File Coverage

inftrees.c
Criterion Covered Total %
statement 78 109 71.5
branch 46 76 60.5
condition n/a
subroutine n/a
pod n/a
total 124 185 67.0


line stmt bran cond sub pod time code
1             /* inftrees.c -- generate Huffman trees for efficient decoding
2             * Copyright (C) 1995-2022 Mark Adler
3             * For conditions of distribution and use, see copyright notice in zlib.h
4             */
5              
6             #include "zutil.h"
7             #include "inftrees.h"
8              
9             #define MAXBITS 15
10              
11             const char inflate_copyright[] =
12             " inflate 1.2.13 Copyright 1995-2022 Mark Adler ";
13             /*
14             If you use the zlib library in a product, an acknowledgment is welcome
15             in the documentation of your product. If for some reason you cannot
16             include such an acknowledgment, I would appreciate that you keep this
17             copyright string in the executable of your product.
18             */
19              
20             /*
21             Build a set of tables to decode the provided canonical Huffman code.
22             The code lengths are lens[0..codes-1]. The result starts at *table,
23             whose indices are 0..2^bits-1. work is a writable array of at least
24             lens shorts, which is used as a work area. type is the type of code
25             to be generated, CODES, LENS, or DISTS. On return, zero is success,
26             -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
27             on return points to the next available entry's address. bits is the
28             requested root table index bits, and on return it is the actual root
29             table index bits. It will differ if the request is greater than the
30             longest code or if it is less than the shortest code.
31             */
32 36           int ZLIB_INTERNAL inflate_table(
33             codetype type,
34             unsigned short FAR *lens,
35             unsigned codes,
36             code FAR * FAR *table,
37             unsigned FAR *bits,
38             unsigned short FAR *work)
39             {
40             unsigned len; /* a code's length in bits */
41             unsigned sym; /* index of code symbols */
42             unsigned min, max; /* minimum and maximum code lengths */
43             unsigned root; /* number of index bits for root table */
44             unsigned curr; /* number of index bits for current table */
45             unsigned drop; /* code bits to drop for sub-table */
46             int left; /* number of prefix codes available */
47             unsigned used; /* code entries in table used */
48             unsigned huff; /* Huffman code */
49             unsigned incr; /* for incrementing code, index */
50             unsigned fill; /* index for replicating entries */
51             unsigned low; /* low bits for current root entry */
52             unsigned mask; /* mask for low root bits */
53             code here; /* table entry for duplication */
54             code FAR *next; /* next available space in table */
55             const unsigned short FAR *base; /* base value table to use */
56             const unsigned short FAR *extra; /* extra bits table to use */
57             unsigned match; /* use base and extra for symbol >= match */
58             unsigned short count[MAXBITS+1]; /* number of codes of each length */
59             unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
60             static const unsigned short lbase[31] = { /* Length codes 257..285 base */
61             3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
62             35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
63             static const unsigned short lext[31] = { /* Length codes 257..285 extra */
64             16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
65             19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 194, 65};
66             static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
67             1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
68             257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
69             8193, 12289, 16385, 24577, 0, 0};
70             static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
71             16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
72             23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
73             28, 28, 29, 29, 64, 64};
74              
75             /*
76             Process a set of code lengths to create a canonical Huffman code. The
77             code lengths are lens[0..codes-1]. Each length corresponds to the
78             symbols 0..codes-1. The Huffman code is generated by first sorting the
79             symbols by length from short to long, and retaining the symbol order
80             for codes with equal lengths. Then the code starts with all zero bits
81             for the first code of the shortest length, and the codes are integer
82             increments for the same length, and zeros are appended as the length
83             increases. For the deflate format, these bits are stored backwards
84             from their more natural integer increment ordering, and so when the
85             decoding tables are built in the large loop below, the integer codes
86             are incremented backwards.
87              
88             This routine assumes, but does not check, that all of the entries in
89             lens[] are in the range 0..MAXBITS. The caller must assure this.
90             1..MAXBITS is interpreted as that code length. zero means that that
91             symbol does not occur in this code.
92              
93             The codes are sorted by computing a count of codes for each length,
94             creating from that a table of starting indices for each length in the
95             sorted table, and then entering the symbols in order in the sorted
96             table. The sorted table is work[], with that space being provided by
97             the caller.
98              
99             The length counts are used for other purposes as well, i.e. finding
100             the minimum and maximum length codes, determining if there are any
101             codes at all, checking for a valid set of lengths, and looking ahead
102             at length counts to determine sub-table sizes when building the
103             decoding tables.
104             */
105              
106             /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
107 612 100         for (len = 0; len <= MAXBITS; len++)
108 576           count[len] = 0;
109 3794 100         for (sym = 0; sym < codes; sym++)
110 3758           count[lens[sym]]++;
111              
112             /* bound code lengths, force root to be within code lengths */
113 36           root = *bits;
114 447 50         for (max = MAXBITS; max >= 1; max--)
115 447 100         if (count[max] != 0) break;
116 36 50         if (root > max) root = max;
117 36 50         if (max == 0) { /* no symbols to code at all */
118 0           here.op = (unsigned char)64; /* invalid code marker */
119 0           here.bits = (unsigned char)1;
120 0           here.val = (unsigned short)0;
121 0           *(*table)++ = here; /* make a table to force an error */
122 0           *(*table)++ = here;
123 0           *bits = 1;
124 0           return 0; /* no symbols, but wait for decoding to report error */
125             }
126 48 100         for (min = 1; min < max; min++)
127 36 100         if (count[min] != 0) break;
128 36 50         if (root < min) root = min;
129              
130             /* check for an over-subscribed or incomplete set of lengths */
131 36           left = 1;
132 576 100         for (len = 1; len <= MAXBITS; len++) {
133 540           left <<= 1;
134 540           left -= count[len];
135 540 50         if (left < 0) return -1; /* over-subscribed */
136             }
137 36 50         if (left > 0 && (type == CODES || max != 1))
    0          
    0          
138 0           return -1; /* incomplete set */
139              
140             /* generate offsets into symbol table for each length for sorting */
141 36           offs[1] = 0;
142 540 100         for (len = 1; len < MAXBITS; len++)
143 504           offs[len + 1] = offs[len] + count[len];
144              
145             /* sort symbols by length, by symbol order within each length */
146 3794 100         for (sym = 0; sym < codes; sym++)
147 3758 100         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
148              
149             /*
150             Create and fill in decoding tables. In this loop, the table being
151             filled is at next and has curr index bits. The code being used is huff
152             with length len. That code is converted to an index by dropping drop
153             bits off of the bottom. For codes where len is less than drop + curr,
154             those top drop + curr - len bits are incremented through all values to
155             fill the table with replicated entries.
156              
157             root is the number of index bits for the root table. When len exceeds
158             root, sub-tables are created pointed to by the root entry with an index
159             of the low root bits of huff. This is saved in low to check for when a
160             new sub-table should be started. drop is zero when the root table is
161             being filled, and drop is root when sub-tables are being filled.
162              
163             When a new sub-table is needed, it is necessary to look ahead in the
164             code lengths to determine what size sub-table is needed. The length
165             counts are used for this, and so count[] is decremented as codes are
166             entered in the tables.
167              
168             used keeps track of how many table entries have been allocated from the
169             provided *table space. It is checked for LENS and DIST tables against
170             the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
171             the initial root table size constants. See the comments in inftrees.h
172             for more information.
173              
174             sym increments through all symbols, and the loop terminates when
175             all codes of length max, i.e. all codes, have been processed. This
176             routine permits incomplete codes, so another loop after this one fills
177             in the rest of the decoding tables with invalid code markers.
178             */
179              
180             /* set up for code type */
181 36           switch (type) {
182             case CODES:
183 12           base = extra = work; /* dummy value--not used */
184 12           match = 20;
185 12           break;
186             case LENS:
187 12           base = lbase;
188 12           extra = lext;
189 12           match = 257;
190 12           break;
191             default: /* DISTS */
192 12           base = dbase;
193 12           extra = dext;
194 12           match = 0;
195             }
196              
197             /* initialize state for loop */
198 36           huff = 0; /* starting code */
199 36           sym = 0; /* starting code symbol */
200 36           len = min; /* starting code length */
201 36           next = *table; /* current table to fill in */
202 36           curr = root; /* current table index bits */
203 36           drop = 0; /* current bits to drop from code for index */
204 36           low = (unsigned)(-1); /* trigger new sub-table when len > root */
205 36           used = 1U << root; /* use root table entries */
206 36           mask = used - 1; /* mask for comparing low */
207              
208             /* check available table space */
209 36 100         if ((type == LENS && used > ENOUGH_LENS) ||
    50          
    100          
210 12 50         (type == DISTS && used > ENOUGH_DISTS))
211 0           return 1;
212              
213             /* process all codes and make table entries */
214             for (;;) {
215             /* create table entry */
216 312           here.bits = (unsigned char)(len - drop);
217 312 100         if (work[sym] + 1U < match) {
218 252           here.op = (unsigned char)0;
219 252           here.val = work[sym];
220             }
221 60 100         else if (work[sym] >= match) {
222 48           here.op = (unsigned char)(extra[work[sym] - match]);
223 48           here.val = base[work[sym] - match];
224             }
225             else {
226 12           here.op = (unsigned char)(32 + 64); /* end of block */
227 12           here.val = 0;
228             }
229              
230             /* replicate for those indices with low len bits equal to huff */
231 312           incr = 1U << (len - drop);
232 312           fill = 1U << curr;
233 312           min = fill; /* save offset to next table */
234             do {
235 912           fill -= incr;
236 912           next[(huff >> drop) + fill] = here;
237 912 100         } while (fill != 0);
238              
239             /* backwards increment the len-bit code huff */
240 312           incr = 1U << (len - 1);
241 588 100         while (huff & incr)
242 276           incr >>= 1;
243 312 100         if (incr != 0) {
244 276           huff &= incr - 1;
245 276           huff += incr;
246             }
247             else
248 36           huff = 0;
249              
250             /* go to next symbol, update count, len */
251 312           sym++;
252 312 100         if (--(count[len]) == 0) {
253 101 100         if (len == max) break;
254 65           len = lens[work[sym]];
255             }
256              
257             /* create new sub-table if needed */
258 276 50         if (len > root && (huff & mask) != low) {
    0          
259             /* if first time, transition to sub-tables */
260 0 0         if (drop == 0)
261 0           drop = root;
262              
263             /* increment past last table */
264 0           next += min; /* here min is 1 << curr */
265              
266             /* determine length of next table */
267 0           curr = len - drop;
268 0           left = (int)(1 << curr);
269 0 0         while (curr + drop < max) {
270 0           left -= count[curr + drop];
271 0 0         if (left <= 0) break;
272 0           curr++;
273 0           left <<= 1;
274             }
275              
276             /* check for enough space */
277 0           used += 1U << curr;
278 0 0         if ((type == LENS && used > ENOUGH_LENS) ||
    0          
    0          
279 0 0         (type == DISTS && used > ENOUGH_DISTS))
280 0           return 1;
281              
282             /* point entry in root table to sub-table */
283 0           low = huff & mask;
284 0           (*table)[low].op = (unsigned char)curr;
285 0           (*table)[low].bits = (unsigned char)root;
286 0           (*table)[low].val = (unsigned short)(next - *table);
287             }
288 276           }
289              
290             /* fill in remaining table entry if code is incomplete (guaranteed to have
291             at most one remaining entry, since if the code is incomplete, the
292             maximum code length that was allowed to get this far is one bit) */
293 36 50         if (huff != 0) {
294 0           here.op = (unsigned char)64; /* invalid code marker */
295 0           here.bits = (unsigned char)(len - drop);
296 0           here.val = (unsigned short)0;
297 0           next[huff] = here;
298             }
299              
300             /* set return parameters */
301 36           *table += used;
302 36           *bits = root;
303 36           return 0;
304             }