File Coverage

trees.c
Criterion Covered Total %
statement 267 302 88.4
branch 180 224 80.3
condition n/a
subroutine n/a
pod n/a
total 447 526 84.9


line stmt bran cond sub pod time code
1             /* trees.c -- output deflated data using Huffman coding
2             * Copyright (C) 1995-2021 Jean-loup Gailly
3             * detect_data_type() function provided freely by Cosmin Truta, 2006
4             * For conditions of distribution and use, see copyright notice in zlib.h
5             */
6              
7             /*
8             * ALGORITHM
9             *
10             * The "deflation" process uses several Huffman trees. The more
11             * common source values are represented by shorter bit sequences.
12             *
13             * Each code tree is stored in a compressed form which is itself
14             * a Huffman encoding of the lengths of all the code strings (in
15             * ascending order by source values). The actual code strings are
16             * reconstructed from the lengths in the inflate process, as described
17             * in the deflate specification.
18             *
19             * REFERENCES
20             *
21             * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22             * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23             *
24             * Storer, James A.
25             * Data Compression: Methods and Theory, pp. 49-50.
26             * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27             *
28             * Sedgewick, R.
29             * Algorithms, p290.
30             * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31             */
32              
33             /* @(#) $Id$ */
34              
35             /* #define GEN_TREES_H */
36              
37             #include "deflate.h"
38              
39             /*
40             Perl-specific change to allow building with C++
41             The 'register' keyword not allowed from C++17
42             see https://github.com/pmqs/Compress-Raw-Zlib/issues/23
43             */
44             #define register
45              
46             #ifdef ZLIB_DEBUG
47             # include
48             #endif
49              
50             /* ===========================================================================
51             * Constants
52             */
53              
54             #define MAX_BL_BITS 7
55             /* Bit length codes must not exceed MAX_BL_BITS bits */
56              
57             #define END_BLOCK 256
58             /* end of block literal code */
59              
60             #define REP_3_6 16
61             /* repeat previous bit length 3-6 times (2 bits of repeat count) */
62              
63             #define REPZ_3_10 17
64             /* repeat a zero length 3-10 times (3 bits of repeat count) */
65              
66             #define REPZ_11_138 18
67             /* repeat a zero length 11-138 times (7 bits of repeat count) */
68              
69             local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
70             = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
71              
72             local const int extra_dbits[D_CODES] /* extra bits for each distance code */
73             = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
74              
75             local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
76             = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
77              
78             local const uch bl_order[BL_CODES]
79             = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
80             /* The lengths of the bit length codes are sent in order of decreasing
81             * probability, to avoid transmitting the lengths for unused bit length codes.
82             */
83              
84             /* ===========================================================================
85             * Local data. These are initialized only once.
86             */
87              
88             #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
89              
90             #if defined(GEN_TREES_H) || !defined(STDC)
91             /* non ANSI compilers may not accept trees.h */
92              
93             local ct_data static_ltree[L_CODES+2];
94             /* The static literal tree. Since the bit lengths are imposed, there is no
95             * need for the L_CODES extra codes used during heap construction. However
96             * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
97             * below).
98             */
99              
100             local ct_data static_dtree[D_CODES];
101             /* The static distance tree. (Actually a trivial tree since all codes use
102             * 5 bits.)
103             */
104              
105             uch _dist_code[DIST_CODE_LEN];
106             /* Distance codes. The first 256 values correspond to the distances
107             * 3 .. 258, the last 256 values correspond to the top 8 bits of
108             * the 15 bit distances.
109             */
110              
111             uch _length_code[MAX_MATCH-MIN_MATCH+1];
112             /* length code for each normalized match length (0 == MIN_MATCH) */
113              
114             local int base_length[LENGTH_CODES];
115             /* First normalized length for each code (0 = MIN_MATCH) */
116              
117             local int base_dist[D_CODES];
118             /* First normalized distance for each code (0 = distance of 1) */
119              
120             #else
121             # include "trees.h"
122             #endif /* GEN_TREES_H */
123              
124             struct static_tree_desc_s {
125             const ct_data *static_tree; /* static tree or NULL */
126             const intf *extra_bits; /* extra bits for each code or NULL */
127             int extra_base; /* base index for extra_bits */
128             int elems; /* max number of elements in the tree */
129             int max_length; /* max bit length for the codes */
130             };
131              
132             local const static_tree_desc static_l_desc =
133             {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
134              
135             local const static_tree_desc static_d_desc =
136             {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
137              
138             local const static_tree_desc static_bl_desc =
139             {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
140              
141             /* ===========================================================================
142             * Local (static) routines in this file.
143             */
144              
145             local void tr_static_init OF((void));
146             local void init_block OF((deflate_state *s));
147             local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
148             local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
149             local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
150             local void build_tree OF((deflate_state *s, tree_desc *desc));
151             local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
152             local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
153             local int build_bl_tree OF((deflate_state *s));
154             local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
155             int blcodes));
156             local void compress_block OF((deflate_state *s, const ct_data *ltree,
157             const ct_data *dtree));
158             local int detect_data_type OF((deflate_state *s));
159             local unsigned bi_reverse OF((unsigned code, int len));
160             local void bi_windup OF((deflate_state *s));
161             local void bi_flush OF((deflate_state *s));
162              
163             #ifdef GEN_TREES_H
164             local void gen_trees_header OF((void));
165             #endif
166              
167             #ifndef ZLIB_DEBUG
168             # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
169             /* Send a code of the given tree. c and tree must not have side effects */
170              
171             #else /* !ZLIB_DEBUG */
172             # define send_code(s, c, tree) \
173             { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
174             send_bits(s, tree[c].Code, tree[c].Len); }
175             #endif
176              
177             /* ===========================================================================
178             * Output a short LSB first on the stream.
179             * IN assertion: there is enough room in pendingBuf.
180             */
181             #define put_short(s, w) { \
182             put_byte(s, (uch)((w) & 0xff)); \
183             put_byte(s, (uch)((ush)(w) >> 8)); \
184             }
185              
186             /* ===========================================================================
187             * Send a value on a given number of bits.
188             * IN assertion: length <= 16 and value fits in length bits.
189             */
190             #ifdef ZLIB_DEBUG
191             local void send_bits OF((deflate_state *s, int value, int length));
192              
193             local void send_bits(
194             deflate_state *s,
195             int value,
196             int length)
197             {
198             Tracevv((stderr," l %2d v %4x ", length, value));
199             Assert(length > 0 && length <= 15, "invalid length");
200             s->bits_sent += (ulg)length;
201              
202             /* If not enough room in bi_buf, use (valid) bits from bi_buf and
203             * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
204             * unused bits in value.
205             */
206             if (s->bi_valid > (int)Buf_size - length) {
207             s->bi_buf |= (ush)value << s->bi_valid;
208             put_short(s, s->bi_buf);
209             s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
210             s->bi_valid += length - Buf_size;
211             } else {
212             s->bi_buf |= (ush)value << s->bi_valid;
213             s->bi_valid += length;
214             }
215             }
216             #else /* !ZLIB_DEBUG */
217              
218             #define send_bits(s, value, length) \
219             { int len = length;\
220             if (s->bi_valid > (int)Buf_size - len) {\
221             int val = (int)value;\
222             s->bi_buf |= (ush)val << s->bi_valid;\
223             put_short(s, s->bi_buf);\
224             s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
225             s->bi_valid += len - Buf_size;\
226             } else {\
227             s->bi_buf |= (ush)(value) << s->bi_valid;\
228             s->bi_valid += len;\
229             }\
230             }
231             #endif /* ZLIB_DEBUG */
232              
233              
234             /* the arguments must not have side effects */
235              
236             /* ===========================================================================
237             * Initialize the various 'constant' tables.
238             */
239 33           local void tr_static_init()
240             {
241             #if defined(GEN_TREES_H) || !defined(STDC)
242             static int static_init_done = 0;
243             int n; /* iterates over tree elements */
244             int bits; /* bit counter */
245             int length; /* length value */
246             int code; /* code value */
247             int dist; /* distance index */
248             ush bl_count[MAX_BITS+1];
249             /* number of codes at each bit length for an optimal tree */
250              
251             if (static_init_done) return;
252              
253             /* For some embedded targets, global variables are not initialized: */
254             #ifdef NO_INIT_GLOBAL_POINTERS
255             static_l_desc.static_tree = static_ltree;
256             static_l_desc.extra_bits = extra_lbits;
257             static_d_desc.static_tree = static_dtree;
258             static_d_desc.extra_bits = extra_dbits;
259             static_bl_desc.extra_bits = extra_blbits;
260             #endif
261              
262             /* Initialize the mapping length (0..255) -> length code (0..28) */
263             length = 0;
264             for (code = 0; code < LENGTH_CODES-1; code++) {
265             base_length[code] = length;
266             for (n = 0; n < (1 << extra_lbits[code]); n++) {
267             _length_code[length++] = (uch)code;
268             }
269             }
270             Assert (length == 256, "tr_static_init: length != 256");
271             /* Note that the length 255 (match length 258) can be represented
272             * in two different ways: code 284 + 5 bits or code 285, so we
273             * overwrite length_code[255] to use the best encoding:
274             */
275             _length_code[length - 1] = (uch)code;
276              
277             /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
278             dist = 0;
279             for (code = 0 ; code < 16; code++) {
280             base_dist[code] = dist;
281             for (n = 0; n < (1 << extra_dbits[code]); n++) {
282             _dist_code[dist++] = (uch)code;
283             }
284             }
285             Assert (dist == 256, "tr_static_init: dist != 256");
286             dist >>= 7; /* from now on, all distances are divided by 128 */
287             for ( ; code < D_CODES; code++) {
288             base_dist[code] = dist << 7;
289             for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
290             _dist_code[256 + dist++] = (uch)code;
291             }
292             }
293             Assert (dist == 256, "tr_static_init: 256 + dist != 512");
294              
295             /* Construct the codes of the static literal tree */
296             for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
297             n = 0;
298             while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
299             while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
300             while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
301             while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
302             /* Codes 286 and 287 do not exist, but we must include them in the
303             * tree construction to get a canonical Huffman tree (longest code
304             * all ones)
305             */
306             gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
307              
308             /* The static distance tree is trivial: */
309             for (n = 0; n < D_CODES; n++) {
310             static_dtree[n].Len = 5;
311             static_dtree[n].Code = bi_reverse((unsigned)n, 5);
312             }
313             static_init_done = 1;
314              
315             # ifdef GEN_TREES_H
316             gen_trees_header();
317             # endif
318             #endif /* defined(GEN_TREES_H) || !defined(STDC) */
319 33           }
320              
321             /* ===========================================================================
322             * Generate the file trees.h describing the static trees.
323             */
324             #ifdef GEN_TREES_H
325             # ifndef ZLIB_DEBUG
326             # include
327             # endif
328              
329             # define SEPARATOR(i, last, width) \
330             ((i) == (last)? "\n};\n\n" : \
331             ((i) % (width) == (width) - 1 ? ",\n" : ", "))
332              
333             void gen_trees_header()
334             {
335             FILE *header = fopen("trees.h", "w");
336             int i;
337              
338             Assert (header != NULL, "Can't open trees.h");
339             fprintf(header,
340             "/* header created automatically with -DGEN_TREES_H */\n\n");
341              
342             fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
343             for (i = 0; i < L_CODES+2; i++) {
344             fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
345             static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
346             }
347              
348             fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
349             for (i = 0; i < D_CODES; i++) {
350             fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
351             static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
352             }
353              
354             fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
355             for (i = 0; i < DIST_CODE_LEN; i++) {
356             fprintf(header, "%2u%s", _dist_code[i],
357             SEPARATOR(i, DIST_CODE_LEN-1, 20));
358             }
359              
360             fprintf(header,
361             "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
362             for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
363             fprintf(header, "%2u%s", _length_code[i],
364             SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
365             }
366              
367             fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
368             for (i = 0; i < LENGTH_CODES; i++) {
369             fprintf(header, "%1u%s", base_length[i],
370             SEPARATOR(i, LENGTH_CODES-1, 20));
371             }
372              
373             fprintf(header, "local const int base_dist[D_CODES] = {\n");
374             for (i = 0; i < D_CODES; i++) {
375             fprintf(header, "%5u%s", base_dist[i],
376             SEPARATOR(i, D_CODES-1, 10));
377             }
378              
379             fclose(header);
380             }
381             #endif /* GEN_TREES_H */
382              
383             /* ===========================================================================
384             * Initialize the tree data structures for a new zlib stream.
385             */
386 33           void ZLIB_INTERNAL _tr_init(
387             deflate_state *s)
388             {
389 33           tr_static_init();
390              
391 33           s->l_desc.dyn_tree = s->dyn_ltree;
392 33           s->l_desc.stat_desc = &static_l_desc;
393              
394 33           s->d_desc.dyn_tree = s->dyn_dtree;
395 33           s->d_desc.stat_desc = &static_d_desc;
396              
397 33           s->bl_desc.dyn_tree = s->bl_tree;
398 33           s->bl_desc.stat_desc = &static_bl_desc;
399              
400 33           s->bi_buf = 0;
401 33           s->bi_valid = 0;
402             #ifdef ZLIB_DEBUG
403             s->compressed_len = 0L;
404             s->bits_sent = 0L;
405             #endif
406              
407             /* Initialize the first block of the first file: */
408 33           init_block(s);
409 33           }
410              
411             /* ===========================================================================
412             * Initialize a new block.
413             */
414 68           local void init_block(
415             deflate_state *s)
416             {
417             int n; /* iterates over tree elements */
418              
419             /* Initialize the trees. */
420 19516 100         for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
421 2108 100         for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
422 1360 100         for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
423              
424 68           s->dyn_ltree[END_BLOCK].Freq = 1;
425 68           s->opt_len = s->static_len = 0L;
426 68           s->sym_next = s->matches = 0;
427 68           }
428              
429             #define SMALLEST 1
430             /* Index within the heap array of least frequent node in the Huffman tree */
431              
432              
433             /* ===========================================================================
434             * Remove the smallest element from the heap and recreate the heap with
435             * one less element. Updates heap and heap_len.
436             */
437             #define pqremove(s, tree, top) \
438             {\
439             top = s->heap[SMALLEST]; \
440             s->heap[SMALLEST] = s->heap[s->heap_len--]; \
441             pqdownheap(s, tree, SMALLEST); \
442             }
443              
444             /* ===========================================================================
445             * Compares to subtrees, using the tree depth as tie breaker when
446             * the subtrees have equal frequency. This minimizes the worst case length.
447             */
448             #define smaller(tree, n, m, depth) \
449             (tree[n].Freq < tree[m].Freq || \
450             (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
451              
452             /* ===========================================================================
453             * Restore the heap property by moving down the tree starting at node k,
454             * exchanging a node with the smallest of its two sons if necessary, stopping
455             * when the heap property is re-established (each father smaller than its
456             * two sons).
457             */
458 4381           local void pqdownheap(
459             deflate_state *s,
460             ct_data *tree,
461             int k)
462             {
463 4381           int v = s->heap[k];
464 4381           int j = k << 1; /* left son of k */
465 18485 100         while (j <= s->heap_len) {
466             /* Set j to the smallest of the two sons: */
467 15166 100         if (j < s->heap_len &&
    100          
468 10877 100         smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
    100          
469 7169           j++;
470             }
471             /* Exit if v is smaller than both sons */
472 15166 100         if (smaller(tree, v, s->heap[j], s->depth)) break;
    100          
    100          
473              
474             /* Exchange v with the smallest son */
475 14104           s->heap[k] = s->heap[j]; k = j;
476              
477             /* And continue down the tree, setting j to the left son of k */
478 14104           j <<= 1;
479             }
480 4381           s->heap[k] = v;
481 4381           }
482              
483             /* ===========================================================================
484             * Compute the optimal bit lengths for a tree and update the total bit length
485             * for the current block.
486             * IN assertion: the fields freq and dad are set, heap[heap_max] and
487             * above are the tree nodes sorted by increasing frequency.
488             * OUT assertions: the field len is set to the optimal bit length, the
489             * array bl_count contains the frequencies for each bit length.
490             * The length opt_len is updated; static_len is also updated if stree is
491             * not null.
492             */
493 105           local void gen_bitlen(
494             deflate_state *s,
495             tree_desc *desc)
496             {
497 105           ct_data *tree = desc->dyn_tree;
498 105           int max_code = desc->max_code;
499 105           const ct_data *stree = desc->stat_desc->static_tree;
500 105           const intf *extra = desc->stat_desc->extra_bits;
501 105           int base = desc->stat_desc->extra_base;
502 105           int max_length = desc->stat_desc->max_length;
503             int h; /* heap index */
504             int n, m; /* iterate over the tree elements */
505             int bits; /* bit length */
506             int xbits; /* extra bits */
507             ush f; /* frequency */
508 105           int overflow = 0; /* number of elements with bit length too large */
509              
510 1785 100         for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
511              
512             /* In a first pass, compute the optimal bit lengths (which may
513             * overflow in the case of the bit length tree).
514             */
515 105           tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
516              
517 3583 100         for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
518 3478           n = s->heap[h];
519 3478           bits = tree[tree[n].Dad].Len + 1;
520 3478 50         if (bits > max_length) bits = max_length, overflow++;
521 3478           tree[n].Len = (ush)bits;
522             /* We overwrite tree[n].Dad which is no longer needed */
523              
524 3478 100         if (n > max_code) continue; /* not a leaf node */
525              
526 1844           s->bl_count[bits]++;
527 1844           xbits = 0;
528 1844 100         if (n >= base) xbits = extra[n - base];
529 1844           f = tree[n].Freq;
530 1844           s->opt_len += (ulg)f * (unsigned)(bits + xbits);
531 1844 100         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
532             }
533 105 50         if (overflow == 0) return;
534              
535             Tracev((stderr,"\nbit length overflow\n"));
536             /* This happens for example on obj2 and pic of the Calgary corpus */
537              
538             /* Find the first bit length which could increase: */
539             do {
540 0           bits = max_length - 1;
541 0 0         while (s->bl_count[bits] == 0) bits--;
542 0           s->bl_count[bits]--; /* move one leaf down the tree */
543 0           s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
544 0           s->bl_count[max_length]--;
545             /* The brother of the overflow item also moves one step up,
546             * but this does not affect bl_count[max_length]
547             */
548 0           overflow -= 2;
549 0 0         } while (overflow > 0);
550              
551             /* Now recompute all bit lengths, scanning in increasing frequency.
552             * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
553             * lengths instead of fixing only the wrong ones. This idea is taken
554             * from 'ar' written by Haruhiko Okumura.)
555             */
556 0 0         for (bits = max_length; bits != 0; bits--) {
557 0           n = s->bl_count[bits];
558 0 0         while (n != 0) {
559 0           m = s->heap[--h];
560 0 0         if (m > max_code) continue;
561 0 0         if ((unsigned) tree[m].Len != (unsigned) bits) {
562             Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
563 0           s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
564 0           tree[m].Len = (ush)bits;
565             }
566 0           n--;
567             }
568             }
569             }
570              
571             /* ===========================================================================
572             * Generate the codes for a given tree and bit counts (which need not be
573             * optimal).
574             * IN assertion: the array bl_count contains the bit length statistics for
575             * the given tree and the field len is set for all tree elements.
576             * OUT assertion: the field code is set for all tree elements of non
577             * zero code length.
578             */
579 105           local void gen_codes (
580             ct_data *tree,
581             int max_code,
582             ushf *bl_count)
583             {
584             ush next_code[MAX_BITS+1]; /* next code value for each bit length */
585 105           unsigned code = 0; /* running code value */
586             int bits; /* bit index */
587             int n; /* code index */
588              
589             /* The distribution counts are first used to generate the code values
590             * without bit reversal.
591             */
592 1680 100         for (bits = 1; bits <= MAX_BITS; bits++) {
593 1575           code = (code + bl_count[bits - 1]) << 1;
594 1575           next_code[bits] = (ush)code;
595             }
596             /* Check that the bit counts in bl_count are consistent. The last code
597             * must be all ones.
598             */
599             Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
600             "inconsistent bit counts");
601             Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
602              
603 10145 100         for (n = 0; n <= max_code; n++) {
604 10040           int len = tree[n].Len;
605 10040 100         if (len == 0) continue;
606             /* Now reverse the bits */
607 1844           tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
608              
609             Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
610             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
611             }
612 105           }
613              
614             /* ===========================================================================
615             * Construct one Huffman tree and assigns the code bit strings and lengths.
616             * Update the total bit length for the current block.
617             * IN assertion: the field freq is set for all tree elements.
618             * OUT assertions: the fields len and code are set to the optimal bit length
619             * and corresponding code. The length opt_len is updated; static_len is
620             * also updated if stree is not null. The field max_code is set.
621             */
622 105           local void build_tree(
623             deflate_state *s,
624             tree_desc *desc)
625             {
626 105           ct_data *tree = desc->dyn_tree;
627 105           const ct_data *stree = desc->stat_desc->static_tree;
628 105           int elems = desc->stat_desc->elems;
629             int n, m; /* iterate over heap elements */
630 105           int max_code = -1; /* largest code with non zero frequency */
631             int node; /* new node being created */
632              
633             /* Construct the initial heap, with least frequent element in
634             * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
635             * heap[0] is not used.
636             */
637 105           s->heap_len = 0, s->heap_max = HEAP_SIZE;
638              
639 11830 100         for (n = 0; n < elems; n++) {
640 11725 100         if (tree[n].Freq != 0) {
641 1791           s->heap[++(s->heap_len)] = max_code = n;
642 1791           s->depth[n] = 0;
643             } else {
644 9934           tree[n].Len = 0;
645             }
646             }
647              
648             /* The pkzip format requires that at least one distance code exists,
649             * and that at least one bit should be sent even if there is only one
650             * possible code. So to avoid special checks later on we force at least
651             * two codes of non zero frequency.
652             */
653 158 100         while (s->heap_len < 2) {
654 53 100         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655 53           tree[node].Freq = 1;
656 53           s->depth[node] = 0;
657 53 50         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658             /* node is 0 or 1 so it does not have extra bits */
659             }
660 105           desc->max_code = max_code;
661              
662             /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
663             * establish sub-heaps of increasing lengths:
664             */
665 1008 100         for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666              
667             /* Construct the Huffman tree by repeatedly combining the least two
668             * frequent nodes.
669             */
670 105           node = elems; /* next internal node of the tree */
671             do {
672 1739           pqremove(s, tree, n); /* n = node of least frequency */
673 1739           m = s->heap[SMALLEST]; /* m = node of next least frequency */
674              
675 1739           s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676 1739           s->heap[--(s->heap_max)] = m;
677              
678             /* Create a new node father of n and m */
679 1739           tree[node].Freq = tree[n].Freq + tree[m].Freq;
680 1739 100         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681 1739           s->depth[n] : s->depth[m]) + 1);
682 1739           tree[n].Dad = tree[m].Dad = (ush)node;
683             #ifdef DUMP_BL_TREE
684             if (tree == s->bl_tree) {
685             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686             node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687             }
688             #endif
689             /* and insert the new node in the heap */
690 1739           s->heap[SMALLEST] = node++;
691 1739           pqdownheap(s, tree, SMALLEST);
692              
693 1739 100         } while (s->heap_len >= 2);
694              
695 105           s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696              
697             /* At this point, the fields freq and dad are set. We can now
698             * generate the bit lengths.
699             */
700 105           gen_bitlen(s, (tree_desc *)desc);
701              
702             /* The field len is now set, we can generate the bit codes */
703 105           gen_codes ((ct_data *)tree, max_code, s->bl_count);
704 105           }
705              
706             /* ===========================================================================
707             * Scan a literal or distance tree to determine the frequencies of the codes
708             * in the bit length tree.
709             */
710 70           local void scan_tree (
711             deflate_state *s,
712             ct_data *tree,
713             int max_code)
714             {
715             int n; /* iterates over all tree elements */
716 70           int prevlen = -1; /* last emitted length */
717             int curlen; /* length of current code */
718 70           int nextlen = tree[0].Len; /* length of next code */
719 70           int count = 0; /* repeat count of the current code */
720 70           int max_count = 7; /* max repeat count */
721 70           int min_count = 4; /* min repeat count */
722              
723 70 100         if (nextlen == 0) max_count = 138, min_count = 3;
724 70           tree[max_code + 1].Len = (ush)0xffff; /* guard */
725              
726 9449 100         for (n = 0; n <= max_code; n++) {
727 9379           curlen = nextlen; nextlen = tree[n + 1].Len;
728 9379 100         if (++count < max_count && curlen == nextlen) {
    100          
729 8261           continue;
730 1118 100         } else if (count < min_count) {
731 726           s->bl_tree[curlen].Freq += count;
732 392 100         } else if (curlen != 0) {
733 154 100         if (curlen != prevlen) s->bl_tree[curlen].Freq++;
734 154           s->bl_tree[REP_3_6].Freq++;
735 238 100         } else if (count <= 10) {
736 110           s->bl_tree[REPZ_3_10].Freq++;
737             } else {
738 128           s->bl_tree[REPZ_11_138].Freq++;
739             }
740 1118           count = 0; prevlen = curlen;
741 1118 100         if (nextlen == 0) {
742 372           max_count = 138, min_count = 3;
743 746 100         } else if (curlen == nextlen) {
744 124           max_count = 6, min_count = 3;
745             } else {
746 622           max_count = 7, min_count = 4;
747             }
748             }
749 70           }
750              
751             /* ===========================================================================
752             * Send a literal or distance tree in compressed form, using the codes in
753             * bl_tree.
754             */
755 14           local void send_tree (
756             deflate_state *s,
757             ct_data *tree,
758             int max_code)
759             {
760             int n; /* iterates over all tree elements */
761 14           int prevlen = -1; /* last emitted length */
762             int curlen; /* length of current code */
763 14           int nextlen = tree[0].Len; /* length of next code */
764 14           int count = 0; /* repeat count of the current code */
765 14           int max_count = 7; /* max repeat count */
766 14           int min_count = 4; /* min repeat count */
767              
768             /* tree[max_code + 1].Len = -1; */ /* guard already set */
769 14 100         if (nextlen == 0) max_count = 138, min_count = 3;
770              
771 2070 100         for (n = 0; n <= max_code; n++) {
772 2056           curlen = nextlen; nextlen = tree[n + 1].Len;
773 2056 100         if (++count < max_count && curlen == nextlen) {
    100          
774 1853           continue;
775 203 100         } else if (count < min_count) {
776 155 100         do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
    100          
777              
778 69 100         } else if (curlen != 0) {
779 1 50         if (curlen != prevlen) {
780 1 50         send_code(s, curlen, s->bl_tree); count--;
781             }
782             Assert(count >= 3 && count <= 6, " 3_6?");
783 1 50         send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
    50          
784              
785 68 100         } else if (count <= 10) {
786 35 100         send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
    100          
787              
788             } else {
789 33 100         send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
    100          
790             }
791 203           count = 0; prevlen = curlen;
792 203 100         if (nextlen == 0) {
793 86           max_count = 138, min_count = 3;
794 117 50         } else if (curlen == nextlen) {
795 0           max_count = 6, min_count = 3;
796             } else {
797 117           max_count = 7, min_count = 4;
798             }
799             }
800 14           }
801              
802             /* ===========================================================================
803             * Construct the Huffman tree for the bit lengths and return the index in
804             * bl_order of the last bit length code to send.
805             */
806 35           local int build_bl_tree(
807             deflate_state *s)
808             {
809             int max_blindex; /* index of last bit length code of non zero freq */
810              
811             /* Determine the bit length frequencies for literal and distance trees */
812 35           scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
813 35           scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
814              
815             /* Build the bit length tree: */
816 35           build_tree(s, (tree_desc *)(&(s->bl_desc)));
817             /* opt_len now includes the length of the tree representations, except the
818             * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
819             */
820              
821             /* Determine the number of bit length codes to send. The pkzip format
822             * requires that at least 4 bit length codes be sent. (appnote.txt says
823             * 3 but the actual value used is 4.)
824             */
825 74 50         for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
826 74 100         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
827             }
828             /* Update opt_len to include the bit length tree and counts */
829 35           s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
830             Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
831             s->opt_len, s->static_len));
832              
833 35           return max_blindex;
834             }
835              
836             /* ===========================================================================
837             * Send the header for a block using dynamic Huffman trees: the counts, the
838             * lengths of the bit length codes, the literal tree and the distance tree.
839             * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
840             */
841 7           local void send_all_trees(
842             deflate_state *s,
843             int lcodes,
844             int dcodes,
845             int blcodes)
846             {
847             int rank; /* index in bl_order */
848              
849             Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
850             Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
851             "too many codes");
852             Tracev((stderr, "\nbl counts: "));
853 7 50         send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
854 7 50         send_bits(s, dcodes - 1, 5);
855 7 50         send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
856 133 100         for (rank = 0; rank < blcodes; rank++) {
857             Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
858 126 100         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
859             }
860             Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
861              
862 7           send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
863             Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
864              
865 7           send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
866             Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
867 7           }
868              
869             /* ===========================================================================
870             * Send a stored block
871             */
872 10           void ZLIB_INTERNAL _tr_stored_block(
873             deflate_state *s,
874             charf *buf,
875             ulg stored_len,
876             int last)
877             {
878 10 50         send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */
879 10           bi_windup(s); /* align on byte boundary */
880 10           put_short(s, (ush)stored_len);
881 10           put_short(s, (ush)~stored_len);
882 10 100         if (stored_len)
883 6           zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
884 10           s->pending += stored_len;
885             #ifdef ZLIB_DEBUG
886             s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
887             s->compressed_len += (stored_len + 4) << 3;
888             s->bits_sent += 2*16;
889             s->bits_sent += stored_len << 3;
890             #endif
891 10           }
892              
893             /* ===========================================================================
894             * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
895             */
896 171           void ZLIB_INTERNAL _tr_flush_bits(
897             deflate_state *s)
898             {
899 171           bi_flush(s);
900 171           }
901              
902             /* ===========================================================================
903             * Send one empty static block to give enough lookahead for inflate.
904             * This takes 10 bits, of which 7 may remain in the bit buffer.
905             */
906 0           void ZLIB_INTERNAL _tr_align(
907             deflate_state *s)
908             {
909 0 0         send_bits(s, STATIC_TREES<<1, 3);
910 0 0         send_code(s, END_BLOCK, static_ltree);
911             #ifdef ZLIB_DEBUG
912             s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
913             #endif
914 0           bi_flush(s);
915 0           }
916              
917             /* ===========================================================================
918             * Determine the best encoding for the current block: dynamic trees, static
919             * trees or store, and write out the encoded block.
920             */
921 35           void ZLIB_INTERNAL _tr_flush_block(
922             deflate_state *s,
923             charf *buf,
924             ulg stored_len,
925             int last)
926             {
927             ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
928 35           int max_blindex = 0; /* index of last bit length code of non zero freq */
929              
930             /* Build the Huffman trees unless a stored block is forced */
931 35 50         if (s->level > 0) {
932              
933             /* Check if the file is binary or text */
934 35 100         if (s->strm->data_type == Z_UNKNOWN)
935 32           s->strm->data_type = detect_data_type(s);
936              
937             /* Construct the literal and distance trees */
938 35           build_tree(s, (tree_desc *)(&(s->l_desc)));
939             Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
940             s->static_len));
941              
942 35           build_tree(s, (tree_desc *)(&(s->d_desc)));
943             Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
944             s->static_len));
945             /* At this point, opt_len and static_len are the total bit lengths of
946             * the compressed block data, excluding the tree representations.
947             */
948              
949             /* Build the bit length tree for the above two trees, and get the index
950             * in bl_order of the last bit length code to send.
951             */
952 35           max_blindex = build_bl_tree(s);
953              
954             /* Determine the best encoding. Compute the block lengths in bytes. */
955 35           opt_lenb = (s->opt_len + 3 + 7) >> 3;
956 35           static_lenb = (s->static_len + 3 + 7) >> 3;
957              
958             Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
959             opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
960             s->sym_next / 3));
961              
962             #ifndef FORCE_STATIC
963 35 100         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
    50          
964             #endif
965 35           opt_lenb = static_lenb;
966              
967             } else {
968             Assert(buf != (char*)0, "lost buf");
969 0           opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
970             }
971              
972             #ifdef FORCE_STORED
973             if (buf != (char*)0) { /* force stored block */
974             #else
975 35 100         if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
    50          
976             /* 4: two words for the lengths */
977             #endif
978             /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
979             * Otherwise we can't have processed more than WSIZE input bytes since
980             * the last block flush, because compression would have been
981             * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
982             * transform a block into a stored block.
983             */
984 4           _tr_stored_block(s, buf, stored_len, last);
985              
986 31 100         } else if (static_lenb == opt_lenb) {
987 24 50         send_bits(s, (STATIC_TREES<<1) + last, 3);
988 24           compress_block(s, (const ct_data *)static_ltree,
989             (const ct_data *)static_dtree);
990             #ifdef ZLIB_DEBUG
991             s->compressed_len += 3 + s->static_len;
992             #endif
993             } else {
994 7 50         send_bits(s, (DYN_TREES<<1) + last, 3);
995 7           send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
996             max_blindex + 1);
997 7           compress_block(s, (const ct_data *)s->dyn_ltree,
998 7           (const ct_data *)s->dyn_dtree);
999             #ifdef ZLIB_DEBUG
1000             s->compressed_len += 3 + s->opt_len;
1001             #endif
1002             }
1003             Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1004             /* The above check is made mod 2^32, for files larger than 512 MB
1005             * and uLong implemented on 32 bits.
1006             */
1007 35           init_block(s);
1008              
1009 35 100         if (last) {
1010 29           bi_windup(s);
1011             #ifdef ZLIB_DEBUG
1012             s->compressed_len += 7; /* align on byte boundary */
1013             #endif
1014             }
1015             Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1016             s->compressed_len - 7*last));
1017 35           }
1018              
1019             /* ===========================================================================
1020             * Save the match info and tally the frequency counts. Return true if
1021             * the current block must be flushed.
1022             */
1023 0           int ZLIB_INTERNAL _tr_tally (
1024             deflate_state *s,
1025             unsigned dist,
1026             unsigned lc)
1027             {
1028 0           s->sym_buf[s->sym_next++] = (uch)dist;
1029 0           s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1030 0           s->sym_buf[s->sym_next++] = (uch)lc;
1031 0 0         if (dist == 0) {
1032             /* lc is the unmatched char */
1033 0           s->dyn_ltree[lc].Freq++;
1034             } else {
1035 0           s->matches++;
1036             /* Here, lc is the match length - MIN_MATCH */
1037 0           dist--; /* dist = match distance - 1 */
1038             Assert((ush)dist < (ush)MAX_DIST(s) &&
1039             (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1040             (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1041              
1042 0           s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1043 0 0         s->dyn_dtree[d_code(dist)].Freq++;
1044             }
1045 0           return (s->sym_next == s->sym_end);
1046             }
1047              
1048             /* ===========================================================================
1049             * Send the block data compressed using the given Huffman trees
1050             */
1051 31           local void compress_block(
1052             deflate_state *s,
1053             const ct_data *ltree,
1054             const ct_data *dtree)
1055             {
1056             unsigned dist; /* distance of matched string */
1057             int lc; /* match length or unmatched char (if dist == 0) */
1058 31           unsigned sx = 0; /* running index in sym_buf */
1059             unsigned code; /* the code to send */
1060             int extra; /* number of extra bits to send */
1061              
1062 31 50         if (s->sym_next != 0) do {
1063 1882           dist = s->sym_buf[sx++] & 0xff;
1064 1882           dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
1065 1882           lc = s->sym_buf[sx++];
1066 1882 100         if (dist == 0) {
1067 657 100         send_code(s, lc, ltree); /* send a literal byte */
1068             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1069             } else {
1070             /* Here, lc is the match length - MIN_MATCH */
1071 1225           code = _length_code[lc];
1072 1225 100         send_code(s, code + LITERALS + 1, ltree); /* send length code */
1073 1225           extra = extra_lbits[code];
1074 1225 100         if (extra != 0) {
1075 8           lc -= base_length[code];
1076 8 50         send_bits(s, lc, extra); /* send the extra length bits */
1077             }
1078 1225           dist--; /* dist is now the match distance - 1 */
1079 1225 50         code = d_code(dist);
1080             Assert (code < D_CODES, "bad d_code");
1081              
1082 1225 100         send_code(s, code, dtree); /* send the distance code */
1083 1225           extra = extra_dbits[code];
1084 1225 100         if (extra != 0) {
1085 833           dist -= (unsigned)base_dist[code];
1086 833 100         send_bits(s, dist, extra); /* send the extra distance bits */
1087             }
1088             } /* literal or match pair ? */
1089              
1090             /* Check that the overlay between pending_buf and sym_buf is ok: */
1091             Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
1092              
1093 1882 100         } while (sx < s->sym_next);
1094              
1095 31 100         send_code(s, END_BLOCK, ltree);
1096 31           }
1097              
1098             /* ===========================================================================
1099             * Check if the data type is TEXT or BINARY, using the following algorithm:
1100             * - TEXT if the two conditions below are satisfied:
1101             * a) There are no non-portable control characters belonging to the
1102             * "block list" (0..6, 14..25, 28..31).
1103             * b) There is at least one printable character belonging to the
1104             * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1105             * - BINARY otherwise.
1106             * - The following partially-portable control characters form a
1107             * "gray list" that is ignored in this detection algorithm:
1108             * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1109             * IN assertion: the fields Freq of dyn_ltree are set.
1110             */
1111 32           local int detect_data_type(
1112             deflate_state *s)
1113             {
1114             /* block_mask is the bit mask of block-listed bytes
1115             * set bits 0..6, 14..25, and 28..31
1116             * 0xf3ffc07f = binary 11110011111111111100000001111111
1117             */
1118 32           unsigned long block_mask = 0xf3ffc07fUL;
1119             int n;
1120              
1121             /* Check for non-textual ("block-listed") bytes. */
1122 960 100         for (n = 0; n <= 31; n++, block_mask >>= 1)
1123 931 100         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
    100          
1124 3           return Z_BINARY;
1125              
1126             /* Check for textual ("allow-listed") bytes. */
1127 29 50         if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
    100          
1128 24 50         || s->dyn_ltree[13].Freq != 0)
1129 5           return Z_TEXT;
1130 117 50         for (n = 32; n < LITERALS; n++)
1131 117 100         if (s->dyn_ltree[n].Freq != 0)
1132 24           return Z_TEXT;
1133              
1134             /* There are no "block-listed" or "allow-listed" bytes:
1135             * this stream either is empty or has tolerated ("gray-listed") bytes only.
1136             */
1137 0           return Z_BINARY;
1138             }
1139              
1140             /* ===========================================================================
1141             * Reverse the first len bits of a code, using straightforward code (a faster
1142             * method would use a table)
1143             * IN assertion: 1 <= len <= 15
1144             */
1145 1844           local unsigned bi_reverse(
1146             unsigned code,
1147             int len)
1148             {
1149 1844           register unsigned res = 0;
1150             do {
1151 11325           res |= code & 1;
1152 11325           code >>= 1, res <<= 1;
1153 11325 100         } while (--len > 0);
1154 1844           return res >> 1;
1155             }
1156              
1157             /* ===========================================================================
1158             * Flush the bit buffer, keeping at most 7 bits in it.
1159             */
1160 171           local void bi_flush(
1161             deflate_state *s)
1162             {
1163 171 100         if (s->bi_valid == 16) {
1164 1           put_short(s, s->bi_buf);
1165 1           s->bi_buf = 0;
1166 1           s->bi_valid = 0;
1167 170 100         } else if (s->bi_valid >= 8) {
1168 1           put_byte(s, (Byte)s->bi_buf);
1169 1           s->bi_buf >>= 8;
1170 1           s->bi_valid -= 8;
1171             }
1172 171           }
1173              
1174             /* ===========================================================================
1175             * Flush the bit buffer and align the output on a byte boundary
1176             */
1177 39           local void bi_windup(
1178             deflate_state *s)
1179             {
1180 39 100         if (s->bi_valid > 8) {
1181 19           put_short(s, s->bi_buf);
1182 20 100         } else if (s->bi_valid > 0) {
1183 17           put_byte(s, (Byte)s->bi_buf);
1184             }
1185 39           s->bi_buf = 0;
1186 39           s->bi_valid = 0;
1187             #ifdef ZLIB_DEBUG
1188             s->bits_sent = (s->bits_sent + 7) & ~7;
1189             #endif
1190 39           }