityBoundingSet=CAP_A CAP_B
687             CapabilityBoundingSet=CAP_B CAP_C
688              
689             then C<CAP_A>, C<CAP_B>, and
690             C<CAP_C> are set. If the second line is prefixed with
691             C<~>, e.g.,
692              
693             CapabilityBoundingSet=CAP_A CAP_B
694             CapabilityBoundingSet=~CAP_B CAP_C
695              
696             then, only C<CAP_A> is set.',
697             'type' => 'leaf',
698             'value_type' => 'uniline'
699             },
700             'AmbientCapabilities',
701             {
702             'description' => 'Controls which capabilities to include in the ambient capability set for the executed
703             process. Takes a whitespace-separated list of capability names, e.g. C<CAP_SYS_ADMIN>,
704             C<CAP_DAC_OVERRIDE>, C<CAP_SYS_PTRACE>. This option may appear more than
705             once, in which case the ambient capability sets are merged (see the above examples in
706             C<CapabilityBoundingSet>). If the list of capabilities is prefixed with C<~>,
707             all but the listed capabilities will be included, the effect of the assignment inverted. If the empty string is
708             assigned to this option, the ambient capability set is reset to the empty capability set, and all prior
709             settings have no effect. If set to C<~> (without any further argument), the ambient capability
710             set is reset to the full set of available capabilities, also undoing any previous settings. Note that adding
711             capabilities to the ambient capability set adds them to the process\'s inherited capability set.
712              
713             Ambient capability sets are useful if you want to execute a process as a non-privileged user but still want to
714             give it some capabilities. Note that in this case option C<keep-caps> is automatically added
715             to C<SecureBits> to retain the capabilities over the user
716             change. C<AmbientCapabilities> does not affect commands prefixed with
717             C<+>.',
718             'type' => 'leaf',
719             'value_type' => 'uniline'
720             },
721             'NoNewPrivileges',
722             {
723             'description' => 'Takes a boolean argument. If true, ensures that the service process and all its
724             children can never gain new privileges through execve() (e.g. via setuid or
725             setgid bits, or filesystem capabilities). This is the simplest and most effective way to ensure that
726             a process and its children can never elevate privileges again. Defaults to false, but certain
727             settings override this and ignore the value of this setting. This is the case when
728             C<DynamicUser>, C<LockPersonality>,
729             C<MemoryDenyWriteExecute>, C<PrivateDevices>,
730             C<ProtectClock>, C<ProtectHostname>,
731             C<ProtectKernelLogs>, C<ProtectKernelModules>,
732             C<ProtectKernelTunables>, C<RestrictAddressFamilies>,
733             C<RestrictNamespaces>, C<RestrictRealtime>,
734             C<RestrictSUIDSGID>, C<SystemCallArchitectures>,
735             C<SystemCallFilter>, or C<SystemCallLog> are specified. Note that
736             even if this setting is overridden by them, systemctl show shows the original
737             value of this setting. In case the service will be run in a new mount namespace anyway and SELinux is
738             disabled, all file systems are mounted with C<MS_NOSUID> flag. Also see L<No New Privileges
739             Flag|https://docs.kernel.org/userspace-api/no_new_privs.html>.
740              
741             Note that this setting only has an effect on the unit\'s processes themselves (or any processes
742             directly or indirectly forked off them). It has no effect on processes potentially invoked on request
743             of them through tools such as L<at(1p)>,
744             L<crontab(1p)>,
745             L<systemd-run(1)>, or
746             arbitrary IPC services.',
747             'type' => 'leaf',
748             'value_type' => 'boolean',
749             'write_as' => [
750             'no',
751             'yes'
752             ]
753             },
754             'SecureBits',
755             {
756             'description' => 'Controls the secure bits set for the executed process. Takes a space-separated combination of
757             options from the following list: C<keep-caps>, C<keep-caps-locked>,
758             C<no-setuid-fixup>, C<no-setuid-fixup-locked>, C<noroot>, and
759             C<noroot-locked>. This option may appear more than once, in which case the secure bits are
760             ORed. If the empty string is assigned to this option, the bits are reset to 0. This does not affect commands
761             prefixed with C<+>. See L<capabilities(7)> for
762             details.',
763             'type' => 'leaf',
764             'value_type' => 'uniline'
765             },
766             'SELinuxContext',
767             {
768             'description' => 'Set the SELinux security context of the executed process. If set, this will override the
769             automated domain transition. However, the policy still needs to authorize the transition. This directive is
770             ignored if SELinux is disabled. If prefixed by C<->, failing to set the SELinux
771             security context will be ignored, but it\'s still possible that the subsequent
772             execve() may fail if the policy doesn\'t allow the transition for the
773             non-overridden context. This does not affect commands prefixed with C<+>. See
774             L<setexeccon(3)>
775             for details.',
776             'type' => 'leaf',
777             'value_type' => 'uniline'
778             },
779             'AppArmorProfile',
780             {
781             'description' => 'Takes a profile name as argument. The process executed by the unit will switch to
782             this profile when started. Profiles must already be loaded in the kernel, or the unit will fail. If
783             prefixed by C<->, all errors will be ignored. This setting has no effect if AppArmor
784             is not enabled. This setting does not affect commands prefixed with C<+>.',
785             'type' => 'leaf',
786             'value_type' => 'uniline'
787             },
788             'SmackProcessLabel',
789             {
790             'description' => 'Takes a C<SMACK64> security label as argument. The process executed by the unit
791             will be started under this label and SMACK will decide whether the process is allowed to run or not, based on
792             it. The process will continue to run under the label specified here unless the executable has its own
793             C<SMACK64EXEC> label, in which case the process will transition to run under that label. When not
794             specified, the label that systemd is running under is used. This directive is ignored if SMACK is
795             disabled.
796              
797             The value may be prefixed by C<->, in which case all errors will be ignored. An empty
798             value may be specified to unset previous assignments. This does not affect commands prefixed with
799             C<+>.',
800             'type' => 'leaf',
801             'value_type' => 'uniline'
802             },
803             'LimitCPU',
804             {
805             'description' => "Set soft and hard limits on various resources for executed processes. See
806             L<setrlimit(2)> for
807             details on the process resource limit concept. Process resource limits may be specified in two formats:
808             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
809             pair C<soft:hard> to set both limits individually
810             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
811             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
812             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
813             referring to time values, the usual time units ms, s, min, h and so on may be used (see
814             L<systemd.time(7)> for
815             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
816             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
817             implied. Also, note that the effective granularity of the limits might influence their
818             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
819             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
820             syntaxes: if prefixed with C<+> or C<->, the value is understood as
821             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
822             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
823              
824             Note that most process resource limits configured with these options are per-process, and
825             processes may fork in order to acquire a new set of resources that are accounted independently of the
826             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
827             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
828             controls listed in
829             L<systemd.resource-control(5)>
830             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
831             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
832             powerful (and working) replacement for C<LimitRSS>.
833              
834             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
835             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
836             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
837             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
838             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
839              
840             Resource limits not configured explicitly for a unit default to the value configured in the various
841             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
842             L<systemd-system.conf(5)>, and \x{2013}
843             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
844             services, see below).
845              
846             For system units these resource limits may be chosen freely. When these settings are configured
847             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
848             used to raise the limits above those set for the user manager itself when it was first invoked, as
849             the user's service manager generally lacks the privileges to do so. In user context these
850             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
851             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
852             available configuration mechanisms differ between operating systems, but typically require
853             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
854             setting limits on the system service encapsulating the user's service manager, i.e. the user's
855             instance of C<user\@.service>. After making such changes, make sure to restart the
856             user's service manager.",
857             'type' => 'leaf',
858             'value_type' => 'uniline'
859             },
860             'LimitFSIZE',
861             {
862             'description' => "Set soft and hard limits on various resources for executed processes. See
863             L<setrlimit(2)> for
864             details on the process resource limit concept. Process resource limits may be specified in two formats:
865             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
866             pair C<soft:hard> to set both limits individually
867             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
868             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
869             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
870             referring to time values, the usual time units ms, s, min, h and so on may be used (see
871             L<systemd.time(7)> for
872             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
873             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
874             implied. Also, note that the effective granularity of the limits might influence their
875             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
876             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
877             syntaxes: if prefixed with C<+> or C<->, the value is understood as
878             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
879             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
880              
881             Note that most process resource limits configured with these options are per-process, and
882             processes may fork in order to acquire a new set of resources that are accounted independently of the
883             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
884             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
885             controls listed in
886             L<systemd.resource-control(5)>
887             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
888             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
889             powerful (and working) replacement for C<LimitRSS>.
890              
891             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
892             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
893             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
894             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
895             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
896              
897             Resource limits not configured explicitly for a unit default to the value configured in the various
898             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
899             L<systemd-system.conf(5)>, and \x{2013}
900             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
901             services, see below).
902              
903             For system units these resource limits may be chosen freely. When these settings are configured
904             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
905             used to raise the limits above those set for the user manager itself when it was first invoked, as
906             the user's service manager generally lacks the privileges to do so. In user context these
907             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
908             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
909             available configuration mechanisms differ between operating systems, but typically require
910             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
911             setting limits on the system service encapsulating the user's service manager, i.e. the user's
912             instance of C<user\@.service>. After making such changes, make sure to restart the
913             user's service manager.",
914             'type' => 'leaf',
915             'value_type' => 'uniline'
916             },
917             'LimitDATA',
918             {
919             'description' => "Set soft and hard limits on various resources for executed processes. See
920             L<setrlimit(2)> for
921             details on the process resource limit concept. Process resource limits may be specified in two formats:
922             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
923             pair C<soft:hard> to set both limits individually
924             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
925             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
926             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
927             referring to time values, the usual time units ms, s, min, h and so on may be used (see
928             L<systemd.time(7)> for
929             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
930             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
931             implied. Also, note that the effective granularity of the limits might influence their
932             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
933             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
934             syntaxes: if prefixed with C<+> or C<->, the value is understood as
935             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
936             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
937              
938             Note that most process resource limits configured with these options are per-process, and
939             processes may fork in order to acquire a new set of resources that are accounted independently of the
940             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
941             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
942             controls listed in
943             L<systemd.resource-control(5)>
944             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
945             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
946             powerful (and working) replacement for C<LimitRSS>.
947              
948             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
949             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
950             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
951             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
952             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
953              
954             Resource limits not configured explicitly for a unit default to the value configured in the various
955             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
956             L<systemd-system.conf(5)>, and \x{2013}
957             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
958             services, see below).
959              
960             For system units these resource limits may be chosen freely. When these settings are configured
961             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
962             used to raise the limits above those set for the user manager itself when it was first invoked, as
963             the user's service manager generally lacks the privileges to do so. In user context these
964             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
965             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
966             available configuration mechanisms differ between operating systems, but typically require
967             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
968             setting limits on the system service encapsulating the user's service manager, i.e. the user's
969             instance of C<user\@.service>. After making such changes, make sure to restart the
970             user's service manager.",
971             'type' => 'leaf',
972             'value_type' => 'uniline'
973             },
974             'LimitSTACK',
975             {
976             'description' => "Set soft and hard limits on various resources for executed processes. See
977             L<setrlimit(2)> for
978             details on the process resource limit concept. Process resource limits may be specified in two formats:
979             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
980             pair C<soft:hard> to set both limits individually
981             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
982             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
983             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
984             referring to time values, the usual time units ms, s, min, h and so on may be used (see
985             L<systemd.time(7)> for
986             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
987             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
988             implied. Also, note that the effective granularity of the limits might influence their
989             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
990             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
991             syntaxes: if prefixed with C<+> or C<->, the value is understood as
992             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
993             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
994              
995             Note that most process resource limits configured with these options are per-process, and
996             processes may fork in order to acquire a new set of resources that are accounted independently of the
997             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
998             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
999             controls listed in
1000             L<systemd.resource-control(5)>
1001             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1002             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1003             powerful (and working) replacement for C<LimitRSS>.
1004              
1005             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1006             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1007             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1008             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1009             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1010              
1011             Resource limits not configured explicitly for a unit default to the value configured in the various
1012             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1013             L<systemd-system.conf(5)>, and \x{2013}
1014             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1015             services, see below).
1016              
1017             For system units these resource limits may be chosen freely. When these settings are configured
1018             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1019             used to raise the limits above those set for the user manager itself when it was first invoked, as
1020             the user's service manager generally lacks the privileges to do so. In user context these
1021             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1022             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1023             available configuration mechanisms differ between operating systems, but typically require
1024             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1025             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1026             instance of C<user\@.service>. After making such changes, make sure to restart the
1027             user's service manager.",
1028             'type' => 'leaf',
1029             'value_type' => 'uniline'
1030             },
1031             'LimitCORE',
1032             {
1033             'description' => "Set soft and hard limits on various resources for executed processes. See
1034             L<setrlimit(2)> for
1035             details on the process resource limit concept. Process resource limits may be specified in two formats:
1036             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1037             pair C<soft:hard> to set both limits individually
1038             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1039             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1040             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1041             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1042             L<systemd.time(7)> for
1043             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1044             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1045             implied. Also, note that the effective granularity of the limits might influence their
1046             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1047             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1048             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1049             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1050             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1051              
1052             Note that most process resource limits configured with these options are per-process, and
1053             processes may fork in order to acquire a new set of resources that are accounted independently of the
1054             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1055             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1056             controls listed in
1057             L<systemd.resource-control(5)>
1058             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1059             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1060             powerful (and working) replacement for C<LimitRSS>.
1061              
1062             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1063             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1064             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1065             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1066             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1067              
1068             Resource limits not configured explicitly for a unit default to the value configured in the various
1069             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1070             L<systemd-system.conf(5)>, and \x{2013}
1071             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1072             services, see below).
1073              
1074             For system units these resource limits may be chosen freely. When these settings are configured
1075             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1076             used to raise the limits above those set for the user manager itself when it was first invoked, as
1077             the user's service manager generally lacks the privileges to do so. In user context these
1078             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1079             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1080             available configuration mechanisms differ between operating systems, but typically require
1081             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1082             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1083             instance of C<user\@.service>. After making such changes, make sure to restart the
1084             user's service manager.",
1085             'type' => 'leaf',
1086             'value_type' => 'uniline'
1087             },
1088             'LimitRSS',
1089             {
1090             'description' => "Set soft and hard limits on various resources for executed processes. See
1091             L<setrlimit(2)> for
1092             details on the process resource limit concept. Process resource limits may be specified in two formats:
1093             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1094             pair C<soft:hard> to set both limits individually
1095             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1096             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1097             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1098             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1099             L<systemd.time(7)> for
1100             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1101             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1102             implied. Also, note that the effective granularity of the limits might influence their
1103             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1104             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1105             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1106             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1107             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1108              
1109             Note that most process resource limits configured with these options are per-process, and
1110             processes may fork in order to acquire a new set of resources that are accounted independently of the
1111             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1112             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1113             controls listed in
1114             L<systemd.resource-control(5)>
1115             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1116             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1117             powerful (and working) replacement for C<LimitRSS>.
1118              
1119             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1120             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1121             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1122             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1123             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1124              
1125             Resource limits not configured explicitly for a unit default to the value configured in the various
1126             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1127             L<systemd-system.conf(5)>, and \x{2013}
1128             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1129             services, see below).
1130              
1131             For system units these resource limits may be chosen freely. When these settings are configured
1132             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1133             used to raise the limits above those set for the user manager itself when it was first invoked, as
1134             the user's service manager generally lacks the privileges to do so. In user context these
1135             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1136             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1137             available configuration mechanisms differ between operating systems, but typically require
1138             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1139             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1140             instance of C<user\@.service>. After making such changes, make sure to restart the
1141             user's service manager.",
1142             'type' => 'leaf',
1143             'value_type' => 'uniline'
1144             },
1145             'LimitNOFILE',
1146             {
1147             'description' => "Set soft and hard limits on various resources for executed processes. See
1148             L<setrlimit(2)> for
1149             details on the process resource limit concept. Process resource limits may be specified in two formats:
1150             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1151             pair C<soft:hard> to set both limits individually
1152             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1153             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1154             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1155             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1156             L<systemd.time(7)> for
1157             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1158             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1159             implied. Also, note that the effective granularity of the limits might influence their
1160             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1161             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1162             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1163             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1164             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1165              
1166             Note that most process resource limits configured with these options are per-process, and
1167             processes may fork in order to acquire a new set of resources that are accounted independently of the
1168             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1169             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1170             controls listed in
1171             L<systemd.resource-control(5)>
1172             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1173             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1174             powerful (and working) replacement for C<LimitRSS>.
1175              
1176             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1177             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1178             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1179             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1180             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1181              
1182             Resource limits not configured explicitly for a unit default to the value configured in the various
1183             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1184             L<systemd-system.conf(5)>, and \x{2013}
1185             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1186             services, see below).
1187              
1188             For system units these resource limits may be chosen freely. When these settings are configured
1189             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1190             used to raise the limits above those set for the user manager itself when it was first invoked, as
1191             the user's service manager generally lacks the privileges to do so. In user context these
1192             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1193             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1194             available configuration mechanisms differ between operating systems, but typically require
1195             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1196             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1197             instance of C<user\@.service>. After making such changes, make sure to restart the
1198             user's service manager.",
1199             'type' => 'leaf',
1200             'value_type' => 'uniline'
1201             },
1202             'LimitAS',
1203             {
1204             'description' => "Set soft and hard limits on various resources for executed processes. See
1205             L<setrlimit(2)> for
1206             details on the process resource limit concept. Process resource limits may be specified in two formats:
1207             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1208             pair C<soft:hard> to set both limits individually
1209             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1210             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1211             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1212             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1213             L<systemd.time(7)> for
1214             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1215             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1216             implied. Also, note that the effective granularity of the limits might influence their
1217             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1218             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1219             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1220             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1221             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1222              
1223             Note that most process resource limits configured with these options are per-process, and
1224             processes may fork in order to acquire a new set of resources that are accounted independently of the
1225             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1226             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1227             controls listed in
1228             L<systemd.resource-control(5)>
1229             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1230             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1231             powerful (and working) replacement for C<LimitRSS>.
1232              
1233             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1234             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1235             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1236             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1237             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1238              
1239             Resource limits not configured explicitly for a unit default to the value configured in the various
1240             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1241             L<systemd-system.conf(5)>, and \x{2013}
1242             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1243             services, see below).
1244              
1245             For system units these resource limits may be chosen freely. When these settings are configured
1246             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1247             used to raise the limits above those set for the user manager itself when it was first invoked, as
1248             the user's service manager generally lacks the privileges to do so. In user context these
1249             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1250             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1251             available configuration mechanisms differ between operating systems, but typically require
1252             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1253             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1254             instance of C<user\@.service>. After making such changes, make sure to restart the
1255             user's service manager.",
1256             'type' => 'leaf',
1257             'value_type' => 'uniline'
1258             },
1259             'LimitNPROC',
1260             {
1261             'description' => "Set soft and hard limits on various resources for executed processes. See
1262             L<setrlimit(2)> for
1263             details on the process resource limit concept. Process resource limits may be specified in two formats:
1264             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1265             pair C<soft:hard> to set both limits individually
1266             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1267             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1268             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1269             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1270             L<systemd.time(7)> for
1271             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1272             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1273             implied. Also, note that the effective granularity of the limits might influence their
1274             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1275             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1276             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1277             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1278             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1279              
1280             Note that most process resource limits configured with these options are per-process, and
1281             processes may fork in order to acquire a new set of resources that are accounted independently of the
1282             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1283             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1284             controls listed in
1285             L<systemd.resource-control(5)>
1286             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1287             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1288             powerful (and working) replacement for C<LimitRSS>.
1289              
1290             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1291             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1292             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1293             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1294             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1295              
1296             Resource limits not configured explicitly for a unit default to the value configured in the various
1297             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1298             L<systemd-system.conf(5)>, and \x{2013}
1299             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1300             services, see below).
1301              
1302             For system units these resource limits may be chosen freely. When these settings are configured
1303             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1304             used to raise the limits above those set for the user manager itself when it was first invoked, as
1305             the user's service manager generally lacks the privileges to do so. In user context these
1306             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1307             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1308             available configuration mechanisms differ between operating systems, but typically require
1309             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1310             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1311             instance of C<user\@.service>. After making such changes, make sure to restart the
1312             user's service manager.",
1313             'type' => 'leaf',
1314             'value_type' => 'uniline'
1315             },
1316             'LimitMEMLOCK',
1317             {
1318             'description' => "Set soft and hard limits on various resources for executed processes. See
1319             L<setrlimit(2)> for
1320             details on the process resource limit concept. Process resource limits may be specified in two formats:
1321             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1322             pair C<soft:hard> to set both limits individually
1323             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1324             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1325             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1326             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1327             L<systemd.time(7)> for
1328             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1329             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1330             implied. Also, note that the effective granularity of the limits might influence their
1331             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1332             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1333             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1334             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1335             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1336              
1337             Note that most process resource limits configured with these options are per-process, and
1338             processes may fork in order to acquire a new set of resources that are accounted independently of the
1339             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1340             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1341             controls listed in
1342             L<systemd.resource-control(5)>
1343             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1344             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1345             powerful (and working) replacement for C<LimitRSS>.
1346              
1347             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1348             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1349             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1350             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1351             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1352              
1353             Resource limits not configured explicitly for a unit default to the value configured in the various
1354             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1355             L<systemd-system.conf(5)>, and \x{2013}
1356             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1357             services, see below).
1358              
1359             For system units these resource limits may be chosen freely. When these settings are configured
1360             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1361             used to raise the limits above those set for the user manager itself when it was first invoked, as
1362             the user's service manager generally lacks the privileges to do so. In user context these
1363             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1364             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1365             available configuration mechanisms differ between operating systems, but typically require
1366             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1367             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1368             instance of C<user\@.service>. After making such changes, make sure to restart the
1369             user's service manager.",
1370             'type' => 'leaf',
1371             'value_type' => 'uniline'
1372             },
1373             'LimitLOCKS',
1374             {
1375             'description' => "Set soft and hard limits on various resources for executed processes. See
1376             L<setrlimit(2)> for
1377             details on the process resource limit concept. Process resource limits may be specified in two formats:
1378             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1379             pair C<soft:hard> to set both limits individually
1380             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1381             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1382             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1383             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1384             L<systemd.time(7)> for
1385             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1386             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1387             implied. Also, note that the effective granularity of the limits might influence their
1388             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1389             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1390             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1391             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1392             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1393              
1394             Note that most process resource limits configured with these options are per-process, and
1395             processes may fork in order to acquire a new set of resources that are accounted independently of the
1396             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1397             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1398             controls listed in
1399             L<systemd.resource-control(5)>
1400             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1401             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1402             powerful (and working) replacement for C<LimitRSS>.
1403              
1404             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1405             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1406             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1407             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1408             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1409              
1410             Resource limits not configured explicitly for a unit default to the value configured in the various
1411             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1412             L<systemd-system.conf(5)>, and \x{2013}
1413             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1414             services, see below).
1415              
1416             For system units these resource limits may be chosen freely. When these settings are configured
1417             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1418             used to raise the limits above those set for the user manager itself when it was first invoked, as
1419             the user's service manager generally lacks the privileges to do so. In user context these
1420             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1421             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1422             available configuration mechanisms differ between operating systems, but typically require
1423             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1424             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1425             instance of C<user\@.service>. After making such changes, make sure to restart the
1426             user's service manager.",
1427             'type' => 'leaf',
1428             'value_type' => 'uniline'
1429             },
1430             'LimitSIGPENDING',
1431             {
1432             'description' => "Set soft and hard limits on various resources for executed processes. See
1433             L<setrlimit(2)> for
1434             details on the process resource limit concept. Process resource limits may be specified in two formats:
1435             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1436             pair C<soft:hard> to set both limits individually
1437             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1438             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1439             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1440             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1441             L<systemd.time(7)> for
1442             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1443             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1444             implied. Also, note that the effective granularity of the limits might influence their
1445             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1446             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1447             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1448             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1449             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1450              
1451             Note that most process resource limits configured with these options are per-process, and
1452             processes may fork in order to acquire a new set of resources that are accounted independently of the
1453             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1454             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1455             controls listed in
1456             L<systemd.resource-control(5)>
1457             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1458             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1459             powerful (and working) replacement for C<LimitRSS>.
1460              
1461             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1462             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1463             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1464             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1465             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1466              
1467             Resource limits not configured explicitly for a unit default to the value configured in the various
1468             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1469             L<systemd-system.conf(5)>, and \x{2013}
1470             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1471             services, see below).
1472              
1473             For system units these resource limits may be chosen freely. When these settings are configured
1474             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1475             used to raise the limits above those set for the user manager itself when it was first invoked, as
1476             the user's service manager generally lacks the privileges to do so. In user context these
1477             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1478             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1479             available configuration mechanisms differ between operating systems, but typically require
1480             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1481             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1482             instance of C<user\@.service>. After making such changes, make sure to restart the
1483             user's service manager.",
1484             'type' => 'leaf',
1485             'value_type' => 'uniline'
1486             },
1487             'LimitMSGQUEUE',
1488             {
1489             'description' => "Set soft and hard limits on various resources for executed processes. See
1490             L<setrlimit(2)> for
1491             details on the process resource limit concept. Process resource limits may be specified in two formats:
1492             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1493             pair C<soft:hard> to set both limits individually
1494             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1495             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1496             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1497             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1498             L<systemd.time(7)> for
1499             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1500             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1501             implied. Also, note that the effective granularity of the limits might influence their
1502             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1503             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1504             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1505             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1506             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1507              
1508             Note that most process resource limits configured with these options are per-process, and
1509             processes may fork in order to acquire a new set of resources that are accounted independently of the
1510             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1511             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1512             controls listed in
1513             L<systemd.resource-control(5)>
1514             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1515             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1516             powerful (and working) replacement for C<LimitRSS>.
1517              
1518             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1519             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1520             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1521             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1522             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1523              
1524             Resource limits not configured explicitly for a unit default to the value configured in the various
1525             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1526             L<systemd-system.conf(5)>, and \x{2013}
1527             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1528             services, see below).
1529              
1530             For system units these resource limits may be chosen freely. When these settings are configured
1531             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1532             used to raise the limits above those set for the user manager itself when it was first invoked, as
1533             the user's service manager generally lacks the privileges to do so. In user context these
1534             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1535             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1536             available configuration mechanisms differ between operating systems, but typically require
1537             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1538             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1539             instance of C<user\@.service>. After making such changes, make sure to restart the
1540             user's service manager.",
1541             'type' => 'leaf',
1542             'value_type' => 'uniline'
1543             },
1544             'LimitNICE',
1545             {
1546             'description' => "Set soft and hard limits on various resources for executed processes. See
1547             L<setrlimit(2)> for
1548             details on the process resource limit concept. Process resource limits may be specified in two formats:
1549             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1550             pair C<soft:hard> to set both limits individually
1551             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1552             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1553             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1554             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1555             L<systemd.time(7)> for
1556             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1557             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1558             implied. Also, note that the effective granularity of the limits might influence their
1559             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1560             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1561             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1562             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1563             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1564              
1565             Note that most process resource limits configured with these options are per-process, and
1566             processes may fork in order to acquire a new set of resources that are accounted independently of the
1567             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1568             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1569             controls listed in
1570             L<systemd.resource-control(5)>
1571             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1572             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1573             powerful (and working) replacement for C<LimitRSS>.
1574              
1575             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1576             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1577             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1578             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1579             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1580              
1581             Resource limits not configured explicitly for a unit default to the value configured in the various
1582             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1583             L<systemd-system.conf(5)>, and \x{2013}
1584             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1585             services, see below).
1586              
1587             For system units these resource limits may be chosen freely. When these settings are configured
1588             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1589             used to raise the limits above those set for the user manager itself when it was first invoked, as
1590             the user's service manager generally lacks the privileges to do so. In user context these
1591             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1592             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1593             available configuration mechanisms differ between operating systems, but typically require
1594             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1595             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1596             instance of C<user\@.service>. After making such changes, make sure to restart the
1597             user's service manager.",
1598             'type' => 'leaf',
1599             'value_type' => 'uniline'
1600             },
1601             'LimitRTPRIO',
1602             {
1603             'description' => "Set soft and hard limits on various resources for executed processes. See
1604             L<setrlimit(2)> for
1605             details on the process resource limit concept. Process resource limits may be specified in two formats:
1606             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1607             pair C<soft:hard> to set both limits individually
1608             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1609             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1610             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1611             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1612             L<systemd.time(7)> for
1613             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1614             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1615             implied. Also, note that the effective granularity of the limits might influence their
1616             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1617             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1618             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1619             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1620             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1621              
1622             Note that most process resource limits configured with these options are per-process, and
1623             processes may fork in order to acquire a new set of resources that are accounted independently of the
1624             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1625             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1626             controls listed in
1627             L<systemd.resource-control(5)>
1628             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1629             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1630             powerful (and working) replacement for C<LimitRSS>.
1631              
1632             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1633             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1634             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1635             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1636             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1637              
1638             Resource limits not configured explicitly for a unit default to the value configured in the various
1639             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1640             L<systemd-system.conf(5)>, and \x{2013}
1641             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1642             services, see below).
1643              
1644             For system units these resource limits may be chosen freely. When these settings are configured
1645             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1646             used to raise the limits above those set for the user manager itself when it was first invoked, as
1647             the user's service manager generally lacks the privileges to do so. In user context these
1648             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1649             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1650             available configuration mechanisms differ between operating systems, but typically require
1651             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1652             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1653             instance of C<user\@.service>. After making such changes, make sure to restart the
1654             user's service manager.",
1655             'type' => 'leaf',
1656             'value_type' => 'uniline'
1657             },
1658             'LimitRTTIME',
1659             {
1660             'description' => "Set soft and hard limits on various resources for executed processes. See
1661             L<setrlimit(2)> for
1662             details on the process resource limit concept. Process resource limits may be specified in two formats:
1663             either as single value to set a specific soft and hard limit to the same value, or as colon-separated
1664             pair C<soft:hard> to set both limits individually
1665             (e.g. C<LimitAS=4G:16G>). Use the string C<infinity> to configure no
1666             limit on a specific resource. The multiplicative suffixes K, M, G, T, P and E (to the base 1024) may
1667             be used for resource limits measured in bytes (e.g. C<LimitAS=16G>). For the limits
1668             referring to time values, the usual time units ms, s, min, h and so on may be used (see
1669             L<systemd.time(7)> for
1670             details). Note that if no time unit is specified for C<LimitCPU> the default unit of
1671             seconds is implied, while for C<LimitRTTIME> the default unit of microseconds is
1672             implied. Also, note that the effective granularity of the limits might influence their
1673             enforcement. For example, time limits specified for C<LimitCPU> will be rounded up
1674             implicitly to multiples of 1s. For C<LimitNICE> the value may be specified in two
1675             syntaxes: if prefixed with C<+> or C<->, the value is understood as
1676             regular Linux nice value in the range -20\x{2026}19. If not prefixed like this the value is understood as
1677             raw resource limit parameter in the range 0\x{2026}40 (with 0 being equivalent to 1).
1678              
1679             Note that most process resource limits configured with these options are per-process, and
1680             processes may fork in order to acquire a new set of resources that are accounted independently of the
1681             original process, and may thus escape limits set. Also note that C<LimitRSS> is not
1682             implemented on Linux, and setting it has no effect. Often it is advisable to prefer the resource
1683             controls listed in
1684             L<systemd.resource-control(5)>
1685             over these per-process limits, as they apply to services as a whole, may be altered dynamically at
1686             runtime, and are generally more expressive. For example, C<MemoryMax> is a more
1687             powerful (and working) replacement for C<LimitRSS>.
1688              
1689             Note that C<LimitNPROC> will limit the number of processes from one (real) UID and
1690             not the number of processes started (forked) by the service. Therefore the limit is cumulative for all
1691             processes running under the same UID. Please also note that the C<LimitNPROC> will not be
1692             enforced if the service is running as root (and not dropping privileges). Due to these limitations,
1693             C<TasksMax> (see L<systemd.resource-control(5)>) is typically a better choice than C<LimitNPROC>.
1694              
1695             Resource limits not configured explicitly for a unit default to the value configured in the various
1696             C<DefaultLimitCPU>, C<DefaultLimitFSIZE>, \x{2026} options available in
1697             L<systemd-system.conf(5)>, and \x{2013}
1698             if not configured there \x{2013} the kernel or per-user defaults, as defined by the OS (the latter only for user
1699             services, see below).
1700              
1701             For system units these resource limits may be chosen freely. When these settings are configured
1702             in a user service (i.e. a service run by the per-user instance of the service manager) they cannot be
1703             used to raise the limits above those set for the user manager itself when it was first invoked, as
1704             the user's service manager generally lacks the privileges to do so. In user context these
1705             configuration options are hence only useful to lower the limits passed in or to raise the soft limit
1706             to the maximum of the hard limit as configured for the user. To raise the user's limits further, the
1707             available configuration mechanisms differ between operating systems, but typically require
1708             privileges. In most cases it is possible to configure higher per-user resource limits via PAM or by
1709             setting limits on the system service encapsulating the user's service manager, i.e. the user's
1710             instance of C<user\@.service>. After making such changes, make sure to restart the
1711             user's service manager.",
1712             'type' => 'leaf',
1713             'value_type' => 'uniline'
1714             },
1715             'UMask',
1716             {
1717             'description' => "Controls the file mode creation mask. Takes an access mode in octal notation. See
1718             L<umask(2)> for
1719             details. Defaults to 0022 for system units. For user units the default value is inherited from the
1720             per-user service manager (whose default is in turn inherited from the system service manager, and
1721             thus typically also is 0022 \x{2014} unless overridden by a PAM module). In order to change the per-user mask
1722             for all user services, consider setting the C<UMask> setting of the user's
1723             C<user\@.service> system service instance. The per-user umask may also be set via
1724             the C<umask> field of a user's L<JSON User
1725             Record|https://systemd.io/USER_RECORD> (for users managed by
1726             L<systemd-homed.service(8)>
1727             this field may be controlled via homectl --umask=). It may also be set via a PAM
1728             module, such as L<pam_umask(8)>.",
1729             'type' => 'leaf',
1730             'value_type' => 'uniline'
1731             },
1732             'CoredumpFilter',
1733             {
1734             'description' => 'Controls which types of memory mappings will be saved if the process dumps core
1735             (using the C</proc/pid/coredump_filter> file). Takes a
1736             whitespace-separated combination of mapping type names or numbers (with the default base 16). Mapping
1737             type names are C<private-anonymous>, C<shared-anonymous>,
1738             C<private-file-backed>, C<shared-file-backed>,
1739             C<elf-headers>, C<private-huge>,
1740             C<shared-huge>, C<private-dax>, C<shared-dax>,
1741             and the special values C<all> (all types) and C<default> (the
1742             kernel default of C<private-anonymous>C<shared-anonymous> C<elf-headers>C<private-huge>). See
1743             L<core(5)>
1744             for the meaning of the mapping types. When specified multiple times, all specified masks are
1745             ORed. When not set, or if the empty value is assigned, the inherited value is not changed.',
1746             'type' => 'leaf',
1747             'value_type' => 'uniline'
1748             },
1749             'KeyringMode',
1750             {
1751             'choice' => [
1752             'inherit',
1753             'private',
1754             'shared'
1755             ],
1756             'description' => 'Controls how the kernel session keyring is set up for the service (see L<session-keyring(7)> for
1757             details on the session keyring). Takes one of C<inherit>, C<private>,
1758             C<shared>. If set to C<inherit> no special keyring setup is done, and the kernel\'s
1759             default behaviour is applied. If C<private> is used a new session keyring is allocated when a
1760             service process is invoked, and it is not linked up with any user keyring. This is the recommended setting for
1761             system services, as this ensures that multiple services running under the same system user ID (in particular
1762             the root user) do not share their key material among each other. If C<shared> is used a new
1763             session keyring is allocated as for C<private>, but the user keyring of the user configured with
1764             C<User> is linked into it, so that keys assigned to the user may be requested by the unit\'s
1765             processes. In this modes multiple units running processes under the same user ID may share key material. Unless
1766             C<inherit> is selected the unique invocation ID for the unit (see below) is added as a protected
1767             key by the name C<invocation_id> to the newly created session keyring. Defaults to
1768             C<private> for services of the system service manager and to C<inherit> for
1769             non-service units and for services of the user service manager.',
1770             'type' => 'leaf',
1771             'value_type' => 'enum'
1772             },
1773             'OOMScoreAdjust',
1774             {
1775             'description' => 'Sets the adjustment value for the Linux kernel\'s Out-Of-Memory (OOM) killer score for
1776             executed processes. Takes an integer between -1000 (to disable OOM killing of processes of this unit)
1777             and 1000 (to make killing of processes of this unit under memory pressure very likely). See L<The /proc
1778             Filesystem|https://docs.kernel.org/filesystems/proc.html> for
1779             details. If not specified defaults to the OOM score adjustment level of the service manager itself,
1780             which is normally at 0.
1781              
1782             Use the C<OOMPolicy> setting of service units to configure how the service
1783             manager shall react to the kernel OOM killer or systemd-oomd terminating a process of the service. See
1784             L<systemd.service(5)>
1785             for details.',
1786             'max' => '1000',
1787             'min' => '-1000',
1788             'type' => 'leaf',
1789             'value_type' => 'integer'
1790             },
1791             'TimerSlackNSec',
1792             {
1793             'description' => 'Sets the timer slack in nanoseconds for the executed processes. The timer slack controls the
1794             accuracy of wake-ups triggered by timers. See
1795             L<prctl(2)> for more
1796             information. Note that in contrast to most other time span definitions this parameter takes an integer value in
1797             nano-seconds if no unit is specified. The usual time units are understood too.',
1798             'type' => 'leaf',
1799             'value_type' => 'uniline'
1800             },
1801             'Personality',
1802             {
1803             'choice' => [
1804             'x86',
1805             'x86-64',
1806             'ppc',
1807             'ppc-le',
1808             'ppc64',
1809             'ppc64-le',
1810             's390',
1811             's390x'
1812             ],
1813             'description' => 'Controls which kernel architecture L<uname(2)> shall report,
1814             when invoked by unit processes. Takes one of the architecture identifiers C<x86>,
1815             C<x86-64>, C<ppc>, C<ppc-le>, C<ppc64>,
1816             C<ppc64-le>, C<s390> or C<s390x>. Which personality
1817             architectures are supported depends on the system architecture. Usually the 64bit versions of the various
1818             system architectures support their immediate 32bit personality architecture counterpart, but no others. For
1819             example, C<x86-64> systems support the C<x86-64> and
1820             C<x86> personalities but no others. The personality feature is useful when running 32-bit
1821             services on a 64-bit host system. If not specified, the personality is left unmodified and thus reflects the
1822             personality of the host system\'s kernel.',
1823             'type' => 'leaf',
1824             'value_type' => 'enum'
1825             },
1826             'IgnoreSIGPIPE',
1827             {
1828             'description' => 'Takes a boolean argument. If true, causes C<SIGPIPE> to be ignored in the
1829             executed process. Defaults to true because C<SIGPIPE> generally is useful only in shell
1830             pipelines.',
1831             'type' => 'leaf',
1832             'value_type' => 'boolean',
1833             'write_as' => [
1834             'no',
1835             'yes'
1836             ]
1837             },
1838             'Nice',
1839             {
1840             'description' => 'Sets the default nice level (scheduling priority) for executed processes. Takes an
1841             integer between -20 (highest priority) and 19 (lowest priority). In case of resource contention,
1842             smaller values mean more resources will be made available to the unit\'s processes, larger values mean
1843             less resources will be made available. See
1844             L<setpriority(2)> for
1845             details.',
1846             'max' => '19',
1847             'min' => '-20',
1848             'type' => 'leaf',
1849             'value_type' => 'integer'
1850             },
1851             'CPUSchedulingPolicy',
1852             {
1853             'choice' => [
1854             'other',
1855             'batch',
1856             'idle',
1857             'fifo',
1858             'rr'
1859             ],
1860             'description' => 'Sets the CPU scheduling policy for executed processes. Takes one of C<other>,
1861             C<batch>, C<idle>, C<fifo> or C<rr>. See
1862             L<sched_setscheduler(2)> for
1863             details.',
1864             'type' => 'leaf',
1865             'value_type' => 'enum'
1866             },
1867             'CPUSchedulingPriority',
1868             {
1869             'description' => 'Sets the CPU scheduling priority for executed processes. The available priority range
1870             depends on the selected CPU scheduling policy (see above). For real-time scheduling policies an
1871             integer between 1 (lowest priority) and 99 (highest priority) can be used. In case of CPU resource
1872             contention, smaller values mean less CPU time is made available to the service, larger values mean
1873             more. See L<sched_setscheduler(2)>
1874             for details.',
1875             'type' => 'leaf',
1876             'value_type' => 'uniline'
1877             },
1878             'CPUSchedulingResetOnFork',
1879             {
1880             'description' => 'Takes a boolean argument. If true, elevated CPU scheduling priorities and policies
1881             will be reset when the executed processes call
1882             L<fork(2)>,
1883             and can hence not leak into child processes. See
1884             L<sched_setscheduler(2)>
1885             for details. Defaults to false.',
1886             'type' => 'leaf',
1887             'value_type' => 'boolean',
1888             'write_as' => [
1889             'no',
1890             'yes'
1891             ]
1892             },
1893             'CPUAffinity',
1894             {
1895             'cargo' => {
1896             'type' => 'leaf',
1897             'value_type' => 'uniline'
1898             },
1899             'description' => 'Controls the CPU affinity of the executed processes. Takes a list of CPU indices or ranges
1900             separated by either whitespace or commas. Alternatively, takes a special "numa" value in which case systemd
1901             automatically derives allowed CPU range based on the value of C<NUMAMask> option. CPU ranges
1902             are specified by the lower and upper CPU indices separated by a dash. This option may be specified more than
1903             once, in which case the specified CPU affinity masks are merged. If the empty string is assigned, the mask
1904             is reset, all assignments prior to this will have no effect. See
1905             L<sched_setaffinity(2)> for
1906             details.',
1907             'type' => 'list'
1908             },
1909             'NUMAPolicy',
1910             {
1911             'description' => 'Controls the NUMA memory policy of the executed processes. Takes a policy type, one of:
1912             C<default>, C<preferred>, C<bind>, C<interleave> and
1913             C<local>. A list of NUMA nodes that should be associated with the policy must be specified
1914             in C<NUMAMask>. For more details on each policy please see,
1915             L<set_mempolicy(2)>. For overall
1916             overview of NUMA support in Linux see,
1917             L<numa(7)>.
1918             ',
1919             'type' => 'leaf',
1920             'value_type' => 'uniline'
1921             },
1922             'NUMAMask',
1923             {
1924             'description' => 'Controls the NUMA node list which will be applied alongside with selected NUMA policy.
1925             Takes a list of NUMA nodes and has the same syntax as a list of CPUs for C<CPUAffinity>
1926             option or special "all" value which will include all available NUMA nodes in the mask. Note that the list
1927             of NUMA nodes is not required for C<default> and C<local>
1928             policies and for C<preferred> policy we expect a single NUMA node.',
1929             'type' => 'leaf',
1930             'value_type' => 'uniline'
1931             },
1932             'IOSchedulingClass',
1933             {
1934             'choice' => [
1935             '0',
1936             '1',
1937             '2',
1938             '3',
1939             'none',
1940             'realtime',
1941             'best-effort',
1942             'idle'
1943             ],
1944             'description' => 'Sets the I/O scheduling class for executed processes. Takes one of the strings
1945             C<realtime>, C<best-effort> or C<idle>. The kernel\'s
1946             default scheduling class is C<best-effort> at a priority of 4. If the empty string is
1947             assigned to this option, all prior assignments to both C<IOSchedulingClass> and
1948             C<IOSchedulingPriority> have no effect. See
1949             L<ioprio_set(2)> for
1950             details.',
1951             'type' => 'leaf',
1952             'value_type' => 'enum'
1953             },
1954             'IOSchedulingPriority',
1955             {
1956             'description' => 'Sets the I/O scheduling priority for executed processes. Takes an integer between 0
1957             (highest priority) and 7 (lowest priority). In case of I/O contention, smaller values mean more I/O
1958             bandwidth is made available to the unit\'s processes, larger values mean less bandwidth. The available
1959             priorities depend on the selected I/O scheduling class (see above). If the empty string is assigned
1960             to this option, all prior assignments to both C<IOSchedulingClass> and
1961             C<IOSchedulingPriority> have no effect. For the kernel\'s default scheduling class
1962             (C<best-effort>) this defaults to 4. See
1963             L<ioprio_set(2)> for
1964             details.',
1965             'max' => '7',
1966             'min' => '0',
1967             'type' => 'leaf',
1968             'upstream_default' => '4',
1969             'value_type' => 'integer'
1970             },
1971             'ProtectSystem',
1972             {
1973             'choice' => [
1974             'no',
1975             'yes',
1976             'full',
1977             'strict'
1978             ],
1979             'description' => 'Takes a boolean argument or the special values C<full> or
1980             C<strict>. If true, mounts the C</usr/> and the boot loader
1981             directories (C</boot> and C</efi>) read-only for processes
1982             invoked by this unit. If set to C<full>, the C</etc/> directory is
1983             mounted read-only, too. If set to C<strict> the entire file system hierarchy is
1984             mounted read-only, except for the API file system subtrees C</dev/>,
1985             C</proc/> and C</sys/> (protect these directories using
1986             C<PrivateDevices>, C<ProtectKernelTunables>,
1987             C<ProtectControlGroups>). This setting ensures that any modification of the vendor-supplied
1988             operating system (and optionally its configuration, and local mounts) is prohibited for the service. It is
1989             recommended to enable this setting for all long-running services, unless they are involved with system updates
1990             or need to modify the operating system in other ways. If this option is used,
1991             C<ReadWritePaths> may be used to exclude specific directories from being made read-only. This
1992             setting is implied if C<DynamicUser> is set. This setting cannot ensure protection in all
1993             cases. In general it has the same limitations as C<ReadOnlyPaths>, see below. Defaults to
1994             off.',
1995             'replace' => {
1996             '0' => 'no',
1997             '1' => 'yes',
1998             'false' => 'no',
1999             'true' => 'yes'
2000             },
2001             'type' => 'leaf',
2002             'value_type' => 'enum'
2003             },
2004             'ProtectHome',
2005             {
2006             'choice' => [
2007             'no',
2008             'yes',
2009             'read-only',
2010             'tmpfs'
2011             ],
2012             'description' => 'Takes a boolean argument or the special values C<read-only> or
2013             C<tmpfs>. If true, the directories C</home/>,
2014             C</root>, and C</run/user> are made inaccessible and empty for
2015             processes invoked by this unit. If set to C<read-only>, the three directories are
2016             made read-only instead. If set to C<tmpfs>, temporary file systems are mounted on the
2017             three directories in read-only mode. The value C<tmpfs> is useful to hide home
2018             directories not relevant to the processes invoked by the unit, while still allowing necessary
2019             directories to be made visible when listed in C<BindPaths> or
2020             C<BindReadOnlyPaths>.
2021              
2022             Setting this to C<yes> is mostly equivalent to setting the three directories in
2023             C<InaccessiblePaths>. Similarly, C<read-only> is mostly equivalent to
2024             C<ReadOnlyPaths>, and C<tmpfs> is mostly equivalent to
2025             C<TemporaryFileSystem> with C<:ro>.
2026              
2027             It is recommended to enable this setting for all long-running services (in particular
2028             network-facing ones), to ensure they cannot get access to private user data, unless the services
2029             actually require access to the user\'s private data. This setting is implied if
2030             C<DynamicUser> is set. This setting cannot ensure protection in all cases. In
2031             general it has the same limitations as C<ReadOnlyPaths>, see below.',
2032             'replace' => {
2033             '0' => 'no',
2034             '1' => 'yes',
2035             'false' => 'no',
2036             'true' => 'yes'
2037             },
2038             'type' => 'leaf',
2039             'value_type' => 'enum'
2040             },
2041             'RuntimeDirectory',
2042             {
2043             'description' => 'These options take a whitespace-separated list of directory names. The specified
2044             directory names must be relative, and may not include C<..>. If set, when the unit is
2045             started, one or more directories by the specified names will be created (including their parents)
2046             below the locations defined in the following table. Also, the corresponding environment variable will
2047             be defined with the full paths of the directories. If multiple directories are set, then in the
2048             environment variable the paths are concatenated with colon (C<:>).
2049              
2050             In case of C<RuntimeDirectory> the innermost subdirectories are removed when
2051             the unit is stopped. It is possible to preserve the specified directories in this case if
2052             C<RuntimeDirectoryPreserve> is configured to C<restart> or
2053             C<yes> (see below). The directories specified with C<StateDirectory>,
2054             C<CacheDirectory>, C<LogsDirectory>,
2055             C<ConfigurationDirectory> are not removed when the unit is stopped.
2056              
2057             Except in case of C<ConfigurationDirectory>, the innermost specified directories will be
2058             owned by the user and group specified in C<User> and C<Group>. If the
2059             specified directories already exist and their owning user or group do not match the configured ones, all files
2060             and directories below the specified directories as well as the directories themselves will have their file
2061             ownership recursively changed to match what is configured. As an optimization, if the specified directories are
2062             already owned by the right user and group, files and directories below of them are left as-is, even if they do
2063             not match what is requested. The innermost specified directories will have their access mode adjusted to the
2064             what is specified in C<RuntimeDirectoryMode>, C<StateDirectoryMode>,
2065             C<CacheDirectoryMode>, C<LogsDirectoryMode> and
2066             C<ConfigurationDirectoryMode>.
2067              
2068             These options imply C<BindPaths> for the specified paths. When combined with
2069             C<RootDirectory> or C<RootImage> these paths always reside on the host and
2070             are mounted from there into the unit\'s file system namespace.
2071              
2072             If C<DynamicUser> is used, the logic for C<CacheDirectory>,
2073             C<LogsDirectory> and C<StateDirectory> is slightly altered: the directories are created below
2074             C</var/cache/private>, C</var/log/private> and C</var/lib/private>,
2075             respectively, which are host directories made inaccessible to
2076             unprivileged users, which ensures that access to these directories cannot be gained through dynamic
2077             user ID recycling. Symbolic links are created to hide this difference in behaviour. Both from
2078             perspective of the host and from inside the unit, the relevant directories hence always appear
2079             directly below C</var/cache>, C</var/log> and
2080             C</var/lib>.
2081              
2082             Use C<RuntimeDirectory> to manage one or more runtime directories for the unit and bind
2083             their lifetime to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create
2084             runtime directories in C</run/> due to lack of privileges, and to make sure the runtime
2085             directory is cleaned up automatically after use. For runtime directories that require more complex or different
2086             configuration or lifetime guarantees, please consider using
2087             L<tmpfiles.d(5)>.
2088              
2089             C<RuntimeDirectory>, C<StateDirectory>, C<CacheDirectory>
2090             and C<LogsDirectory> optionally support a second parameter, separated by C<:>.
2091             The second parameter will be interpreted as a destination path that will be created as a symlink to the directory.
2092             The symlinks will be created after any C<BindPaths> or C<TemporaryFileSystem>
2093             options have been set up, to make ephemeral symlinking possible. The same source can have multiple symlinks, by
2094             using the same first parameter, but a different second parameter.',
2095             'type' => 'leaf',
2096             'value_type' => 'uniline'
2097             },
2098             'StateDirectory',
2099             {
2100             'description' => 'These options take a whitespace-separated list of directory names. The specified
2101             directory names must be relative, and may not include C<..>. If set, when the unit is
2102             started, one or more directories by the specified names will be created (including their parents)
2103             below the locations defined in the following table. Also, the corresponding environment variable will
2104             be defined with the full paths of the directories. If multiple directories are set, then in the
2105             environment variable the paths are concatenated with colon (C<:>).
2106              
2107             In case of C<RuntimeDirectory> the innermost subdirectories are removed when
2108             the unit is stopped. It is possible to preserve the specified directories in this case if
2109             C<RuntimeDirectoryPreserve> is configured to C<restart> or
2110             C<yes> (see below). The directories specified with C<StateDirectory>,
2111             C<CacheDirectory>, C<LogsDirectory>,
2112             C<ConfigurationDirectory> are not removed when the unit is stopped.
2113              
2114             Except in case of C<ConfigurationDirectory>, the innermost specified directories will be
2115             owned by the user and group specified in C<User> and C<Group>. If the
2116             specified directories already exist and their owning user or group do not match the configured ones, all files
2117             and directories below the specified directories as well as the directories themselves will have their file
2118             ownership recursively changed to match what is configured. As an optimization, if the specified directories are
2119             already owned by the right user and group, files and directories below of them are left as-is, even if they do
2120             not match what is requested. The innermost specified directories will have their access mode adjusted to the
2121             what is specified in C<RuntimeDirectoryMode>, C<StateDirectoryMode>,
2122             C<CacheDirectoryMode>, C<LogsDirectoryMode> and
2123             C<ConfigurationDirectoryMode>.
2124              
2125             These options imply C<BindPaths> for the specified paths. When combined with
2126             C<RootDirectory> or C<RootImage> these paths always reside on the host and
2127             are mounted from there into the unit\'s file system namespace.
2128              
2129             If C<DynamicUser> is used, the logic for C<CacheDirectory>,
2130             C<LogsDirectory> and C<StateDirectory> is slightly altered: the directories are created below
2131             C</var/cache/private>, C</var/log/private> and C</var/lib/private>,
2132             respectively, which are host directories made inaccessible to
2133             unprivileged users, which ensures that access to these directories cannot be gained through dynamic
2134             user ID recycling. Symbolic links are created to hide this difference in behaviour. Both from
2135             perspective of the host and from inside the unit, the relevant directories hence always appear
2136             directly below C</var/cache>, C</var/log> and
2137             C</var/lib>.
2138              
2139             Use C<RuntimeDirectory> to manage one or more runtime directories for the unit and bind
2140             their lifetime to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create
2141             runtime directories in C</run/> due to lack of privileges, and to make sure the runtime
2142             directory is cleaned up automatically after use. For runtime directories that require more complex or different
2143             configuration or lifetime guarantees, please consider using
2144             L<tmpfiles.d(5)>.
2145              
2146             C<RuntimeDirectory>, C<StateDirectory>, C<CacheDirectory>
2147             and C<LogsDirectory> optionally support a second parameter, separated by C<:>.
2148             The second parameter will be interpreted as a destination path that will be created as a symlink to the directory.
2149             The symlinks will be created after any C<BindPaths> or C<TemporaryFileSystem>
2150             options have been set up, to make ephemeral symlinking possible. The same source can have multiple symlinks, by
2151             using the same first parameter, but a different second parameter.',
2152             'type' => 'leaf',
2153             'value_type' => 'uniline'
2154             },
2155             'CacheDirectory',
2156             {
2157             'description' => 'These options take a whitespace-separated list of directory names. The specified
2158             directory names must be relative, and may not include C<..>. If set, when the unit is
2159             started, one or more directories by the specified names will be created (including their parents)
2160             below the locations defined in the following table. Also, the corresponding environment variable will
2161             be defined with the full paths of the directories. If multiple directories are set, then in the
2162             environment variable the paths are concatenated with colon (C<:>).
2163              
2164             In case of C<RuntimeDirectory> the innermost subdirectories are removed when
2165             the unit is stopped. It is possible to preserve the specified directories in this case if
2166             C<RuntimeDirectoryPreserve> is configured to C<restart> or
2167             C<yes> (see below). The directories specified with C<StateDirectory>,
2168             C<CacheDirectory>, C<LogsDirectory>,
2169             C<ConfigurationDirectory> are not removed when the unit is stopped.
2170              
2171             Except in case of C<ConfigurationDirectory>, the innermost specified directories will be
2172             owned by the user and group specified in C<User> and C<Group>. If the
2173             specified directories already exist and their owning user or group do not match the configured ones, all files
2174             and directories below the specified directories as well as the directories themselves will have their file
2175             ownership recursively changed to match what is configured. As an optimization, if the specified directories are
2176             already owned by the right user and group, files and directories below of them are left as-is, even if they do
2177             not match what is requested. The innermost specified directories will have their access mode adjusted to the
2178             what is specified in C<RuntimeDirectoryMode>, C<StateDirectoryMode>,
2179             C<CacheDirectoryMode>, C<LogsDirectoryMode> and
2180             C<ConfigurationDirectoryMode>.
2181              
2182             These options imply C<BindPaths> for the specified paths. When combined with
2183             C<RootDirectory> or C<RootImage> these paths always reside on the host and
2184             are mounted from there into the unit\'s file system namespace.
2185              
2186             If C<DynamicUser> is used, the logic for C<CacheDirectory>,
2187             C<LogsDirectory> and C<StateDirectory> is slightly altered: the directories are created below
2188             C</var/cache/private>, C</var/log/private> and C</var/lib/private>,
2189             respectively, which are host directories made inaccessible to
2190             unprivileged users, which ensures that access to these directories cannot be gained through dynamic
2191             user ID recycling. Symbolic links are created to hide this difference in behaviour. Both from
2192             perspective of the host and from inside the unit, the relevant directories hence always appear
2193             directly below C</var/cache>, C</var/log> and
2194             C</var/lib>.
2195              
2196             Use C<RuntimeDirectory> to manage one or more runtime directories for the unit and bind
2197             their lifetime to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create
2198             runtime directories in C</run/> due to lack of privileges, and to make sure the runtime
2199             directory is cleaned up automatically after use. For runtime directories that require more complex or different
2200             configuration or lifetime guarantees, please consider using
2201             L<tmpfiles.d(5)>.
2202              
2203             C<RuntimeDirectory>, C<StateDirectory>, C<CacheDirectory>
2204             and C<LogsDirectory> optionally support a second parameter, separated by C<:>.
2205             The second parameter will be interpreted as a destination path that will be created as a symlink to the directory.
2206             The symlinks will be created after any C<BindPaths> or C<TemporaryFileSystem>
2207             options have been set up, to make ephemeral symlinking possible. The same source can have multiple symlinks, by
2208             using the same first parameter, but a different second parameter.',
2209             'type' => 'leaf',
2210             'value_type' => 'uniline'
2211             },
2212             'LogsDirectory',
2213             {
2214             'description' => 'These options take a whitespace-separated list of directory names. The specified
2215             directory names must be relative, and may not include C<..>. If set, when the unit is
2216             started, one or more directories by the specified names will be created (including their parents)
2217             below the locations defined in the following table. Also, the corresponding environment variable will
2218             be defined with the full paths of the directories. If multiple directories are set, then in the
2219             environment variable the paths are concatenated with colon (C<:>).
2220              
2221             In case of C<RuntimeDirectory> the innermost subdirectories are removed when
2222             the unit is stopped. It is possible to preserve the specified directories in this case if
2223             C<RuntimeDirectoryPreserve> is configured to C<restart> or
2224             C<yes> (see below). The directories specified with C<StateDirectory>,
2225             C<CacheDirectory>, C<LogsDirectory>,
2226             C<ConfigurationDirectory> are not removed when the unit is stopped.
2227              
2228             Except in case of C<ConfigurationDirectory>, the innermost specified directories will be
2229             owned by the user and group specified in C<User> and C<Group>. If the
2230             specified directories already exist and their owning user or group do not match the configured ones, all files
2231             and directories below the specified directories as well as the directories themselves will have their file
2232             ownership recursively changed to match what is configured. As an optimization, if the specified directories are
2233             already owned by the right user and group, files and directories below of them are left as-is, even if they do
2234             not match what is requested. The innermost specified directories will have their access mode adjusted to the
2235             what is specified in C<RuntimeDirectoryMode>, C<StateDirectoryMode>,
2236             C<CacheDirectoryMode>, C<LogsDirectoryMode> and
2237             C<ConfigurationDirectoryMode>.
2238              
2239             These options imply C<BindPaths> for the specified paths. When combined with
2240             C<RootDirectory> or C<RootImage> these paths always reside on the host and
2241             are mounted from there into the unit\'s file system namespace.
2242              
2243             If C<DynamicUser> is used, the logic for C<CacheDirectory>,
2244             C<LogsDirectory> and C<StateDirectory> is slightly altered: the directories are created below
2245             C</var/cache/private>, C</var/log/private> and C</var/lib/private>,
2246             respectively, which are host directories made inaccessible to
2247             unprivileged users, which ensures that access to these directories cannot be gained through dynamic
2248             user ID recycling. Symbolic links are created to hide this difference in behaviour. Both from
2249             perspective of the host and from inside the unit, the relevant directories hence always appear
2250             directly below C</var/cache>, C</var/log> and
2251             C</var/lib>.
2252              
2253             Use C<RuntimeDirectory> to manage one or more runtime directories for the unit and bind
2254             their lifetime to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create
2255             runtime directories in C</run/> due to lack of privileges, and to make sure the runtime
2256             directory is cleaned up automatically after use. For runtime directories that require more complex or different
2257             configuration or lifetime guarantees, please consider using
2258             L<tmpfiles.d(5)>.
2259              
2260             C<RuntimeDirectory>, C<StateDirectory>, C<CacheDirectory>
2261             and C<LogsDirectory> optionally support a second parameter, separated by C<:>.
2262             The second parameter will be interpreted as a destination path that will be created as a symlink to the directory.
2263             The symlinks will be created after any C<BindPaths> or C<TemporaryFileSystem>
2264             options have been set up, to make ephemeral symlinking possible. The same source can have multiple symlinks, by
2265             using the same first parameter, but a different second parameter.',
2266             'type' => 'leaf',
2267             'value_type' => 'uniline'
2268             },
2269             'ConfigurationDirectory',
2270             {
2271             'description' => 'These options take a whitespace-separated list of directory names. The specified
2272             directory names must be relative, and may not include C<..>. If set, when the unit is
2273             started, one or more directories by the specified names will be created (including their parents)
2274             below the locations defined in the following table. Also, the corresponding environment variable will
2275             be defined with the full paths of the directories. If multiple directories are set, then in the
2276             environment variable the paths are concatenated with colon (C<:>).
2277              
2278             In case of C<RuntimeDirectory> the innermost subdirectories are removed when
2279             the unit is stopped. It is possible to preserve the specified directories in this case if
2280             C<RuntimeDirectoryPreserve> is configured to C<restart> or
2281             C<yes> (see below). The directories specified with C<StateDirectory>,
2282             C<CacheDirectory>, C<LogsDirectory>,
2283             C<ConfigurationDirectory> are not removed when the unit is stopped.
2284              
2285             Except in case of C<ConfigurationDirectory>, the innermost specified directories will be
2286             owned by the user and group specified in C<User> and C<Group>. If the
2287             specified directories already exist and their owning user or group do not match the configured ones, all files
2288             and directories below the specified directories as well as the directories themselves will have their file
2289             ownership recursively changed to match what is configured. As an optimization, if the specified directories are
2290             already owned by the right user and group, files and directories below of them are left as-is, even if they do
2291             not match what is requested. The innermost specified directories will have their access mode adjusted to the
2292             what is specified in C<RuntimeDirectoryMode>, C<StateDirectoryMode>,
2293             C<CacheDirectoryMode>, C<LogsDirectoryMode> and
2294             C<ConfigurationDirectoryMode>.
2295              
2296             These options imply C<BindPaths> for the specified paths. When combined with
2297             C<RootDirectory> or C<RootImage> these paths always reside on the host and
2298             are mounted from there into the unit\'s file system namespace.
2299              
2300             If C<DynamicUser> is used, the logic for C<CacheDirectory>,
2301             C<LogsDirectory> and C<StateDirectory> is slightly altered: the directories are created below
2302             C</var/cache/private>, C</var/log/private> and C</var/lib/private>,
2303             respectively, which are host directories made inaccessible to
2304             unprivileged users, which ensures that access to these directories cannot be gained through dynamic
2305             user ID recycling. Symbolic links are created to hide this difference in behaviour. Both from
2306             perspective of the host and from inside the unit, the relevant directories hence always appear
2307             directly below C</var/cache>, C</var/log> and
2308             C</var/lib>.
2309              
2310             Use C<RuntimeDirectory> to manage one or more runtime directories for the unit and bind
2311             their lifetime to the daemon runtime. This is particularly useful for unprivileged daemons that cannot create
2312             runtime directories in C</run/> due to lack of privileges, and to make sure the runtime
2313             directory is cleaned up automatically after use. For runtime directories that require more complex or different
2314             configuration or lifetime guarantees, please consider using
2315             L<tmpfiles.d(5)>.
2316              
2317             C<RuntimeDirectory>, C<StateDirectory>, C<CacheDirectory>
2318             and C<LogsDirectory> optionally support a second parameter, separated by C<:>.
2319             The second parameter will be interpreted as a destination path that will be created as a symlink to the directory.
2320             The symlinks will be created after any C<BindPaths> or C<TemporaryFileSystem>
2321             options have been set up, to make ephemeral symlinking possible. The same source can have multiple symlinks, by
2322             using the same first parameter, but a different second parameter.',
2323             'type' => 'leaf',
2324             'value_type' => 'uniline'
2325             },
2326             'RuntimeDirectoryMode',
2327             {
2328             'description' => 'Specifies the access mode of the directories specified in C<RuntimeDirectory>,
2329             C<StateDirectory>, C<CacheDirectory>, C<LogsDirectory>, or
2330             C<ConfigurationDirectory>, respectively, as an octal number. Defaults to
2331             C<0755>. See "Permissions" in L<path_resolution(7)> for a
2332             discussion of the meaning of permission bits.',
2333             'type' => 'leaf',
2334             'value_type' => 'uniline'
2335             },
2336             'StateDirectoryMode',
2337             {
2338             'description' => 'Specifies the access mode of the directories specified in C<RuntimeDirectory>,
2339             C<StateDirectory>, C<CacheDirectory>, C<LogsDirectory>, or
2340             C<ConfigurationDirectory>, respectively, as an octal number. Defaults to
2341             C<0755>. See "Permissions" in L<path_resolution(7)> for a
2342             discussion of the meaning of permission bits.',
2343             'type' => 'leaf',
2344             'value_type' => 'uniline'
2345             },
2346             'CacheDirectoryMode',
2347             {
2348             'description' => 'Specifies the access mode of the directories specified in C<RuntimeDirectory>,
2349             C<StateDirectory>, C<CacheDirectory>, C<LogsDirectory>, or
2350             C<ConfigurationDirectory>, respectively, as an octal number. Defaults to
2351             C<0755>. See "Permissions" in L<path_resolution(7)> for a
2352             discussion of the meaning of permission bits.',
2353             'type' => 'leaf',
2354             'value_type' => 'uniline'
2355             },
2356             'LogsDirectoryMode',
2357             {
2358             'description' => 'Specifies the access mode of the directories specified in C<RuntimeDirectory>,
2359             C<StateDirectory>, C<CacheDirectory>, C<LogsDirectory>, or
2360             C<ConfigurationDirectory>, respectively, as an octal number. Defaults to
2361             C<0755>. See "Permissions" in L<path_resolution(7)> for a
2362             discussion of the meaning of permission bits.',
2363             'type' => 'leaf',
2364             'value_type' => 'uniline'
2365             },
2366             'ConfigurationDirectoryMode',
2367             {
2368             'description' => 'Specifies the access mode of the directories specified in C<RuntimeDirectory>,
2369             C<StateDirectory>, C<CacheDirectory>, C<LogsDirectory>, or
2370             C<ConfigurationDirectory>, respectively, as an octal number. Defaults to
2371             C<0755>. See "Permissions" in L<path_resolution(7)> for a
2372             discussion of the meaning of permission bits.',
2373             'type' => 'leaf',
2374             'value_type' => 'uniline'
2375             },
2376             'RuntimeDirectoryPreserve',
2377             {
2378             'choice' => [
2379             'no',
2380             'yes',
2381             'restart'
2382             ],
2383             'description' => 'Takes a boolean argument or C<restart>. If set to C<no> (the
2384             default), the directories specified in C<RuntimeDirectory> are always removed when the service
2385             stops. If set to C<restart> the directories are preserved when the service is both automatically
2386             and manually restarted. Here, the automatic restart means the operation specified in
2387             C<Restart>, and manual restart means the one triggered by systemctl restart
2388             foo.service. If set to C<yes>, then the directories are not removed when the service is
2389             stopped. Note that since the runtime directory C</run/> is a mount point of
2390             C<tmpfs>, then for system services the directories specified in
2391             C<RuntimeDirectory> are removed when the system is rebooted.',
2392             'replace' => {
2393             '0' => 'no',
2394             '1' => 'yes',
2395             'false' => 'no',
2396             'true' => 'yes'
2397             },
2398             'type' => 'leaf',
2399             'value_type' => 'enum'
2400             },
2401             'TimeoutCleanSec',
2402             {
2403             'description' => "Configures a timeout on the clean-up operation requested through systemctl
2404             clean \x{2026}, see
2405             L<systemctl(1)> for
2406             details. Takes the usual time values and defaults to C<infinity>, i.e. by default
2407             no timeout is applied. If a timeout is configured the clean operation will be aborted forcibly when
2408             the timeout is reached, potentially leaving resources on disk.",
2409             'type' => 'leaf',
2410             'value_type' => 'uniline'
2411             },
2412             'ReadWritePaths',
2413             {
2414             'cargo' => {
2415             'type' => 'leaf',
2416             'value_type' => 'uniline'
2417             },
2418             'description' => 'Sets up a new file system namespace for executed processes. These options may be used
2419             to limit access a process has to the file system. Each setting takes a space-separated list of paths
2420             relative to the host\'s root directory (i.e. the system running the service manager). Note that if
2421             paths contain symlinks, they are resolved relative to the root directory set with
2422             C<RootDirectory>/C<RootImage>.
2423              
2424             Paths listed in C<ReadWritePaths> are accessible from within the namespace
2425             with the same access modes as from outside of it. Paths listed in C<ReadOnlyPaths>
2426             are accessible for reading only, writing will be refused even if the usual file access controls would
2427             permit this. Nest C<ReadWritePaths> inside of C<ReadOnlyPaths> in
2428             order to provide writable subdirectories within read-only directories. Use
2429             C<ReadWritePaths> in order to allow-list specific paths for write access if
2430             C<ProtectSystem=strict> is used.
2431              
2432             Paths listed in C<InaccessiblePaths> will be made inaccessible for processes inside
2433             the namespace along with everything below them in the file system hierarchy. This may be more restrictive than
2434             desired, because it is not possible to nest C<ReadWritePaths>, C<ReadOnlyPaths>,
2435             C<BindPaths>, or C<BindReadOnlyPaths> inside it. For a more flexible option,
2436             see C<TemporaryFileSystem>.
2437              
2438             Content in paths listed in C<NoExecPaths> are not executable even if the usual
2439             file access controls would permit this. Nest C<ExecPaths> inside of
2440             C<NoExecPaths> in order to provide executable content within non-executable
2441             directories.
2442              
2443             Non-directory paths may be specified as well. These options may be specified more than once,
2444             in which case all paths listed will have limited access from within the namespace. If the empty string is
2445             assigned to this option, the specific list is reset, and all prior assignments have no effect.
2446              
2447             Paths in C<ReadWritePaths>, C<ReadOnlyPaths>,
2448             C<InaccessiblePaths>, C<ExecPaths> and
2449             C<NoExecPaths> may be prefixed with C<->, in which case they will be
2450             ignored when they do not exist. If prefixed with C<+> the paths are taken relative to the root
2451             directory of the unit, as configured with C<RootDirectory>/C<RootImage>,
2452             instead of relative to the root directory of the host (see above). When combining C<-> and
2453             C<+> on the same path make sure to specify C<-> first, and C<+>
2454             second.
2455              
2456             Note that these settings will disconnect propagation of mounts from the unit\'s processes to the
2457             host. This means that this setting may not be used for services which shall be able to install mount points in
2458             the main mount namespace. For C<ReadWritePaths> and C<ReadOnlyPaths>,
2459             propagation in the other direction is not affected, i.e. mounts created on the host generally appear in the
2460             unit processes\' namespace, and mounts removed on the host also disappear there too. In particular, note that
2461             mount propagation from host to unit will result in unmodified mounts to be created in the unit\'s namespace,
2462             i.e. writable mounts appearing on the host will be writable in the unit\'s namespace too, even when propagated
2463             below a path marked with C<ReadOnlyPaths>! Restricting access with these options hence does
2464             not extend to submounts of a directory that are created later on. This means the lock-down offered by that
2465             setting is not complete, and does not offer full protection.
2466              
2467             Note that the effect of these settings may be undone by privileged processes. In order to set up an
2468             effective sandboxed environment for a unit it is thus recommended to combine these settings with either
2469             C<CapabilityBoundingSet=~CAP_SYS_ADMIN> or
2470             C<SystemCallFilter=~@mount>.
2471              
2472             Simple allow-list example using these directives:
2473              
2474             [Service]
2475             ReadOnlyPaths=/
2476             ReadWritePaths=/var /run
2477             InaccessiblePaths=-/lost+found
2478             NoExecPaths=/
2479             ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64
2480             ',
2481             'type' => 'list'
2482             },
2483             'ReadOnlyPaths',
2484             {
2485             'cargo' => {
2486             'type' => 'leaf',
2487             'value_type' => 'uniline'
2488             },
2489             'description' => 'Sets up a new file system namespace for executed processes. These options may be used
2490             to limit access a process has to the file system. Each setting takes a space-separated list of paths
2491             relative to the host\'s root directory (i.e. the system running the service manager). Note that if
2492             paths contain symlinks, they are resolved relative to the root directory set with
2493             C<RootDirectory>/C<RootImage>.
2494              
2495             Paths listed in C<ReadWritePaths> are accessible from within the namespace
2496             with the same access modes as from outside of it. Paths listed in C<ReadOnlyPaths>
2497             are accessible for reading only, writing will be refused even if the usual file access controls would
2498             permit this. Nest C<ReadWritePaths> inside of C<ReadOnlyPaths> in
2499             order to provide writable subdirectories within read-only directories. Use
2500             C<ReadWritePaths> in order to allow-list specific paths for write access if
2501             C<ProtectSystem=strict> is used.
2502              
2503             Paths listed in C<InaccessiblePaths> will be made inaccessible for processes inside
2504             the namespace along with everything below them in the file system hierarchy. This may be more restrictive than
2505             desired, because it is not possible to nest C<ReadWritePaths>, C<ReadOnlyPaths>,
2506             C<BindPaths>, or C<BindReadOnlyPaths> inside it. For a more flexible option,
2507             see C<TemporaryFileSystem>.
2508              
2509             Content in paths listed in C<NoExecPaths> are not executable even if the usual
2510             file access controls would permit this. Nest C<ExecPaths> inside of
2511             C<NoExecPaths> in order to provide executable content within non-executable
2512             directories.
2513              
2514             Non-directory paths may be specified as well. These options may be specified more than once,
2515             in which case all paths listed will have limited access from within the namespace. If the empty string is
2516             assigned to this option, the specific list is reset, and all prior assignments have no effect.
2517              
2518             Paths in C<ReadWritePaths>, C<ReadOnlyPaths>,
2519             C<InaccessiblePaths>, C<ExecPaths> and
2520             C<NoExecPaths> may be prefixed with C<->, in which case they will be
2521             ignored when they do not exist. If prefixed with C<+> the paths are taken relative to the root
2522             directory of the unit, as configured with C<RootDirectory>/C<RootImage>,
2523             instead of relative to the root directory of the host (see above). When combining C<-> and
2524             C<+> on the same path make sure to specify C<-> first, and C<+>
2525             second.
2526              
2527             Note that these settings will disconnect propagation of mounts from the unit\'s processes to the
2528             host. This means that this setting may not be used for services which shall be able to install mount points in
2529             the main mount namespace. For C<ReadWritePaths> and C<ReadOnlyPaths>,
2530             propagation in the other direction is not affected, i.e. mounts created on the host generally appear in the
2531             unit processes\' namespace, and mounts removed on the host also disappear there too. In particular, note that
2532             mount propagation from host to unit will result in unmodified mounts to be created in the unit\'s namespace,
2533             i.e. writable mounts appearing on the host will be writable in the unit\'s namespace too, even when propagated
2534             below a path marked with C<ReadOnlyPaths>! Restricting access with these options hence does
2535             not extend to submounts of a directory that are created later on. This means the lock-down offered by that
2536             setting is not complete, and does not offer full protection.
2537              
2538             Note that the effect of these settings may be undone by privileged processes. In order to set up an
2539             effective sandboxed environment for a unit it is thus recommended to combine these settings with either
2540             C<CapabilityBoundingSet=~CAP_SYS_ADMIN> or
2541             C<SystemCallFilter=~@mount>.
2542              
2543             Simple allow-list example using these directives:
2544              
2545             [Service]
2546             ReadOnlyPaths=/
2547             ReadWritePaths=/var /run
2548             InaccessiblePaths=-/lost+found
2549             NoExecPaths=/
2550             ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64
2551             ',
2552             'type' => 'list'
2553             },
2554             'InaccessiblePaths',
2555             {
2556             'cargo' => {
2557             'type' => 'leaf',
2558             'value_type' => 'uniline'
2559             },
2560             'description' => 'Sets up a new file system namespace for executed processes. These options may be used
2561             to limit access a process has to the file system. Each setting takes a space-separated list of paths
2562             relative to the host\'s root directory (i.e. the system running the service manager). Note that if
2563             paths contain symlinks, they are resolved relative to the root directory set with
2564             C<RootDirectory>/C<RootImage>.
2565              
2566             Paths listed in C<ReadWritePaths> are accessible from within the namespace
2567             with the same access modes as from outside of it. Paths listed in C<ReadOnlyPaths>
2568             are accessible for reading only, writing will be refused even if the usual file access controls would
2569             permit this. Nest C<ReadWritePaths> inside of C<ReadOnlyPaths> in
2570             order to provide writable subdirectories within read-only directories. Use
2571             C<ReadWritePaths> in order to allow-list specific paths for write access if
2572             C<ProtectSystem=strict> is used.
2573              
2574             Paths listed in C<InaccessiblePaths> will be made inaccessible for processes inside
2575             the namespace along with everything below them in the file system hierarchy. This may be more restrictive than
2576             desired, because it is not possible to nest C<ReadWritePaths>, C<ReadOnlyPaths>,
2577             C<BindPaths>, or C<BindReadOnlyPaths> inside it. For a more flexible option,
2578             see C<TemporaryFileSystem>.
2579              
2580             Content in paths listed in C<NoExecPaths> are not executable even if the usual
2581             file access controls would permit this. Nest C<ExecPaths> inside of
2582             C<NoExecPaths> in order to provide executable content within non-executable
2583             directories.
2584              
2585             Non-directory paths may be specified as well. These options may be specified more than once,
2586             in which case all paths listed will have limited access from within the namespace. If the empty string is
2587             assigned to this option, the specific list is reset, and all prior assignments have no effect.
2588              
2589             Paths in C<ReadWritePaths>, C<ReadOnlyPaths>,
2590             C<InaccessiblePaths>, C<ExecPaths> and
2591             C<NoExecPaths> may be prefixed with C<->, in which case they will be
2592             ignored when they do not exist. If prefixed with C<+> the paths are taken relative to the root
2593             directory of the unit, as configured with C<RootDirectory>/C<RootImage>,
2594             instead of relative to the root directory of the host (see above). When combining C<-> and
2595             C<+> on the same path make sure to specify C<-> first, and C<+>
2596             second.
2597              
2598             Note that these settings will disconnect propagation of mounts from the unit\'s processes to the
2599             host. This means that this setting may not be used for services which shall be able to install mount points in
2600             the main mount namespace. For C<ReadWritePaths> and C<ReadOnlyPaths>,
2601             propagation in the other direction is not affected, i.e. mounts created on the host generally appear in the
2602             unit processes\' namespace, and mounts removed on the host also disappear there too. In particular, note that
2603             mount propagation from host to unit will result in unmodified mounts to be created in the unit\'s namespace,
2604             i.e. writable mounts appearing on the host will be writable in the unit\'s namespace too, even when propagated
2605             below a path marked with C<ReadOnlyPaths>! Restricting access with these options hence does
2606             not extend to submounts of a directory that are created later on. This means the lock-down offered by that
2607             setting is not complete, and does not offer full protection.
2608              
2609             Note that the effect of these settings may be undone by privileged processes. In order to set up an
2610             effective sandboxed environment for a unit it is thus recommended to combine these settings with either
2611             C<CapabilityBoundingSet=~CAP_SYS_ADMIN> or
2612             C<SystemCallFilter=~@mount>.
2613              
2614             Simple allow-list example using these directives:
2615              
2616             [Service]
2617             ReadOnlyPaths=/
2618             ReadWritePaths=/var /run
2619             InaccessiblePaths=-/lost+found
2620             NoExecPaths=/
2621             ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64
2622             ',
2623             'type' => 'list'
2624             },
2625             'ExecPaths',
2626             {
2627             'cargo' => {
2628             'type' => 'leaf',
2629             'value_type' => 'uniline'
2630             },
2631             'description' => 'Sets up a new file system namespace for executed processes. These options may be used
2632             to limit access a process has to the file system. Each setting takes a space-separated list of paths
2633             relative to the host\'s root directory (i.e. the system running the service manager). Note that if
2634             paths contain symlinks, they are resolved relative to the root directory set with
2635             C<RootDirectory>/C<RootImage>.
2636              
2637             Paths listed in C<ReadWritePaths> are accessible from within the namespace
2638             with the same access modes as from outside of it. Paths listed in C<ReadOnlyPaths>
2639             are accessible for reading only, writing will be refused even if the usual file access controls would
2640             permit this. Nest C<ReadWritePaths> inside of C<ReadOnlyPaths> in
2641             order to provide writable subdirectories within read-only directories. Use
2642             C<ReadWritePaths> in order to allow-list specific paths for write access if
2643             C<ProtectSystem=strict> is used.
2644              
2645             Paths listed in C<InaccessiblePaths> will be made inaccessible for processes inside
2646             the namespace along with everything below them in the file system hierarchy. This may be more restrictive than
2647             desired, because it is not possible to nest C<ReadWritePaths>, C<ReadOnlyPaths>,
2648             C<BindPaths>, or C<BindReadOnlyPaths> inside it. For a more flexible option,
2649             see C<TemporaryFileSystem>.
2650              
2651             Content in paths listed in C<NoExecPaths> are not executable even if the usual
2652             file access controls would permit this. Nest C<ExecPaths> inside of
2653             C<NoExecPaths> in order to provide executable content within non-executable
2654             directories.
2655              
2656             Non-directory paths may be specified as well. These options may be specified more than once,
2657             in which case all paths listed will have limited access from within the namespace. If the empty string is
2658             assigned to this option, the specific list is reset, and all prior assignments have no effect.
2659              
2660             Paths in C<ReadWritePaths>, C<ReadOnlyPaths>,
2661             C<InaccessiblePaths>, C<ExecPaths> and
2662             C<NoExecPaths> may be prefixed with C<->, in which case they will be
2663             ignored when they do not exist. If prefixed with C<+> the paths are taken relative to the root
2664             directory of the unit, as configured with C<RootDirectory>/C<RootImage>,
2665             instead of relative to the root directory of the host (see above). When combining C<-> and
2666             C<+> on the same path make sure to specify C<-> first, and C<+>
2667             second.
2668              
2669             Note that these settings will disconnect propagation of mounts from the unit\'s processes to the
2670             host. This means that this setting may not be used for services which shall be able to install mount points in
2671             the main mount namespace. For C<ReadWritePaths> and C<ReadOnlyPaths>,
2672             propagation in the other direction is not affected, i.e. mounts created on the host generally appear in the
2673             unit processes\' namespace, and mounts removed on the host also disappear there too. In particular, note that
2674             mount propagation from host to unit will result in unmodified mounts to be created in the unit\'s namespace,
2675             i.e. writable mounts appearing on the host will be writable in the unit\'s namespace too, even when propagated
2676             below a path marked with C<ReadOnlyPaths>! Restricting access with these options hence does
2677             not extend to submounts of a directory that are created later on. This means the lock-down offered by that
2678             setting is not complete, and does not offer full protection.
2679              
2680             Note that the effect of these settings may be undone by privileged processes. In order to set up an
2681             effective sandboxed environment for a unit it is thus recommended to combine these settings with either
2682             C<CapabilityBoundingSet=~CAP_SYS_ADMIN> or
2683             C<SystemCallFilter=~@mount>.
2684              
2685             Simple allow-list example using these directives:
2686              
2687             [Service]
2688             ReadOnlyPaths=/
2689             ReadWritePaths=/var /run
2690             InaccessiblePaths=-/lost+found
2691             NoExecPaths=/
2692             ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64
2693             ',
2694             'type' => 'list'
2695             },
2696             'NoExecPaths',
2697             {
2698             'cargo' => {
2699             'type' => 'leaf',
2700             'value_type' => 'uniline'
2701             },
2702             'description' => 'Sets up a new file system namespace for executed processes. These options may be used
2703             to limit access a process has to the file system. Each setting takes a space-separated list of paths
2704             relative to the host\'s root directory (i.e. the system running the service manager). Note that if
2705             paths contain symlinks, they are resolved relative to the root directory set with
2706             C<RootDirectory>/C<RootImage>.
2707              
2708             Paths listed in C<ReadWritePaths> are accessible from within the namespace
2709             with the same access modes as from outside of it. Paths listed in C<ReadOnlyPaths>
2710             are accessible for reading only, writing will be refused even if the usual file access controls would
2711             permit this. Nest C<ReadWritePaths> inside of C<ReadOnlyPaths> in
2712             order to provide writable subdirectories within read-only directories. Use
2713             C<ReadWritePaths> in order to allow-list specific paths for write access if
2714             C<ProtectSystem=strict> is used.
2715              
2716             Paths listed in C<InaccessiblePaths> will be made inaccessible for processes inside
2717             the namespace along with everything below them in the file system hierarchy. This may be more restrictive than
2718             desired, because it is not possible to nest C<ReadWritePaths>, C<ReadOnlyPaths>,
2719             C<BindPaths>, or C<BindReadOnlyPaths> inside it. For a more flexible option,
2720             see C<TemporaryFileSystem>.
2721              
2722             Content in paths listed in C<NoExecPaths> are not executable even if the usual
2723             file access controls would permit this. Nest C<ExecPaths> inside of
2724             C<NoExecPaths> in order to provide executable content within non-executable
2725             directories.
2726              
2727             Non-directory paths may be specified as well. These options may be specified more than once,
2728             in which case all paths listed will have limited access from within the namespace. If the empty string is
2729             assigned to this option, the specific list is reset, and all prior assignments have no effect.
2730              
2731             Paths in C<ReadWritePaths>, C<ReadOnlyPaths>,
2732             C<InaccessiblePaths>, C<ExecPaths> and
2733             C<NoExecPaths> may be prefixed with C<->, in which case they will be
2734             ignored when they do not exist. If prefixed with C<+> the paths are taken relative to the root
2735             directory of the unit, as configured with C<RootDirectory>/C<RootImage>,
2736             instead of relative to the root directory of the host (see above). When combining C<-> and
2737             C<+> on the same path make sure to specify C<-> first, and C<+>
2738             second.
2739              
2740             Note that these settings will disconnect propagation of mounts from the unit\'s processes to the
2741             host. This means that this setting may not be used for services which shall be able to install mount points in
2742             the main mount namespace. For C<ReadWritePaths> and C<ReadOnlyPaths>,
2743             propagation in the other direction is not affected, i.e. mounts created on the host generally appear in the
2744             unit processes\' namespace, and mounts removed on the host also disappear there too. In particular, note that
2745             mount propagation from host to unit will result in unmodified mounts to be created in the unit\'s namespace,
2746             i.e. writable mounts appearing on the host will be writable in the unit\'s namespace too, even when propagated
2747             below a path marked with C<ReadOnlyPaths>! Restricting access with these options hence does
2748             not extend to submounts of a directory that are created later on. This means the lock-down offered by that
2749             setting is not complete, and does not offer full protection.
2750              
2751             Note that the effect of these settings may be undone by privileged processes. In order to set up an
2752             effective sandboxed environment for a unit it is thus recommended to combine these settings with either
2753             C<CapabilityBoundingSet=~CAP_SYS_ADMIN> or
2754             C<SystemCallFilter=~@mount>.
2755              
2756             Simple allow-list example using these directives:
2757              
2758             [Service]
2759             ReadOnlyPaths=/
2760             ReadWritePaths=/var /run
2761             InaccessiblePaths=-/lost+found
2762             NoExecPaths=/
2763             ExecPaths=/usr/sbin/my_daemon /usr/lib /usr/lib64
2764             ',
2765             'type' => 'list'
2766             },
2767             'TemporaryFileSystem',
2768             {
2769             'cargo' => {
2770             'type' => 'leaf',
2771             'value_type' => 'uniline'
2772             },
2773             'description' => 'Takes a space-separated list of mount points for temporary file systems (tmpfs). If set, a new file
2774             system namespace is set up for executed processes, and a temporary file system is mounted on each mount point.
2775             This option may be specified more than once, in which case temporary file systems are mounted on all listed mount
2776             points. If the empty string is assigned to this option, the list is reset, and all prior assignments have no effect.
2777             Each mount point may optionally be suffixed with a colon (C<:>) and mount options such as
2778             C<size=10%> or C<ro>. By default, each temporary file system is mounted
2779             with C<nodev,strictatime,mode=0755>. These can be disabled by explicitly specifying the corresponding
2780             mount options, e.g., C<dev> or C<nostrictatime>.
2781              
2782             This is useful to hide files or directories not relevant to the processes invoked by the unit, while necessary
2783             files or directories can be still accessed by combining with C<BindPaths> or
2784             C<BindReadOnlyPaths>:
2785              
2786             Example: if a unit has the following,
2787              
2788             TemporaryFileSystem=/var:ro
2789             BindReadOnlyPaths=/var/lib/systemd
2790              
2791             then the invoked processes by the unit cannot see any files or directories under C</var/> except for
2792             C</var/lib/systemd> or its contents.',
2793             'type' => 'list'
2794             },
2795             'PrivateTmp',
2796             {
2797             'description' => 'Takes a boolean argument. If true, sets up a new file system namespace for the
2798             executed processes and mounts private C</tmp/> and C</var/tmp/>
2799             directories inside it that are not shared by processes outside of the namespace. This is useful to
2800             secure access to temporary files of the process, but makes sharing between processes via
2801             C</tmp/> or C</var/tmp/> impossible. If true, all temporary files
2802             created by a service in these directories will be removed after the service is stopped. Defaults to
2803             false. It is possible to run two or more units within the same private C</tmp/> and
2804             C</var/tmp/> namespace by using the C<JoinsNamespaceOf> directive,
2805             see L<systemd.unit(5)>
2806             for details. This setting is implied if C<DynamicUser> is set. For this setting, the
2807             same restrictions regarding mount propagation and privileges apply as for
2808             C<ReadOnlyPaths> and related calls, see above. Enabling this setting has the side
2809             effect of adding C<Requires> and C<After> dependencies on all mount
2810             units necessary to access C</tmp/> and C</var/tmp/>. Moreover an
2811             implicitly C<After> ordering on
2812             L<systemd-tmpfiles-setup.service(8)>
2813             is added.
2814              
2815             Note that the implementation of this setting might be impossible (for example if mount namespaces are not
2816             available), and the unit should be written in a way that does not solely rely on this setting for
2817             security.',
2818             'type' => 'leaf',
2819             'value_type' => 'boolean',
2820             'write_as' => [
2821             'no',
2822             'yes'
2823             ]
2824             },
2825             'PrivateDevices',
2826             {
2827             'description' => 'Takes a boolean argument. If true, sets up a new C</dev/> mount for
2828             the executed processes and only adds API pseudo devices such as C</dev/null>,
2829             C</dev/zero> or C</dev/random> (as well as the pseudo TTY
2830             subsystem) to it, but no physical devices such as C</dev/sda>, system memory
2831             C</dev/mem>, system ports C</dev/port> and others. This is useful
2832             to turn off physical device access by the executed process. Defaults to false.
2833              
2834             Enabling this option will install a system call filter to block low-level I/O system calls that
2835             are grouped in the C<@raw-io> set, remove C<CAP_MKNOD> and
2836             C<CAP_SYS_RAWIO> from the capability bounding set for the unit, and set
2837             C<DevicePolicy=closed> (see
2838             L<systemd.resource-control(5)>
2839             for details). Note that using this setting will disconnect propagation of mounts from the service to
2840             the host (propagation in the opposite direction continues to work). This means that this setting may
2841             not be used for services which shall be able to install mount points in the main mount namespace. The
2842             new C</dev/> will be mounted read-only and \'noexec\'. The latter may break old
2843             programs which try to set up executable memory by using
2844             L<mmap(2)> of
2845             C</dev/zero> instead of using C<MAP_ANON>. For this setting the
2846             same restrictions regarding mount propagation and privileges apply as for
2847             C<ReadOnlyPaths> and related calls, see above. If turned on and if running in user
2848             mode, or in system mode, but without the C<CAP_SYS_ADMIN> capability (e.g. setting
2849             C<User>), C<NoNewPrivileges=yes> is implied.
2850              
2851             Note that the implementation of this setting might be impossible (for example if mount
2852             namespaces are not available), and the unit should be written in a way that does not solely rely on
2853             this setting for security.
2854              
2855             When access to some but not all devices must be possible, the C<DeviceAllow>
2856             setting might be used instead. See
2857             L<systemd.resource-control(5)>.
2858             ',
2859             'type' => 'leaf',
2860             'value_type' => 'boolean',
2861             'write_as' => [
2862             'no',
2863             'yes'
2864             ]
2865             },
2866             'PrivateNetwork',
2867             {
2868             'description' => 'Takes a boolean argument. If true, sets up a new network namespace for the executed processes
2869             and configures only the loopback network device C<lo> inside it. No other network devices will
2870             be available to the executed process. This is useful to turn off network access by the executed process.
2871             Defaults to false. It is possible to run two or more units within the same private network namespace by using
2872             the C<JoinsNamespaceOf> directive, see
2873             L<systemd.unit(5)> for
2874             details. Note that this option will disconnect all socket families from the host, including
2875             C<AF_NETLINK> and C<AF_UNIX>. Effectively, for
2876             C<AF_NETLINK> this means that device configuration events received from
2877             L<systemd-udevd.service(8)> are
2878             not delivered to the unit\'s processes. And for C<AF_UNIX> this has the effect that
2879             C<AF_UNIX> sockets in the abstract socket namespace of the host will become unavailable to
2880             the unit\'s processes (however, those located in the file system will continue to be accessible).
2881              
2882             Note that the implementation of this setting might be impossible (for example if network namespaces are
2883             not available), and the unit should be written in a way that does not solely rely on this setting for
2884             security.
2885              
2886             When this option is used on a socket unit any sockets bound on behalf of this unit will be
2887             bound within a private network namespace. This may be combined with
2888             C<JoinsNamespaceOf> to listen on sockets inside of network namespaces of other
2889             services.',
2890             'type' => 'leaf',
2891             'value_type' => 'boolean',
2892             'write_as' => [
2893             'no',
2894             'yes'
2895             ]
2896             },
2897             'NetworkNamespacePath',
2898             {
2899             'description' => 'Takes an absolute file system path refererring to a Linux network namespace
2900             pseudo-file (i.e. a file like C</proc/$PID/ns/net> or a bind mount or symlink to
2901             one). When set the invoked processes are added to the network namespace referenced by that path. The
2902             path has to point to a valid namespace file at the moment the processes are forked off. If this
2903             option is used C<PrivateNetwork> has no effect. If this option is used together with
2904             C<JoinsNamespaceOf> then it only has an effect if this unit is started before any of
2905             the listed units that have C<PrivateNetwork> or
2906             C<NetworkNamespacePath> configured, as otherwise the network namespace of those
2907             units is reused.
2908              
2909             When this option is used on a socket unit any sockets bound on behalf of this unit will be
2910             bound within the specified network namespace.',
2911             'type' => 'leaf',
2912             'value_type' => 'uniline'
2913             },
2914             'PrivateIPC',
2915             {
2916             'description' => 'Takes a boolean argument. If true, sets up a new IPC namespace for the executed processes.
2917             Each IPC namespace has its own set of System V IPC identifiers and its own POSIX message queue file system.
2918             This is useful to avoid name clash of IPC identifiers. Defaults to false. It is possible to run two or
2919             more units within the same private IPC namespace by using the C<JoinsNamespaceOf> directive,
2920             see L<systemd.unit(5)> for
2921             details.
2922              
2923             Note that IPC namespacing does not have an effect on
2924             C<AF_UNIX> sockets, which are the most common
2925             form of IPC used on Linux. Instead, C<AF_UNIX>
2926             sockets in the file system are subject to mount namespacing, and
2927             those in the abstract namespace are subject to network namespacing.
2928             IPC namespacing only has an effect on SysV IPC (which is mostly
2929             legacy) as well as POSIX message queues (for which
2930             C<AF_UNIX>/C<SOCK_SEQPACKET>
2931             sockets are typically a better replacement). IPC namespacing also
2932             has no effect on POSIX shared memory (which is subject to mount
2933             namespacing) either. See
2934             L<ipc_namespaces(7)> for
2935             the details.
2936              
2937             Note that the implementation of this setting might be impossible (for example if IPC namespaces are
2938             not available), and the unit should be written in a way that does not solely rely on this setting for
2939             security.',
2940             'type' => 'leaf',
2941             'value_type' => 'boolean',
2942             'write_as' => [
2943             'no',
2944             'yes'
2945             ]
2946             },
2947             'IPCNamespacePath',
2948             {
2949             'description' => 'Takes an absolute file system path refererring to a Linux IPC namespace
2950             pseudo-file (i.e. a file like C</proc/$PID/ns/ipc> or a bind mount or symlink to
2951             one). When set the invoked processes are added to the network namespace referenced by that path. The
2952             path has to point to a valid namespace file at the moment the processes are forked off. If this
2953             option is used C<PrivateIPC> has no effect. If this option is used together with
2954             C<JoinsNamespaceOf> then it only has an effect if this unit is started before any of
2955             the listed units that have C<PrivateIPC> or
2956             C<IPCNamespacePath> configured, as otherwise the network namespace of those
2957             units is reused.',
2958             'type' => 'leaf',
2959             'value_type' => 'uniline'
2960             },
2961             'PrivateUsers',
2962             {
2963             'description' => 'Takes a boolean argument. If true, sets up a new user namespace for the executed processes and
2964             configures a minimal user and group mapping, that maps the C<root> user and group as well as
2965             the unit\'s own user and group to themselves and everything else to the C<nobody> user and
2966             group. This is useful to securely detach the user and group databases used by the unit from the rest of the
2967             system, and thus to create an effective sandbox environment. All files, directories, processes, IPC objects and
2968             other resources owned by users/groups not equaling C<root> or the unit\'s own will stay visible
2969             from within the unit but appear owned by the C<nobody> user and group. If this mode is enabled,
2970             all unit processes are run without privileges in the host user namespace (regardless if the unit\'s own
2971             user/group is C<root> or not). Specifically this means that the process will have zero process
2972             capabilities on the host\'s user namespace, but full capabilities within the service\'s user namespace. Settings
2973             such as C<CapabilityBoundingSet> will affect only the latter, and there\'s no way to acquire
2974             additional capabilities in the host\'s user namespace. Defaults to off.
2975              
2976             When this setting is set up by a per-user instance of the service manager, the mapping of the
2977             C<root> user and group to itself is omitted (unless the user manager is root).
2978             Additionally, in the per-user instance manager case, the
2979             user namespace will be set up before most other namespaces. This means that combining
2980             C<PrivateUsers>C<true> with other namespaces will enable use of features not
2981             normally supported by the per-user instances of the service manager.
2982              
2983             This setting is particularly useful in conjunction with
2984             C<RootDirectory>/C<RootImage>, as the need to synchronize the user and group
2985             databases in the root directory and on the host is reduced, as the only users and groups who need to be matched
2986             are C<root>, C<nobody> and the unit\'s own user and group.
2987              
2988             Note that the implementation of this setting might be impossible (for example if user namespaces are not
2989             available), and the unit should be written in a way that does not solely rely on this setting for
2990             security.',
2991             'type' => 'leaf',
2992             'value_type' => 'boolean',
2993             'write_as' => [
2994             'no',
2995             'yes'
2996             ]
2997             },
2998             'ProtectHostname',
2999             {
3000             'description' => 'Takes a boolean argument. When set, sets up a new UTS namespace for the executed
3001             processes. In addition, changing hostname or domainname is prevented. Defaults to off.
3002              
3003             Note that the implementation of this setting might be impossible (for example if UTS namespaces
3004             are not available), and the unit should be written in a way that does not solely rely on this setting
3005             for security.
3006              
3007             Note that when this option is enabled for a service hostname changes no longer propagate from
3008             the system into the service, it is hence not suitable for services that need to take notice of system
3009             hostname changes dynamically.
3010              
3011             If this setting is on, but the unit doesn\'t have the C<CAP_SYS_ADMIN>
3012             capability (e.g. services for which C<User> is set),
3013             C<NoNewPrivileges=yes> is implied.',
3014             'type' => 'leaf',
3015             'value_type' => 'boolean',
3016             'write_as' => [
3017             'no',
3018             'yes'
3019             ]
3020             },
3021             'ProtectClock',
3022             {
3023             'description' => 'Takes a boolean argument. If set, writes to the hardware clock or system clock will be denied.
3024             It is recommended to turn this on for most services that do not need modify the clock. Defaults to off. Enabling
3025             this option removes C<CAP_SYS_TIME> and C<CAP_WAKE_ALARM> from the
3026             capability bounding set for this unit, installs a system call filter to block calls that can set the
3027             clock, and C<DeviceAllow=char-rtc r> is implied. This ensures C</dev/rtc0>,
3028             C</dev/rtc1>, etc. are made read-only to the service. See
3029             L<systemd.resource-control(5)>
3030             for the details about C<DeviceAllow>. If this setting is on, but the unit
3031             doesn\'t have the C<CAP_SYS_ADMIN> capability (e.g. services for which
3032             C<User> is set), C<NoNewPrivileges=yes> is implied.',
3033             'type' => 'leaf',
3034             'value_type' => 'boolean',
3035             'write_as' => [
3036             'no',
3037             'yes'
3038             ]
3039             },
3040             'ProtectKernelTunables',
3041             {
3042             'description' => 'Takes a boolean argument. If true, kernel variables accessible through
3043             C</proc/sys/>, C</sys/>, C</proc/sysrq-trigger>,
3044             C</proc/latency_stats>, C</proc/acpi>,
3045             C</proc/timer_stats>, C</proc/fs> and C</proc/irq> will
3046             be made read-only to all processes of the unit. Usually, tunable kernel variables should be initialized only at
3047             boot-time, for example with the
3048             L<sysctl.d(5)> mechanism. Few
3049             services need to write to these at runtime; it is hence recommended to turn this on for most services. For this
3050             setting the same restrictions regarding mount propagation and privileges apply as for
3051             C<ReadOnlyPaths> and related calls, see above. Defaults to off. If this
3052             setting is on, but the unit doesn\'t have the C<CAP_SYS_ADMIN> capability
3053             (e.g. services for which C<User> is set),
3054             C<NoNewPrivileges=yes> is implied. Note that this option does not prevent
3055             indirect changes to kernel tunables effected by IPC calls to other processes. However,
3056             C<InaccessiblePaths> may be used to make relevant IPC file system objects
3057             inaccessible. If C<ProtectKernelTunables> is set,
3058             C<MountAPIVFS=yes> is implied.',
3059             'type' => 'leaf',
3060             'value_type' => 'boolean',
3061             'write_as' => [
3062             'no',
3063             'yes'
3064             ]
3065             },
3066             'ProtectKernelModules',
3067             {
3068             'description' => 'Takes a boolean argument. If true, explicit module loading will be denied. This allows
3069             module load and unload operations to be turned off on modular kernels. It is recommended to turn this on for most
3070             services
3071             that do not need special file systems or extra kernel modules to work. Defaults to off. Enabling this option
3072             removes C<CAP_SYS_MODULE> from the capability bounding set for the unit, and installs a
3073             system call filter to block module system calls, also C</usr/lib/modules> is made
3074             inaccessible. For this setting the same restrictions regarding mount propagation and privileges apply as for
3075             C<ReadOnlyPaths> and related calls, see above. Note that limited automatic module loading due
3076             to user configuration or kernel mapping tables might still happen as side effect of requested user operations,
3077             both privileged and unprivileged. To disable module auto-load feature please see
3078             L<sysctl.d(5)>C<kernel.modules_disabled> mechanism and
3079             C</proc/sys/kernel/modules_disabled> documentation. If this setting is on,
3080             but the unit doesn\'t have the C<CAP_SYS_ADMIN> capability (e.g. services for
3081             which C<User> is set), C<NoNewPrivileges=yes> is implied.',
3082             'type' => 'leaf',
3083             'value_type' => 'boolean',
3084             'write_as' => [
3085             'no',
3086             'yes'
3087             ]
3088             },
3089             'ProtectKernelLogs',
3090             {
3091             'description' => 'Takes a boolean argument. If true, access to the kernel log ring buffer will be denied. It is
3092             recommended to turn this on for most services that do not need to read from or write to the kernel log ring
3093             buffer. Enabling this option removes C<CAP_SYSLOG> from the capability bounding set for this
3094             unit, and installs a system call filter to block the
3095             L<syslog(2)>
3096             system call (not to be confused with the libc API
3097             L<syslog(3)>
3098             for userspace logging). The kernel exposes its log buffer to userspace via C</dev/kmsg> and
3099             C</proc/kmsg>. If enabled, these are made inaccessible to all the processes in the unit.
3100             If this setting is on, but the unit doesn\'t have the C<CAP_SYS_ADMIN>
3101             capability (e.g. services for which C<User> is set),
3102             C<NoNewPrivileges=yes> is implied.',
3103             'type' => 'leaf',
3104             'value_type' => 'boolean',
3105             'write_as' => [
3106             'no',
3107             'yes'
3108             ]
3109             },
3110             'ProtectControlGroups',
3111             {
3112             'description' => 'Takes a boolean argument. If true, the Linux Control Groups (L<cgroups(7)>) hierarchies
3113             accessible through C</sys/fs/cgroup/> will be made read-only to all processes of the
3114             unit. Except for container managers no services should require write access to the control groups hierarchies;
3115             it is hence recommended to turn this on for most services. For this setting the same restrictions regarding
3116             mount propagation and privileges apply as for C<ReadOnlyPaths> and related calls, see
3117             above. Defaults to off. If C<ProtectControlGroups> is set, C<MountAPIVFS=yes>
3118             is implied.',
3119             'type' => 'leaf',
3120             'value_type' => 'boolean',
3121             'write_as' => [
3122             'no',
3123             'yes'
3124             ]
3125             },
3126             'RestrictAddressFamilies',
3127             {
3128             'description' => 'Restricts the set of socket address families accessible to the processes of this
3129             unit. Takes C<none>, or a space-separated list of address family names to
3130             allow-list, such as C<AF_UNIX>, C<AF_INET> or
3131             C<AF_INET6>. When C<none> is specified, then all address
3132             families will be denied. When prefixed with C<~> the listed address
3133             families will be applied as deny list, otherwise as allow list. Note that this restricts access
3134             to the
3135             L<socket(2)>
3136             system call only. Sockets passed into the process by other means (for example, by using socket
3137             activation with socket units, see
3138             L<systemd.socket(5)>)
3139             are unaffected. Also, sockets created with socketpair() (which creates connected
3140             AF_UNIX sockets only) are unaffected. Note that this option has no effect on 32-bit x86, s390, s390x,
3141             mips, mips-le, ppc, ppc-le, ppc64, ppc64-le and is ignored (but works correctly on other ABIs,
3142             including x86-64). Note that on systems supporting multiple ABIs (such as x86/x86-64) it is
3143             recommended to turn off alternative ABIs for services, so that they cannot be used to circumvent the
3144             restrictions of this option. Specifically, it is recommended to combine this option with
3145             C<SystemCallArchitectures=native> or similar. If running in user mode, or in system
3146             mode, but without the C<CAP_SYS_ADMIN> capability (e.g. setting
3147             C<User>), C<NoNewPrivileges=yes> is implied. By default, no
3148             restrictions apply, all address families are accessible to processes. If assigned the empty string,
3149             any previous address family restriction changes are undone. This setting does not affect commands
3150             prefixed with C<+>.
3151              
3152             Use this option to limit exposure of processes to remote access, in particular via exotic and sensitive
3153             network protocols, such as C<AF_PACKET>. Note that in most cases, the local
3154             C<AF_UNIX> address family should be included in the configured allow list as it is frequently
3155             used for local communication, including for
3156             L<syslog(2)>
3157             logging.',
3158             'type' => 'leaf',
3159             'value_type' => 'uniline'
3160             },
3161             'RestrictFileSystems',
3162             {
3163             'description' => 'Restricts the set of filesystems processes of this unit can open files on. Takes a space-separated
3164             list of filesystem names. Any filesystem listed is made accessible to the unit\'s processes, access to filesystem
3165             types not listed is prohibited (allow-listing). If the first character of the list is C<~>, the
3166             effect is inverted: access to the filesystems listed is prohibited (deny-listing). If the empty string is assigned,
3167             access to filesystems is not restricted.
3168              
3169             If you specify both types of this option (i.e. allow-listing and deny-listing), the first encountered will take
3170             precedence and will dictate the default action (allow access to the filesystem or deny it). Then the next occurrences
3171             of this option will add or delete the listed filesystems from the set of the restricted filesystems, depending on its
3172             type and the default action.
3173              
3174             Example: if a unit has the following,
3175              
3176             RestrictFileSystems=ext4 tmpfs
3177             RestrictFileSystems=ext2 ext4
3178              
3179             then access to C<ext4>, C<tmpfs>, and C<ext2> is allowed
3180             and access to other filesystems is denied.
3181              
3182             Example: if a unit has the following,
3183              
3184             RestrictFileSystems=ext4 tmpfs
3185             RestrictFileSystems=~ext4
3186              
3187             then only access C<tmpfs> is allowed.
3188              
3189             Example: if a unit has the following,
3190              
3191             RestrictFileSystems=~ext4 tmpfs
3192             RestrictFileSystems=ext4
3193              
3194             then only access to C<tmpfs> is denied.
3195              
3196             As the number of possible filesystems is large, predefined sets of filesystems are provided. A set
3197             starts with C<@> character, followed by name of the set.
3198              
3199             Use
3200             L<systemd-analyze(1)>\'s
3201             filesystems command to retrieve a list of filesystems defined on the local
3202             system.
3203              
3204             Note that this setting might not be supported on some systems (for example if the LSM eBPF hook is
3205             not enabled in the underlying kernel or if not using the unified control group hierarchy). In that case this setting
3206             has no effect.',
3207             'type' => 'leaf',
3208             'value_type' => 'uniline'
3209             },
3210             'RestrictNamespaces',
3211             {
3212             'description' => "Restricts access to Linux namespace functionality for the processes of this unit. For details
3213             about Linux namespaces, see L<namespaces(7)>. Either
3214             takes a boolean argument, or a space-separated list of namespace type identifiers. If false (the default), no
3215             restrictions on namespace creation and switching are made. If true, access to any kind of namespacing is
3216             prohibited. Otherwise, a space-separated list of namespace type identifiers must be specified, consisting of
3217             any combination of: C<cgroup>, C<ipc>, C<net>,
3218             C<mnt>, C<pid>, C<user> and C<uts>. Any
3219             namespace type listed is made accessible to the unit's processes, access to namespace types not listed is
3220             prohibited (allow-listing). By prepending the list with a single tilde character (C<~>) the
3221             effect may be inverted: only the listed namespace types will be made inaccessible, all unlisted ones are
3222             permitted (deny-listing). If the empty string is assigned, the default namespace restrictions are applied,
3223             which is equivalent to false. This option may appear more than once, in which case the namespace types are
3224             merged by C<OR>, or by C<AND> if the lines are prefixed with
3225             C<~> (see examples below). Internally, this setting limits access to the
3226             L<unshare(2)>,
3227             L<clone(2)> and
3228             L<setns(2)> system calls, taking
3229             the specified flags parameters into account. Note that \x{2014} if this option is used \x{2014} in addition to restricting
3230             creation and switching of the specified types of namespaces (or all of them, if true) access to the
3231             setns() system call with a zero flags parameter is prohibited. This setting is only
3232             supported on x86, x86-64, mips, mips-le, mips64, mips64-le, mips64-n32, mips64-le-n32, ppc64, ppc64-le, s390
3233             and s390x, and enforces no restrictions on other architectures. If running in user mode, or in system mode, but
3234             without the C<CAP_SYS_ADMIN> capability (e.g. setting C<User>),
3235             C<NoNewPrivileges=yes> is implied.
3236              
3237             Example: if a unit has the following,
3238              
3239             RestrictNamespaces=cgroup ipc
3240             RestrictNamespaces=cgroup net
3241              
3242             then C<cgroup>, C<ipc>, and C<net> are set.
3243             If the second line is prefixed with C<~>, e.g.,
3244              
3245             RestrictNamespaces=cgroup ipc
3246             RestrictNamespaces=~cgroup net
3247              
3248             then, only C<ipc> is set.",
3249             'type' => 'leaf',
3250             'value_type' => 'uniline'
3251             },
3252             'LockPersonality',
3253             {
3254             'description' => 'Takes a boolean argument. If set, locks down the L<personality(2)> system
3255             call so that the kernel execution domain may not be changed from the default or the personality selected with
3256             C<Personality> directive. This may be useful to improve security, because odd personality
3257             emulations may be poorly tested and source of vulnerabilities. If running in user mode, or in system mode, but
3258             without the C<CAP_SYS_ADMIN> capability (e.g. setting C<User>),
3259             C<NoNewPrivileges=yes> is implied.',
3260             'type' => 'leaf',
3261             'value_type' => 'boolean',
3262             'write_as' => [
3263             'no',
3264             'yes'
3265             ]
3266             },
3267             'MemoryDenyWriteExecute',
3268             {
3269             'description' => 'Takes a boolean argument. If set, attempts to create memory mappings that are writable and
3270             executable at the same time, or to change existing memory mappings to become executable, or mapping shared
3271             memory segments as executable, are prohibited. Specifically, a system call filter is added that rejects
3272             L<mmap(2)> system calls with both
3273             C<PROT_EXEC> and C<PROT_WRITE> set,
3274             L<mprotect(2)> or
3275             L<pkey_mprotect(2)> system calls
3276             with C<PROT_EXEC> set and
3277             L<shmat(2)> system calls with
3278             C<SHM_EXEC> set. Note that this option is incompatible with programs and libraries that
3279             generate program code dynamically at runtime, including JIT execution engines, executable stacks, and code
3280             "trampoline" feature of various C compilers. This option improves service security, as it makes harder for
3281             software exploits to change running code dynamically. However, the protection can be circumvented, if
3282             the service can write to a filesystem, which is not mounted with C<noexec> (such as
3283             C</dev/shm>), or it can use memfd_create(). This can be
3284             prevented by making such file systems inaccessible to the service
3285             (e.g. C<InaccessiblePaths=/dev/shm>) and installing further system call filters
3286             (C<SystemCallFilter=~memfd_create>). Note that this feature is fully available on
3287             x86-64, and partially on x86. Specifically, the shmat() protection is not
3288             available on x86. Note that on systems supporting multiple ABIs (such as x86/x86-64) it is
3289             recommended to turn off alternative ABIs for services, so that they cannot be used to circumvent the
3290             restrictions of this option. Specifically, it is recommended to combine this option with
3291             C<SystemCallArchitectures=native> or similar. If running in user mode, or in system
3292             mode, but without the C<CAP_SYS_ADMIN> capability (e.g. setting
3293             C<User>), C<NoNewPrivileges=yes> is implied.',
3294             'type' => 'leaf',
3295             'value_type' => 'boolean',
3296             'write_as' => [
3297             'no',
3298             'yes'
3299             ]
3300             },
3301             'RestrictRealtime',
3302             {
3303             'description' => 'Takes a boolean argument. If set, any attempts to enable realtime scheduling in a process of
3304             the unit are refused. This restricts access to realtime task scheduling policies such as
3305             C<SCHED_FIFO>, C<SCHED_RR> or C<SCHED_DEADLINE>. See
3306             L<sched(7)>
3307             for details about these scheduling policies. If running in user mode, or in system mode, but without the
3308             C<CAP_SYS_ADMIN> capability (e.g. setting C<User>),
3309             C<NoNewPrivileges=yes> is implied. Realtime scheduling policies may be used to monopolize CPU
3310             time for longer periods of time, and may hence be used to lock up or otherwise trigger Denial-of-Service
3311             situations on the system. It is hence recommended to restrict access to realtime scheduling to the few programs
3312             that actually require them. Defaults to off.',
3313             'type' => 'leaf',
3314             'value_type' => 'boolean',
3315             'write_as' => [
3316             'no',
3317             'yes'
3318             ]
3319             },
3320             'RestrictSUIDSGID',
3321             {
3322             'description' => 'Takes a boolean argument. If set, any attempts to set the set-user-ID (SUID) or
3323             set-group-ID (SGID) bits on files or directories will be denied (for details on these bits see
3324             L<inode(7)>). If
3325             running in user mode, or in system mode, but without the C<CAP_SYS_ADMIN>
3326             capability (e.g. setting C<User>), C<NoNewPrivileges=yes> is
3327             implied. As the SUID/SGID bits are mechanisms to elevate privileges, and allow users to acquire the
3328             identity of other users, it is recommended to restrict creation of SUID/SGID files to the few
3329             programs that actually require them. Note that this restricts marking of any type of file system
3330             object with these bits, including both regular files and directories (where the SGID is a different
3331             meaning than for files, see documentation). This option is implied if C<DynamicUser>
3332             is enabled. Defaults to off.',
3333             'type' => 'leaf',
3334             'value_type' => 'boolean',
3335             'write_as' => [
3336             'no',
3337             'yes'
3338             ]
3339             },
3340             'RemoveIPC',
3341             {
3342             'description' => 'Takes a boolean parameter. If set, all System V and POSIX IPC objects owned by the user and
3343             group the processes of this unit are run as are removed when the unit is stopped. This setting only has an
3344             effect if at least one of C<User>, C<Group> and
3345             C<DynamicUser> are used. It has no effect on IPC objects owned by the root user. Specifically,
3346             this removes System V semaphores, as well as System V and POSIX shared memory segments and message queues. If
3347             multiple units use the same user or group the IPC objects are removed when the last of these units is
3348             stopped. This setting is implied if C<DynamicUser> is set.',
3349             'type' => 'leaf',
3350             'value_type' => 'boolean',
3351             'write_as' => [
3352             'no',
3353             'yes'
3354             ]
3355             },
3356             'PrivateMounts',
3357             {
3358             'description' => "Takes a boolean parameter. If set, the processes of this unit will be run in their own private
3359             file system (mount) namespace with all mount propagation from the processes towards the host's main file system
3360             namespace turned off. This means any file system mount points established or removed by the unit's processes
3361             will be private to them and not be visible to the host. However, file system mount points established or
3362             removed on the host will be propagated to the unit's processes. See L<mount_namespaces(7)> for
3363             details on file system namespaces. Defaults to off.
3364              
3365             When turned on, this executes three operations for each invoked process: a new
3366             C<CLONE_NEWNS> namespace is created, after which all existing mounts are remounted to
3367             C<MS_SLAVE> to disable propagation from the unit's processes to the host (but leaving
3368             propagation in the opposite direction in effect). Finally, the mounts are remounted again to the propagation
3369             mode configured with C<MountFlags>, see below.
3370              
3371             File system namespaces are set up individually for each process forked off by the service manager. Mounts
3372             established in the namespace of the process created by C<ExecStartPre> will hence be cleaned
3373             up automatically as soon as that process exits and will not be available to subsequent processes forked off for
3374             C<ExecStart> (and similar applies to the various other commands configured for
3375             units). Similarly, C<JoinsNamespaceOf> does not permit sharing kernel mount namespaces between
3376             units, it only enables sharing of the C</tmp/> and C</var/tmp/>
3377             directories.
3378              
3379             Other file system namespace unit settings \x{2014} C<PrivateMounts>,
3380             C<PrivateTmp>, C<PrivateDevices>, C<ProtectSystem>,
3381             C<ProtectHome>, C<ReadOnlyPaths>, C<InaccessiblePaths>,
3382             C<ReadWritePaths>, \x{2026} \x{2014} also enable file system namespacing in a fashion equivalent to this
3383             option. Hence it is primarily useful to explicitly request this behaviour if none of the other settings are
3384             used.",
3385             'type' => 'leaf',
3386             'value_type' => 'boolean',
3387             'write_as' => [
3388             'no',
3389             'yes'
3390             ]
3391             },
3392             'MountFlags',
3393             {
3394             'description' => "Takes a mount propagation setting: C<shared>, C<slave> or
3395             C<private>, which controls whether file system mount points in the file system namespaces set up
3396             for this unit's processes will receive or propagate mounts and unmounts from other file system namespaces. See
3397             L<mount(2)>
3398             for details on mount propagation, and the three propagation flags in particular.
3399              
3400             This setting only controls the final propagation setting in effect on all mount
3401             points of the file system namespace created for each process of this unit. Other file system namespacing unit
3402             settings (see the discussion in C<PrivateMounts> above) will implicitly disable mount and
3403             unmount propagation from the unit's processes towards the host by changing the propagation setting of all mount
3404             points in the unit's file system namespace to C<slave> first. Setting this option to
3405             C<shared> does not reestablish propagation in that case.
3406              
3407             If not set \x{2013} but file system namespaces are enabled through another file system namespace unit setting \x{2013}
3408             C<shared> mount propagation is used, but \x{2014} as mentioned \x{2014} as C<slave> is applied
3409             first, propagation from the unit's processes to the host is still turned off.
3410              
3411             It is not recommended to use C<private> mount propagation for units, as this means
3412             temporary mounts (such as removable media) of the host will stay mounted and thus indefinitely busy in forked
3413             off processes, as unmount propagation events won't be received by the file system namespace of the unit.
3414              
3415             Usually, it is best to leave this setting unmodified, and use higher level file system namespacing
3416             options instead, in particular C<PrivateMounts>, see above.",
3417             'type' => 'leaf',
3418             'value_type' => 'uniline'
3419             },
3420             'SystemCallFilter',
3421             {
3422             'cargo' => {
3423             'type' => 'leaf',
3424             'value_type' => 'uniline'
3425             },
3426             'description' => "Takes a space-separated list of system call names. If this setting is used, all
3427             system calls executed by the unit processes except for the listed ones will result in immediate
3428             process termination with the C<SIGSYS> signal (allow-listing). (See
3429             C<SystemCallErrorNumber> below for changing the default action). If the first
3430             character of the list is C<~>, the effect is inverted: only the listed system calls
3431             will result in immediate process termination (deny-listing). Deny-listed system calls and system call
3432             groups may optionally be suffixed with a colon (C<:>) and C<errno>
3433             error number (between 0 and 4095) or errno name such as C<EPERM>,
3434             C<EACCES> or C<EUCLEAN> (see L<errno(3)> for a
3435             full list). This value will be returned when a deny-listed system call is triggered, instead of
3436             terminating the processes immediately. Special setting C<kill> can be used to
3437             explicitly specify killing. This value takes precedence over the one given in
3438             C<SystemCallErrorNumber>, see below. If running in user mode, or in system mode,
3439             but without the C<CAP_SYS_ADMIN> capability (e.g. setting
3440             C<User>), C<NoNewPrivileges=yes> is implied. This feature
3441             makes use of the Secure Computing Mode 2 interfaces of the kernel ('seccomp filtering') and is useful
3442             for enforcing a minimal sandboxing environment. Note that the execve(),
3443             exit(), exit_group(), getrlimit(),
3444             rt_sigreturn(), sigreturn() system calls and the system calls
3445             for querying time and sleeping are implicitly allow-listed and do not need to be listed
3446             explicitly. This option may be specified more than once, in which case the filter masks are
3447             merged. If the empty string is assigned, the filter is reset, all prior assignments will have no
3448             effect. This does not affect commands prefixed with C<+>.
3449              
3450             Note that on systems supporting multiple ABIs (such as x86/x86-64) it is recommended to turn off
3451             alternative ABIs for services, so that they cannot be used to circumvent the restrictions of this
3452             option. Specifically, it is recommended to combine this option with
3453             C<SystemCallArchitectures=native> or similar.
3454              
3455             Note that strict system call filters may impact execution and error handling code paths of the service
3456             invocation. Specifically, access to the execve() system call is required for the execution
3457             of the service binary \x{2014} if it is blocked service invocation will necessarily fail. Also, if execution of the
3458             service binary fails for some reason (for example: missing service executable), the error handling logic might
3459             require access to an additional set of system calls in order to process and log this failure correctly. It
3460             might be necessary to temporarily disable system call filters in order to simplify debugging of such
3461             failures.
3462              
3463             If you specify both types of this option (i.e. allow-listing and deny-listing), the first
3464             encountered will take precedence and will dictate the default action (termination or approval of a
3465             system call). Then the next occurrences of this option will add or delete the listed system calls
3466             from the set of the filtered system calls, depending of its type and the default action. (For
3467             example, if you have started with an allow list rule for read() and
3468             write(), and right after it add a deny list rule for write(),
3469             then write() will be removed from the set.)
3470              
3471             As the number of possible system calls is large, predefined sets of system calls are provided. A set
3472             starts with C<\@> character, followed by name of the set.
3473             Currently predefined system call setsSetDescription\@aioAsynchronous I/O (L<io_setup(2)>, L<io_submit(2)>, and related
3474             calls)\@basic-ioSystem calls for basic I/O: reading, writing, seeking, file descriptor duplication and closing
3475             (L<read(2)>, L<write(2)>, and related calls)\@chownChanging file ownership (L<chown(2)>, L<fchownat(2)>, and related
3476             calls)\@clockSystem calls for changing the system clock (L<adjtimex(2)>, L<settimeofday(2)>, and related
3477             calls)\@cpu-emulationSystem calls for CPU emulation functionality (L<vm86(2)> and related calls)\@debugDebugging,
3478             performance monitoring and tracing functionality (L<ptrace(2)>, L<perf_event_open(2)> and related
3479             calls)\@file-systemFile system operations: opening, creating files and directories for read and write, renaming and
3480             removing them, reading file properties, or creating hard and symbolic links\@io-eventEvent loop system calls
3481             (L<poll(2)>, L<select(2)>, L<epoll(7)>, L<eventfd(2)> and related calls)\@ipcPipes, SysV IPC, POSIX Message Queues and
3482             other IPC (L<mq_overview(7)>, L<svipc(7)>)\@keyringKernel keyring access (L<keyctl(2)> and related calls)\@memlockLocking
3483             of memory in RAM (L<mlock(2)>, L<mlockall(2)> and related calls)\@moduleLoading and unloading of kernel modules
3484             (L<init_module(2)>, L<delete_module(2)> and related calls)\@mountMounting and unmounting of file systems (L<mount(2)>,
3485             L<chroot(2)>, and related calls)\@network-ioSocket I/O (including local AF_UNIX): L<socket(7)>,
3486             L<unix(7)>\@obsoleteUnusual, obsolete or unimplemented (L<create_module(2)>, L<gtty(2)>, \x{2026})\@privilegedAll system calls
3487             which need super-user capabilities (L<capabilities(7)>)\@processProcess control, execution, namespacing operations
3488             (L<clone(2)>, L<kill(2)>, L<namespaces(7)>, \x{2026})\@raw-ioRaw I/O port access (L<ioperm(2)>, L<iopl(2)>, pciconfig_read(),
3489             \x{2026})\@rebootSystem calls for rebooting and reboot preparation (L<reboot(2)>, kexec(), \x{2026})\@resourcesSystem calls for
3490             changing resource limits, memory and scheduling parameters (L<setrlimit(2)>, L<setpriority(2)>, \x{2026})\@setuidSystem calls
3491             for changing user ID and group ID credentials, (L<setuid(2)>, L<setgid(2)>, L<setresuid(2)>, \x{2026})\@signalSystem calls for
3492             manipulating and handling process signals (L<signal(2)>, L<sigprocmask(2)>, \x{2026})\@swapSystem calls for enabling/disabling
3493             swap devices (L<swapon(2)>, L<swapoff(2)>)\@syncSynchronizing files and memory to disk (L<fsync(2)>, L<msync(2)>, and
3494             related calls)\@system-serviceA reasonable set of system calls used by common system services, excluding any special
3495             purpose calls. This is the recommended starting point for allow-listing system calls for system services, as it
3496             contains what is typically needed by system services, but excludes overly specific interfaces. For example, the
3497             following APIs are excluded: C<\@clock>, C<\@mount>, C<\@swap>, C<\@reboot>.\@timerSystem calls for scheduling operations by
3498             time (L<alarm(2)>, L<timer_create(2)>, \x{2026})\@knownAll system calls defined by the kernel. This list is defined statically
3499             in systemd based on a kernel version that was available when this systemd version was released. It will become
3500             progressively more out-of-date as the kernel is updated.
3501             Note, that as new system calls are added to the kernel, additional system calls might be added to the groups
3502             above. Contents of the sets may also change between systemd versions. In addition, the list of system calls
3503             depends on the kernel version and architecture for which systemd was compiled. Use
3504             systemd-analyze\x{a0}syscall-filter to list the actual list of system calls in each
3505             filter.
3506              
3507             Generally, allow-listing system calls (rather than deny-listing) is the safer mode of
3508             operation. It is recommended to enforce system call allow lists for all long-running system
3509             services. Specifically, the following lines are a relatively safe basic choice for the majority of
3510             system services:
3511              
3512             Note that various kernel system calls are defined redundantly: there are multiple system calls
3513             for executing the same operation. For example, the pidfd_send_signal() system
3514             call may be used to execute operations similar to what can be done with the older
3515             kill() system call, hence blocking the latter without the former only provides
3516             weak protection. Since new system calls are added regularly to the kernel as development progresses,
3517             keeping system call deny lists comprehensive requires constant work. It is thus recommended to use
3518             allow-listing instead, which offers the benefit that new system calls are by default implicitly
3519             blocked until the allow list is updated.
3520              
3521             Also note that a number of system calls are required to be accessible for the dynamic linker to
3522             work. The dynamic linker is required for running most regular programs (specifically: all dynamic ELF
3523             binaries, which is how most distributions build packaged programs). This means that blocking these
3524             system calls (which include open(), openat() or
3525             mmap()) will make most programs typically shipped with generic distributions
3526             unusable.
3527              
3528             It is recommended to combine the file system namespacing related options with
3529             C<SystemCallFilter=~\@mount>, in order to prohibit the unit's processes to undo the
3530             mappings. Specifically these are the options C<PrivateTmp>,
3531             C<PrivateDevices>, C<ProtectSystem>, C<ProtectHome>,
3532             C<ProtectKernelTunables>, C<ProtectControlGroups>,
3533             C<ProtectKernelLogs>, C<ProtectClock>, C<ReadOnlyPaths>,
3534             C<InaccessiblePaths> and C<ReadWritePaths>.",
3535             'type' => 'list'
3536             },
3537             'SystemCallErrorNumber',
3538             {
3539             'description' => 'Takes an C<errno> error number (between 1 and 4095) or errno name
3540             such as C<EPERM>, C<EACCES> or C<EUCLEAN>, to
3541             return when the system call filter configured with C<SystemCallFilter> is triggered,
3542             instead of terminating the process immediately. See L<errno(3)> for a
3543             full list of error codes. When this setting is not used, or when the empty string or the special
3544             setting C<kill> is assigned, the process will be terminated immediately when the
3545             filter is triggered.',
3546             'type' => 'leaf',
3547             'value_type' => 'uniline'
3548             },
3549             'SystemCallArchitectures',
3550             {
3551             'description' => "Takes a space-separated list of architecture identifiers to include in the system call
3552             filter. The known architecture identifiers are the same as for C<ConditionArchitecture>
3553             described in L<systemd.unit(5)>,
3554             as well as C<x32>, C<mips64-n32>, C<mips64-le-n32>, and
3555             the special identifier C<native>. The special identifier C<native>
3556             implicitly maps to the native architecture of the system (or more precisely: to the architecture the system
3557             manager is compiled for). If running in user mode, or in system mode, but without the
3558             C<CAP_SYS_ADMIN> capability (e.g. setting C<User>),
3559             C<NoNewPrivileges=yes> is implied. By default, this option is set to the empty list, i.e. no
3560             filtering is applied.
3561              
3562             If this setting is used, processes of this unit will only be permitted to call native system calls, and
3563             system calls of the specified architectures. For the purposes of this option, the x32 architecture is treated
3564             as including x86-64 system calls. However, this setting still fulfills its purpose, as explained below, on
3565             x32.
3566              
3567             System call filtering is not equally effective on all architectures. For example, on x86
3568             filtering of network socket-related calls is not possible, due to ABI limitations \x{2014} a limitation that x86-64
3569             does not have, however. On systems supporting multiple ABIs at the same time \x{2014} such as x86/x86-64 \x{2014} it is hence
3570             recommended to limit the set of permitted system call architectures so that secondary ABIs may not be used to
3571             circumvent the restrictions applied to the native ABI of the system. In particular, setting
3572             C<SystemCallArchitectures=native> is a good choice for disabling non-native ABIs.
3573              
3574             System call architectures may also be restricted system-wide via the
3575             C<SystemCallArchitectures> option in the global configuration. See
3576             L<systemd-system.conf(5)> for
3577             details.",
3578             'type' => 'leaf',
3579             'value_type' => 'uniline'
3580             },
3581             'SystemCallLog',
3582             {
3583             'cargo' => {
3584             'type' => 'leaf',
3585             'value_type' => 'uniline'
3586             },
3587             'description' => 'Takes a space-separated list of system call names. If this setting is used, all
3588             system calls executed by the unit processes for the listed ones will be logged. If the first
3589             character of the list is C<~>, the effect is inverted: all system calls except the
3590             listed system calls will be logged. If running in user mode, or in system mode, but without the
3591             C<CAP_SYS_ADMIN> capability (e.g. setting C<User>),
3592             C<NoNewPrivileges=yes> is implied. This feature makes use of the Secure Computing
3593             Mode 2 interfaces of the kernel (\'seccomp filtering\') and is useful for auditing or setting up a
3594             minimal sandboxing environment. This option may be specified more than once, in which case the filter
3595             masks are merged. If the empty string is assigned, the filter is reset, all prior assignments will
3596             have no effect. This does not affect commands prefixed with C<+>.',
3597             'type' => 'list'
3598             },
3599             'Environment',
3600             {
3601             'cargo' => {
3602             'type' => 'leaf',
3603             'value_type' => 'uniline'
3604             },
3605             'description' => "Sets environment variables for executed processes. Each line is unquoted using the
3606             rules described in \"Quoting\" section in
3607             L<systemd.syntax(7)>
3608             and becomes a list of variable assignments. If you need to assign a value containing spaces or the
3609             equals sign to a variable, put quotes around the whole assignment. Variable expansion is not
3610             performed inside the strings and the C<\$> character has no special meaning. Specifier
3611             expansion is performed, see the \"Specifiers\" section in
3612             L<systemd.unit(5)>.
3613              
3614             This option may be specified more than once, in which case all listed variables will be set. If
3615             the same variable is listed twice, the later setting will override the earlier setting. If the empty
3616             string is assigned to this option, the list of environment variables is reset, all prior assignments
3617             have no effect.
3618              
3619             The names of the variables can contain ASCII letters, digits, and the underscore character.
3620             Variable names cannot be empty or start with a digit. In variable values, most characters are
3621             allowed, but non-printable characters are currently rejected.
3622              
3623             Example:
3624              
3625             Environment=\"VAR1=word1 word2\" VAR2=word3 \"VAR3=\$word 5 6\"
3626              
3627             gives three variables C<VAR1>,
3628             C<VAR2>, C<VAR3>
3629             with the values C<word1 word2>,
3630             C<word3>, C<\$word 5 6>.
3631              
3632             See L<environ(7)> for
3633             details about environment variables.
3634              
3635             Note that environment variables are not suitable for passing secrets (such as passwords, key
3636             material, \x{2026}) to service processes. Environment variables set for a unit are exposed to unprivileged
3637             clients via D-Bus IPC, and generally not understood as being data that requires protection. Moreover,
3638             environment variables are propagated down the process tree, including across security boundaries
3639             (such as setuid/setgid executables), and hence might leak to processes that should not have access to
3640             the secret data. Use C<LoadCredential>, C<LoadCredentialEncrypted>
3641             or C<SetCredentialEncrypted> (see below) to pass data to unit processes
3642             securely.",
3643             'type' => 'list'
3644             },
3645             'EnvironmentFile',
3646             {
3647             'cargo' => {
3648             'type' => 'leaf',
3649             'value_type' => 'uniline'
3650             },
3651             'description' => 'Similar to C<Environment>, but reads the environment variables from
3652             a text file. The text file should contain newline-separated variable assignments. Empty lines, lines
3653             without an C<=> separator, or lines starting with C<;> or
3654             C<#> will be ignored, which may be used for commenting. The file must be UTF-8
3655             encoded. Valid characters are L<unicode scalar values|https://www.unicode.org/glossary/#unicode_scalar_value> other
3656             than
3657             L<noncharacters|https://www.unicode.org/glossary/#noncharacter>, U+0000 NUL, and
3658             U+FEFF L<byte order mark|https://www.unicode.org/glossary/#byte_order_mark>.
3659             Control codes other than NUL are allowed.
3660              
3661             In the file, an unquoted value after the C<=> is parsed with the same backslash-escape
3662             rules as L<unquoted
3663             text|https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_01> in a POSIX shell, but
3664             unlike in a shell, interior whitespace is preserved and quotes after the
3665             first non-whitespace character are preserved. Leading and trailing whitespace (space, tab, carriage return) is
3666             discarded, but interior whitespace within the line is preserved verbatim. A line ending with a backslash will be
3667             continued to the following one, with the newline itself discarded. A backslash
3668             C<\\> followed by any character other than newline will preserve the following character, so that
3669             C<\\\\> will become the value C<\\>.
3670              
3671             In the file, a C<\'>-quoted value after the C<=> can span multiple lines
3672             and contain any character verbatim other than single quote, like L<single-quoted
3673             text|https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_02> in a POSIX shell. No
3674             backslash-escape sequences are recognized. Leading and trailing whitespace
3675             outside of the single quotes is discarded.
3676              
3677             In the file, a C<">-quoted value after the C<=> can span multiple lines,
3678             and the same escape sequences are recognized as in L<double-quoted
3679             text|https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_02_03> of a POSIX shell.
3680             Backslash (C<\\>) followed by any of C<"\\`$> will
3681             preserve that character. A backslash followed by newline is a line continuation, and the newline itself is
3682             discarded. A backslash followed by any other character is ignored; both the backslash and the following
3683             character are preserved verbatim. Leading and trailing whitespace outside of the double quotes is
3684             discarded.
3685              
3686             The argument passed should be an absolute filename or wildcard expression, optionally prefixed with
3687             C<->, which indicates that if the file does not exist, it will not be read and no error or
3688             warning message is logged. This option may be specified more than once in which case all specified files are
3689             read. If the empty string is assigned to this option, the list of file to read is reset, all prior assignments
3690             have no effect.
3691              
3692             The files listed with this directive will be read shortly before the process is executed (more
3693             specifically, after all processes from a previous unit state terminated. This means you can generate these
3694             files in one unit state, and read it with this option in the next. The files are read from the file
3695             system of the service manager, before any file system changes like bind mounts take place).
3696              
3697             Settings from these files override settings made with C<Environment>. If the same
3698             variable is set twice from these files, the files will be read in the order they are specified and the later
3699             setting will override the earlier setting.',
3700             'type' => 'list'
3701             },
3702             'PassEnvironment',
3703             {
3704             'cargo' => {
3705             'type' => 'leaf',
3706             'value_type' => 'uniline'
3707             },
3708             'description' => 'Pass environment variables set for the system service manager to executed processes. Takes a
3709             space-separated list of variable names. This option may be specified more than once, in which case all listed
3710             variables will be passed. If the empty string is assigned to this option, the list of environment variables to
3711             pass is reset, all prior assignments have no effect. Variables specified that are not set for the system
3712             manager will not be passed and will be silently ignored. Note that this option is only relevant for the system
3713             service manager, as system services by default do not automatically inherit any environment variables set for
3714             the service manager itself. However, in case of the user service manager all environment variables are passed
3715             to the executed processes anyway, hence this option is without effect for the user service manager.
3716              
3717             Variables set for invoked processes due to this setting are subject to being overridden by those
3718             configured with C<Environment> or C<EnvironmentFile>.
3719              
3720             Example:
3721              
3722             PassEnvironment=VAR1 VAR2 VAR3
3723              
3724             passes three variables C<VAR1>,
3725             C<VAR2>, C<VAR3>
3726             with the values set for those variables in PID1.
3727              
3728             See L<environ(7)> for details
3729             about environment variables.',
3730             'type' => 'list'
3731             },
3732             'UnsetEnvironment',
3733             {
3734             'cargo' => {
3735             'type' => 'leaf',
3736             'value_type' => 'uniline'
3737             },
3738             'description' => 'Explicitly unset environment variable assignments that would normally be passed from the
3739             service manager to invoked processes of this unit. Takes a space-separated list of variable names or variable
3740             assignments. This option may be specified more than once, in which case all listed variables/assignments will
3741             be unset. If the empty string is assigned to this option, the list of environment variables/assignments to
3742             unset is reset. If a variable assignment is specified (that is: a variable name, followed by
3743             C<=>, followed by its value), then any environment variable matching this precise assignment is
3744             removed. If a variable name is specified (that is a variable name without any following C<=> or
3745             value), then any assignment matching the variable name, regardless of its value is removed. Note that the
3746             effect of C<UnsetEnvironment> is applied as final step when the environment list passed to
3747             executed processes is compiled. That means it may undo assignments from any configuration source, including
3748             assignments made through C<Environment> or C<EnvironmentFile>, inherited from
3749             the system manager\'s global set of environment variables, inherited via C<PassEnvironment>,
3750             set by the service manager itself (such as C<$NOTIFY_SOCKET> and such), or set by a PAM module
3751             (in case C<PAMName> is used).
3752              
3753             See "Environment Variables in Spawned Processes" below for a description of how those
3754             settings combine to form the inherited environment. See L<environ(7)> for general
3755             information about environment variables.',
3756             'type' => 'list'
3757             },
3758             'StandardInput',
3759             {
3760             'choice' => [
3761             'null',
3762             'tty',
3763             'tty-force',
3764             'tty-fail',
3765             'data',
3766             'socket'
3767             ],
3768             'description' => "Controls where file descriptor 0 (STDIN) of the executed processes is connected to. Takes one
3769             of C<null>, C<tty>, C<tty-force>, C<tty-fail>,
3770             C<data>, C<file:path>, C<socket> or
3771             C<fd:name>.
3772              
3773             If C<null> is selected, standard input will be connected to C</dev/null>,
3774             i.e. all read attempts by the process will result in immediate EOF.
3775              
3776             If C<tty> is selected, standard input is connected to a TTY (as configured by
3777             C<TTYPath>, see below) and the executed process becomes the controlling process of the
3778             terminal. If the terminal is already being controlled by another process, the executed process waits until the
3779             current controlling process releases the terminal.
3780              
3781             C<tty-force> is similar to C<tty>, but the executed process is forcefully and
3782             immediately made the controlling process of the terminal, potentially removing previous controlling processes
3783             from the terminal.
3784              
3785             C<tty-fail> is similar to C<tty>, but if the terminal already has a
3786             controlling process start-up of the executed process fails.
3787              
3788             The C<data> option may be used to configure arbitrary textual or binary data to pass via
3789             standard input to the executed process. The data to pass is configured via
3790             C<StandardInputText>/C<StandardInputData> (see below). Note that the actual
3791             file descriptor type passed (memory file, regular file, UNIX pipe, \x{2026}) might depend on the kernel and available
3792             privileges. In any case, the file descriptor is read-only, and when read returns the specified data followed by
3793             EOF.
3794              
3795             The C<file:path> option may be used to connect a specific file
3796             system object to standard input. An absolute path following the C<:> character is expected,
3797             which may refer to a regular file, a FIFO or special file. If an C<AF_UNIX> socket in the
3798             file system is specified, a stream socket is connected to it. The latter is useful for connecting standard
3799             input of processes to arbitrary system services.
3800              
3801             The C<socket> option is valid in socket-activated services only, and requires the relevant
3802             socket unit file (see
3803             L<systemd.socket(5)> for details)
3804             to have C<Accept=yes> set, or to specify a single socket only. If this option is set, standard
3805             input will be connected to the socket the service was activated from, which is primarily useful for
3806             compatibility with daemons designed for use with the traditional L<inetd(8)> socket activation
3807             daemon.
3808              
3809             The C<fd:name> option connects standard input to a specific,
3810             named file descriptor provided by a socket unit. The name may be specified as part of this option, following a
3811             C<:> character (e.g. C<fd:foobar>). If no name is specified, the name
3812             C<stdin> is implied (i.e. C<fd> is equivalent to C<fd:stdin>).
3813             At least one socket unit defining the specified name must be provided via the C<Sockets>
3814             option, and the file descriptor name may differ from the name of its containing socket unit. If multiple
3815             matches are found, the first one will be used. See C<FileDescriptorName> in
3816             L<systemd.socket(5)> for more
3817             details about named file descriptors and their ordering.
3818              
3819             This setting defaults to C<null>, unless
3820             C<StandardInputText>/C<StandardInputData> are set, in which case it
3821             defaults to C<data>.",
3822             'type' => 'leaf',
3823             'value_type' => 'enum'
3824             },
3825             'StandardOutput',
3826             {
3827             'choice' => [
3828             'inherit',
3829             'null',
3830             'tty',
3831             'journal',
3832             'kmsg',
3833             'journal+console',
3834             'kmsg+console',
3835             'socket'
3836             ],
3837             'description' => "Controls where file descriptor 1 (stdout) of the executed processes is connected
3838             to. Takes one of C<inherit>, C<null>, C<tty>,
3839             C<journal>, C<kmsg>, C<journal+console>,
3840             C<kmsg+console>, C<file:path>,
3841             C<append:path>, C<truncate:path>,
3842             C<socket> or C<fd:name>.
3843              
3844             C<inherit> duplicates the file descriptor of standard input for standard output.
3845              
3846             C<null> connects standard output to C</dev/null>, i.e. everything written
3847             to it will be lost.
3848              
3849             C<tty> connects standard output to a tty (as configured via C<TTYPath>,
3850             see below). If the TTY is used for output only, the executed process will not become the controlling process of
3851             the terminal, and will not fail or wait for other processes to release the terminal.
3852              
3853             C<journal> connects standard output with the journal, which is accessible via
3854             L<journalctl(1)>. Note
3855             that everything that is written to kmsg (see below) is implicitly stored in the journal as well, the
3856             specific option listed below is hence a superset of this one. (Also note that any external,
3857             additional syslog daemons receive their log data from the journal, too, hence this is the option to
3858             use when logging shall be processed with such a daemon.)
3859              
3860             C<kmsg> connects standard output with the kernel log buffer which is accessible via
3861             L<dmesg(1)>,
3862             in addition to the journal. The journal daemon might be configured to send all logs to kmsg anyway, in which
3863             case this option is no different from C<journal>.
3864              
3865             C<journal+console> and C<kmsg+console> work in a similar way as the
3866             two options above but copy the output to the system console as well.
3867              
3868             The C<file:path> option may be used to connect a specific file
3869             system object to standard output. The semantics are similar to the same option of
3870             C<StandardInput>, see above. If path refers to a regular file
3871             on the filesystem, it is opened (created if it doesn't exist yet) for writing at the beginning of the file,
3872             but without truncating it.
3873             If standard input and output are directed to the same file path, it is opened only once \x{2014} for reading as well
3874             as writing \x{2014} and duplicated. This is particularly useful when the specified path refers to an
3875             C<AF_UNIX> socket in the file system, as in that case only a
3876             single stream connection is created for both input and output.
3877              
3878             C<append:path> is similar to
3879             C<file:path> above, but it opens the file in append mode.
3880              
3881             C<truncate:path> is similar to
3882             C<file:path> above, but it truncates the file when opening
3883             it. For units with multiple command lines, e.g. C<Type=oneshot> services with
3884             multiple C<ExecStart>, or services with C<ExecCondition>,
3885             C<ExecStartPre> or C<ExecStartPost>, the output file is reopened
3886             and therefore re-truncated for each command line. If the output file is truncated while another
3887             process still has the file open, e.g. by an C<ExecReload> running concurrently with
3888             an C<ExecStart>, and the other process continues writing to the file without
3889             adjusting its offset, then the space between the file pointers of the two processes may be filled
3890             with C<NUL> bytes, producing a sparse file. Thus,
3891             C<truncate:path> is typically only useful for units where
3892             only one process runs at a time, such as services with a single C<ExecStart> and no
3893             C<ExecStartPost>, C<ExecReload>, C<ExecStop> or
3894             similar.
3895              
3896             C<socket> connects standard output to a socket acquired via socket activation. The
3897             semantics are similar to the same option of C<StandardInput>, see above.
3898              
3899             The C<fd:name> option connects standard output to a
3900             specific, named file descriptor provided by a socket unit. A name may be specified as part of this
3901             option, following a C<:> character
3902             (e.g. C<fd:foobar>). If no name is specified, the name
3903             C<stdout> is implied (i.e. C<fd> is equivalent to
3904             C<fd:stdout>). At least one socket unit defining the specified name must be provided
3905             via the C<Sockets> option, and the file descriptor name may differ from the name of
3906             its containing socket unit. If multiple matches are found, the first one will be used. See
3907             C<FileDescriptorName> in
3908             L<systemd.socket(5)>
3909             for more details about named descriptors and their ordering.
3910              
3911             If the standard output (or error output, see below) of a unit is connected to the journal or
3912             the kernel log buffer, the unit will implicitly gain a dependency of type C<After>
3913             on C<systemd-journald.socket> (also see the \"Implicit Dependencies\" section
3914             above). Also note that in this case stdout (or stderr, see below) will be an
3915             C<AF_UNIX> stream socket, and not a pipe or FIFO that can be re-opened. This means
3916             when executing shell scripts the construct echo \"hello\" > /dev/stderr for
3917             writing text to stderr will not work. To mitigate this use the construct echo \"hello\"
3918             >&2 instead, which is mostly equivalent and avoids this pitfall.
3919              
3920             If C<StandardInput> is set to one of C<tty>, C<tty-force>,
3921             C<tty-fail>, C<socket>, or C<fd:name>, this
3922             setting defaults to C<inherit>.
3923              
3924             In other cases, this setting defaults to the value set with C<DefaultStandardOutput> in
3925             L<systemd-system.conf(5)>, which
3926             defaults to C<journal>. Note that setting this parameter might result in additional dependencies
3927             to be added to the unit (see above).",
3928             'type' => 'leaf',
3929             'value_type' => 'enum'
3930             },
3931             'StandardError',
3932             {
3933             'description' => 'Controls where file descriptor 2 (stderr) of the executed processes is connected to. The
3934             available options are identical to those of C<StandardOutput>, with some exceptions: if set to
3935             C<inherit> the file descriptor used for standard output is duplicated for standard error, while
3936             C<fd:name> will use a default file descriptor name of
3937             C<stderr>.
3938              
3939             This setting defaults to the value set with C<DefaultStandardError> in
3940             L<systemd-system.conf(5)>, which
3941             defaults to C<inherit>. Note that setting this parameter might result in additional dependencies
3942             to be added to the unit (see above).',
3943             'type' => 'leaf',
3944             'value_type' => 'uniline'
3945             },
3946             'StandardInputText',
3947             {
3948             'description' => 'Configures arbitrary textual or binary data to pass via file descriptor 0 (STDIN) to
3949             the executed processes. These settings have no effect unless C<StandardInput> is set
3950             to C<data> (which is the default if C<StandardInput> is not set
3951             otherwise, but C<StandardInputText>/C<StandardInputData> is). Use
3952             this option to embed process input data directly in the unit file.
3953              
3954             C<StandardInputText> accepts arbitrary textual data. C-style escapes for special
3955             characters as well as the usual C<%>-specifiers are resolved. Each time this setting is used
3956             the specified text is appended to the per-unit data buffer, followed by a newline character (thus every use
3957             appends a new line to the end of the buffer). Note that leading and trailing whitespace of lines configured
3958             with this option is removed. If an empty line is specified the buffer is cleared (hence, in order to insert an
3959             empty line, add an additional C<\\n> to the end or beginning of a line).
3960              
3961             C<StandardInputData> accepts arbitrary binary data, encoded in
3962             L<Base64|https://tools.ietf.org/html/rfc2045#section-6.8>. No escape sequences or specifiers are
3963             resolved. Any whitespace in the encoded version is ignored during decoding.
3964              
3965             Note that C<StandardInputText> and C<StandardInputData> operate on the
3966             same data buffer, and may be mixed in order to configure both binary and textual data for the same input
3967             stream. The textual or binary data is joined strictly in the order the settings appear in the unit
3968             file. Assigning an empty string to either will reset the data buffer.
3969              
3970             Please keep in mind that in order to maintain readability long unit file settings may be split into
3971             multiple lines, by suffixing each line (except for the last) with a C<\\> character (see
3972             L<systemd.unit(5)> for
3973             details). This is particularly useful for large data configured with these two options. Example:',
3974             'type' => 'leaf',
3975             'value_type' => 'uniline'
3976             },
3977             'StandardInputData',
3978             {
3979             'description' => 'Configures arbitrary textual or binary data to pass via file descriptor 0 (STDIN) to
3980             the executed processes. These settings have no effect unless C<StandardInput> is set
3981             to C<data> (which is the default if C<StandardInput> is not set
3982             otherwise, but C<StandardInputText>/C<StandardInputData> is). Use
3983             this option to embed process input data directly in the unit file.
3984              
3985             C<StandardInputText> accepts arbitrary textual data. C-style escapes for special
3986             characters as well as the usual C<%>-specifiers are resolved. Each time this setting is used
3987             the specified text is appended to the per-unit data buffer, followed by a newline character (thus every use
3988             appends a new line to the end of the buffer). Note that leading and trailing whitespace of lines configured
3989             with this option is removed. If an empty line is specified the buffer is cleared (hence, in order to insert an
3990             empty line, add an additional C<\\n> to the end or beginning of a line).
3991              
3992             C<StandardInputData> accepts arbitrary binary data, encoded in
3993             L<Base64|https://tools.ietf.org/html/rfc2045#section-6.8>. No escape sequences or specifiers are
3994             resolved. Any whitespace in the encoded version is ignored during decoding.
3995              
3996             Note that C<StandardInputText> and C<StandardInputData> operate on the
3997             same data buffer, and may be mixed in order to configure both binary and textual data for the same input
3998             stream. The textual or binary data is joined strictly in the order the settings appear in the unit
3999             file. Assigning an empty string to either will reset the data buffer.
4000              
4001             Please keep in mind that in order to maintain readability long unit file settings may be split into
4002             multiple lines, by suffixing each line (except for the last) with a C<\\> character (see
4003             L<systemd.unit(5)> for
4004             details). This is particularly useful for large data configured with these two options. Example:',
4005             'type' => 'leaf',
4006             'value_type' => 'uniline'
4007             },
4008             'LogLevelMax',
4009             {
4010             'description' => 'Configures filtering by log level of log messages generated by this unit. Takes a
4011             syslog log level, one of C<emerg> (lowest log level, only highest priority
4012             messages), C<alert>, C<crit>, C<err>, C<warning>,
4013             C<notice>, C<info>, C<debug> (highest log level, also lowest priority
4014             messages). See L<syslog(3)> for
4015             details. By default no filtering is applied (i.e. the default maximum log level is C<debug>). Use
4016             this option to configure the logging system to drop log messages of a specific service above the specified
4017             level. For example, set C<LogLevelMax>C<info> in order to turn off debug logging
4018             of a particularly chatty unit. Note that the configured level is applied to any log messages written by any
4019             of the processes belonging to this unit, as well as any log messages written by the system manager process
4020             (PID 1) in reference to this unit, sent via any supported logging protocol. The filtering is applied
4021             early in the logging pipeline, before any kind of further processing is done. Moreover, messages which pass
4022             through this filter successfully might still be dropped by filters applied at a later stage in the logging
4023             subsystem. For example, C<MaxLevelStore> configured in
4024             L<journald.conf(5)> might
4025             prohibit messages of higher log levels to be stored on disk, even though the per-unit
4026             C<LogLevelMax> permitted it to be processed.',
4027             'type' => 'leaf',
4028             'value_type' => 'uniline'
4029             },
4030             'LogExtraFields',
4031             {
4032             'description' => 'Configures additional log metadata fields to include in all log records generated by
4033             processes associated with this unit. This setting takes one or more journal field assignments in the
4034             format C<FIELD=VALUE> separated by whitespace. See
4035             L<systemd.journal-fields(7)>
4036             for details on the journal field concept. Even though the underlying journal implementation permits
4037             binary field values, this setting accepts only valid UTF-8 values. To include space characters in a
4038             journal field value, enclose the assignment in double quotes (").
4039             The usual specifiers are expanded in all assignments (see below). Note that this setting is not only
4040             useful for attaching additional metadata to log records of a unit, but given that all fields and
4041             values are indexed may also be used to implement cross-unit log record matching. Assign an empty
4042             string to reset the list.',
4043             'type' => 'leaf',
4044             'value_type' => 'uniline'
4045             },
4046             'LogRateLimitIntervalSec',
4047             {
4048             'description' => 'Configures the rate limiting that is applied to messages generated by this unit. If, in the
4049             time interval defined by C<LogRateLimitIntervalSec>, more messages than specified in
4050             C<LogRateLimitBurst> are logged by a service, all further messages within the interval are
4051             dropped until the interval is over. A message about the number of dropped messages is generated. The time
4052             specification for C<LogRateLimitIntervalSec> may be specified in the following units: "s",
4053             "min", "h", "ms", "us" (see
4054             L<systemd.time(7)> for details).
4055             The default settings are set by C<RateLimitIntervalSec> and C<RateLimitBurst>
4056             configured in L<journald.conf(5)>.
4057             ',
4058             'type' => 'leaf',
4059             'value_type' => 'uniline'
4060             },
4061             'LogRateLimitBurst',
4062             {
4063             'description' => 'Configures the rate limiting that is applied to messages generated by this unit. If, in the
4064             time interval defined by C<LogRateLimitIntervalSec>, more messages than specified in
4065             C<LogRateLimitBurst> are logged by a service, all further messages within the interval are
4066             dropped until the interval is over. A message about the number of dropped messages is generated. The time
4067             specification for C<LogRateLimitIntervalSec> may be specified in the following units: "s",
4068             "min", "h", "ms", "us" (see
4069             L<systemd.time(7)> for details).
4070             The default settings are set by C<RateLimitIntervalSec> and C<RateLimitBurst>
4071             configured in L<journald.conf(5)>.
4072             ',
4073             'type' => 'leaf',
4074             'value_type' => 'uniline'
4075             },
4076             'LogNamespace',
4077             {
4078             'description' => 'Run the unit\'s processes in the specified journal namespace. Expects a short
4079             user-defined string identifying the namespace. If not used the processes of the service are run in
4080             the default journal namespace, i.e. their log stream is collected and processed by
4081             C<systemd-journald.service>. If this option is used any log data generated by
4082             processes of this unit (regardless if via the syslog(), journal native logging
4083             or stdout/stderr logging) is collected and processed by an instance of the
4084             C<systemd-journald@.service> template unit, which manages the specified
4085             namespace. The log data is stored in a data store independent from the default log namespace\'s data
4086             store. See
4087             L<systemd-journald.service(8)>
4088             for details about journal namespaces.
4089              
4090             Internally, journal namespaces are implemented through Linux mount namespacing and
4091             over-mounting the directory that contains the relevant C<AF_UNIX> sockets used for
4092             logging in the unit\'s mount namespace. Since mount namespaces are used this setting disconnects
4093             propagation of mounts from the unit\'s processes to the host, similarly to how
4094             C<ReadOnlyPaths> and similar settings describe above work. Journal namespaces may hence
4095             not be used for services that need to establish mount points on the host.
4096              
4097             When this option is used the unit will automatically gain ordering and requirement dependencies
4098             on the two socket units associated with the C<systemd-journald@.service> instance
4099             so that they are automatically established prior to the unit starting up. Note that when this option
4100             is used log output of this service does not appear in the regular
4101             L<journalctl(1)>
4102             output, unless the C<--namespace=> option is used.',
4103             'type' => 'leaf',
4104             'value_type' => 'uniline'
4105             },
4106             'SyslogIdentifier',
4107             {
4108             'description' => 'Sets the process name ("syslog tag") to prefix log lines sent to
4109             the logging system or the kernel log buffer with. If not set, defaults to the process name of the
4110             executed process. This option is only useful when C<StandardOutput> or
4111             C<StandardError> are set to C<journal> or C<kmsg> (or to
4112             the same settings in combination with C<+console>) and only applies to log messages
4113             written to stdout or stderr.',
4114             'type' => 'leaf',
4115             'value_type' => 'uniline'
4116             },
4117             'SyslogFacility',
4118             {
4119             'description' => 'Sets the syslog facility identifier to use when logging. One of
4120             C<kern>, C<user>, C<mail>, C<daemon>,
4121             C<auth>, C<syslog>, C<lpr>, C<news>,
4122             C<uucp>, C<cron>, C<authpriv>, C<ftp>,
4123             C<local0>, C<local1>, C<local2>, C<local3>,
4124             C<local4>, C<local5>, C<local6> or
4125             C<local7>. See L<syslog(3)> for
4126             details. This option is only useful when C<StandardOutput> or
4127             C<StandardError> are set to C<journal> or C<kmsg> (or to
4128             the same settings in combination with C<+console>), and only applies to log messages
4129             written to stdout or stderr. Defaults to C<daemon>.',
4130             'type' => 'leaf',
4131             'value_type' => 'uniline'
4132             },
4133             'SyslogLevel',
4134             {
4135             'description' => 'The default syslog log level to use when logging to the logging system or
4136             the kernel log buffer. One of C<emerg>, C<alert>, C<crit>,
4137             C<err>, C<warning>, C<notice>, C<info>,
4138             C<debug>. See L<syslog(3)> for
4139             details. This option is only useful when C<StandardOutput> or
4140             C<StandardError> are set to C<journal> or
4141             C<kmsg> (or to the same settings in combination with C<+console>), and only applies
4142             to log messages written to stdout or stderr. Note that individual lines output by executed processes may be
4143             prefixed with a different log level which can be used to override the default log level specified here. The
4144             interpretation of these prefixes may be disabled with C<SyslogLevelPrefix>, see below. For
4145             details, see L<sd-daemon(3)>.
4146             Defaults to C<info>.',
4147             'type' => 'leaf',
4148             'value_type' => 'uniline'
4149             },
4150             'SyslogLevelPrefix',
4151             {
4152             'description' => 'Takes a boolean argument. If true and C<StandardOutput> or
4153             C<StandardError> are set to C<journal> or C<kmsg> (or to
4154             the same settings in combination with C<+console>), log lines written by the executed
4155             process that are prefixed with a log level will be processed with this log level set but the prefix
4156             removed. If set to false, the interpretation of these prefixes is disabled and the logged lines are
4157             passed on as-is. This only applies to log messages written to stdout or stderr. For details about
4158             this prefixing see
4159             L<sd-daemon(3)>.
4160             Defaults to true.',
4161             'type' => 'leaf',
4162             'value_type' => 'boolean',
4163             'write_as' => [
4164             'no',
4165             'yes'
4166             ]
4167             },
4168             'TTYPath',
4169             {
4170             'description' => 'Sets the terminal device node to use if standard input, output, or error are connected to a TTY
4171             (see above). Defaults to C</dev/console>.',
4172             'type' => 'leaf',
4173             'value_type' => 'uniline'
4174             },
4175             'TTYReset',
4176             {
4177             'description' => 'Reset the terminal device specified with C<TTYPath> before and after
4178             execution. Defaults to C<no>.',
4179             'type' => 'leaf',
4180             'value_type' => 'uniline'
4181             },
4182             'TTYVHangup',
4183             {
4184             'description' => 'Disconnect all clients which have opened the terminal device specified with
4185             C<TTYPath> before and after execution. Defaults to C<no>.',
4186             'type' => 'leaf',
4187             'value_type' => 'uniline'
4188             },
4189             'TTYRows',
4190             {
4191             'description' => 'Configure the size of the TTY specified with C<TTYPath>. If unset or
4192             set to the empty string, the kernel default is used.',
4193             'type' => 'leaf',
4194             'value_type' => 'uniline'
4195             },
4196             'TTYColumns',
4197             {
4198             'description' => 'Configure the size of the TTY specified with C<TTYPath>. If unset or
4199             set to the empty string, the kernel default is used.',
4200             'type' => 'leaf',
4201             'value_type' => 'uniline'
4202             },
4203             'TTYVTDisallocate',
4204             {
4205             'description' => 'If the terminal device specified with C<TTYPath> is a virtual console
4206             terminal, try to deallocate the TTY before and after execution. This ensures that the screen and scrollback
4207             buffer is cleared. Defaults to C<no>.',
4208             'type' => 'leaf',
4209             'value_type' => 'uniline'
4210             },
4211             'LoadCredential',
4212             {
4213             'description' => "Pass a credential to the unit. Credentials are limited-size binary or textual objects
4214             that may be passed to unit processes. They are primarily used for passing cryptographic keys (both
4215             public and private) or certificates, user account information or identity information from host to
4216             services. The data is accessible from the unit's processes via the file system, at a read-only
4217             location that (if possible and permitted) is backed by non-swappable memory. The data is only
4218             accessible to the user associated with the unit, via the
4219             C<User>/C<DynamicUser> settings (as well as the superuser). When
4220             available, the location of credentials is exported as the C<\$CREDENTIALS_DIRECTORY>
4221             environment variable to the unit's processes.
4222              
4223             The C<LoadCredential> setting takes a textual ID to use as name for a
4224             credential plus a file system path, separated by a colon. The ID must be a short ASCII string
4225             suitable as filename in the filesystem, and may be chosen freely by the user. If the specified path
4226             is absolute it is opened as regular file and the credential data is read from it. If the absolute
4227             path refers to an C<AF_UNIX> stream socket in the file system a connection is made
4228             to it (only once at unit start-up) and the credential data read from the connection, providing an
4229             easy IPC integration point for dynamically transferring credentials from other services.
4230              
4231             If the specified path is not absolute and itself qualifies as valid credential identifier it is
4232             attempted to find a credential that the service manager itself received under the specified name \x{2014}
4233             which may be used to propagate credentials from an invoking environment (e.g. a container manager
4234             that invoked the service manager) into a service. If no matching system credential is found, the
4235             directories C</etc/credstore/>, C</run/credstore/> and
4236             C</usr/lib/credstore/> are searched for files under the credential's name \x{2014} which
4237             hence are recommended locations for credential data on disk. If
4238             C<LoadCredentialEncrypted> is used C</run/credstore.encrypted/>,
4239             C</etc/credstore.encrypted/>, and
4240             C</usr/lib/credstore.encrypted/> are searched as well.
4241              
4242             If the file system path is omitted it is chosen identical to the credential name, i.e. this is
4243             a terse way to declare credentials to inherit from the service manager into a service. This option
4244             may be used multiple times, each time defining an additional credential to pass to the unit.
4245              
4246             If an absolute path referring to a directory is specified, every file in that directory
4247             (recursively) will be loaded as a separate credential. The ID for each credential will be the
4248             provided ID suffixed with C<_\$FILENAME> (e.g., C<Key_file1>). When
4249             loading from a directory, symlinks will be ignored.
4250              
4251             The contents of the file/socket may be arbitrary binary or textual data, including newline
4252             characters and C<NUL> bytes.
4253              
4254             The C<LoadCredentialEncrypted> setting is identical to
4255             C<LoadCredential>, except that the credential data is decrypted and authenticated
4256             before being passed on to the executed processes. Specifically, the referenced path should refer to a
4257             file or socket with an encrypted credential, as implemented by
4258             L<systemd-creds(1)>. This
4259             credential is loaded, decrypted, authenticated and then passed to the application in plaintext form,
4260             in the same way a regular credential specified via C<LoadCredential> would be. A
4261             credential configured this way may be symmetrically encrypted/authenticated with a secret key derived
4262             from the system's TPM2 security chip, or with a secret key stored in
4263             C</var/lib/systemd/credentials.secret>, or with both. Using encrypted and
4264             authenticated credentials improves security as credentials are not stored in plaintext and only
4265             authenticated and decrypted into plaintext the moment a service requiring them is started. Moreover,
4266             credentials may be bound to the local hardware and installations, so that they cannot easily be
4267             analyzed offline, or be generated externally.
4268              
4269             The credential files/IPC sockets must be accessible to the service manager, but don't have to
4270             be directly accessible to the unit's processes: the credential data is read and copied into separate,
4271             read-only copies for the unit that are accessible to appropriately privileged processes. This is
4272             particularly useful in combination with C<DynamicUser> as this way privileged data
4273             can be made available to processes running under a dynamic UID (i.e. not a previously known one)
4274             without having to open up access to all users.
4275              
4276             In order to reference the path a credential may be read from within a
4277             C<ExecStart> command line use C<\${CREDENTIALS_DIRECTORY}/mycred>,
4278             e.g. C<ExecStart=cat \${CREDENTIALS_DIRECTORY}/mycred>. In order to reference the path
4279             a credential may be read from within a C<Environment> line use
4280             C<%d/mycred>, e.g. C<Environment=MYCREDPATH=%d/mycred>.
4281              
4282             Currently, an accumulated credential size limit of 1 MB per unit is enforced.
4283              
4284             The service manager itself may receive system credentials that can be propagated to services
4285             from a hosting container manager or VM hypervisor. See the L<Container
4286             Interface|https://systemd.io/CONTAINER_INTERFACE> documentation for details
4287             about the former. For the latter, pass L<DMI/SMBIOS|https://www.dmtf.org/standards/smbios> OEM string table entries
4288             (field type
4289             11) with a prefix of C<io.systemd.credential:> or
4290             C<io.systemd.credential.binary:>. In both cases a key/value pair separated by
4291             C<=> is expected, in the latter case the right-hand side is Base64 decoded when
4292             parsed (thus permitting binary data to be passed in). Example qemu switch: C<-smbios
4293             type=11,value=io.systemd.credential:xx=yy>, or C<-smbios
4294             type=11,value=io.systemd.credential.binary:rick=TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=>. Alternatively,
4295             use the qemu C<fw_cfg> node
4296             C<opt/io.systemd.credentials/>. Example qemu switch: C<-fw_cfg
4297             name=opt/io.systemd.credentials/mycred,string=supersecret>. They may also be specified on
4298             the kernel command line using the C<systemd.set_credential=> switch (see
4299             L<systemd(1)>) and from
4300             the UEFI firmware environment via
4301             L<systemd-stub(7)>.
4302              
4303             If referencing an C<AF_UNIX> stream socket to connect to, the connection will
4304             originate from an abstract namespace socket, that includes information about the unit and the
4305             credential ID in its socket name. Use L<getpeername(2)>
4306             to query this information. The returned socket name is formatted as C<NUL>RANDOM C</unit/> UNITC</> ID, i.e. a C<NUL>
4307             byte (as required
4308             for abstract namespace socket names), followed by a random string (consisting of alphadecimal
4309             characters), followed by the literal string C</unit/>, followed by the requesting
4310             unit name, followed by the literal character C</>, followed by the textual credential
4311             ID requested. Example: C<\\0adf9d86b6eda275e/unit/foobar.service/credx> in case the
4312             credential C<credx> is requested for a unit C<foobar.service>. This
4313             functionality is useful for using a single listening socket to serve credentials to multiple
4314             consumers.
4315              
4316             For further information see L<System and Service
4317             Credentials|https://systemd.io/CREDENTIALS> documentation.",
4318             'type' => 'leaf',
4319             'value_type' => 'uniline'
4320             },
4321             'LoadCredentialEncrypted',
4322             {
4323             'description' => "Pass a credential to the unit. Credentials are limited-size binary or textual objects
4324             that may be passed to unit processes. They are primarily used for passing cryptographic keys (both
4325             public and private) or certificates, user account information or identity information from host to
4326             services. The data is accessible from the unit's processes via the file system, at a read-only
4327             location that (if possible and permitted) is backed by non-swappable memory. The data is only
4328             accessible to the user associated with the unit, via the
4329             C<User>/C<DynamicUser> settings (as well as the superuser). When
4330             available, the location of credentials is exported as the C<\$CREDENTIALS_DIRECTORY>
4331             environment variable to the unit's processes.
4332              
4333             The C<LoadCredential> setting takes a textual ID to use as name for a
4334             credential plus a file system path, separated by a colon. The ID must be a short ASCII string
4335             suitable as filename in the filesystem, and may be chosen freely by the user. If the specified path
4336             is absolute it is opened as regular file and the credential data is read from it. If the absolute
4337             path refers to an C<AF_UNIX> stream socket in the file system a connection is made
4338             to it (only once at unit start-up) and the credential data read from the connection, providing an
4339             easy IPC integration point for dynamically transferring credentials from other services.
4340              
4341             If the specified path is not absolute and itself qualifies as valid credential identifier it is
4342             attempted to find a credential that the service manager itself received under the specified name \x{2014}
4343             which may be used to propagate credentials from an invoking environment (e.g. a container manager
4344             that invoked the service manager) into a service. If no matching system credential is found, the
4345             directories C</etc/credstore/>, C</run/credstore/> and
4346             C</usr/lib/credstore/> are searched for files under the credential's name \x{2014} which
4347             hence are recommended locations for credential data on disk. If
4348             C<LoadCredentialEncrypted> is used C</run/credstore.encrypted/>,
4349             C</etc/credstore.encrypted/>, and
4350             C</usr/lib/credstore.encrypted/> are searched as well.
4351              
4352             If the file system path is omitted it is chosen identical to the credential name, i.e. this is
4353             a terse way to declare credentials to inherit from the service manager into a service. This option
4354             may be used multiple times, each time defining an additional credential to pass to the unit.
4355              
4356             If an absolute path referring to a directory is specified, every file in that directory
4357             (recursively) will be loaded as a separate credential. The ID for each credential will be the
4358             provided ID suffixed with C<_\$FILENAME> (e.g., C<Key_file1>). When
4359             loading from a directory, symlinks will be ignored.
4360              
4361             The contents of the file/socket may be arbitrary binary or textual data, including newline
4362             characters and C<NUL> bytes.
4363              
4364             The C<LoadCredentialEncrypted> setting is identical to
4365             C<LoadCredential>, except that the credential data is decrypted and authenticated
4366             before being passed on to the executed processes. Specifically, the referenced path should refer to a
4367             file or socket with an encrypted credential, as implemented by
4368             L<systemd-creds(1)>. This
4369             credential is loaded, decrypted, authenticated and then passed to the application in plaintext form,
4370             in the same way a regular credential specified via C<LoadCredential> would be. A
4371             credential configured this way may be symmetrically encrypted/authenticated with a secret key derived
4372             from the system's TPM2 security chip, or with a secret key stored in
4373             C</var/lib/systemd/credentials.secret>, or with both. Using encrypted and
4374             authenticated credentials improves security as credentials are not stored in plaintext and only
4375             authenticated and decrypted into plaintext the moment a service requiring them is started. Moreover,
4376             credentials may be bound to the local hardware and installations, so that they cannot easily be
4377             analyzed offline, or be generated externally.
4378              
4379             The credential files/IPC sockets must be accessible to the service manager, but don't have to
4380             be directly accessible to the unit's processes: the credential data is read and copied into separate,
4381             read-only copies for the unit that are accessible to appropriately privileged processes. This is
4382             particularly useful in combination with C<DynamicUser> as this way privileged data
4383             can be made available to processes running under a dynamic UID (i.e. not a previously known one)
4384             without having to open up access to all users.
4385              
4386             In order to reference the path a credential may be read from within a
4387             C<ExecStart> command line use C<\${CREDENTIALS_DIRECTORY}/mycred>,
4388             e.g. C<ExecStart=cat \${CREDENTIALS_DIRECTORY}/mycred>. In order to reference the path
4389             a credential may be read from within a C<Environment> line use
4390             C<%d/mycred>, e.g. C<Environment=MYCREDPATH=%d/mycred>.
4391              
4392             Currently, an accumulated credential size limit of 1 MB per unit is enforced.
4393              
4394             The service manager itself may receive system credentials that can be propagated to services
4395             from a hosting container manager or VM hypervisor. See the L<Container
4396             Interface|https://systemd.io/CONTAINER_INTERFACE> documentation for details
4397             about the former. For the latter, pass L<DMI/SMBIOS|https://www.dmtf.org/standards/smbios> OEM string table entries
4398             (field type
4399             11) with a prefix of C<io.systemd.credential:> or
4400             C<io.systemd.credential.binary:>. In both cases a key/value pair separated by
4401             C<=> is expected, in the latter case the right-hand side is Base64 decoded when
4402             parsed (thus permitting binary data to be passed in). Example qemu switch: C<-smbios
4403             type=11,value=io.systemd.credential:xx=yy>, or C<-smbios
4404             type=11,value=io.systemd.credential.binary:rick=TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=>. Alternatively,
4405             use the qemu C<fw_cfg> node
4406             C<opt/io.systemd.credentials/>. Example qemu switch: C<-fw_cfg
4407             name=opt/io.systemd.credentials/mycred,string=supersecret>. They may also be specified on
4408             the kernel command line using the C<systemd.set_credential=> switch (see
4409             L<systemd(1)>) and from
4410             the UEFI firmware environment via
4411             L<systemd-stub(7)>.
4412              
4413             If referencing an C<AF_UNIX> stream socket to connect to, the connection will
4414             originate from an abstract namespace socket, that includes information about the unit and the
4415             credential ID in its socket name. Use L<getpeername(2)>
4416             to query this information. The returned socket name is formatted as C<NUL>RANDOM C</unit/> UNITC</> ID, i.e. a C<NUL>
4417             byte (as required
4418             for abstract namespace socket names), followed by a random string (consisting of alphadecimal
4419             characters), followed by the literal string C</unit/>, followed by the requesting
4420             unit name, followed by the literal character C</>, followed by the textual credential
4421             ID requested. Example: C<\\0adf9d86b6eda275e/unit/foobar.service/credx> in case the
4422             credential C<credx> is requested for a unit C<foobar.service>. This
4423             functionality is useful for using a single listening socket to serve credentials to multiple
4424             consumers.
4425              
4426             For further information see L<System and Service
4427             Credentials|https://systemd.io/CREDENTIALS> documentation.",
4428             'type' => 'leaf',
4429             'value_type' => 'uniline'
4430             },
4431             'SetCredential',
4432             {
4433             'description' => 'The C<SetCredential> setting is similar to
4434             C<LoadCredential> but accepts a literal value to use as data for the credential,
4435             instead of a file system path to read the data from. Do not use this option for data that is supposed
4436             to be secret, as it is accessible to unprivileged processes via IPC. It\'s only safe to use this for
4437             user IDs, public key material and similar non-sensitive data. For everything else use
4438             C<LoadCredential>. In order to embed binary data into the credential data use
4439             C-style escaping (i.e. C<\\n> to embed a newline, or C<\\x00> to embed
4440             a C<NUL> byte).
4441              
4442             The C<SetCredentialEncrypted> setting is identical to
4443             C<SetCredential> but expects an encrypted credential in literal form as value. This
4444             allows embedding confidential credentials securely directly in unit files. Use
4445             L<systemd-creds(1)>\'
4446             C<-p> switch to generate suitable C<SetCredentialEncrypted> lines
4447             directly from plaintext credentials. For further details see
4448             C<LoadCredentialEncrypted> above.
4449              
4450             If a credential of the same ID is listed in both C<LoadCredential> and
4451             C<SetCredential>, the latter will act as default if the former cannot be
4452             retrieved. In this case not being able to retrieve the credential from the path specified in
4453             C<LoadCredential> is not considered fatal.',
4454             'type' => 'leaf',
4455             'value_type' => 'uniline'
4456             },
4457             'SetCredentialEncrypted',
4458             {
4459             'description' => 'The C<SetCredential> setting is similar to
4460             C<LoadCredential> but accepts a literal value to use as data for the credential,
4461             instead of a file system path to read the data from. Do not use this option for data that is supposed
4462             to be secret, as it is accessible to unprivileged processes via IPC. It\'s only safe to use this for
4463             user IDs, public key material and similar non-sensitive data. For everything else use
4464             C<LoadCredential>. In order to embed binary data into the credential data use
4465             C-style escaping (i.e. C<\\n> to embed a newline, or C<\\x00> to embed
4466             a C<NUL> byte).
4467              
4468             The C<SetCredentialEncrypted> setting is identical to
4469             C<SetCredential> but expects an encrypted credential in literal form as value. This
4470             allows embedding confidential credentials securely directly in unit files. Use
4471             L<systemd-creds(1)>\'
4472             C<-p> switch to generate suitable C<SetCredentialEncrypted> lines
4473             directly from plaintext credentials. For further details see
4474             C<LoadCredentialEncrypted> above.
4475              
4476             If a credential of the same ID is listed in both C<LoadCredential> and
4477             C<SetCredential>, the latter will act as default if the former cannot be
4478             retrieved. In this case not being able to retrieve the credential from the path specified in
4479             C<LoadCredential> is not considered fatal.',
4480             'type' => 'leaf',
4481             'value_type' => 'uniline'
4482             },
4483             'UtmpIdentifier',
4484             {
4485             'description' => 'Takes a four character identifier string for an L<utmp(5)> and wtmp entry
4486             for this service. This should only be set for services such as getty implementations (such
4487             as L<agetty(8)>) where utmp/wtmp
4488             entries must be created and cleared before and after execution, or for services that shall be executed as if
4489             they were run by a getty process (see below). If the configured string is longer than four
4490             characters, it is truncated and the terminal four characters are used. This setting interprets %I style string
4491             replacements. This setting is unset by default, i.e. no utmp/wtmp entries are created or cleaned up for this
4492             service.',
4493             'type' => 'leaf',
4494             'value_type' => 'uniline'
4495             },
4496             'UtmpMode',
4497             {
4498             'choice' => [
4499             'init',
4500             'login',
4501             'user'
4502             ],
4503             'description' => 'Takes one of C<init>, C<login> or C<user>. If
4504             C<UtmpIdentifier> is set, controls which type of L<utmp(5)>/wtmp entries
4505             for this service are generated. This setting has no effect unless C<UtmpIdentifier> is set
4506             too. If C<init> is set, only an C<INIT_PROCESS> entry is generated and the
4507             invoked process must implement a getty-compatible utmp/wtmp logic. If
4508             C<login> is set, first an C<INIT_PROCESS> entry, followed by a
4509             C<LOGIN_PROCESS> entry is generated. In this case, the invoked process must implement a
4510             L<login(1)>-compatible
4511             utmp/wtmp logic. If C<user> is set, first an C<INIT_PROCESS> entry, then a
4512             C<LOGIN_PROCESS> entry and finally a C<USER_PROCESS> entry is
4513             generated. In this case, the invoked process may be any process that is suitable to be run as session
4514             leader. Defaults to C<init>.',
4515             'type' => 'leaf',
4516             'value_type' => 'enum'
4517             }
4518             ],
4519             'generated_by' => 'parse-man.pl from systemd 252 doc',
4520             'license' => 'LGPLv2.1+',
4521             'name' => 'Systemd::Common::Exec'
4522             }
4523             ]
4524             ;
4525