line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# |
2
|
|
|
|
|
|
|
# BioPerl module for Bio::Tree::Compatible |
3
|
|
|
|
|
|
|
# |
4
|
|
|
|
|
|
|
# Please direct questions and support issues to |
5
|
|
|
|
|
|
|
# |
6
|
|
|
|
|
|
|
# Cared for by Gabriel Valiente |
7
|
|
|
|
|
|
|
# |
8
|
|
|
|
|
|
|
# Copyright Gabriel Valiente |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# You may distribute this module under the same terms as Perl itself |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
# POD documentation - main docs before the code |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Bio::Tree::Compatible - Testing compatibility of phylogenetic trees |
17
|
|
|
|
|
|
|
with nested taxa. |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 SYNOPSIS |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
use Bio::Tree::Compatible; |
22
|
|
|
|
|
|
|
use Bio::TreeIO; |
23
|
|
|
|
|
|
|
my $input = Bio::TreeIO->new('-format' => 'newick', |
24
|
|
|
|
|
|
|
'-file' => 'input.tre'); |
25
|
|
|
|
|
|
|
my $t1 = $input->next_tree; |
26
|
|
|
|
|
|
|
my $t2 = $input->next_tree; |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
my ($incompat, $ilabels, $inodes) = Bio::Tree::Compatible::is_compatible($t1,$t2); |
29
|
|
|
|
|
|
|
if ($incompat) { |
30
|
|
|
|
|
|
|
my %cluster1 = %{ Bio::Tree::Compatible::cluster_representation($t1) }; |
31
|
|
|
|
|
|
|
my %cluster2 = %{ Bio::Tree::Compatible::cluster_representation($t2) }; |
32
|
|
|
|
|
|
|
print "incompatible trees\n"; |
33
|
|
|
|
|
|
|
if (scalar(@$ilabels)) { |
34
|
|
|
|
|
|
|
foreach my $label (@$ilabels) { |
35
|
|
|
|
|
|
|
my $node1 = $t1->find_node(-id => $label); |
36
|
|
|
|
|
|
|
my $node2 = $t2->find_node(-id => $label); |
37
|
|
|
|
|
|
|
my @c1 = sort @{ $cluster1{$node1} }; |
38
|
|
|
|
|
|
|
my @c2 = sort @{ $cluster2{$node2} }; |
39
|
|
|
|
|
|
|
print "label $label"; |
40
|
|
|
|
|
|
|
print " cluster"; map { print " ",$_ } @c1; |
41
|
|
|
|
|
|
|
print " cluster"; map { print " ",$_ } @c2; print "\n"; |
42
|
|
|
|
|
|
|
} |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
if (scalar(@$inodes)) { |
45
|
|
|
|
|
|
|
while (@$inodes) { |
46
|
|
|
|
|
|
|
my $node1 = shift @$inodes; |
47
|
|
|
|
|
|
|
my $node2 = shift @$inodes; |
48
|
|
|
|
|
|
|
my @c1 = sort @{ $cluster1{$node1} }; |
49
|
|
|
|
|
|
|
my @c2 = sort @{ $cluster2{$node2} }; |
50
|
|
|
|
|
|
|
print "cluster"; map { print " ",$_ } @c1; |
51
|
|
|
|
|
|
|
print " properly intersects cluster"; |
52
|
|
|
|
|
|
|
map { print " ",$_ } @c2; print "\n"; |
53
|
|
|
|
|
|
|
} |
54
|
|
|
|
|
|
|
} |
55
|
|
|
|
|
|
|
} else { |
56
|
|
|
|
|
|
|
print "compatible trees\n"; |
57
|
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=head1 DESCRIPTION |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
NB: This module has exclusively class methods that work on Bio::Tree::TreeI |
62
|
|
|
|
|
|
|
objects. An instance of Bio::Tree::Compatible cannot itself represent a tree, |
63
|
|
|
|
|
|
|
and so typically there is no need to create one. |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
Bio::Tree::Compatible is a Perl tool for testing compatibility of |
66
|
|
|
|
|
|
|
phylogenetic trees with nested taxa represented as Bio::Tree::Tree |
67
|
|
|
|
|
|
|
objects. It is based on a recent characterization of ancestral |
68
|
|
|
|
|
|
|
compatibility of semi-labeled trees in terms of their cluster |
69
|
|
|
|
|
|
|
representations. |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
A semi-labeled tree is a phylogenetic tree with some of its internal |
72
|
|
|
|
|
|
|
nodes labeled, and it can represent a classification tree as well as a |
73
|
|
|
|
|
|
|
phylogenetic tree with nested taxa, with labeled internal nodes |
74
|
|
|
|
|
|
|
corresponding to taxa at a higher level of aggregation or nesting than |
75
|
|
|
|
|
|
|
that of their descendents. |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
Two semi-labeled trees are compatible if their topological |
78
|
|
|
|
|
|
|
restrictions to the common labels are such that for each node label, |
79
|
|
|
|
|
|
|
the smallest clusters containing it in each of the trees coincide and, |
80
|
|
|
|
|
|
|
furthermore, no cluster in one of the trees properly intersects a |
81
|
|
|
|
|
|
|
cluster of the other tree. |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
Future extensions of Bio::Tree::Compatible include a |
84
|
|
|
|
|
|
|
Bio::Tree::Supertree module for combining compatible phylogenetic |
85
|
|
|
|
|
|
|
trees with nested taxa into a common supertree. |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
=head1 FEEDBACK |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
=head2 Mailing Lists |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
User feedback is an integral part of the evolution of this and other |
92
|
|
|
|
|
|
|
Bioperl modules. Send your comments and suggestions preferably to the |
93
|
|
|
|
|
|
|
Bioperl mailing list. Your participation is much appreciated. |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
bioperl-l@bioperl.org - General discussion |
96
|
|
|
|
|
|
|
http://bioperl.org/wiki/Mailing_lists - About the mailing lists |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
=head2 Support |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
Please direct usage questions or support issues to the mailing list: |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
I |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
rather than to the module maintainer directly. Many experienced and |
105
|
|
|
|
|
|
|
reponsive experts will be able look at the problem and quickly |
106
|
|
|
|
|
|
|
address it. Please include a thorough description of the problem |
107
|
|
|
|
|
|
|
with code and data examples if at all possible. |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=head2 Reporting Bugs |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
Report bugs to the Bioperl bug tracking system to help us keep track |
112
|
|
|
|
|
|
|
of the bugs and their resolution. Bug reports can be submitted via the |
113
|
|
|
|
|
|
|
web: |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
https://github.com/bioperl/bioperl-live/issues |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
=head1 SEE ALSO |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
=over |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
=item * Philip Daniel and Charles Semple. Supertree Algorithms for |
122
|
|
|
|
|
|
|
Nested Taxa. In: Olaf R. P. Bininda-Emonds (ed.) Phylogenetic |
123
|
|
|
|
|
|
|
Supertrees: Combining Information to Reveal the Tree of Life, |
124
|
|
|
|
|
|
|
I, vol. 4, chap. 7, pp. 151-171. Kluwer (2004). |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
=item * Charles Semple, Philip Daniel, Wim Hordijk, Roderic |
127
|
|
|
|
|
|
|
D. M. Page, and Mike Steel: Supertree Algorithms for Ancestral |
128
|
|
|
|
|
|
|
Divergence Dates and Nested Taxa. Bioinformatics B<20>(15), 2355-2360 |
129
|
|
|
|
|
|
|
(2004). |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=item * Merce Llabres, Jairo Rocha, Francesc Rossello, and Gabriel |
132
|
|
|
|
|
|
|
Valiente: On the Ancestral Compatibility of Two Phylogenetic Trees |
133
|
|
|
|
|
|
|
with Nested Taxa. J. Math. Biol. B<53>(3), 340-364 (2006). |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=back |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
=head1 AUTHOR - Gabriel Valiente |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
Email valiente@lsi.upc.edu |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
=head1 APPENDIX |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
The rest of the documentation details each of the object methods. |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
=cut |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
package Bio::Tree::Compatible; |
148
|
1
|
|
|
1
|
|
462
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
25
|
|
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# Object preamble - inherits from Bio::Root::Root |
151
|
|
|
|
|
|
|
|
152
|
1
|
|
|
1
|
|
4
|
use Set::Scalar; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
36
|
|
153
|
|
|
|
|
|
|
|
154
|
1
|
|
|
1
|
|
4
|
use base qw(Bio::Root::Root); |
|
1
|
|
|
|
|
9
|
|
|
1
|
|
|
|
|
258
|
|
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
=head2 postorder_traversal |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
Title : postorder_traversal |
159
|
|
|
|
|
|
|
Usage : my @nodes = @{ $tree->postorder_traversal } |
160
|
|
|
|
|
|
|
Function: Return list of nodes in postorder |
161
|
|
|
|
|
|
|
Returns : reference to array of Bio::Tree::Node |
162
|
|
|
|
|
|
|
Args : none |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
For example, the postorder traversal of the tree |
165
|
|
|
|
|
|
|
C<(((A,B)C,D),(E,F,G));> is a reference to an array of nodes with |
166
|
|
|
|
|
|
|
internal_id 0 through 9, because the Newick standard representation |
167
|
|
|
|
|
|
|
for phylogenetic trees is based on a postorder traversal. |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
+---A +---0 |
170
|
|
|
|
|
|
|
| | |
171
|
|
|
|
|
|
|
+---+---C +---4---2 |
172
|
|
|
|
|
|
|
| | | | | | |
173
|
|
|
|
|
|
|
| | +---B | | +---1 |
174
|
|
|
|
|
|
|
| | | | |
175
|
|
|
|
|
|
|
+ +-------D 9 +-------3 |
176
|
|
|
|
|
|
|
| | |
177
|
|
|
|
|
|
|
| +-----E | +-----5 |
178
|
|
|
|
|
|
|
| | | | |
179
|
|
|
|
|
|
|
+-----+-----F +-----8-----6 |
180
|
|
|
|
|
|
|
| | |
181
|
|
|
|
|
|
|
+-----G +-----7 |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
=cut |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
sub postorder_traversal { |
186
|
14
|
|
|
14
|
1
|
16
|
my($self) = @_; |
187
|
14
|
|
|
|
|
16
|
my @stack; |
188
|
|
|
|
|
|
|
my @queue; |
189
|
14
|
|
|
|
|
23
|
push @stack, $self->get_root_node; |
190
|
14
|
|
|
|
|
20
|
while (@stack) { |
191
|
103
|
|
|
|
|
116
|
my $node = pop @stack; |
192
|
103
|
|
|
|
|
96
|
push @queue, $node; |
193
|
103
|
|
|
|
|
158
|
foreach my $child ($node->each_Descendent(-sortby => 'internal_id')) { |
194
|
89
|
|
|
|
|
146
|
push @stack, $child; |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
} |
197
|
14
|
|
|
|
|
25
|
my @postorder = reverse @queue; |
198
|
14
|
|
|
|
|
29
|
return \@postorder; |
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
=head2 cluster_representation |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
Title : cluster_representation |
204
|
|
|
|
|
|
|
Usage : my %cluster = %{ $tree->cluster_representation } |
205
|
|
|
|
|
|
|
Function: Compute the cluster representation of a tree |
206
|
|
|
|
|
|
|
Returns : reference to hash of array of string indexed by |
207
|
|
|
|
|
|
|
Bio::Tree::Node |
208
|
|
|
|
|
|
|
Args : none |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
For example, the cluster representation of the tree |
211
|
|
|
|
|
|
|
C<(((A,B)C,D),(E,F,G));> is a reference to a hash associating an array |
212
|
|
|
|
|
|
|
of string (descendent labels) to each node, as follows: |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
0 --> [A] |
215
|
|
|
|
|
|
|
1 --> [B] |
216
|
|
|
|
|
|
|
2 --> [A,B,C] |
217
|
|
|
|
|
|
|
3 --> [D] |
218
|
|
|
|
|
|
|
4 --> [A,B,C,D] |
219
|
|
|
|
|
|
|
5 --> [E] |
220
|
|
|
|
|
|
|
6 --> [F] |
221
|
|
|
|
|
|
|
7 --> [G] |
222
|
|
|
|
|
|
|
8 --> [E,F,G] |
223
|
|
|
|
|
|
|
9 --> [A,B,C,D,E,F,G] |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
=cut |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
sub cluster_representation { |
228
|
4
|
|
|
4
|
1
|
7
|
my ($tree) = @_; |
229
|
4
|
|
|
|
|
3
|
my %cluster; |
230
|
4
|
|
|
|
|
6
|
my @postorder = @{ postorder_traversal($tree) }; |
|
4
|
|
|
|
|
10
|
|
231
|
4
|
|
|
|
|
7
|
foreach my $node ( @postorder ) { |
232
|
28
|
|
|
|
|
42
|
my @labeled = map { $_->id } grep { $_->id } $node->get_Descendents; |
|
33
|
|
|
|
|
42
|
|
|
43
|
|
|
|
|
57
|
|
233
|
28
|
100
|
|
|
|
41
|
push @labeled, $node->id if $node->id; |
234
|
28
|
|
|
|
|
61
|
$cluster{$node} = \@labeled; |
235
|
|
|
|
|
|
|
} |
236
|
4
|
|
|
|
|
17
|
return \%cluster; |
237
|
|
|
|
|
|
|
} |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
=head2 common_labels |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
Title : common_labels |
242
|
|
|
|
|
|
|
Usage : my $labels = $tree1->common_labels($tree2); |
243
|
|
|
|
|
|
|
Function: Return set of common node labels |
244
|
|
|
|
|
|
|
Returns : Set::Scalar |
245
|
|
|
|
|
|
|
Args : Bio::Tree::Tree |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
For example, the common labels of the tree C<(((A,B)C,D),(E,F,G));> |
248
|
|
|
|
|
|
|
and the tree C<((A,B)H,E,(J,(K)G)I);> are: C<[A,B,E,G]>. |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
+---A +---A |
251
|
|
|
|
|
|
|
| | |
252
|
|
|
|
|
|
|
+---+---C +-------H |
253
|
|
|
|
|
|
|
| | | | | |
254
|
|
|
|
|
|
|
| | +---B | +---B |
255
|
|
|
|
|
|
|
| | | |
256
|
|
|
|
|
|
|
+ +-------D +-----------E |
257
|
|
|
|
|
|
|
| | |
258
|
|
|
|
|
|
|
| +-----E | +-------J |
259
|
|
|
|
|
|
|
| | | | |
260
|
|
|
|
|
|
|
+-----+-----F +---I |
261
|
|
|
|
|
|
|
| | |
262
|
|
|
|
|
|
|
+-----G +---G---K |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
=cut |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
sub common_labels { |
267
|
3
|
|
|
3
|
1
|
10
|
my($self,$arg) = @_; |
268
|
3
|
|
|
|
|
9
|
my @labels1 = map { $_->id } grep { $_->id } $self->get_nodes; |
|
15
|
|
|
|
|
17
|
|
|
24
|
|
|
|
|
28
|
|
269
|
3
|
|
|
|
|
19
|
my $common = Set::Scalar->new( @labels1 ); |
270
|
3
|
|
|
|
|
382
|
my @labels2 = map { $_->id } grep { $_->id } $arg->get_nodes; |
|
16
|
|
|
|
|
22
|
|
|
23
|
|
|
|
|
54
|
|
271
|
3
|
|
|
|
|
8
|
my $temp = Set::Scalar->new( @labels2 ); |
272
|
3
|
|
|
|
|
231
|
return $common->intersection($temp); |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
=head2 topological_restriction |
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
Title : topological_restriction |
278
|
|
|
|
|
|
|
Usage : $tree->topological_restriction($labels) |
279
|
|
|
|
|
|
|
Function: Compute the topological restriction of a tree to a subset |
280
|
|
|
|
|
|
|
of node labels |
281
|
|
|
|
|
|
|
Returns : Bio::Tree::Tree |
282
|
|
|
|
|
|
|
Args : Set::Scalar |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
For example, the topological restrictions of each of the trees |
285
|
|
|
|
|
|
|
C<(((A,B)C,D),(E,F,G));> and C<((A,B)H,E,(J,(K)G)I);> to the labels |
286
|
|
|
|
|
|
|
C<[A,B,E,G]> are as follows: |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
+---A +---A |
289
|
|
|
|
|
|
|
| | |
290
|
|
|
|
|
|
|
+---+---+ +---+ |
291
|
|
|
|
|
|
|
| | | | |
292
|
|
|
|
|
|
|
| +---B | +---B |
293
|
|
|
|
|
|
|
+ | |
294
|
|
|
|
|
|
|
| +---E +-------E |
295
|
|
|
|
|
|
|
| | | |
296
|
|
|
|
|
|
|
+-------+ +---+---G |
297
|
|
|
|
|
|
|
| |
298
|
|
|
|
|
|
|
+---G |
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
=cut |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
sub topological_restriction { |
303
|
6
|
|
|
6
|
1
|
1521
|
my ($tree, $labels) = @_; |
304
|
6
|
|
|
|
|
7
|
for my $node ( @{ postorder_traversal($tree) } ) { |
|
6
|
|
|
|
|
9
|
|
305
|
47
|
50
|
|
|
|
61
|
unless (ref($node)) { # skip $node if already removed |
306
|
0
|
|
|
|
|
0
|
my @cluster = map { $_->id } grep { $_->id } $node->get_Descendents; |
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
307
|
0
|
0
|
|
|
|
0
|
push @cluster, $node->id if $node->id; |
308
|
0
|
|
|
|
|
0
|
my $cluster = Set::Scalar->new(@cluster); |
309
|
0
|
0
|
|
|
|
0
|
if ($cluster->is_disjoint($labels)) { |
310
|
0
|
|
|
|
|
0
|
$tree->remove_Node($node); |
311
|
|
|
|
|
|
|
} else { |
312
|
0
|
0
|
0
|
|
|
0
|
if ($node->id and not $labels->has($node->id)) { |
313
|
0
|
|
|
|
|
0
|
$node->{'_id'} = undef; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
} |
316
|
|
|
|
|
|
|
} |
317
|
|
|
|
|
|
|
} |
318
|
|
|
|
|
|
|
} |
319
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=head2 is_compatible |
321
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
Title : is_compatible |
323
|
|
|
|
|
|
|
Usage : $tree1->is_compatible($tree2) |
324
|
|
|
|
|
|
|
Function: Test compatibility of two trees |
325
|
|
|
|
|
|
|
Returns : boolean |
326
|
|
|
|
|
|
|
Args : Bio::Tree::Tree |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
For example, the topological restrictions of the trees |
329
|
|
|
|
|
|
|
C<(((A,B)C,D),(E,F,G));> and C<((A,B)H,E,(J,(K)G)I);> to their common |
330
|
|
|
|
|
|
|
labels, C<[A,B,E,G]>, are compatible. The respective cluster |
331
|
|
|
|
|
|
|
representations are as follows: |
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
[A] [A] |
334
|
|
|
|
|
|
|
[B] [B] |
335
|
|
|
|
|
|
|
[E] [E] |
336
|
|
|
|
|
|
|
[G] [G] |
337
|
|
|
|
|
|
|
[A,B] [A,B] |
338
|
|
|
|
|
|
|
[E,G] [A,B,E,G] |
339
|
|
|
|
|
|
|
[A,B,E,G] |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
As a second example, the trees C<(A,B);> and C<((B)A);> are |
342
|
|
|
|
|
|
|
incompatible. Their respective cluster representations are as follows: |
343
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
[A] [B] |
345
|
|
|
|
|
|
|
[B] [A,B] |
346
|
|
|
|
|
|
|
[A,B] |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
The reason is, the smallest cluster containing label C is C<[A]> in |
349
|
|
|
|
|
|
|
the first tree but C<[A,B]> in the second tree. |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
+---A A---B |
352
|
|
|
|
|
|
|
| |
353
|
|
|
|
|
|
|
+ |
354
|
|
|
|
|
|
|
| |
355
|
|
|
|
|
|
|
+---B |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
As a second example, the trees C<(((B,A),C),D);> and C<((A,(D,B)),C);> |
358
|
|
|
|
|
|
|
are also incompatible. Their respective cluster representations are as |
359
|
|
|
|
|
|
|
follows: |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
[A] [A] |
362
|
|
|
|
|
|
|
[B] [B] |
363
|
|
|
|
|
|
|
[C] [C] |
364
|
|
|
|
|
|
|
[D] [D] |
365
|
|
|
|
|
|
|
[A,B] [B,D] |
366
|
|
|
|
|
|
|
[A,B,C] [A,B,D] |
367
|
|
|
|
|
|
|
[A,B,C,D] [A,B,C,D] |
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
The reason is, cluster C<[A,B]> properly intersects cluster |
370
|
|
|
|
|
|
|
C<[B,D]>. There are further incompatibilities between these trees: |
371
|
|
|
|
|
|
|
C<[A,B,C]> properly intersects both C<[B,D]> and C<[A,B,D]>. |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
+---B +-------A |
374
|
|
|
|
|
|
|
| | |
375
|
|
|
|
|
|
|
+---+ +---+ +---D |
376
|
|
|
|
|
|
|
| | | | | |
377
|
|
|
|
|
|
|
+---+ +---A | +---+ |
378
|
|
|
|
|
|
|
| | + | |
379
|
|
|
|
|
|
|
+ +-------C | +---B |
380
|
|
|
|
|
|
|
| | |
381
|
|
|
|
|
|
|
+-----------D +-----------C |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
=cut |
384
|
|
|
|
|
|
|
|
385
|
|
|
|
|
|
|
sub is_compatible { |
386
|
2
|
|
|
2
|
1
|
10
|
my ($tree1, $tree2) = @_; |
387
|
2
|
|
|
|
|
8
|
my $common = $tree1->Bio::Tree::Compatible::common_labels($tree2); |
388
|
2
|
|
|
|
|
981
|
$tree1->Bio::Tree::Compatible::topological_restriction($common); |
389
|
2
|
|
|
|
|
6
|
$tree2->Bio::Tree::Compatible::topological_restriction($common); |
390
|
2
|
|
|
|
|
3
|
my @postorder1 = @{ postorder_traversal($tree1) }; |
|
2
|
|
|
|
|
3
|
|
391
|
2
|
|
|
|
|
3
|
my @postorder2 = @{ postorder_traversal($tree2) }; |
|
2
|
|
|
|
|
3
|
|
392
|
2
|
|
|
|
|
3
|
my %cluster1 = %{ cluster_representation($tree1) }; |
|
2
|
|
|
|
|
5
|
|
393
|
2
|
|
|
|
|
6
|
my %cluster2 = %{ cluster_representation($tree2) }; |
|
2
|
|
|
|
|
3
|
|
394
|
2
|
|
|
|
|
5
|
my $incompat = 0; # false |
395
|
2
|
|
|
|
|
3
|
my @labels; |
396
|
2
|
|
|
|
|
5
|
foreach my $label ( $common->elements ) { |
397
|
8
|
|
|
|
|
2886
|
my $node1 = $tree1->find_node(-id => $label); |
398
|
8
|
|
|
|
|
10
|
my @labels1 = @{ $cluster1{$node1} }; |
|
8
|
|
|
|
|
19
|
|
399
|
8
|
|
|
|
|
17
|
my $cluster1 = Set::Scalar->new(@labels1); |
400
|
8
|
|
|
|
|
444
|
my $node2 = $tree2->find_node(-id => $label); |
401
|
8
|
|
|
|
|
11
|
my @labels2 = @{ $cluster2{$node2} }; |
|
8
|
|
|
|
|
17
|
|
402
|
8
|
|
|
|
|
22
|
my $cluster2 = Set::Scalar->new(@labels2); |
403
|
8
|
50
|
|
|
|
436
|
unless ( $cluster1->is_equal($cluster2) ) { |
404
|
0
|
|
|
|
|
0
|
$incompat = 1; # true |
405
|
0
|
|
|
|
|
0
|
push @labels, $label; |
406
|
|
|
|
|
|
|
} |
407
|
|
|
|
|
|
|
} |
408
|
2
|
|
|
|
|
932
|
my @nodes; |
409
|
2
|
|
|
|
|
4
|
foreach my $node1 ( @postorder1 ) { |
410
|
14
|
|
|
|
|
5962
|
my @labels1 = @{ $cluster1{$node1} }; |
|
14
|
|
|
|
|
35
|
|
411
|
14
|
|
|
|
|
46
|
my $cluster1 = Set::Scalar->new(@labels1); |
412
|
14
|
|
|
|
|
761
|
foreach my $node2 ( @postorder2 ) { |
413
|
98
|
|
|
|
|
36345
|
my @labels2 = @{$cluster2{$node2} }; |
|
98
|
|
|
|
|
241
|
|
414
|
98
|
|
|
|
|
176
|
my $cluster2 = Set::Scalar->new(@labels2); |
415
|
98
|
100
|
|
|
|
5173
|
if ($cluster1->is_properly_intersecting($cluster2)) { |
416
|
3
|
|
|
|
|
1569
|
$incompat = 1; # true |
417
|
3
|
|
|
|
|
8
|
push @nodes, $node1, $node2; |
418
|
|
|
|
|
|
|
} |
419
|
|
|
|
|
|
|
} |
420
|
|
|
|
|
|
|
} |
421
|
2
|
|
|
|
|
1107
|
return ($incompat, \@labels, \@nodes); |
422
|
|
|
|
|
|
|
} |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
1; |