line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Class::Ref; |
2
|
|
|
|
|
|
|
$Class::Ref::VERSION = '0.06'; |
3
|
|
|
|
|
|
|
# ABSTRACT: Automatic OO wrapping of container references |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 NAME |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
Class::Ref - Automatic OO wrapping of container references |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 SYNOPSIS |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => { bar => 'Hello World!' } }); |
12
|
|
|
|
|
|
|
$o->foo->bar; # returns "Hello World!" |
13
|
|
|
|
|
|
|
$o->baz({ blah => 123 }); |
14
|
|
|
|
|
|
|
$o->baz->blah; # returns 123 |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => [{ bar => 'Hello Again!' }] }); |
17
|
|
|
|
|
|
|
$o->foo->[0]->bar; # returns "Hello Again!" |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 DESCRIPTION |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
L provides an OO wrapping layer around Hash and Array references. |
22
|
|
|
|
|
|
|
Part of the magic is that it does this deeply and across array/hash boundaries. |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=cut |
25
|
|
|
|
|
|
|
|
26
|
8
|
|
|
8
|
|
584970
|
use strict; |
|
8
|
|
|
|
|
100
|
|
|
8
|
|
|
|
|
272
|
|
27
|
8
|
|
|
8
|
|
50
|
use warnings; |
|
8
|
|
|
|
|
19
|
|
|
8
|
|
|
|
|
287
|
|
28
|
|
|
|
|
|
|
|
29
|
8
|
|
|
8
|
|
50
|
use Scalar::Util (); |
|
8
|
|
|
|
|
20
|
|
|
8
|
|
|
|
|
135
|
|
30
|
8
|
|
|
8
|
|
40
|
use Carp (); |
|
8
|
|
|
|
|
18
|
|
|
8
|
|
|
|
|
3018
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
=head1 OPTIONS |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
Some of the behavior of the encapsulation can be modified by the following options: |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
=over 4 |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=item B<$raw_access> (Default: 0) |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => { bar => 1 } }); |
41
|
|
|
|
|
|
|
{ |
42
|
|
|
|
|
|
|
$Class::Ref::raw_access = 1; |
43
|
|
|
|
|
|
|
$o->foo; # returns { bar => 1 } |
44
|
|
|
|
|
|
|
} |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
Should you ever need to work with the raw contents of the data structure, |
47
|
|
|
|
|
|
|
setting C<$raw_access> with cause every member retrieval to just the referenced |
48
|
|
|
|
|
|
|
data rather than a wrapped form of it. |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
The observant reader will note that this does not provide access to the base |
51
|
|
|
|
|
|
|
data. In order to access that, you must dereference the object: |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
$$o; # returns { foo => { bar => 1 } } unblessed |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
See L for more information. |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
=cut |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
# bypass wrapping and access the raw data structure |
60
|
|
|
|
|
|
|
our $raw_access = 0; |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
=item B<$allow_undef> (Default: 0) |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => { bar => 1 } }); |
65
|
|
|
|
|
|
|
{ |
66
|
|
|
|
|
|
|
local $Class::Ref::allow_undef = 1; |
67
|
|
|
|
|
|
|
$o->not_here; # returns undef |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
$o->not_here; # raises exception |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
By default, an exception will be raised if you try to read from a HASH key that is |
72
|
|
|
|
|
|
|
non-existent. |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
=back |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=cut |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
# instead of raising an exception when accessing a non-existent value, |
79
|
|
|
|
|
|
|
# return 'undef' instead |
80
|
|
|
|
|
|
|
our $allow_undef = 0; |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# disable defaults at your peril |
83
|
|
|
|
|
|
|
our %nowrap = map { ($_ => 1) } ( |
84
|
|
|
|
|
|
|
'Regexp', 'CODE', 'SCALAR', 'REF', 'LVALUE', 'VSTRING', |
85
|
|
|
|
|
|
|
'GLOB', 'IO', 'FORMAT' |
86
|
|
|
|
|
|
|
); |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
my $bless = sub { |
89
|
|
|
|
|
|
|
my ($class, $ref) = @_; |
90
|
|
|
|
|
|
|
return $ref if $raw_access; |
91
|
|
|
|
|
|
|
my $type = ref $ref; |
92
|
|
|
|
|
|
|
return bless \$ref => "$class\::$type"; |
93
|
|
|
|
|
|
|
}; |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
my $test = sub { |
96
|
|
|
|
|
|
|
return unless $_[0] and ref $_[0]; |
97
|
|
|
|
|
|
|
return if Scalar::Util::blessed $_[0]; |
98
|
|
|
|
|
|
|
return if $nowrap{ ref $_[0] }; |
99
|
|
|
|
|
|
|
1; |
100
|
|
|
|
|
|
|
}; |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
my $assign = sub { |
103
|
|
|
|
|
|
|
my $v = shift; |
104
|
|
|
|
|
|
|
$$v = shift if @_; |
105
|
|
|
|
|
|
|
return $test->($$v) ? \__PACKAGE__->$bless($$v) : $v; |
106
|
|
|
|
|
|
|
}; |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=head1 METHODS |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
There is only the constructor. |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
=over 4 |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=item B |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
$o = Class::Ref->new({...}); |
117
|
|
|
|
|
|
|
$o = Class::Ref->new([...]); |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
Wrap the provided reference in OO getters and setters. |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
=back |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=cut |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
sub new { |
126
|
15
|
|
|
15
|
1
|
6690
|
my ($class, $ref) = @_; |
127
|
15
|
100
|
|
|
|
62
|
Carp::croak "not a valid reference for $class" unless $test->($ref); |
128
|
7
|
|
|
|
|
37
|
return $class->$bless($ref); |
129
|
|
|
|
|
|
|
} |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=head1 PHILOSOPHY |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
A lot of effort has been made to ensure that the only code that changes your |
134
|
|
|
|
|
|
|
wrapped data is your code. There is no blessing of any of the data wrapped |
135
|
|
|
|
|
|
|
by L. |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
With that being said, the goal has been to reduce the syntax need to access |
138
|
|
|
|
|
|
|
values deep inside a HASH/ARRAY reference. |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=head1 HASH Refs |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Wrapping a HASH is a fairly straightforward process. All keys of the hash will |
143
|
|
|
|
|
|
|
be made available as a method call. |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
There is a bit more here however. If, for example, you accessed the actual hash, |
146
|
|
|
|
|
|
|
L will still encapsulate the return value if that value is a HASH or |
147
|
|
|
|
|
|
|
an ARRAY: |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => { bar => 1 } }); |
150
|
|
|
|
|
|
|
$o->{foo}->bar; # works |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
But all without modifying, blessing, or otherwise messing with the value. The |
153
|
|
|
|
|
|
|
data referenced with C<$o> remains the same as when it originally wrapped. |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=cut |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
package Class::Ref::HASH; |
158
|
|
|
|
|
|
|
$Class::Ref::HASH::VERSION = '0.06'; |
159
|
8
|
|
|
8
|
|
65
|
use strict; |
|
8
|
|
|
|
|
18
|
|
|
8
|
|
|
|
|
202
|
|
160
|
8
|
|
|
8
|
|
53
|
use warnings; |
|
8
|
|
|
|
|
20
|
|
|
8
|
|
|
|
|
815
|
|
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
use overload '%{}' => sub { |
163
|
14
|
100
|
|
14
|
|
1139
|
return ${ $_[0] } if $raw_access; |
|
1
|
|
|
|
|
7
|
|
164
|
13
|
|
|
|
|
29
|
tie my %h, __PACKAGE__ . '::Tie', ${ $_[0] }; |
|
13
|
|
|
|
|
78
|
|
165
|
13
|
|
|
|
|
80
|
\%h; |
166
|
|
|
|
|
|
|
}, |
167
|
8
|
|
|
8
|
|
8529
|
fallback => 1; |
|
8
|
|
|
|
|
8348
|
|
|
8
|
|
|
|
|
82
|
|
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
our $AUTOLOAD; |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
sub AUTOLOAD { |
172
|
|
|
|
|
|
|
# enable access to $h->{AUTOLOAD} |
173
|
48
|
100
|
|
48
|
|
14102
|
my $name |
174
|
|
|
|
|
|
|
= defined $AUTOLOAD |
175
|
|
|
|
|
|
|
? substr($AUTOLOAD, 1 + rindex $AUTOLOAD, ':') |
176
|
|
|
|
|
|
|
: 'AUTOLOAD'; |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
# undef so that we can detect if next call is for $h->{AUTOLOAD} |
179
|
|
|
|
|
|
|
# - needed cause $AUTOLOAD stays set to previous value until next call |
180
|
48
|
|
|
|
|
111
|
undef $AUTOLOAD; |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
# NOTE must do this after AUTOLOAD check |
183
|
|
|
|
|
|
|
# - weird things happen when a wrapped HASH is an element of a wrapped |
184
|
|
|
|
|
|
|
# ARRAY. tie'd ARRAYs have some lvalue magic on their FETCHed values. |
185
|
|
|
|
|
|
|
# As a result, this call to shift triggers the tie object call to FETCH |
186
|
|
|
|
|
|
|
# to ensure the lvalue is still valid. |
187
|
48
|
|
|
|
|
98
|
my $self = shift; |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# simulate a fetch for a non-existent key without autovivification |
190
|
48
|
100
|
100
|
|
|
285
|
unless (exists $$self->{$name} or @_) { |
191
|
14
|
100
|
100
|
|
|
298
|
return undef if $allow_undef or $name eq 'DESTROY'; |
192
|
1
|
|
|
|
|
156
|
Carp::croak sprintf 'Can\'t locate object method "%s" via package "%s"', |
193
|
|
|
|
|
|
|
$name, |
194
|
|
|
|
|
|
|
ref $self; |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
# keep this broken up in case I decide to implement lvalues |
198
|
34
|
|
|
|
|
129
|
my $o = $assign->(\$$self->{$name}, @_); |
199
|
34
|
|
|
|
|
210
|
$$o; |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
package Class::Ref::HASH::Tie; |
203
|
|
|
|
|
|
|
$Class::Ref::HASH::Tie::VERSION = '0.06'; |
204
|
8
|
|
|
8
|
|
2055
|
use strict; |
|
8
|
|
|
|
|
25
|
|
|
8
|
|
|
|
|
236
|
|
205
|
8
|
|
|
8
|
|
50
|
use warnings; |
|
8
|
|
|
|
|
32
|
|
|
8
|
|
|
|
|
2844
|
|
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
# borrowed from Tie::StdHash (in Tie::Hash) |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
#<<< ready... steady... cross-eyed!! |
210
|
13
|
|
|
13
|
|
48
|
sub TIEHASH { bless [$_[1]], $_[0] } |
211
|
1
|
|
|
1
|
|
5
|
sub STORE { $_[0][0]->{ $_[1] } = $_[2] } |
212
|
2
|
|
|
2
|
|
40
|
sub FETCH { ${ $assign->(\$_[0][0]->{ $_[1] }) } } # magic |
|
2
|
|
|
|
|
11
|
|
213
|
2
|
|
|
2
|
|
4
|
sub FIRSTKEY { my $a = scalar keys %{ $_[0][0] }; each %{ $_[0][0] } } |
|
2
|
|
|
|
|
7
|
|
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
11
|
|
214
|
2
|
|
|
2
|
|
5
|
sub NEXTKEY { each %{ $_[0][0] } } |
|
2
|
|
|
|
|
13
|
|
215
|
2
|
|
|
2
|
|
14
|
sub EXISTS { exists $_[0][0]->{ $_[1] } } |
216
|
1
|
|
|
1
|
|
9
|
sub DELETE { delete $_[0][0]->{ $_[1] } } |
217
|
1
|
|
|
1
|
|
2
|
sub CLEAR { %{ $_[0][0] } = () } |
|
1
|
|
|
|
|
5
|
|
218
|
1
|
|
|
1
|
|
1
|
sub SCALAR { scalar %{ $_[0][0] } } |
|
1
|
|
|
|
|
6
|
|
219
|
|
|
|
|
|
|
#>>> |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
=head1 ARRAY Refs |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
Wrapping ARRAYs is much less straightforward. Using an C method |
224
|
|
|
|
|
|
|
doesn't help because perl symbols cannot begin with a number. Makes it a |
225
|
|
|
|
|
|
|
little difficult to do the following: |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
$o->0; # compile error |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
So for the purpose of this module, wrapped ARRAYs exactly like an ARRAY |
230
|
|
|
|
|
|
|
reference: |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
$o->[0]; # ahh, much better |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
The tricky part comes in wanting to make sure that values returned from such a |
235
|
|
|
|
|
|
|
call would still be wrapped: |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
$o->[0]->foo; # $o = [{ foo => 'bar' }] |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
See L for more discussion on how this is done. |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
I am still debating if adding formal accessor methods would be helpful in |
242
|
|
|
|
|
|
|
this context. |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
=cut |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
package Class::Ref::ARRAY; |
247
|
|
|
|
|
|
|
$Class::Ref::ARRAY::VERSION = '0.06'; |
248
|
8
|
|
|
8
|
|
75
|
use strict; |
|
8
|
|
|
|
|
23
|
|
|
8
|
|
|
|
|
193
|
|
249
|
8
|
|
|
8
|
|
49
|
use warnings; |
|
8
|
|
|
|
|
17
|
|
|
8
|
|
|
|
|
784
|
|
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
# tie a proxy array around the real one |
252
|
|
|
|
|
|
|
use overload '@{}' => sub { |
253
|
33
|
100
|
|
33
|
|
5325
|
return ${ $_[0] } if $raw_access; |
|
2
|
|
|
|
|
13
|
|
254
|
31
|
|
|
|
|
80
|
tie my @a, __PACKAGE__ . '::Tie', ${ $_[0] }; |
|
31
|
|
|
|
|
185
|
|
255
|
31
|
|
|
|
|
214
|
\@a; |
256
|
|
|
|
|
|
|
}, |
257
|
8
|
|
|
8
|
|
54
|
fallback => 1; |
|
8
|
|
|
|
|
21
|
|
|
8
|
|
|
|
|
54
|
|
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
sub index { |
260
|
2
|
|
|
2
|
|
8
|
my $self = shift; |
261
|
2
|
100
|
|
|
|
166
|
defined(my $i = shift) or Carp::croak "No index given"; |
262
|
1
|
|
|
|
|
4
|
${ $assign->(\$$self->[$i], @_) }; |
|
1
|
|
|
|
|
6
|
|
263
|
|
|
|
|
|
|
} |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
sub iterator { |
266
|
1
|
|
|
1
|
|
790
|
my $self = shift; |
267
|
1
|
|
|
|
|
4
|
my $raw = $raw_access; |
268
|
1
|
|
|
|
|
4
|
my $i = 0; |
269
|
|
|
|
|
|
|
return sub { |
270
|
|
|
|
|
|
|
# preserve access mode for the life of the iterator |
271
|
1
|
|
|
1
|
|
5
|
local $raw_access = $raw; |
272
|
1
|
|
|
|
|
3
|
${ $assign->(\$$self->[$i++]) } ; |
|
1
|
|
|
|
|
7
|
|
273
|
1
|
|
|
|
|
9
|
}; |
274
|
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
our $AUTOLOAD; |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
sub AUTOLOAD { |
279
|
|
|
|
|
|
|
# enable access to $o->caller::AUTOLOAD |
280
|
20
|
100
|
|
20
|
|
3136
|
my $name |
281
|
|
|
|
|
|
|
= defined $AUTOLOAD |
282
|
|
|
|
|
|
|
? substr($AUTOLOAD, 1 + rindex $AUTOLOAD, ':') |
283
|
|
|
|
|
|
|
: 'AUTOLOAD'; |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
# undef so that we can detect if next call is for $o->caller::AUTOLOAD |
286
|
|
|
|
|
|
|
# - needed cause $AUTOLOAD stays set to previous value until next call |
287
|
20
|
|
|
|
|
56
|
undef $AUTOLOAD; |
288
|
|
|
|
|
|
|
|
289
|
20
|
100
|
|
|
|
265
|
return if $name eq 'DESTROY'; |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
# NOTE must do this after AUTOLOAD check |
292
|
|
|
|
|
|
|
# - weird things happen when a wrapped ARRAY is an element of a wrapped |
293
|
|
|
|
|
|
|
# ARRAY. tie'd ARRAYs have some lvalue magic on their FETCHed values. |
294
|
|
|
|
|
|
|
# As a result, this call to shift triggers the tie object call to FETCH |
295
|
|
|
|
|
|
|
# to ensure the lvalue is still valid. |
296
|
9
|
|
|
|
|
24
|
my $self = shift; |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
# honor @ISA if the caller is using it |
299
|
9
|
|
|
|
|
25
|
my $pkg = caller; |
300
|
9
|
100
|
|
|
|
75
|
my $idx = $pkg->can($name) ? $pkg->$name : undef; |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
{ |
303
|
8
|
|
|
8
|
|
2532
|
no warnings 'numeric'; |
|
8
|
|
|
|
|
22
|
|
|
8
|
|
|
|
|
1486
|
|
|
9
|
|
|
|
|
26
|
|
304
|
9
|
100
|
100
|
|
|
392
|
defined $idx and $idx eq int($idx) |
305
|
|
|
|
|
|
|
or Carp::croak "'$name' is not a numeric constant in '$pkg'"; |
306
|
|
|
|
|
|
|
} |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
# simulate a fetch for a non-existent index without autovivification |
309
|
7
|
100
|
100
|
|
|
48
|
return undef unless exists $$self->[$idx] or @_; |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
# keep this broken up in case I decide to implement lvalues |
312
|
6
|
|
|
|
|
27
|
my $o = $assign->(\$$self->[$idx], @_); |
313
|
6
|
|
|
|
|
43
|
$$o; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
package Class::Ref::ARRAY::Tie; |
317
|
|
|
|
|
|
|
$Class::Ref::ARRAY::Tie::VERSION = '0.06'; |
318
|
8
|
|
|
8
|
|
75
|
use strict; |
|
8
|
|
|
|
|
19
|
|
|
8
|
|
|
|
|
212
|
|
319
|
8
|
|
|
8
|
|
52
|
use warnings; |
|
8
|
|
|
|
|
25
|
|
|
8
|
|
|
|
|
3848
|
|
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
# borrowed from Tie::StdArray (in Tie::Array) |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
#<<< ready... steady... cross-eyed!! |
324
|
31
|
|
|
31
|
|
134
|
sub TIEARRAY { bless [$_[1]] => $_[0] } |
325
|
3
|
|
|
3
|
|
8
|
sub FETCHSIZE { scalar @{ $_[0][0] } } |
|
3
|
|
|
|
|
25
|
|
326
|
1
|
|
|
1
|
|
4
|
sub STORESIZE { $#{ $_[0][0] } = $_[1] - 1 } |
|
1
|
|
|
|
|
10
|
|
327
|
1
|
|
|
1
|
|
7
|
sub STORE { $_[0][0]->[$_[1]] = $_[2] } |
328
|
15
|
|
|
15
|
|
202
|
sub FETCH { ${ $assign->(\$_[0][0][$_[1]]) } } # magic |
|
15
|
|
|
|
|
69
|
|
329
|
1
|
|
|
1
|
|
5
|
sub CLEAR { @{ $_[0][0] } = () } |
|
1
|
|
|
|
|
9
|
|
330
|
1
|
|
|
1
|
|
4
|
sub POP { pop @{ $_[0][0] } } |
|
1
|
|
|
|
|
11
|
|
331
|
2
|
|
|
2
|
|
9
|
sub PUSH { my $o = shift->[0]; push @$o, @_ } |
|
2
|
|
|
|
|
15
|
|
332
|
1
|
|
|
1
|
|
4
|
sub SHIFT { shift @{ $_[0][0] } } |
|
1
|
|
|
|
|
8
|
|
333
|
1
|
|
|
1
|
|
5
|
sub UNSHIFT { my $o = shift->[0]; unshift @$o, @_ } |
|
1
|
|
|
|
|
7
|
|
334
|
1
|
|
|
1
|
|
12
|
sub EXISTS { exists $_[0][0]->[$_[1]] } |
335
|
1
|
|
|
1
|
|
10
|
sub DELETE { delete $_[0][0]->[$_[1]] } |
336
|
0
|
|
|
0
|
|
0
|
sub EXTEND { $_[0]->STORESIZE($_[1]) } |
337
|
1
|
|
|
1
|
|
5
|
sub SPLICE { splice @{ shift->[0] }, shift, shift, @_ } |
|
1
|
|
|
|
|
11
|
|
338
|
|
|
|
|
|
|
#>>> |
339
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
=head1 GUTS |
341
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
All objects created and returned by L are blessed REF types. This |
343
|
|
|
|
|
|
|
is what protects the original reference from being blessed into an unwanted |
344
|
|
|
|
|
|
|
package. The C[ type of the given value is what determines what package the ] |
345
|
|
|
|
|
|
|
REF is blessed into. HASHes go into C and ARRAYs go into |
346
|
|
|
|
|
|
|
C. |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
The use of the L pragma to overload the dereference operators allows |
349
|
|
|
|
|
|
|
the REF object to still be accessed as HASH refs and ARRAY refs. When these REFs |
350
|
|
|
|
|
|
|
are coerced into their appropriate type, they are wrapped in a tie mechanism to |
351
|
|
|
|
|
|
|
retain control over the return of member values. |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
The only way to fully bypass all of this is to manually dereference the REF |
354
|
|
|
|
|
|
|
object: |
355
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
$o = Class::Ref->new({ foo => 1 }); |
357
|
|
|
|
|
|
|
$$o->{foo}; |
358
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
=head1 CAVEATS |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
When dealing with a wrapped HASH, there is no way to access keys named C |
362
|
|
|
|
|
|
|
and C. They are core methods perl uses to interact with OO values. |
363
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
Accessing HASH members with invalid perl symbols is possible with a little work: |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
my $method = '0) key'; |
367
|
|
|
|
|
|
|
$o->$method; # access $o->{'0) key'}; |
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
=head1 SEE ALSO |
370
|
|
|
|
|
|
|
|
371
|
|
|
|
|
|
|
I've always wanted to have this kind of functionality for hashes that really |
372
|
|
|
|
|
|
|
needed a more formal interface. However, I found myself wanting more from the |
373
|
|
|
|
|
|
|
existing modules out there in the wild. So I borrowed some the great ideas out |
374
|
|
|
|
|
|
|
there and brewed my own implementation to have the level of flexibility that I |
375
|
|
|
|
|
|
|
desire. And if it helps others, that's awesome too. |
376
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
=over 4 |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
=item * L |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
Probably the de facto module for creating accessors to a hash. However, it only |
382
|
|
|
|
|
|
|
provides a single layer of encapsulation. |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
=item * L |
385
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
Provides a deeper implementation but takes (avoids) steps to make the hash |
387
|
|
|
|
|
|
|
read-only. |
388
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
=item * L |
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
Also provides a deep implementation. Goes further to provide access to methods |
392
|
|
|
|
|
|
|
like C and C. |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
=back |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
=head1 AUTHOR |
397
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
William Cox |
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
=head1 LICENSE |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under |
403
|
|
|
|
|
|
|
the same terms as Perl itself. |
404
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
See L |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
=cut |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
1; |