File Coverage

deflate.c
Criterion Covered Total %
statement 484 857 56.4
branch 348 784 44.3
condition n/a
subroutine n/a
pod n/a
total 832 1641 50.7


line stmt bran cond sub pod time code
1             /* deflate.c -- compress data using the deflation algorithm
2             * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3             * For conditions of distribution and use, see copyright notice in zlib.h
4             */
5              
6             /*
7             * ALGORITHM
8             *
9             * The "deflation" process depends on being able to identify portions
10             * of the input text which are identical to earlier input (within a
11             * sliding window trailing behind the input currently being processed).
12             *
13             * The most straightforward technique turns out to be the fastest for
14             * most input files: try all possible matches and select the longest.
15             * The key feature of this algorithm is that insertions into the string
16             * dictionary are very simple and thus fast, and deletions are avoided
17             * completely. Insertions are performed at each input character, whereas
18             * string matches are performed only when the previous match ends. So it
19             * is preferable to spend more time in matches to allow very fast string
20             * insertions and avoid deletions. The matching algorithm for small
21             * strings is inspired from that of Rabin & Karp. A brute force approach
22             * is used to find longer strings when a small match has been found.
23             * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24             * (by Leonid Broukhis).
25             * A previous version of this file used a more sophisticated algorithm
26             * (by Fiala and Greene) which is guaranteed to run in linear amortized
27             * time, but has a larger average cost, uses more memory and is patented.
28             * However the F&G algorithm may be faster for some highly redundant
29             * files if the parameter max_chain_length (described below) is too large.
30             *
31             * ACKNOWLEDGEMENTS
32             *
33             * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34             * I found it in 'freeze' written by Leonid Broukhis.
35             * Thanks to many people for bug reports and testing.
36             *
37             * REFERENCES
38             *
39             * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40             * Available in http://tools.ietf.org/html/rfc1951
41             *
42             * A description of the Rabin and Karp algorithm is given in the book
43             * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44             *
45             * Fiala,E.R., and Greene,D.H.
46             * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47             *
48             */
49              
50             /* @(#) $Id$ */
51              
52             #include "deflate.h"
53              
54             const char deflate_copyright[] =
55             " deflate 1.2.13 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56             /*
57             If you use the zlib library in a product, an acknowledgment is welcome
58             in the documentation of your product. If for some reason you cannot
59             include such an acknowledgment, I would appreciate that you keep this
60             copyright string in the executable of your product.
61             */
62              
63             /* ===========================================================================
64             * Function prototypes.
65             */
66             typedef enum {
67             need_more, /* block not completed, need more input or more output */
68             block_done, /* block flush performed */
69             finish_started, /* finish started, need only more output at next deflate */
70             finish_done /* finish done, accept no more input or output */
71             } block_state;
72              
73             typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74             /* Compression function. Returns the block state after the call. */
75              
76             local int deflateStateCheck OF((z_streamp strm));
77             local void slide_hash OF((deflate_state *s));
78             local void fill_window OF((deflate_state *s));
79             local block_state deflate_stored OF((deflate_state *s, int flush));
80             local block_state deflate_fast OF((deflate_state *s, int flush));
81             #ifndef FASTEST
82             local block_state deflate_slow OF((deflate_state *s, int flush));
83             #endif
84             local block_state deflate_rle OF((deflate_state *s, int flush));
85             local block_state deflate_huff OF((deflate_state *s, int flush));
86             local void lm_init OF((deflate_state *s));
87             local void putShortMSB OF((deflate_state *s, uInt b));
88             local void flush_pending OF((z_streamp strm));
89             local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
90             local uInt longest_match OF((deflate_state *s, IPos cur_match));
91              
92             #ifdef ZLIB_DEBUG
93             local void check_match OF((deflate_state *s, IPos start, IPos match,
94             int length));
95             #endif
96              
97             /* ===========================================================================
98             * Local data
99             */
100              
101             #define NIL 0
102             /* Tail of hash chains */
103              
104             #ifndef TOO_FAR
105             # define TOO_FAR 4096
106             #endif
107             /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
108              
109             /* Values for max_lazy_match, good_match and max_chain_length, depending on
110             * the desired pack level (0..9). The values given below have been tuned to
111             * exclude worst case performance for pathological files. Better values may be
112             * found for specific files.
113             */
114             typedef struct config_s {
115             ush good_length; /* reduce lazy search above this match length */
116             ush max_lazy; /* do not perform lazy search above this match length */
117             ush nice_length; /* quit search above this match length */
118             ush max_chain;
119             compress_func func;
120             } config;
121              
122             #ifdef FASTEST
123             local const config configuration_table[2] = {
124             /* good lazy nice chain */
125             /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
126             /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
127             #else
128             local const config configuration_table[10] = {
129             /* good lazy nice chain */
130             /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
131             /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
132             /* 2 */ {4, 5, 16, 8, deflate_fast},
133             /* 3 */ {4, 6, 32, 32, deflate_fast},
134              
135             /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
136             /* 5 */ {8, 16, 32, 32, deflate_slow},
137             /* 6 */ {8, 16, 128, 128, deflate_slow},
138             /* 7 */ {8, 32, 128, 256, deflate_slow},
139             /* 8 */ {32, 128, 258, 1024, deflate_slow},
140             /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
141             #endif
142              
143             /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
144             * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
145             * meaning.
146             */
147              
148             /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
149             #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
150              
151             /* ===========================================================================
152             * Update a hash value with the given input byte
153             * IN assertion: all calls to UPDATE_HASH are made with consecutive input
154             * characters, so that a running hash key can be computed from the previous
155             * key instead of complete recalculation each time.
156             */
157             #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
158              
159              
160             /* ===========================================================================
161             * Insert string str in the dictionary and set match_head to the previous head
162             * of the hash chain (the most recent string with same hash key). Return
163             * the previous length of the hash chain.
164             * If this file is compiled with -DFASTEST, the compression level is forced
165             * to 1, and no hash chains are maintained.
166             * IN assertion: all calls to INSERT_STRING are made with consecutive input
167             * characters and the first MIN_MATCH bytes of str are valid (except for
168             * the last MIN_MATCH-1 bytes of the input file).
169             */
170             #ifdef FASTEST
171             #define INSERT_STRING(s, str, match_head) \
172             (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
173             match_head = s->head[s->ins_h], \
174             s->head[s->ins_h] = (Pos)(str))
175             #else
176             #define INSERT_STRING(s, str, match_head) \
177             (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
178             match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
179             s->head[s->ins_h] = (Pos)(str))
180             #endif
181              
182             /* ===========================================================================
183             * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
184             * prev[] will be initialized on the fly.
185             */
186             #define CLEAR_HASH(s) \
187             do { \
188             s->head[s->hash_size - 1] = NIL; \
189             zmemzero((Bytef *)s->head, \
190             (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
191             } while (0)
192              
193             /* ===========================================================================
194             * Slide the hash table when sliding the window down (could be avoided with 32
195             * bit values at the expense of memory usage). We slide even when level == 0 to
196             * keep the hash table consistent if we switch back to level > 0 later.
197             */
198 3           local void slide_hash(
199             deflate_state *s)
200             {
201             unsigned n, m;
202             Posf *p;
203 3           uInt wsize = s->w_size;
204              
205 3           n = s->hash_size;
206 3           p = &s->head[n];
207             do {
208 131072           m = *--p;
209 131072 100         *p = (Pos)(m >= wsize ? m - wsize : NIL);
210 131072 100         } while (--n);
211 3           n = wsize;
212             #ifndef FASTEST
213 3           p = &s->prev[n];
214             do {
215 98304           m = *--p;
216 98304 100         *p = (Pos)(m >= wsize ? m - wsize : NIL);
217             /* If n is not on any hash chain, prev[n] is garbage but
218             * its value will never be used.
219             */
220 98304 100         } while (--n);
221             #endif
222 3           }
223              
224             /* ========================================================================= */
225 0           int ZEXPORT deflateInit_(
226             z_streamp strm,
227             int level,
228             const char *version,
229             int stream_size)
230             {
231 0           return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
232             Z_DEFAULT_STRATEGY, version, stream_size);
233             /* To do: ignore strm->next_in if we use it as window */
234             }
235              
236             /* ========================================================================= */
237 33           int ZEXPORT deflateInit2_(
238             z_streamp strm,
239             int level,
240             int method,
241             int windowBits,
242             int memLevel,
243             int strategy,
244             const char *version,
245             int stream_size)
246             {
247             deflate_state *s;
248 33           int wrap = 1;
249             static const char my_version[] = ZLIB_VERSION;
250              
251 33 50         if (version == Z_NULL || version[0] != my_version[0] ||
    50          
    50          
252             stream_size != sizeof(z_stream)) {
253 0           return Z_VERSION_ERROR;
254             }
255 33 50         if (strm == Z_NULL) return Z_STREAM_ERROR;
256              
257 33           strm->msg = Z_NULL;
258 33 50         if (strm->zalloc == (alloc_func)0) {
259             #ifdef Z_SOLO
260 0           return Z_STREAM_ERROR;
261             #else
262             strm->zalloc = zcalloc;
263             strm->opaque = (voidpf)0;
264             #endif
265             }
266 33 50         if (strm->zfree == (free_func)0)
267             #ifdef Z_SOLO
268 0           return Z_STREAM_ERROR;
269             #else
270             strm->zfree = zcfree;
271             #endif
272              
273             #ifdef FASTEST
274             if (level != 0) level = 1;
275             #else
276 33 100         if (level == Z_DEFAULT_COMPRESSION) level = 6;
277             #endif
278              
279 33 100         if (windowBits < 0) { /* suppress zlib wrapper */
280 2           wrap = 0;
281 2 50         if (windowBits < -15)
282 0           return Z_STREAM_ERROR;
283 2           windowBits = -windowBits;
284             }
285             #ifdef GZIP
286 31 100         else if (windowBits > 15) {
287 2           wrap = 2; /* write gzip wrapper instead */
288 2           windowBits -= 16;
289             }
290             #endif
291 33 50         if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
    50          
    50          
    50          
292 33 50         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
    50          
    50          
    50          
293 33 50         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
    50          
    0          
294 0           return Z_STREAM_ERROR;
295             }
296 33 50         if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
297 33           s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
298 33 50         if (s == Z_NULL) return Z_MEM_ERROR;
299 33           strm->state = (struct internal_state FAR *)s;
300 33           s->strm = strm;
301 33           s->status = INIT_STATE; /* to pass state test in deflateReset() */
302              
303 33           s->wrap = wrap;
304 33           s->gzhead = Z_NULL;
305 33           s->w_bits = (uInt)windowBits;
306 33           s->w_size = 1 << s->w_bits;
307 33           s->w_mask = s->w_size - 1;
308              
309 33           s->hash_bits = (uInt)memLevel + 7;
310 33           s->hash_size = 1 << s->hash_bits;
311 33           s->hash_mask = s->hash_size - 1;
312 33           s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
313              
314 33           s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
315 33           s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
316 33           s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
317              
318 33           s->high_water = 0; /* nothing written to s->window yet */
319              
320 33           s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
321              
322             /* We overlay pending_buf and sym_buf. This works since the average size
323             * for length/distance pairs over any compressed block is assured to be 31
324             * bits or less.
325             *
326             * Analysis: The longest fixed codes are a length code of 8 bits plus 5
327             * extra bits, for lengths 131 to 257. The longest fixed distance codes are
328             * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
329             * possible fixed-codes length/distance pair is then 31 bits total.
330             *
331             * sym_buf starts one-fourth of the way into pending_buf. So there are
332             * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
333             * in sym_buf is three bytes -- two for the distance and one for the
334             * literal/length. As each symbol is consumed, the pointer to the next
335             * sym_buf value to read moves forward three bytes. From that symbol, up to
336             * 31 bits are written to pending_buf. The closest the written pending_buf
337             * bits gets to the next sym_buf symbol to read is just before the last
338             * code is written. At that time, 31*(n - 2) bits have been written, just
339             * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
340             * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
341             * symbols are written.) The closest the writing gets to what is unread is
342             * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
343             * can range from 128 to 32768.
344             *
345             * Therefore, at a minimum, there are 142 bits of space between what is
346             * written and what is read in the overlain buffers, so the symbols cannot
347             * be overwritten by the compressed data. That space is actually 139 bits,
348             * due to the three-bit fixed-code block header.
349             *
350             * That covers the case where either Z_FIXED is specified, forcing fixed
351             * codes, or when the use of fixed codes is chosen, because that choice
352             * results in a smaller compressed block than dynamic codes. That latter
353             * condition then assures that the above analysis also covers all dynamic
354             * blocks. A dynamic-code block will only be chosen to be emitted if it has
355             * fewer bits than a fixed-code block would for the same set of symbols.
356             * Therefore its average symbol length is assured to be less than 31. So
357             * the compressed data for a dynamic block also cannot overwrite the
358             * symbols from which it is being constructed.
359             */
360              
361 33           s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
362 33           s->pending_buf_size = (ulg)s->lit_bufsize * 4;
363              
364 33 50         if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
    50          
    50          
    50          
365 33           s->pending_buf == Z_NULL) {
366 0           s->status = FINISH_STATE;
367 0           strm->msg = ERR_MSG(Z_MEM_ERROR);
368 0           deflateEnd (strm);
369 0           return Z_MEM_ERROR;
370             }
371 33           s->sym_buf = s->pending_buf + s->lit_bufsize;
372 33           s->sym_end = (s->lit_bufsize - 1) * 3;
373             /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
374             * on 16 bit machines and because stored blocks are restricted to
375             * 64K-1 bytes.
376             */
377              
378 33           s->level = level;
379 33           s->strategy = strategy;
380 33           s->method = (Byte)method;
381              
382 33           return deflateReset(strm);
383             }
384              
385             /* =========================================================================
386             * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
387             */
388 420           local int deflateStateCheck (
389             z_streamp strm)
390             {
391             deflate_state *s;
392 420 50         if (strm == Z_NULL ||
    50          
393 420 50         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
394 0           return 1;
395 420           s = strm->state;
396 420 50         if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
    50          
    100          
    100          
397             #ifdef GZIP
398 353 50         s->status != GZIP_STATE &&
399             #endif
400 353 50         s->status != EXTRA_STATE &&
401 353 50         s->status != NAME_STATE &&
402 353 50         s->status != COMMENT_STATE &&
403 353 100         s->status != HCRC_STATE &&
404 84 50         s->status != BUSY_STATE &&
405 84           s->status != FINISH_STATE))
406 0           return 1;
407 420           return 0;
408             }
409              
410             /* ========================================================================= */
411 1           int ZEXPORT deflateSetDictionary (
412             z_streamp strm,
413             const Bytef *dictionary,
414             uInt dictLength)
415             {
416             deflate_state *s;
417             uInt str, n;
418             int wrap;
419             unsigned avail;
420             z_const unsigned char *next;
421              
422 1 50         if (deflateStateCheck(strm) || dictionary == Z_NULL)
    50          
423 0           return Z_STREAM_ERROR;
424 1           s = strm->state;
425 1           wrap = s->wrap;
426 1 50         if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
    50          
    50          
    50          
427 0           return Z_STREAM_ERROR;
428              
429             /* when using zlib wrappers, compute Adler-32 for provided dictionary */
430 1 50         if (wrap == 1)
431 1           strm->adler = adler32(strm->adler, dictionary, dictLength);
432 1           s->wrap = 0; /* avoid computing Adler-32 in read_buf */
433              
434             /* if dictionary would fill window, just replace the history */
435 1 50         if (dictLength >= s->w_size) {
436 0 0         if (wrap == 0) { /* already empty otherwise */
437 0           CLEAR_HASH(s);
438 0           s->strstart = 0;
439 0           s->block_start = 0L;
440 0           s->insert = 0;
441             }
442 0           dictionary += dictLength - s->w_size; /* use the tail */
443 0           dictLength = s->w_size;
444             }
445              
446             /* insert dictionary into window and hash */
447 1           avail = strm->avail_in;
448 1           next = strm->next_in;
449 1           strm->avail_in = dictLength;
450 1           strm->next_in = (z_const Bytef *)dictionary;
451 1           fill_window(s);
452 2 100         while (s->lookahead >= MIN_MATCH) {
453 1           str = s->strstart;
454 1           n = s->lookahead - (MIN_MATCH-1);
455             do {
456 3           UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
457             #ifndef FASTEST
458 3           s->prev[str & s->w_mask] = s->head[s->ins_h];
459             #endif
460 3           s->head[s->ins_h] = (Pos)str;
461 3           str++;
462 3 100         } while (--n);
463 1           s->strstart = str;
464 1           s->lookahead = MIN_MATCH-1;
465 1           fill_window(s);
466             }
467 1           s->strstart += s->lookahead;
468 1           s->block_start = (long)s->strstart;
469 1           s->insert = s->lookahead;
470 1           s->lookahead = 0;
471 1           s->match_length = s->prev_length = MIN_MATCH-1;
472 1           s->match_available = 0;
473 1           strm->next_in = next;
474 1           strm->avail_in = avail;
475 1           s->wrap = wrap;
476 1           return Z_OK;
477             }
478              
479             /* ========================================================================= */
480 0           int ZEXPORT deflateGetDictionary (
481             z_streamp strm,
482             Bytef *dictionary,
483             uInt *dictLength)
484             {
485             deflate_state *s;
486             uInt len;
487              
488 0 0         if (deflateStateCheck(strm))
489 0           return Z_STREAM_ERROR;
490 0           s = strm->state;
491 0           len = s->strstart + s->lookahead;
492 0 0         if (len > s->w_size)
493 0           len = s->w_size;
494 0 0         if (dictionary != Z_NULL && len)
    0          
495 0           zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
496 0 0         if (dictLength != Z_NULL)
497 0           *dictLength = len;
498 0           return Z_OK;
499             }
500              
501             /* ========================================================================= */
502 33           int ZEXPORT deflateResetKeep (
503             z_streamp strm)
504             {
505             deflate_state *s;
506              
507 33 50         if (deflateStateCheck(strm)) {
508 0           return Z_STREAM_ERROR;
509             }
510              
511 33           strm->total_in = strm->total_out = 0;
512 33           strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
513 33           strm->data_type = Z_UNKNOWN;
514              
515 33           s = (deflate_state *)strm->state;
516 33           s->pending = 0;
517 33           s->pending_out = s->pending_buf;
518              
519 33 50         if (s->wrap < 0) {
520 0           s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
521             }
522 33           s->status =
523             #ifdef GZIP
524 33 100         s->wrap == 2 ? GZIP_STATE :
525             #endif
526             INIT_STATE;
527 33           strm->adler =
528             #ifdef GZIP
529 33 100         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
530             #endif
531             adler32(0L, Z_NULL, 0);
532 33           s->last_flush = -2;
533              
534 33           _tr_init(s);
535              
536 33           return Z_OK;
537             }
538              
539             /* ========================================================================= */
540 33           int ZEXPORT deflateReset (
541             z_streamp strm)
542             {
543             int ret;
544              
545 33           ret = deflateResetKeep(strm);
546 33 50         if (ret == Z_OK)
547 33           lm_init(strm->state);
548 33           return ret;
549             }
550              
551             /* ========================================================================= */
552 0           int ZEXPORT deflateSetHeader (
553             z_streamp strm,
554             gz_headerp head)
555             {
556 0 0         if (deflateStateCheck(strm) || strm->state->wrap != 2)
    0          
557 0           return Z_STREAM_ERROR;
558 0           strm->state->gzhead = head;
559 0           return Z_OK;
560             }
561              
562             /* ========================================================================= */
563 0           int ZEXPORT deflatePending (
564             z_streamp strm,
565             unsigned *pending,
566             int *bits)
567             {
568 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
569 0 0         if (pending != Z_NULL)
570 0           *pending = strm->state->pending;
571 0 0         if (bits != Z_NULL)
572 0           *bits = strm->state->bi_valid;
573 0           return Z_OK;
574             }
575              
576             /* ========================================================================= */
577 0           int ZEXPORT deflatePrime (
578             z_streamp strm,
579             int bits,
580             int value)
581             {
582             deflate_state *s;
583             int put;
584              
585 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
586 0           s = strm->state;
587 0 0         if (bits < 0 || bits > 16 ||
    0          
    0          
588 0           s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
589 0           return Z_BUF_ERROR;
590             do {
591 0           put = Buf_size - s->bi_valid;
592 0 0         if (put > bits)
593 0           put = bits;
594 0           s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
595 0           s->bi_valid += put;
596 0           _tr_flush_bits(s);
597 0           value >>= put;
598 0           bits -= put;
599 0 0         } while (bits);
600 0           return Z_OK;
601             }
602              
603             /* ========================================================================= */
604 4           int ZEXPORT deflateParams(
605             z_streamp strm,
606             int level,
607             int strategy)
608             {
609             deflate_state *s;
610             compress_func func;
611              
612 4 50         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
613 4           s = strm->state;
614              
615             #ifdef FASTEST
616             if (level != 0) level = 1;
617             #else
618 4 100         if (level == Z_DEFAULT_COMPRESSION) level = 6;
619             #endif
620 4 50         if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
    50          
    50          
    50          
621 0           return Z_STREAM_ERROR;
622             }
623 4           func = configuration_table[s->level].func;
624              
625 4 100         if ((strategy != s->strategy || func != configuration_table[level].func) &&
    50          
    50          
626 4           s->last_flush != -2) {
627             /* Flush the last buffer: */
628 4           int err = deflate(strm, Z_BLOCK);
629 4 50         if (err == Z_STREAM_ERROR)
630 0           return err;
631 4 50         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
    50          
632 0           return Z_BUF_ERROR;
633             }
634 4 100         if (s->level != level) {
635 3 50         if (s->level == 0 && s->matches != 0) {
    0          
636 0 0         if (s->matches == 1)
637 0           slide_hash(s);
638             else
639 0           CLEAR_HASH(s);
640 0           s->matches = 0;
641             }
642 3           s->level = level;
643 3           s->max_lazy_match = configuration_table[level].max_lazy;
644 3           s->good_match = configuration_table[level].good_length;
645 3           s->nice_match = configuration_table[level].nice_length;
646 3           s->max_chain_length = configuration_table[level].max_chain;
647             }
648 4           s->strategy = strategy;
649 4           return Z_OK;
650             }
651              
652             /* ========================================================================= */
653 0           int ZEXPORT deflateTune(
654             z_streamp strm,
655             int good_length,
656             int max_lazy,
657             int nice_length,
658             int max_chain)
659             {
660             deflate_state *s;
661              
662 0 0         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
663 0           s = strm->state;
664 0           s->good_match = (uInt)good_length;
665 0           s->max_lazy_match = (uInt)max_lazy;
666 0           s->nice_match = nice_length;
667 0           s->max_chain_length = (uInt)max_chain;
668 0           return Z_OK;
669             }
670              
671             /* =========================================================================
672             * For the default windowBits of 15 and memLevel of 8, this function returns a
673             * close to exact, as well as small, upper bound on the compressed size. This
674             * is an expansion of ~0.03%, plus a small constant.
675             *
676             * For any setting other than those defaults for windowBits and memLevel, one
677             * of two worst case bounds is returned. This is at most an expansion of ~4% or
678             * ~13%, plus a small constant.
679             *
680             * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
681             * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
682             * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
683             * expansion results from five bytes of header for each stored block.
684             *
685             * The larger expansion of 13% results from a window size less than or equal to
686             * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
687             * the data being compressed may have slid out of the sliding window, impeding
688             * a stored block from being emitted. Then the only choice is a fixed or
689             * dynamic block, where a fixed block limits the maximum expansion to 9 bits
690             * per 8-bit byte, plus 10 bits for every block. The smallest block size for
691             * which this can occur is 255 (memLevel == 2).
692             *
693             * Shifts are used to approximate divisions, for speed.
694             */
695 0           uLong ZEXPORT deflateBound(
696             z_streamp strm,
697             uLong sourceLen)
698             {
699             deflate_state *s;
700             uLong fixedlen, storelen, wraplen;
701              
702             /* upper bound for fixed blocks with 9-bit literals and length 255
703             (memLevel == 2, which is the lowest that may not use stored blocks) --
704             ~13% overhead plus a small constant */
705 0           fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
706 0           (sourceLen >> 9) + 4;
707              
708             /* upper bound for stored blocks with length 127 (memLevel == 1) --
709             ~4% overhead plus a small constant */
710 0           storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
711 0           (sourceLen >> 11) + 7;
712              
713             /* if can't get parameters, return larger bound plus a zlib wrapper */
714 0 0         if (deflateStateCheck(strm))
715 0           return (fixedlen > storelen ? fixedlen : storelen) + 6;
716              
717             /* compute wrapper length */
718 0           s = strm->state;
719 0           switch (s->wrap) {
720             case 0: /* raw deflate */
721 0           wraplen = 0;
722 0           break;
723             case 1: /* zlib wrapper */
724 0 0         wraplen = 6 + (s->strstart ? 4 : 0);
725 0           break;
726             #ifdef GZIP
727             case 2: /* gzip wrapper */
728 0           wraplen = 18;
729 0 0         if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
730             Bytef *str;
731 0 0         if (s->gzhead->extra != Z_NULL)
732 0           wraplen += 2 + s->gzhead->extra_len;
733 0           str = s->gzhead->name;
734 0 0         if (str != Z_NULL)
735             do {
736 0           wraplen++;
737 0 0         } while (*str++);
738 0           str = s->gzhead->comment;
739 0 0         if (str != Z_NULL)
740             do {
741 0           wraplen++;
742 0 0         } while (*str++);
743 0 0         if (s->gzhead->hcrc)
744 0           wraplen += 2;
745             }
746 0           break;
747             #endif
748             default: /* for compiler happiness */
749 0           wraplen = 6;
750             }
751              
752             /* if not default parameters, return one of the conservative bounds */
753 0 0         if (s->w_bits != 15 || s->hash_bits != 8 + 7)
    0          
754 0 0         return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
755              
756             /* default settings: return tight bound for that case -- ~0.03% overhead
757             plus a small constant */
758 0           return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
759 0           (sourceLen >> 25) + 13 - 6 + wraplen;
760             }
761              
762             /* =========================================================================
763             * Put a short in the pending buffer. The 16-bit value is put in MSB order.
764             * IN assertion: the stream state is correct and there is enough room in
765             * pending_buf.
766             */
767 85           local void putShortMSB (
768             deflate_state *s,
769             uInt b)
770             {
771 85           put_byte(s, (Byte)(b >> 8));
772 85           put_byte(s, (Byte)(b & 0xff));
773 85           }
774              
775             /* =========================================================================
776             * Flush as much pending output as possible. All deflate() output, except for
777             * some deflate_stored() output, goes through this function so some
778             * applications may wish to modify it to avoid allocating a large
779             * strm->next_out buffer and copying into it. (See also read_buf()).
780             */
781 171           local void flush_pending(
782             z_streamp strm)
783             {
784             unsigned len;
785 171           deflate_state *s = strm->state;
786              
787 171           _tr_flush_bits(s);
788 171           len = s->pending;
789 171 100         if (len > strm->avail_out) len = strm->avail_out;
790 171 100         if (len == 0) return;
791              
792 169           zmemcpy(strm->next_out, s->pending_out, len);
793 169           strm->next_out += len;
794 169           s->pending_out += len;
795 169           strm->total_out += len;
796 169           strm->avail_out -= len;
797 169           s->pending -= len;
798 169 100         if (s->pending == 0) {
799 101           s->pending_out = s->pending_buf;
800             }
801             }
802              
803             /* ===========================================================================
804             * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
805             */
806             #define HCRC_UPDATE(beg) \
807             do { \
808             if (s->gzhead->hcrc && s->pending > (beg)) \
809             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
810             s->pending - (beg)); \
811             } while (0)
812              
813             /* ========================================================================= */
814 349           int ZEXPORT deflate (
815             z_streamp strm,
816             int flush)
817             {
818             int old_flush; /* value of flush param for previous deflate call */
819             deflate_state *s;
820              
821 349 50         if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
    50          
    50          
822 0           return Z_STREAM_ERROR;
823             }
824 349           s = strm->state;
825              
826 349 50         if (strm->next_out == Z_NULL ||
    100          
827 349 50         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
    100          
828 54 50         (s->status == FINISH_STATE && flush != Z_FINISH)) {
829 0           ERR_RETURN(strm, Z_STREAM_ERROR);
830             }
831 349 50         if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
832              
833 349           old_flush = s->last_flush;
834 349           s->last_flush = flush;
835              
836             /* Flush as much pending output as possible */
837 349 100         if (s->pending != 0) {
838 68           flush_pending(strm);
839 68 100         if (strm->avail_out == 0) {
840             /* Since avail_out is 0, deflate will be called again with
841             * more output space, but possibly with both pending and
842             * avail_in equal to zero. There won't be anything to do,
843             * but this is not an error situation so make sure we
844             * return OK instead of BUF_ERROR at next call of deflate:
845             */
846 42           s->last_flush = -1;
847 42           return Z_OK;
848             }
849              
850             /* Make sure there is something to do and avoid duplicate consecutive
851             * flushes. For repeated and useless calls with Z_FINISH, we keep
852             * returning Z_STREAM_END instead of Z_BUF_ERROR.
853             */
854 281 100         } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
    100          
    100          
    100          
    50          
855             flush != Z_FINISH) {
856 3           ERR_RETURN(strm, Z_BUF_ERROR);
857             }
858              
859             /* User must not provide more input after the first FINISH: */
860 304 100         if (s->status == FINISH_STATE && strm->avail_in != 0) {
    50          
861 0           ERR_RETURN(strm, Z_BUF_ERROR);
862             }
863              
864             /* Write the header */
865 304 100         if (s->status == INIT_STATE && s->wrap == 0)
    100          
866 2           s->status = BUSY_STATE;
867 304 100         if (s->status == INIT_STATE) {
868             /* zlib header */
869 29           uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
870             uInt level_flags;
871              
872 29 50         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
    50          
873 0           level_flags = 0;
874 29 50         else if (s->level < 6)
875 0           level_flags = 1;
876 29 100         else if (s->level == 6)
877 25           level_flags = 2;
878             else
879 4           level_flags = 3;
880 29           header |= (level_flags << 6);
881 29 100         if (s->strstart != 0) header |= PRESET_DICT;
882 29           header += 31 - (header % 31);
883              
884 29           putShortMSB(s, header);
885              
886             /* Save the adler32 of the preset dictionary: */
887 29 100         if (s->strstart != 0) {
888 1           putShortMSB(s, (uInt)(strm->adler >> 16));
889 1           putShortMSB(s, (uInt)(strm->adler & 0xffff));
890             }
891 29           strm->adler = adler32(0L, Z_NULL, 0);
892 29           s->status = BUSY_STATE;
893              
894             /* Compression must start with an empty pending buffer */
895 29           flush_pending(strm);
896 29 50         if (s->pending != 0) {
897 0           s->last_flush = -1;
898 0           return Z_OK;
899             }
900             }
901             #ifdef GZIP
902 304 100         if (s->status == GZIP_STATE) {
903             /* gzip header */
904 2           strm->adler = crc32(0L, Z_NULL, 0);
905 2           put_byte(s, 31);
906 2           put_byte(s, 139);
907 2           put_byte(s, 8);
908 2 50         if (s->gzhead == Z_NULL) {
909 2           put_byte(s, 0);
910 2           put_byte(s, 0);
911 2           put_byte(s, 0);
912 2           put_byte(s, 0);
913 2           put_byte(s, 0);
914 2 50         put_byte(s, s->level == 9 ? 2 :
    50          
    50          
915             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
916             4 : 0));
917 2           put_byte(s, OS_CODE);
918 2           s->status = BUSY_STATE;
919              
920             /* Compression must start with an empty pending buffer */
921 2           flush_pending(strm);
922 2 50         if (s->pending != 0) {
923 0           s->last_flush = -1;
924 0           return Z_OK;
925             }
926             }
927             else {
928 0 0         put_byte(s, (s->gzhead->text ? 1 : 0) +
    0          
    0          
    0          
    0          
929             (s->gzhead->hcrc ? 2 : 0) +
930             (s->gzhead->extra == Z_NULL ? 0 : 4) +
931             (s->gzhead->name == Z_NULL ? 0 : 8) +
932             (s->gzhead->comment == Z_NULL ? 0 : 16)
933             );
934 0           put_byte(s, (Byte)(s->gzhead->time & 0xff));
935 0           put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
936 0           put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
937 0           put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
938 0 0         put_byte(s, s->level == 9 ? 2 :
    0          
    0          
939             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
940             4 : 0));
941 0           put_byte(s, s->gzhead->os & 0xff);
942 0 0         if (s->gzhead->extra != Z_NULL) {
943 0           put_byte(s, s->gzhead->extra_len & 0xff);
944 0           put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
945             }
946 0 0         if (s->gzhead->hcrc)
947 0           strm->adler = crc32(strm->adler, s->pending_buf,
948 0           s->pending);
949 0           s->gzindex = 0;
950 0           s->status = EXTRA_STATE;
951             }
952             }
953 304 50         if (s->status == EXTRA_STATE) {
954 0 0         if (s->gzhead->extra != Z_NULL) {
955 0           ulg beg = s->pending; /* start of bytes to update crc */
956 0           uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
957 0 0         while (s->pending + left > s->pending_buf_size) {
958 0           uInt copy = s->pending_buf_size - s->pending;
959 0           zmemcpy(s->pending_buf + s->pending,
960 0           s->gzhead->extra + s->gzindex, copy);
961 0           s->pending = s->pending_buf_size;
962 0 0         HCRC_UPDATE(beg);
    0          
963 0           s->gzindex += copy;
964 0           flush_pending(strm);
965 0 0         if (s->pending != 0) {
966 0           s->last_flush = -1;
967 0           return Z_OK;
968             }
969 0           beg = 0;
970 0           left -= copy;
971             }
972 0           zmemcpy(s->pending_buf + s->pending,
973 0           s->gzhead->extra + s->gzindex, left);
974 0           s->pending += left;
975 0 0         HCRC_UPDATE(beg);
    0          
976 0           s->gzindex = 0;
977             }
978 0           s->status = NAME_STATE;
979             }
980 304 50         if (s->status == NAME_STATE) {
981 0 0         if (s->gzhead->name != Z_NULL) {
982 0           ulg beg = s->pending; /* start of bytes to update crc */
983             int val;
984             do {
985 0 0         if (s->pending == s->pending_buf_size) {
986 0 0         HCRC_UPDATE(beg);
    0          
987 0           flush_pending(strm);
988 0 0         if (s->pending != 0) {
989 0           s->last_flush = -1;
990 0           return Z_OK;
991             }
992 0           beg = 0;
993             }
994 0           val = s->gzhead->name[s->gzindex++];
995 0           put_byte(s, val);
996 0 0         } while (val != 0);
997 0 0         HCRC_UPDATE(beg);
    0          
998 0           s->gzindex = 0;
999             }
1000 0           s->status = COMMENT_STATE;
1001             }
1002 304 50         if (s->status == COMMENT_STATE) {
1003 0 0         if (s->gzhead->comment != Z_NULL) {
1004 0           ulg beg = s->pending; /* start of bytes to update crc */
1005             int val;
1006             do {
1007 0 0         if (s->pending == s->pending_buf_size) {
1008 0 0         HCRC_UPDATE(beg);
    0          
1009 0           flush_pending(strm);
1010 0 0         if (s->pending != 0) {
1011 0           s->last_flush = -1;
1012 0           return Z_OK;
1013             }
1014 0           beg = 0;
1015             }
1016 0           val = s->gzhead->comment[s->gzindex++];
1017 0           put_byte(s, val);
1018 0 0         } while (val != 0);
1019 0 0         HCRC_UPDATE(beg);
    0          
1020             }
1021 0           s->status = HCRC_STATE;
1022             }
1023 304 50         if (s->status == HCRC_STATE) {
1024 0 0         if (s->gzhead->hcrc) {
1025 0 0         if (s->pending + 2 > s->pending_buf_size) {
1026 0           flush_pending(strm);
1027 0 0         if (s->pending != 0) {
1028 0           s->last_flush = -1;
1029 0           return Z_OK;
1030             }
1031             }
1032 0           put_byte(s, (Byte)(strm->adler & 0xff));
1033 0           put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1034 0           strm->adler = crc32(0L, Z_NULL, 0);
1035             }
1036 0           s->status = BUSY_STATE;
1037              
1038             /* Compression must start with an empty pending buffer */
1039 0           flush_pending(strm);
1040 0 0         if (s->pending != 0) {
1041 0           s->last_flush = -1;
1042 0           return Z_OK;
1043             }
1044             }
1045             #endif
1046              
1047             /* Start a new block or continue the current one.
1048             */
1049 304 100         if (strm->avail_in != 0 || s->lookahead != 0 ||
    100          
    50          
1050 27 100         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1051             block_state bstate;
1052              
1053 283 100         bstate = s->level == 0 ? deflate_stored(s, flush) :
    50          
    50          
1054 279           s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1055 279           s->strategy == Z_RLE ? deflate_rle(s, flush) :
1056 279           (*(configuration_table[s->level].func))(s, flush);
1057              
1058 283 100         if (bstate == finish_started || bstate == finish_done) {
    100          
1059 30           s->status = FINISH_STATE;
1060             }
1061 283 100         if (bstate == need_more || bstate == finish_started) {
    100          
1062 267 100         if (strm->avail_out == 0) {
1063 27           s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1064             }
1065 267           return Z_OK;
1066             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1067             * of deflate should use the same flush parameter to make sure
1068             * that the flush is complete. So we don't have to output an
1069             * empty block here, this will be done at next call. This also
1070             * ensures that for a very small output buffer, we emit at most
1071             * one empty block.
1072             */
1073             }
1074 16 100         if (bstate == block_done) {
1075 6 50         if (flush == Z_PARTIAL_FLUSH) {
1076 0           _tr_align(s);
1077 6 100         } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1078 4           _tr_stored_block(s, (char*)0, 0L, 0);
1079             /* For a full flush, this empty block will be recognized
1080             * as a special marker by inflate_sync().
1081             */
1082 4 100         if (flush == Z_FULL_FLUSH) {
1083 1           CLEAR_HASH(s); /* forget history */
1084 1 50         if (s->lookahead == 0) {
1085 1           s->strstart = 0;
1086 1           s->block_start = 0L;
1087 1           s->insert = 0;
1088             }
1089             }
1090             }
1091 6           flush_pending(strm);
1092 6 50         if (strm->avail_out == 0) {
1093 0           s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1094 0           return Z_OK;
1095             }
1096             }
1097             }
1098              
1099 37 100         if (flush != Z_FINISH) return Z_OK;
1100 31 100         if (s->wrap <= 0) return Z_STREAM_END;
1101              
1102             /* Write the trailer */
1103             #ifdef GZIP
1104 29 100         if (s->wrap == 2) {
1105 2           put_byte(s, (Byte)(strm->adler & 0xff));
1106 2           put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1107 2           put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1108 2           put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1109 2           put_byte(s, (Byte)(strm->total_in & 0xff));
1110 2           put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1111 2           put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1112 2           put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1113             }
1114             else
1115             #endif
1116             {
1117 27           putShortMSB(s, (uInt)(strm->adler >> 16));
1118 27           putShortMSB(s, (uInt)(strm->adler & 0xffff));
1119             }
1120 29           flush_pending(strm);
1121             /* If avail_out is zero, the application will call deflate again
1122             * to flush the rest.
1123             */
1124 29 50         if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1125 29           return s->pending != 0 ? Z_OK : Z_STREAM_END;
1126             }
1127              
1128             /* ========================================================================= */
1129 33           int ZEXPORT deflateEnd (
1130             z_streamp strm)
1131             {
1132             int status;
1133              
1134 33 50         if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1135              
1136 33           status = strm->state->status;
1137              
1138             /* Deallocate in reverse order of allocations: */
1139 33 50         TRY_FREE(strm, strm->state->pending_buf);
1140 33 50         TRY_FREE(strm, strm->state->head);
1141 33 50         TRY_FREE(strm, strm->state->prev);
1142 33 50         TRY_FREE(strm, strm->state->window);
1143              
1144 33           ZFREE(strm, strm->state);
1145 33           strm->state = Z_NULL;
1146              
1147 33 100         return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1148             }
1149              
1150             /* =========================================================================
1151             * Copy the source state to the destination state.
1152             * To simplify the source, this is not supported for 16-bit MSDOS (which
1153             * doesn't have enough memory anyway to duplicate compression states).
1154             */
1155 0           int ZEXPORT deflateCopy (
1156             z_streamp dest,
1157             z_streamp source)
1158             {
1159             #ifdef MAXSEG_64K
1160             return Z_STREAM_ERROR;
1161             #else
1162             deflate_state *ds;
1163             deflate_state *ss;
1164              
1165              
1166 0 0         if (deflateStateCheck(source) || dest == Z_NULL) {
    0          
1167 0           return Z_STREAM_ERROR;
1168             }
1169              
1170 0           ss = source->state;
1171              
1172 0           zmemcpy((Bytef*)dest, (Bytef*)source, sizeof(z_stream));
1173              
1174 0           ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1175 0 0         if (ds == Z_NULL) return Z_MEM_ERROR;
1176 0           dest->state = (struct internal_state FAR *) ds;
1177 0           zmemcpy((Bytef*)ds, (Bytef*)ss, sizeof(deflate_state));
1178 0           ds->strm = dest;
1179              
1180 0           ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1181 0           ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1182 0           ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1183 0           ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1184              
1185 0 0         if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
    0          
    0          
    0          
1186 0           ds->pending_buf == Z_NULL) {
1187 0           deflateEnd (dest);
1188 0           return Z_MEM_ERROR;
1189             }
1190             /* following zmemcpy do not work for 16-bit MSDOS */
1191 0           zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1192 0           zmemcpy((Bytef*)ds->prev, (Bytef*)ss->prev, ds->w_size * sizeof(Pos));
1193 0           zmemcpy((Bytef*)ds->head, (Bytef*)ss->head, ds->hash_size * sizeof(Pos));
1194 0           zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1195              
1196 0           ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1197 0           ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1198              
1199 0           ds->l_desc.dyn_tree = ds->dyn_ltree;
1200 0           ds->d_desc.dyn_tree = ds->dyn_dtree;
1201 0           ds->bl_desc.dyn_tree = ds->bl_tree;
1202              
1203 0           return Z_OK;
1204             #endif /* MAXSEG_64K */
1205             }
1206              
1207             /* ===========================================================================
1208             * Read a new buffer from the current input stream, update the adler32
1209             * and total number of bytes read. All deflate() input goes through
1210             * this function so some applications may wish to modify it to avoid
1211             * allocating a large strm->next_in buffer and copying from it.
1212             * (See also flush_pending()).
1213             */
1214 247           local unsigned read_buf(
1215             z_streamp strm,
1216             Bytef *buf,
1217             unsigned size)
1218             {
1219 247           unsigned len = strm->avail_in;
1220              
1221 247 100         if (len > size) len = size;
1222 247 50         if (len == 0) return 0;
1223              
1224 247           strm->avail_in -= len;
1225              
1226 247           zmemcpy(buf, strm->next_in, len);
1227 247 100         if (strm->state->wrap == 1) {
1228 217           strm->adler = adler32(strm->adler, buf, len);
1229             }
1230             #ifdef GZIP
1231 30 100         else if (strm->state->wrap == 2) {
1232 2           strm->adler = crc32(strm->adler, buf, len);
1233             }
1234             #endif
1235 247           strm->next_in += len;
1236 247           strm->total_in += len;
1237              
1238 247           return len;
1239             }
1240              
1241             /* ===========================================================================
1242             * Initialize the "longest match" routines for a new zlib stream
1243             */
1244 33           local void lm_init (
1245             deflate_state *s)
1246             {
1247 33           s->window_size = (ulg)2L*s->w_size;
1248              
1249 33           CLEAR_HASH(s);
1250              
1251             /* Set the default configuration parameters:
1252             */
1253 33           s->max_lazy_match = configuration_table[s->level].max_lazy;
1254 33           s->good_match = configuration_table[s->level].good_length;
1255 33           s->nice_match = configuration_table[s->level].nice_length;
1256 33           s->max_chain_length = configuration_table[s->level].max_chain;
1257              
1258 33           s->strstart = 0;
1259 33           s->block_start = 0L;
1260 33           s->lookahead = 0;
1261 33           s->insert = 0;
1262 33           s->match_length = s->prev_length = MIN_MATCH-1;
1263 33           s->match_available = 0;
1264 33           s->ins_h = 0;
1265 33           }
1266              
1267             #ifndef FASTEST
1268             /* ===========================================================================
1269             * Set match_start to the longest match starting at the given string and
1270             * return its length. Matches shorter or equal to prev_length are discarded,
1271             * in which case the result is equal to prev_length and match_start is
1272             * garbage.
1273             * IN assertions: cur_match is the head of the hash chain for the current
1274             * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1275             * OUT assertion: the match length is not greater than s->lookahead.
1276             */
1277 15304           local uInt longest_match(
1278             deflate_state *s,
1279             IPos cur_match)
1280             {
1281 15304           unsigned chain_length = s->max_chain_length;/* max hash chain length */
1282 15304           register Bytef *scan = s->window + s->strstart; /* current string */
1283             register Bytef *match; /* matched string */
1284             register int len; /* length of current match */
1285 15304           int best_len = (int)s->prev_length; /* best match length so far */
1286 15304           int nice_match = s->nice_match; /* stop if match long enough */
1287 30608           IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1288 15304 100         s->strstart - (IPos)MAX_DIST(s) : NIL;
1289             /* Stop when cur_match becomes <= limit. To simplify the code,
1290             * we prevent matches with the string of window index 0.
1291             */
1292 15304           Posf *prev = s->prev;
1293 15304           uInt wmask = s->w_mask;
1294              
1295             #ifdef UNALIGNED_OK
1296             /* Compare two bytes at a time. Note: this is not always beneficial.
1297             * Try with and without -DUNALIGNED_OK to check.
1298             */
1299             register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1300             register ush scan_start = *(ushf*)scan;
1301             register ush scan_end = *(ushf*)(scan + best_len - 1);
1302             #else
1303 15304           register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1304 15304           register Byte scan_end1 = scan[best_len - 1];
1305 15304           register Byte scan_end = scan[best_len];
1306             #endif
1307              
1308             /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1309             * It is easy to get rid of this optimization if necessary.
1310             */
1311             Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1312              
1313             /* Do not waste too much time if we already have a good match: */
1314 15304 100         if (s->prev_length >= s->good_match) {
1315 3           chain_length >>= 2;
1316             }
1317             /* Do not look for matches beyond the end of the input. This is necessary
1318             * to make deflate deterministic.
1319             */
1320 15304 100         if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1321              
1322             Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1323             "need lookahead");
1324              
1325             do {
1326             Assert(cur_match < s->strstart, "no future");
1327 18370           match = s->window + cur_match;
1328              
1329             /* Skip to next match if the match length cannot increase
1330             * or if the match length is less than 2. Note that the checks below
1331             * for insufficient lookahead only occur occasionally for performance
1332             * reasons. Therefore uninitialized memory will be accessed, and
1333             * conditional jumps will be made that depend on those values.
1334             * However the length of the match is limited to the lookahead, so
1335             * the output of deflate is not affected by the uninitialized values.
1336             */
1337             #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1338             /* This code assumes sizeof(unsigned short) == 2. Do not use
1339             * UNALIGNED_OK if your compiler uses a different size.
1340             */
1341             if (*(ushf*)(match + best_len - 1) != scan_end ||
1342             *(ushf*)match != scan_start) continue;
1343              
1344             /* It is not necessary to compare scan[2] and match[2] since they are
1345             * always equal when the other bytes match, given that the hash keys
1346             * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1347             * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1348             * lookahead only every 4th comparison; the 128th check will be made
1349             * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1350             * necessary to put more guard bytes at the end of the window, or
1351             * to check more often for insufficient lookahead.
1352             */
1353             Assert(scan[2] == match[2], "scan[2]?");
1354             scan++, match++;
1355             do {
1356             } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1357             *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1358             *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1359             *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1360             scan < strend);
1361             /* The funny "do {}" generates better code on most compilers */
1362              
1363             /* Here, scan <= window + strstart + 257 */
1364             Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1365             "wild scan");
1366             if (*scan == *match) scan++;
1367              
1368             len = (MAX_MATCH - 1) - (int)(strend - scan);
1369             scan = strend - (MAX_MATCH-1);
1370              
1371             #else /* UNALIGNED_OK */
1372              
1373 18370 100         if (match[best_len] != scan_end ||
    100          
1374 2292 100         match[best_len - 1] != scan_end1 ||
1375 1304 50         *match != *scan ||
1376 17066           *++match != scan[1]) continue;
1377              
1378             /* The check at best_len - 1 can be removed because it will be made
1379             * again later. (This heuristic is not always a win.)
1380             * It is not necessary to compare scan[2] and match[2] since they
1381             * are always equal when the other bytes match, given that
1382             * the hash keys are equal and that HASH_BITS >= 8.
1383             */
1384 1304           scan += 2, match++;
1385             Assert(*scan == *match, "match[2]?");
1386              
1387             /* We check for insufficient lookahead only every 8th comparison;
1388             * the 256th check will be made at strstart + 258.
1389             */
1390             do {
1391 38863 100         } while (*++scan == *++match && *++scan == *++match &&
    50          
1392 38861 50         *++scan == *++match && *++scan == *++match &&
    50          
1393 38861 50         *++scan == *++match && *++scan == *++match &&
    50          
1394 38861 100         *++scan == *++match && *++scan == *++match &&
    100          
1395 38950 100         scan < strend);
1396              
1397             Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1398             "wild scan");
1399              
1400 1304           len = MAX_MATCH - (int)(strend - scan);
1401 1304           scan = strend - MAX_MATCH;
1402              
1403             #endif /* UNALIGNED_OK */
1404              
1405 1304 50         if (len > best_len) {
1406 1304           s->match_start = cur_match;
1407 1304           best_len = len;
1408 1304 100         if (len >= nice_match) break;
1409             #ifdef UNALIGNED_OK
1410             scan_end = *(ushf*)(scan + best_len - 1);
1411             #else
1412 84           scan_end1 = scan[best_len - 1];
1413 84           scan_end = scan[best_len];
1414             #endif
1415             }
1416 17150           } while ((cur_match = prev[cur_match & wmask]) > limit
1417 17150 100         && --chain_length != 0);
    100          
1418              
1419 15304 100         if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1420 4           return s->lookahead;
1421             }
1422              
1423             #else /* FASTEST */
1424              
1425             /* ---------------------------------------------------------------------------
1426             * Optimized version for FASTEST only
1427             */
1428             local uInt longest_match(
1429             deflate_state *s,
1430             IPos cur_match)
1431             {
1432             register Bytef *scan = s->window + s->strstart; /* current string */
1433             register Bytef *match; /* matched string */
1434             register int len; /* length of current match */
1435             register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1436              
1437             /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1438             * It is easy to get rid of this optimization if necessary.
1439             */
1440             Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1441              
1442             Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1443             "need lookahead");
1444              
1445             Assert(cur_match < s->strstart, "no future");
1446              
1447             match = s->window + cur_match;
1448              
1449             /* Return failure if the match length is less than 2:
1450             */
1451             if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1452              
1453             /* The check at best_len - 1 can be removed because it will be made
1454             * again later. (This heuristic is not always a win.)
1455             * It is not necessary to compare scan[2] and match[2] since they
1456             * are always equal when the other bytes match, given that
1457             * the hash keys are equal and that HASH_BITS >= 8.
1458             */
1459             scan += 2, match += 2;
1460             Assert(*scan == *match, "match[2]?");
1461              
1462             /* We check for insufficient lookahead only every 8th comparison;
1463             * the 256th check will be made at strstart + 258.
1464             */
1465             do {
1466             } while (*++scan == *++match && *++scan == *++match &&
1467             *++scan == *++match && *++scan == *++match &&
1468             *++scan == *++match && *++scan == *++match &&
1469             *++scan == *++match && *++scan == *++match &&
1470             scan < strend);
1471              
1472             Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1473              
1474             len = MAX_MATCH - (int)(strend - scan);
1475              
1476             if (len < MIN_MATCH) return MIN_MATCH - 1;
1477              
1478             s->match_start = cur_match;
1479             return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1480             }
1481              
1482             #endif /* FASTEST */
1483              
1484             #ifdef ZLIB_DEBUG
1485              
1486             #define EQUAL 0
1487             /* result of memcmp for equal strings */
1488              
1489             /* ===========================================================================
1490             * Check that the match at match_start is indeed a match.
1491             */
1492             local void check_match(
1493             deflate_state *s,
1494             IPos start,
1495             IPos match,
1496             int length)
1497             {
1498             /* check that the match is indeed a match */
1499             if (zmemcmp(s->window + match,
1500             s->window + start, length) != EQUAL) {
1501             fprintf(stderr, " start %u, match %u, length %d\n",
1502             start, match, length);
1503             do {
1504             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1505             } while (--length != 0);
1506             z_error("invalid match");
1507             }
1508             if (z_verbose > 1) {
1509             fprintf(stderr,"\\[%d,%d]", start - match, length);
1510             do { putc(s->window[start++], stderr); } while (--length != 0);
1511             }
1512             }
1513             #else
1514             # define check_match(s, start, match, length)
1515             #endif /* ZLIB_DEBUG */
1516              
1517             /* ===========================================================================
1518             * Fill the window when the lookahead becomes insufficient.
1519             * Updates strstart and lookahead.
1520             *
1521             * IN assertion: lookahead < MIN_LOOKAHEAD
1522             * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1523             * At least one byte has been read, or avail_in == 0; reads are
1524             * performed for at least two bytes (required for the zip translate_eol
1525             * option -- not supported here).
1526             */
1527 1637           local void fill_window(
1528             deflate_state *s)
1529             {
1530             unsigned n;
1531             unsigned more; /* Amount of free space at the end of the window. */
1532 1637           uInt wsize = s->w_size;
1533              
1534             Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1535              
1536             do {
1537 1637           more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1538              
1539             /* Deal with !@#$% 64K limit: */
1540             if (sizeof(int) <= 2) {
1541             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1542             more = wsize;
1543              
1544             } else if (more == (unsigned)(-1)) {
1545             /* Very unlikely, but possible on 16 bit machine if
1546             * strstart == 0 && lookahead == 1 (input done a byte at time)
1547             */
1548             more--;
1549             }
1550             }
1551              
1552             /* If the window is almost full and there is insufficient lookahead,
1553             * move the upper half to the lower one to make room in the upper half.
1554             */
1555 1637 100         if (s->strstart >= wsize + MAX_DIST(s)) {
1556              
1557 3           zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1558 3           s->match_start -= wsize;
1559 3           s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1560 3           s->block_start -= (long) wsize;
1561 3 50         if (s->insert > s->strstart)
1562 0           s->insert = s->strstart;
1563 3           slide_hash(s);
1564 3           more += wsize;
1565             }
1566 1637 100         if (s->strm->avail_in == 0) break;
1567              
1568             /* If there was no sliding:
1569             * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1570             * more == window_size - lookahead - strstart
1571             * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1572             * => more >= window_size - 2*WSIZE + 2
1573             * In the BIG_MEM or MMAP case (not yet supported),
1574             * window_size == input_size + MIN_LOOKAHEAD &&
1575             * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1576             * Otherwise, window_size == 2*WSIZE so more >= 2.
1577             * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1578             */
1579             Assert(more >= 2, "more < 2");
1580              
1581 245           n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1582 245           s->lookahead += n;
1583              
1584             /* Initialize the hash value now that we have some input: */
1585 245 100         if (s->lookahead + s->insert >= MIN_MATCH) {
1586 227           uInt str = s->strstart - s->insert;
1587 227           s->ins_h = s->window[str];
1588 227           UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1589             #if MIN_MATCH != 3
1590             Call UPDATE_HASH() MIN_MATCH-3 more times
1591             #endif
1592 231 100         while (s->insert) {
1593 4           UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1594             #ifndef FASTEST
1595 4           s->prev[str & s->w_mask] = s->head[s->ins_h];
1596             #endif
1597 4           s->head[s->ins_h] = (Pos)str;
1598 4           str++;
1599 4           s->insert--;
1600 4 50         if (s->lookahead + s->insert < MIN_MATCH)
1601 0           break;
1602             }
1603             }
1604             /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1605             * but this is not important since only literal bytes will be emitted.
1606             */
1607              
1608 245 100         } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
    50          
1609              
1610             /* If the WIN_INIT bytes after the end of the current data have never been
1611             * written, then zero those bytes in order to avoid memory check reports of
1612             * the use of uninitialized (or uninitialised as Julian writes) bytes by
1613             * the longest match routines. Update the high water mark for the next
1614             * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1615             * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1616             */
1617 1637 100         if (s->high_water < s->window_size) {
1618 1625           ulg curr = s->strstart + (ulg)(s->lookahead);
1619             ulg init;
1620              
1621 1625 100         if (s->high_water < curr) {
1622             /* Previous high water mark below current data -- zero WIN_INIT
1623             * bytes or up to end of window, whichever is less.
1624             */
1625 33           init = s->window_size - curr;
1626 33 100         if (init > WIN_INIT)
1627 31           init = WIN_INIT;
1628 33           zmemzero(s->window + curr, (unsigned)init);
1629 33           s->high_water = curr + init;
1630             }
1631 1592 100         else if (s->high_water < (ulg)curr + WIN_INIT) {
1632             /* High water mark at or above current data, but below current data
1633             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1634             * to end of window, whichever is less.
1635             */
1636 209           init = (ulg)curr + WIN_INIT - s->high_water;
1637 209 50         if (init > s->window_size - s->high_water)
1638 0           init = s->window_size - s->high_water;
1639 209           zmemzero(s->window + s->high_water, (unsigned)init);
1640 209           s->high_water += init;
1641             }
1642             }
1643              
1644             Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1645             "not enough room for search");
1646 1637           }
1647              
1648             /* ===========================================================================
1649             * Flush the current block, with given end-of-file flag.
1650             * IN assertion: strstart is set to the end of the current match.
1651             */
1652             #define FLUSH_BLOCK_ONLY(s, last) { \
1653             _tr_flush_block(s, (s->block_start >= 0L ? \
1654             (charf *)&s->window[(unsigned)s->block_start] : \
1655             (charf *)Z_NULL), \
1656             (ulg)((long)s->strstart - s->block_start), \
1657             (last)); \
1658             s->block_start = s->strstart; \
1659             flush_pending(s->strm); \
1660             Tracev((stderr,"[FLUSH]")); \
1661             }
1662              
1663             /* Same but force premature exit if necessary. */
1664             #define FLUSH_BLOCK(s, last) { \
1665             FLUSH_BLOCK_ONLY(s, last); \
1666             if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1667             }
1668              
1669             /* Maximum stored block length in deflate format (not including header). */
1670             #define MAX_STORED 65535
1671              
1672             /* Minimum of a and b. */
1673             #define MIN(a, b) ((a) > (b) ? (b) : (a))
1674              
1675             /* ===========================================================================
1676             * Copy without compression as much as possible from the input stream, return
1677             * the current block state.
1678             *
1679             * In case deflateParams() is used to later switch to a non-zero compression
1680             * level, s->matches (otherwise unused when storing) keeps track of the number
1681             * of hash table slides to perform. If s->matches is 1, then one hash table
1682             * slide will be done when switching. If s->matches is 2, the maximum value
1683             * allowed here, then the hash table will be cleared, since two or more slides
1684             * is the same as a clear.
1685             *
1686             * deflate_stored() is written to minimize the number of times an input byte is
1687             * copied. It is most efficient with large input and output buffers, which
1688             * maximizes the opportunities to have a single copy from next_in to next_out.
1689             */
1690 4           local block_state deflate_stored(
1691             deflate_state *s,
1692             int flush)
1693             {
1694             /* Smallest worthy block size when not flushing or finishing. By default
1695             * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1696             * large input and output buffers, the stored block size will be larger.
1697             */
1698 4           unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1699              
1700             /* Copy as many min_block or larger stored blocks directly to next_out as
1701             * possible. If flushing, copy the remaining available input to next_out as
1702             * stored blocks, if there is enough space.
1703             */
1704 4           unsigned len, left, have, last = 0;
1705 4           unsigned used = s->strm->avail_in;
1706             do {
1707             /* Set len to the maximum size block that we can copy directly with the
1708             * available input data and output space. Set left to how much of that
1709             * would be copied from what's left in the window.
1710             */
1711 4           len = MAX_STORED; /* maximum deflate stored block length */
1712 4           have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1713 4 50         if (s->strm->avail_out < have) /* need room for header */
1714 0           break;
1715             /* maximum stored block length that will fit in avail_out: */
1716 4           have = s->strm->avail_out - have;
1717 4           left = s->strstart - s->block_start; /* bytes left in window */
1718 4 50         if (len > (ulg)left + s->strm->avail_in)
1719 4           len = left + s->strm->avail_in; /* limit len to the input */
1720 4 50         if (len > have)
1721 4           len = have; /* limit len to the output */
1722              
1723             /* If the stored block would be less than min_block in length, or if
1724             * unable to copy all of the available input when flushing, then try
1725             * copying to the window and the pending buffer instead. Also don't
1726             * write an empty block when flushing -- deflate() does that.
1727             */
1728 4 50         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
    50          
    0          
    100          
1729 2 50         flush == Z_NO_FLUSH ||
1730 2           len != left + s->strm->avail_in))
1731             break;
1732              
1733             /* Make a dummy stored block in pending to get the header bytes,
1734             * including any pending bits. This also updates the debugging counts.
1735             */
1736 0 0         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
    0          
1737 0           _tr_stored_block(s, (char *)0, 0L, last);
1738              
1739             /* Replace the lengths in the dummy stored block with len. */
1740 0           s->pending_buf[s->pending - 4] = len;
1741 0           s->pending_buf[s->pending - 3] = len >> 8;
1742 0           s->pending_buf[s->pending - 2] = ~len;
1743 0           s->pending_buf[s->pending - 1] = ~len >> 8;
1744              
1745             /* Write the stored block header bytes. */
1746 0           flush_pending(s->strm);
1747              
1748             #ifdef ZLIB_DEBUG
1749             /* Update debugging counts for the data about to be copied. */
1750             s->compressed_len += len << 3;
1751             s->bits_sent += len << 3;
1752             #endif
1753              
1754             /* Copy uncompressed bytes from the window to next_out. */
1755 0 0         if (left) {
1756 0 0         if (left > len)
1757 0           left = len;
1758 0           zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1759 0           s->strm->next_out += left;
1760 0           s->strm->avail_out -= left;
1761 0           s->strm->total_out += left;
1762 0           s->block_start += left;
1763 0           len -= left;
1764             }
1765              
1766             /* Copy uncompressed bytes directly from next_in to next_out, updating
1767             * the check value.
1768             */
1769 0 0         if (len) {
1770 0           read_buf(s->strm, s->strm->next_out, len);
1771 0           s->strm->next_out += len;
1772 0           s->strm->avail_out -= len;
1773 0           s->strm->total_out += len;
1774             }
1775 0 0         } while (last == 0);
1776              
1777             /* Update the sliding window with the last s->w_size bytes of the copied
1778             * data, or append all of the copied data to the existing window if less
1779             * than s->w_size bytes were copied. Also update the number of bytes to
1780             * insert in the hash tables, in the event that deflateParams() switches to
1781             * a non-zero compression level.
1782             */
1783 4           used -= s->strm->avail_in; /* number of input bytes directly copied */
1784 4 50         if (used) {
1785             /* If any input was used, then no unused input remains in the window,
1786             * therefore s->block_start == s->strstart.
1787             */
1788 0 0         if (used >= s->w_size) { /* supplant the previous history */
1789 0           s->matches = 2; /* clear hash */
1790 0           zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1791 0           s->strstart = s->w_size;
1792 0           s->insert = s->strstart;
1793             }
1794             else {
1795 0 0         if (s->window_size - s->strstart <= used) {
1796             /* Slide the window down. */
1797 0           s->strstart -= s->w_size;
1798 0           zmemcpy(s->window, s->window + s->w_size, s->strstart);
1799 0 0         if (s->matches < 2)
1800 0           s->matches++; /* add a pending slide_hash() */
1801 0 0         if (s->insert > s->strstart)
1802 0           s->insert = s->strstart;
1803             }
1804 0           zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1805 0           s->strstart += used;
1806 0           s->insert += MIN(used, s->w_size - s->insert);
1807             }
1808 0           s->block_start = s->strstart;
1809             }
1810 4 50         if (s->high_water < s->strstart)
1811 0           s->high_water = s->strstart;
1812              
1813             /* If the last block was written to next_out, then done. */
1814 4 50         if (last)
1815 0           return finish_done;
1816              
1817             /* If flushing and all input has been consumed, then done. */
1818 4 100         if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
    100          
    50          
1819 1 50         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1820 0           return block_done;
1821              
1822             /* Fill the window with any remaining input. */
1823 4           have = s->window_size - s->strstart;
1824 4 100         if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
    50          
1825             /* Slide the window down. */
1826 1           s->block_start -= s->w_size;
1827 1           s->strstart -= s->w_size;
1828 1           zmemcpy(s->window, s->window + s->w_size, s->strstart);
1829 1 50         if (s->matches < 2)
1830 1           s->matches++; /* add a pending slide_hash() */
1831 1           have += s->w_size; /* more space now */
1832 1 50         if (s->insert > s->strstart)
1833 0           s->insert = s->strstart;
1834             }
1835 4 50         if (have > s->strm->avail_in)
1836 4           have = s->strm->avail_in;
1837 4 100         if (have) {
1838 2           read_buf(s->strm, s->window + s->strstart, have);
1839 2           s->strstart += have;
1840 2           s->insert += MIN(have, s->w_size - s->insert);
1841             }
1842 4 50         if (s->high_water < s->strstart)
1843 0           s->high_water = s->strstart;
1844              
1845             /* There was not enough avail_out to write a complete worthy or flushed
1846             * stored block to next_out. Write a stored block to pending instead, if we
1847             * have enough input for a worthy block, or if flushing and there is enough
1848             * room for the remaining input as a stored block in the pending buffer.
1849             */
1850 4           have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1851             /* maximum stored block length that will fit in pending: */
1852 4           have = MIN(s->pending_buf_size - have, MAX_STORED);
1853 4           min_block = MIN(have, s->w_size);
1854 4           left = s->strstart - s->block_start;
1855 4 50         if (left >= min_block ||
    50          
1856 4 0         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
    100          
    50          
1857 2 50         s->strm->avail_in == 0 && left <= have)) {
1858 2           len = MIN(left, have);
1859 1 50         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1860 3 100         len == left ? 1 : 0;
    50          
1861 2           _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1862 2           s->block_start += len;
1863 2           flush_pending(s->strm);
1864             }
1865              
1866             /* We've done all we can with the available input and output. */
1867 4 100         return last ? finish_started : need_more;
1868             }
1869              
1870             /* ===========================================================================
1871             * Compress as much as possible from the input stream, return the current
1872             * block state.
1873             * This function does not perform lazy evaluation of matches and inserts
1874             * new strings in the dictionary only for unmatched strings or for short
1875             * matches. It is used only for the fast compression options.
1876             */
1877 0           local block_state deflate_fast(
1878             deflate_state *s,
1879             int flush)
1880             {
1881             IPos hash_head; /* head of the hash chain */
1882             int bflush; /* set if current block must be flushed */
1883              
1884             for (;;) {
1885             /* Make sure that we always have enough lookahead, except
1886             * at the end of the input file. We need MAX_MATCH bytes
1887             * for the next match, plus MIN_MATCH bytes to insert the
1888             * string following the next match.
1889             */
1890 0 0         if (s->lookahead < MIN_LOOKAHEAD) {
1891 0           fill_window(s);
1892 0 0         if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
    0          
1893 0           return need_more;
1894             }
1895 0 0         if (s->lookahead == 0) break; /* flush the current block */
1896             }
1897              
1898             /* Insert the string window[strstart .. strstart + 2] in the
1899             * dictionary, and set hash_head to the head of the hash chain:
1900             */
1901 0           hash_head = NIL;
1902 0 0         if (s->lookahead >= MIN_MATCH) {
1903 0           INSERT_STRING(s, s->strstart, hash_head);
1904             }
1905              
1906             /* Find the longest match, discarding those <= prev_length.
1907             * At this point we have always match_length < MIN_MATCH
1908             */
1909 0 0         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
    0          
1910             /* To simplify the code, we prevent matches with the string
1911             * of window index 0 (in particular we have to avoid a match
1912             * of the string with itself at the start of the input file).
1913             */
1914 0           s->match_length = longest_match (s, hash_head);
1915             /* longest_match() sets match_start */
1916             }
1917 0 0         if (s->match_length >= MIN_MATCH) {
1918             check_match(s, s->strstart, s->match_start, s->match_length);
1919              
1920 0 0         _tr_tally_dist(s, s->strstart - s->match_start,
1921             s->match_length - MIN_MATCH, bflush);
1922              
1923 0           s->lookahead -= s->match_length;
1924              
1925             /* Insert new strings in the hash table only if the match length
1926             * is not too large. This saves time but degrades compression.
1927             */
1928             #ifndef FASTEST
1929 0 0         if (s->match_length <= s->max_insert_length &&
    0          
1930 0           s->lookahead >= MIN_MATCH) {
1931 0           s->match_length--; /* string at strstart already in table */
1932             do {
1933 0           s->strstart++;
1934 0           INSERT_STRING(s, s->strstart, hash_head);
1935             /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1936             * always MIN_MATCH bytes ahead.
1937             */
1938 0 0         } while (--s->match_length != 0);
1939 0           s->strstart++;
1940             } else
1941             #endif
1942             {
1943 0           s->strstart += s->match_length;
1944 0           s->match_length = 0;
1945 0           s->ins_h = s->window[s->strstart];
1946 0           UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1947             #if MIN_MATCH != 3
1948             Call UPDATE_HASH() MIN_MATCH-3 more times
1949             #endif
1950             /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1951             * matter since it will be recomputed at next deflate call.
1952             */
1953             }
1954             } else {
1955             /* No match, output a literal byte */
1956             Tracevv((stderr,"%c", s->window[s->strstart]));
1957 0           _tr_tally_lit(s, s->window[s->strstart], bflush);
1958 0           s->lookahead--;
1959 0           s->strstart++;
1960             }
1961 0 0         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
1962 0           }
1963 0           s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1964 0 0         if (flush == Z_FINISH) {
1965 0 0         FLUSH_BLOCK(s, 1);
    0          
1966 0           return finish_done;
1967             }
1968 0 0         if (s->sym_next)
1969 0 0         FLUSH_BLOCK(s, 0);
    0          
1970 0           return block_done;
1971             }
1972              
1973             #ifndef FASTEST
1974             /* ===========================================================================
1975             * Same as above, but achieves better compression. We use a lazy
1976             * evaluation for matches: a match is finally adopted only if there is
1977             * no better match at the next window position.
1978             */
1979 279           local block_state deflate_slow(
1980             deflate_state *s,
1981             int flush)
1982             {
1983             IPos hash_head; /* head of hash chain */
1984             int bflush; /* set if current block must be flushed */
1985              
1986             /* Process the input block. */
1987             for (;;) {
1988             /* Make sure that we always have enough lookahead, except
1989             * at the end of the input file. We need MAX_MATCH bytes
1990             * for the next match, plus MIN_MATCH bytes to insert the
1991             * string following the next match.
1992             */
1993 63370 100         if (s->lookahead < MIN_LOOKAHEAD) {
1994 1635           fill_window(s);
1995 1635 100         if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
    100          
1996 240           return need_more;
1997             }
1998 1395 100         if (s->lookahead == 0) break; /* flush the current block */
1999             }
2000              
2001             /* Insert the string window[strstart .. strstart + 2] in the
2002             * dictionary, and set hash_head to the head of the hash chain:
2003             */
2004 63092           hash_head = NIL;
2005 63092 100         if (s->lookahead >= MIN_MATCH) {
2006 63038           INSERT_STRING(s, s->strstart, hash_head);
2007             }
2008              
2009             /* Find the longest match, discarding those <= prev_length.
2010             */
2011 63092           s->prev_length = s->match_length, s->prev_match = s->match_start;
2012 63092           s->match_length = MIN_MATCH-1;
2013              
2014 63092 100         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
    100          
    100          
2015 16635           s->strstart - hash_head <= MAX_DIST(s)) {
2016             /* To simplify the code, we prevent matches with the string
2017             * of window index 0 (in particular we have to avoid a match
2018             * of the string with itself at the start of the input file).
2019             */
2020 15304           s->match_length = longest_match (s, hash_head);
2021             /* longest_match() sets match_start */
2022              
2023 15304 100         if (s->match_length <= 5 && (s->strategy == Z_FILTERED
    50          
2024             #if TOO_FAR <= 32767
2025 14081 100         || (s->match_length == MIN_MATCH &&
    100          
2026 86           s->strstart - s->match_start > TOO_FAR)
2027             #endif
2028             )) {
2029              
2030             /* If prev_match is also MIN_MATCH, match_start is garbage
2031             * but we will ignore the current match anyway.
2032             */
2033 64           s->match_length = MIN_MATCH-1;
2034             }
2035             }
2036             /* If there was a match at the previous step and the current
2037             * match is not better, output the previous match:
2038             */
2039 64332 100         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
    50          
2040 1240           uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2041             /* Do not insert strings in hash table beyond this. */
2042              
2043             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2044              
2045 1240 100         _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2046             s->prev_length - MIN_MATCH, bflush);
2047              
2048             /* Insert in hash table all strings up to the end of the match.
2049             * strstart - 1 and strstart are already inserted. If there is not
2050             * enough lookahead, the last two strings are not inserted in
2051             * the hash table.
2052             */
2053 1240           s->lookahead -= s->prev_length - 1;
2054 1240           s->prev_length -= 2;
2055             do {
2056 310809 100         if (++s->strstart <= max_insert) {
2057 310795           INSERT_STRING(s, s->strstart, hash_head);
2058             }
2059 310809 100         } while (--s->prev_length != 0);
2060 1240           s->match_available = 0;
2061 1240           s->match_length = MIN_MATCH-1;
2062 1240           s->strstart++;
2063              
2064 1240 50         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2065              
2066 61852 100         } else if (s->match_available) {
2067             /* If there was no match at the previous position, output a
2068             * single literal. If there was a match but the current match
2069             * is longer, truncate the previous match to a single literal.
2070             */
2071             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2072 60585           _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2073 60585 100         if (bflush) {
2074 1 50         FLUSH_BLOCK_ONLY(s, 0);
2075             }
2076 60585           s->strstart++;
2077 60585           s->lookahead--;
2078 60585 100         if (s->strm->avail_out == 0) return need_more;
2079             } else {
2080             /* There is no previous match to compare with, wait for
2081             * the next step to decide.
2082             */
2083 1267           s->match_available = 1;
2084 1267           s->strstart++;
2085 1267           s->lookahead--;
2086             }
2087 63091           }
2088             Assert (flush != Z_NO_FLUSH, "no flush?");
2089 38 100         if (s->match_available) {
2090             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2091 27           _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2092 27           s->match_available = 0;
2093             }
2094 38           s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2095 38 100         if (flush == Z_FINISH) {
2096 29 50         FLUSH_BLOCK(s, 1);
    100          
2097 10           return finish_done;
2098             }
2099 9 100         if (s->sym_next)
2100 5 100         FLUSH_BLOCK(s, 0);
    100          
2101 6           return block_done;
2102             }
2103             #endif /* FASTEST */
2104              
2105             /* ===========================================================================
2106             * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2107             * one. Do not maintain a hash table. (It will be regenerated if this run of
2108             * deflate switches away from Z_RLE.)
2109             */
2110 0           local block_state deflate_rle(
2111             deflate_state *s,
2112             int flush)
2113             {
2114             int bflush; /* set if current block must be flushed */
2115             uInt prev; /* byte at distance one to match */
2116             Bytef *scan, *strend; /* scan goes up to strend for length of run */
2117              
2118             for (;;) {
2119             /* Make sure that we always have enough lookahead, except
2120             * at the end of the input file. We need MAX_MATCH bytes
2121             * for the longest run, plus one for the unrolled loop.
2122             */
2123 0 0         if (s->lookahead <= MAX_MATCH) {
2124 0           fill_window(s);
2125 0 0         if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
    0          
2126 0           return need_more;
2127             }
2128 0 0         if (s->lookahead == 0) break; /* flush the current block */
2129             }
2130              
2131             /* See how many times the previous byte repeats */
2132 0           s->match_length = 0;
2133 0 0         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
    0          
2134 0           scan = s->window + s->strstart - 1;
2135 0           prev = *scan;
2136 0 0         if (prev == *++scan && prev == *++scan && prev == *++scan) {
    0          
    0          
2137 0           strend = s->window + s->strstart + MAX_MATCH;
2138             do {
2139 0 0         } while (prev == *++scan && prev == *++scan &&
    0          
2140 0 0         prev == *++scan && prev == *++scan &&
    0          
2141 0 0         prev == *++scan && prev == *++scan &&
    0          
2142 0 0         prev == *++scan && prev == *++scan &&
    0          
2143 0 0         scan < strend);
2144 0           s->match_length = MAX_MATCH - (uInt)(strend - scan);
2145 0 0         if (s->match_length > s->lookahead)
2146 0           s->match_length = s->lookahead;
2147             }
2148             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2149             "wild scan");
2150             }
2151              
2152             /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2153 0 0         if (s->match_length >= MIN_MATCH) {
2154             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2155              
2156 0 0         _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2157              
2158 0           s->lookahead -= s->match_length;
2159 0           s->strstart += s->match_length;
2160 0           s->match_length = 0;
2161             } else {
2162             /* No match, output a literal byte */
2163             Tracevv((stderr,"%c", s->window[s->strstart]));
2164 0           _tr_tally_lit(s, s->window[s->strstart], bflush);
2165 0           s->lookahead--;
2166 0           s->strstart++;
2167             }
2168 0 0         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2169 0           }
2170 0           s->insert = 0;
2171 0 0         if (flush == Z_FINISH) {
2172 0 0         FLUSH_BLOCK(s, 1);
    0          
2173 0           return finish_done;
2174             }
2175 0 0         if (s->sym_next)
2176 0 0         FLUSH_BLOCK(s, 0);
    0          
2177 0           return block_done;
2178             }
2179              
2180             /* ===========================================================================
2181             * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2182             * (It will be regenerated if this run of deflate switches away from Huffman.)
2183             */
2184 0           local block_state deflate_huff(
2185             deflate_state *s,
2186             int flush)
2187             {
2188             int bflush; /* set if current block must be flushed */
2189              
2190             for (;;) {
2191             /* Make sure that we have a literal to write. */
2192 0 0         if (s->lookahead == 0) {
2193 0           fill_window(s);
2194 0 0         if (s->lookahead == 0) {
2195 0 0         if (flush == Z_NO_FLUSH)
2196 0           return need_more;
2197 0           break; /* flush the current block */
2198             }
2199             }
2200              
2201             /* Output a literal byte */
2202 0           s->match_length = 0;
2203             Tracevv((stderr,"%c", s->window[s->strstart]));
2204 0           _tr_tally_lit(s, s->window[s->strstart], bflush);
2205 0           s->lookahead--;
2206 0           s->strstart++;
2207 0 0         if (bflush) FLUSH_BLOCK(s, 0);
    0          
    0          
2208 0           }
2209 0           s->insert = 0;
2210 0 0         if (flush == Z_FINISH) {
2211 0 0         FLUSH_BLOCK(s, 1);
    0          
2212 0           return finish_done;
2213             }
2214 0 0         if (s->sym_next)
2215 0 0         FLUSH_BLOCK(s, 0);
    0          
2216 0           return block_done;
2217             }