line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# |
2
|
|
|
|
|
|
|
# BioPerl module for Bio::Tools::SeqStats |
3
|
|
|
|
|
|
|
# |
4
|
|
|
|
|
|
|
# Please direct questions and support issues to |
5
|
|
|
|
|
|
|
# |
6
|
|
|
|
|
|
|
# Cared for by |
7
|
|
|
|
|
|
|
# |
8
|
|
|
|
|
|
|
# Copyright Peter Schattner |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# You may distribute this module under the same terms as perl itself |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
# POD documentation - main docs before the code |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Bio::Tools::SeqStats - Object holding statistics for one |
17
|
|
|
|
|
|
|
particular sequence |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 SYNOPSIS |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# build a primary nucleic acid or protein sequence object somehow |
22
|
|
|
|
|
|
|
# then build a statistics object from the sequence object |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
$seqobj = Bio::PrimarySeq->new(-seq => 'ACTGTGGCGTCAACTG', |
25
|
|
|
|
|
|
|
-alphabet => 'dna', |
26
|
|
|
|
|
|
|
-id => 'test'); |
27
|
|
|
|
|
|
|
$seq_stats = Bio::Tools::SeqStats->new(-seq => $seqobj); |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# obtain a hash of counts of each type of monomer |
30
|
|
|
|
|
|
|
# (i.e. amino or nucleic acid) |
31
|
|
|
|
|
|
|
print "\nMonomer counts using statistics object\n"; |
32
|
|
|
|
|
|
|
$seq_stats = Bio::Tools::SeqStats->new(-seq=>$seqobj); |
33
|
|
|
|
|
|
|
$hash_ref = $seq_stats->count_monomers(); # e.g. for DNA sequence |
34
|
|
|
|
|
|
|
foreach $base (sort keys %$hash_ref) { |
35
|
|
|
|
|
|
|
print "Number of bases of type ", $base, "= ", |
36
|
|
|
|
|
|
|
%$hash_ref->{$base},"\n"; |
37
|
|
|
|
|
|
|
} |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# obtain the count directly without creating a new statistics object |
40
|
|
|
|
|
|
|
print "\nMonomer counts without statistics object\n"; |
41
|
|
|
|
|
|
|
$hash_ref = Bio::Tools::SeqStats->count_monomers($seqobj); |
42
|
|
|
|
|
|
|
foreach $base (sort keys %$hash_ref) { |
43
|
|
|
|
|
|
|
print "Number of bases of type ", $base, "= ", |
44
|
|
|
|
|
|
|
%$hash_ref->{$base},"\n"; |
45
|
|
|
|
|
|
|
} |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# obtain hash of counts of each type of codon in a nucleic acid sequence |
49
|
|
|
|
|
|
|
print "\nCodon counts using statistics object\n"; |
50
|
|
|
|
|
|
|
$hash_ref = $seq_stats-> count_codons(); # for nucleic acid sequence |
51
|
|
|
|
|
|
|
foreach $base (sort keys %$hash_ref) { |
52
|
|
|
|
|
|
|
print "Number of codons of type ", $base, "= ", |
53
|
|
|
|
|
|
|
%$hash_ref->{$base},"\n"; |
54
|
|
|
|
|
|
|
} |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# or |
57
|
|
|
|
|
|
|
print "\nCodon counts without statistics object\n"; |
58
|
|
|
|
|
|
|
$hash_ref = Bio::Tools::SeqStats->count_codons($seqobj); |
59
|
|
|
|
|
|
|
foreach $base (sort keys %$hash_ref) { |
60
|
|
|
|
|
|
|
print "Number of codons of type ", $base, "= ", |
61
|
|
|
|
|
|
|
%$hash_ref->{$base},"\n"; |
62
|
|
|
|
|
|
|
} |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
# Obtain the molecular weight of a sequence. Since the sequence |
65
|
|
|
|
|
|
|
# may contain ambiguous monomers, the molecular weight is returned |
66
|
|
|
|
|
|
|
# as a (reference to) a two element array containing greatest lower |
67
|
|
|
|
|
|
|
# bound (GLB) and least upper bound (LUB) of the molecular weight |
68
|
|
|
|
|
|
|
$weight = $seq_stats->get_mol_wt(); |
69
|
|
|
|
|
|
|
print "\nMolecular weight (using statistics object) of sequence ", |
70
|
|
|
|
|
|
|
$seqobj->id(), " is between ", $$weight[0], " and " , |
71
|
|
|
|
|
|
|
$$weight[1], "\n"; |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
# or |
74
|
|
|
|
|
|
|
$weight = Bio::Tools::SeqStats->get_mol_wt($seqobj); |
75
|
|
|
|
|
|
|
print "\nMolecular weight (without statistics object) of sequence ", |
76
|
|
|
|
|
|
|
$seqobj->id(), " is between ", $$weight[0], " and " , |
77
|
|
|
|
|
|
|
$$weight[1], "\n"; |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# Calculate mean Kyte-Doolittle hydropathicity (aka "gravy" score) |
80
|
|
|
|
|
|
|
my $prot = Bio::PrimarySeq->new(-seq=>'MSFVLVAPDMLATAAADVVQIGSAVSAGS', |
81
|
|
|
|
|
|
|
-alphabet=>'protein'); |
82
|
|
|
|
|
|
|
my $gravy = Bio::Tools::SeqStats->hydropathicity($seqobj); |
83
|
|
|
|
|
|
|
print "might be hydropathic" if $gravy > 1; |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
=head1 DESCRIPTION |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
Bio::Tools::SeqStats is a lightweight object for the calculation of |
88
|
|
|
|
|
|
|
simple statistical and numerical properties of a sequence. By |
89
|
|
|
|
|
|
|
"lightweight" I mean that only "primary" sequences are handled by the |
90
|
|
|
|
|
|
|
object. The calling script needs to create the appropriate primary |
91
|
|
|
|
|
|
|
sequence to be passed to SeqStats if statistics on a sequence feature |
92
|
|
|
|
|
|
|
are required. Similarly if a codon count is desired for a |
93
|
|
|
|
|
|
|
frame-shifted sequence and/or a negative strand sequence, the calling |
94
|
|
|
|
|
|
|
script needs to create that sequence and pass it to the SeqStats |
95
|
|
|
|
|
|
|
object. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
Nota that nucleotide sequences in bioperl do not strictly separate RNA |
98
|
|
|
|
|
|
|
and DNA sequences. By convention, sequences from RNA molecules are |
99
|
|
|
|
|
|
|
shown as is they were DNA. Objects are supposed to make the |
100
|
|
|
|
|
|
|
distinction when needed. This class is one of the few where this |
101
|
|
|
|
|
|
|
distinctions needs to be made. Internally, it changes all Ts into Us |
102
|
|
|
|
|
|
|
before weight and monomer count. |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
SeqStats can be called in two distinct manners. If only a single |
105
|
|
|
|
|
|
|
computation is required on a given sequence object, the method can be |
106
|
|
|
|
|
|
|
called easily using the SeqStats object directly: |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
$weight = Bio::Tools::SeqStats->get_mol_wt($seqobj); |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
Alternately, if several computations will be required on a given |
111
|
|
|
|
|
|
|
sequence object, an "instance" statistics object can be constructed |
112
|
|
|
|
|
|
|
and used for the method calls: |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
$seq_stats = Bio::Tools::SeqStats->new($seqobj); |
115
|
|
|
|
|
|
|
$monomers = $seq_stats->count_monomers(); |
116
|
|
|
|
|
|
|
$codons = $seq_stats->count_codons(); |
117
|
|
|
|
|
|
|
$weight = $seq_stats->get_mol_wt(); |
118
|
|
|
|
|
|
|
$gravy = $seq_stats->hydropathicity(); |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
As currently implemented the object can return the following values |
121
|
|
|
|
|
|
|
from a sequence: |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=over |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=item * |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
The molecular weight of the sequence: get_mol_wt() |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
=item * |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
The number of each type of monomer present: count_monomers() |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
=item * |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
The number of each codon present in a nucleic acid sequence: |
136
|
|
|
|
|
|
|
count_codons() |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
=item * |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
The mean hydropathicity ("gravy" score) of a protein: |
141
|
|
|
|
|
|
|
hydropathicity() |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=back |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
For DNA and RNA sequences single-stranded weights are returned. The |
146
|
|
|
|
|
|
|
molecular weights are calculated for neutral, or not ionized, |
147
|
|
|
|
|
|
|
nucleic acids. The returned weight is the sum of the |
148
|
|
|
|
|
|
|
base-sugar-phosphate residues of the chain plus one weight of water to |
149
|
|
|
|
|
|
|
to account for the additional OH on the phosphate of the 5' residue |
150
|
|
|
|
|
|
|
and the additional H on the sugar ring of the 3' residue. Note that |
151
|
|
|
|
|
|
|
this leads to a difference of 18 in calculated molecular weights |
152
|
|
|
|
|
|
|
compared to some other available programs (e.g. Informax VectorNTI). |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
Note that since sequences may contain ambiguous monomers (e.g. "M", |
155
|
|
|
|
|
|
|
meaning "A" or "C" in a nucleic acid sequence), the method get_mol_wt |
156
|
|
|
|
|
|
|
returns a two-element array containing the greatest lower bound and |
157
|
|
|
|
|
|
|
least upper bound of the molecule. For a sequence with no ambiguous |
158
|
|
|
|
|
|
|
monomers, the two elements of the returned array will be equal. The |
159
|
|
|
|
|
|
|
method count_codons() handles ambiguous bases by simply counting all |
160
|
|
|
|
|
|
|
ambiguous codons together and issuing a warning to that effect. |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=head1 DEVELOPERS NOTES |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
Ewan moved it from Bio::SeqStats to Bio::Tools::SeqStats |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
Heikki made tiny adjustments (+/- 0.01 daltons) to amino acid |
168
|
|
|
|
|
|
|
molecular weights to have the output match values in SWISS-PROT. |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
Torsten added hydropathicity calculation. |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
=head1 FEEDBACK |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=head2 Mailing Lists |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
User feedback is an integral part of the evolution of this and other |
177
|
|
|
|
|
|
|
Bioperl modules. Send your comments and suggestions preferably to one |
178
|
|
|
|
|
|
|
of the Bioperl mailing lists. Your participation is much appreciated. |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
bioperl-l@bioperl.org - General discussion |
181
|
|
|
|
|
|
|
http://bioperl.org/wiki/Mailing_lists - About the mailing lists |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
=head2 Support |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
Please direct usage questions or support issues to the mailing list: |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
I |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
rather than to the module maintainer directly. Many experienced and |
190
|
|
|
|
|
|
|
reponsive experts will be able look at the problem and quickly |
191
|
|
|
|
|
|
|
address it. Please include a thorough description of the problem |
192
|
|
|
|
|
|
|
with code and data examples if at all possible. |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
=head2 Reporting Bugs |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
Report bugs to the Bioperl bug tracking system to help us keep track |
197
|
|
|
|
|
|
|
the bugs and their resolution. Bug reports can be submitted the web: |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
https://github.com/bioperl/bioperl-live/issues |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
=head1 AUTHOR - Peter Schattner |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
Email schattner AT alum.mit.edu |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=head1 CONTRIBUTOR - Torsten Seemann |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
Email torsten.seemann AT infotech.monash.edu.au |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head1 APPENDIX |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
The rest of the documentation details each of the object |
212
|
|
|
|
|
|
|
methods. Internal methods are usually preceded with a _ |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=cut |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
package Bio::Tools::SeqStats; |
218
|
12
|
|
|
12
|
|
1842
|
use strict; |
|
12
|
|
|
|
|
21
|
|
|
12
|
|
|
|
|
392
|
|
219
|
12
|
|
|
|
|
909
|
use vars qw(%Alphabets %Alphabets_strict $amino_weights |
220
|
12
|
|
|
12
|
|
53
|
$rna_weights $dna_weights %Weights $amino_hydropathicity); |
|
12
|
|
|
|
|
20
|
|
221
|
12
|
|
|
12
|
|
2079
|
use Bio::Seq; |
|
12
|
|
|
|
|
25
|
|
|
12
|
|
|
|
|
387
|
|
222
|
12
|
|
|
12
|
|
72
|
use base qw(Bio::Root::Root); |
|
12
|
|
|
|
|
19
|
|
|
12
|
|
|
|
|
5814
|
|
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
BEGIN { |
225
|
12
|
|
|
12
|
|
148
|
%Alphabets = ( |
226
|
|
|
|
|
|
|
'dna' => [ qw(A C G T R Y M K S W H B V D X N) ], |
227
|
|
|
|
|
|
|
'rna' => [ qw(A C G U R Y M K S W H B V D X N) ], |
228
|
|
|
|
|
|
|
'protein' => [ qw(A R N D C Q E G H I L K M F U |
229
|
|
|
|
|
|
|
P S T W X Y V B Z J O *) ], # sac: added B, Z |
230
|
|
|
|
|
|
|
); |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# SAC: new strict alphabet: doesn't allow any ambiguity characters. |
233
|
12
|
|
|
|
|
70
|
%Alphabets_strict = ( |
234
|
|
|
|
|
|
|
'dna' => [ qw( A C G T ) ], |
235
|
|
|
|
|
|
|
'rna' => [ qw( A C G U ) ], |
236
|
|
|
|
|
|
|
'protein' => [ qw(A R N D C Q E G H I L K M F U |
237
|
|
|
|
|
|
|
P S T W Y V O) ], |
238
|
|
|
|
|
|
|
); |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
# IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE: |
242
|
|
|
|
|
|
|
# Cornish-Bowden (1985) Nucl. Acids Res. 13: 3021-3030. |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# Amino Acid alphabet |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# ------------------------------------------ |
247
|
|
|
|
|
|
|
# Symbol Meaning |
248
|
|
|
|
|
|
|
# ------------------------------------------ |
249
|
|
|
|
|
|
|
|
250
|
12
|
|
|
|
|
24
|
my $amino_A_wt = 89.09; |
251
|
12
|
|
|
|
|
23
|
my $amino_C_wt = 121.15; |
252
|
12
|
|
|
|
|
18
|
my $amino_D_wt = 133.1; |
253
|
12
|
|
|
|
|
19
|
my $amino_E_wt = 147.13; |
254
|
12
|
|
|
|
|
18
|
my $amino_F_wt = 165.19; |
255
|
12
|
|
|
|
|
17
|
my $amino_G_wt = 75.07; |
256
|
12
|
|
|
|
|
16
|
my $amino_H_wt = 155.16; |
257
|
12
|
|
|
|
|
19
|
my $amino_I_wt = 131.17; |
258
|
12
|
|
|
|
|
25
|
my $amino_K_wt = 146.19; |
259
|
12
|
|
|
|
|
17
|
my $amino_L_wt = 131.17; |
260
|
12
|
|
|
|
|
18
|
my $amino_M_wt = 149.21; |
261
|
12
|
|
|
|
|
760
|
my $amino_N_wt = 132.12; |
262
|
12
|
|
|
|
|
23
|
my $amino_O_wt = 255.31; |
263
|
12
|
|
|
|
|
17
|
my $amino_P_wt = 115.13; |
264
|
12
|
|
|
|
|
17
|
my $amino_Q_wt = 146.15; |
265
|
12
|
|
|
|
|
14
|
my $amino_R_wt = 174.20; |
266
|
12
|
|
|
|
|
18
|
my $amino_S_wt = 105.09; |
267
|
12
|
|
|
|
|
15
|
my $amino_T_wt = 119.12; |
268
|
12
|
|
|
|
|
20
|
my $amino_U_wt = 168.06; |
269
|
12
|
|
|
|
|
22
|
my $amino_V_wt = 117.15; |
270
|
12
|
|
|
|
|
19
|
my $amino_W_wt = 204.23; |
271
|
12
|
|
|
|
|
20
|
my $amino_Y_wt = 181.19; |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
|
274
|
12
|
|
|
|
|
214
|
$amino_weights = { |
275
|
|
|
|
|
|
|
'A' => [$amino_A_wt, $amino_A_wt], # Alanine |
276
|
|
|
|
|
|
|
'B' => [$amino_N_wt, $amino_D_wt], # Aspartic Acid, Asparagine |
277
|
|
|
|
|
|
|
'C' => [$amino_C_wt, $amino_C_wt], # Cysteine |
278
|
|
|
|
|
|
|
'D' => [$amino_D_wt, $amino_D_wt], # Aspartic Acid |
279
|
|
|
|
|
|
|
'E' => [$amino_E_wt, $amino_E_wt], # Glutamic Acid |
280
|
|
|
|
|
|
|
'F' => [$amino_F_wt, $amino_F_wt], # Phenylalanine |
281
|
|
|
|
|
|
|
'G' => [$amino_G_wt, $amino_G_wt], # Glycine |
282
|
|
|
|
|
|
|
'H' => [$amino_H_wt, $amino_H_wt], # Histidine |
283
|
|
|
|
|
|
|
'I' => [$amino_I_wt, $amino_I_wt], # Isoleucine |
284
|
|
|
|
|
|
|
'J' => [$amino_L_wt, $amino_I_wt], # Leucine, Isoleucine |
285
|
|
|
|
|
|
|
'K' => [$amino_K_wt, $amino_K_wt], # Lysine |
286
|
|
|
|
|
|
|
'L' => [$amino_L_wt, $amino_L_wt], # Leucine |
287
|
|
|
|
|
|
|
'M' => [$amino_M_wt, $amino_M_wt], # Methionine |
288
|
|
|
|
|
|
|
'N' => [$amino_N_wt, $amino_N_wt], # Asparagine |
289
|
|
|
|
|
|
|
'O' => [$amino_O_wt, $amino_O_wt], # Pyrrolysine |
290
|
|
|
|
|
|
|
'P' => [$amino_P_wt, $amino_P_wt], # Proline |
291
|
|
|
|
|
|
|
'Q' => [$amino_Q_wt, $amino_Q_wt], # Glutamine |
292
|
|
|
|
|
|
|
'R' => [$amino_R_wt, $amino_R_wt], # Arginine |
293
|
|
|
|
|
|
|
'S' => [$amino_S_wt, $amino_S_wt], # Serine |
294
|
|
|
|
|
|
|
'T' => [$amino_T_wt, $amino_T_wt], # Threonine |
295
|
|
|
|
|
|
|
'U' => [$amino_U_wt, $amino_U_wt], # SelenoCysteine |
296
|
|
|
|
|
|
|
'V' => [$amino_V_wt, $amino_V_wt], # Valine |
297
|
|
|
|
|
|
|
'W' => [$amino_W_wt, $amino_W_wt], # Tryptophan |
298
|
|
|
|
|
|
|
'X' => [$amino_G_wt, $amino_W_wt], # Unknown |
299
|
|
|
|
|
|
|
'Y' => [$amino_Y_wt, $amino_Y_wt], # Tyrosine |
300
|
|
|
|
|
|
|
'Z' => [$amino_Q_wt, $amino_E_wt], # Glutamic Acid, Glutamine |
301
|
|
|
|
|
|
|
}; |
302
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
# Extended Dna / Rna alphabet |
304
|
12
|
|
|
12
|
|
80
|
use vars ( qw($C $O $N $H $P $water) ); |
|
12
|
|
|
|
|
27
|
|
|
12
|
|
|
|
|
842
|
|
305
|
12
|
|
|
12
|
|
61
|
use vars ( qw($adenine $guanine $cytosine $thymine $uracil)); |
|
12
|
|
|
|
|
21
|
|
|
12
|
|
|
|
|
603
|
|
306
|
12
|
|
|
12
|
|
55
|
use vars ( qw($ribose_phosphate $deoxyribose_phosphate $ppi)); |
|
12
|
|
|
|
|
19
|
|
|
12
|
|
|
|
|
564
|
|
307
|
12
|
|
|
|
|
826
|
use vars ( qw($dna_A_wt $dna_C_wt $dna_G_wt $dna_T_wt |
308
|
12
|
|
|
12
|
|
55
|
$rna_A_wt $rna_C_wt $rna_G_wt $rna_U_wt)); |
|
12
|
|
|
|
|
19
|
|
309
|
12
|
|
|
12
|
|
56
|
use vars ( qw($dna_weights $rna_weights %Weights)); |
|
12
|
|
|
|
|
21
|
|
|
12
|
|
|
|
|
4546
|
|
310
|
|
|
|
|
|
|
|
311
|
12
|
|
|
|
|
28
|
$C = 12.01; |
312
|
12
|
|
|
|
|
22
|
$O = 16.00; |
313
|
12
|
|
|
|
|
18
|
$N = 14.01; |
314
|
12
|
|
|
|
|
17
|
$H = 1.01; |
315
|
12
|
|
|
|
|
14
|
$P = 30.97; |
316
|
12
|
|
|
|
|
19
|
$water = 18.015; |
317
|
|
|
|
|
|
|
|
318
|
12
|
|
|
|
|
63
|
$adenine = 5 * $C + 5 * $N + 5 * $H; |
319
|
12
|
|
|
|
|
38
|
$guanine = 5 * $C + 5 * $N + 1 * $O + 5 * $H; |
320
|
12
|
|
|
|
|
39
|
$cytosine = 4 * $C + 3 * $N + 1 * $O + 5 * $H; |
321
|
12
|
|
|
|
|
39
|
$thymine = 5 * $C + 2 * $N + 2 * $O + 6 * $H; |
322
|
12
|
|
|
|
|
28
|
$uracil = 4 * $C + 2 * $N + 2 * $O + 4 * $H; |
323
|
|
|
|
|
|
|
|
324
|
12
|
|
|
|
|
25
|
$ribose_phosphate = 5 * $C + 7 * $O + 9 * $H + 1 * $P; |
325
|
|
|
|
|
|
|
# neutral (unionized) form |
326
|
12
|
|
|
|
|
31
|
$deoxyribose_phosphate = 5 * $C + 6 * $O + 9 * $H + 1 * $P; |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
# the following are single strand molecular weights / base |
329
|
12
|
|
|
|
|
30
|
$dna_A_wt = $adenine + $deoxyribose_phosphate - $water; |
330
|
12
|
|
|
|
|
20
|
$dna_C_wt = $cytosine + $deoxyribose_phosphate - $water; |
331
|
12
|
|
|
|
|
19
|
$dna_G_wt = $guanine + $deoxyribose_phosphate - $water; |
332
|
12
|
|
|
|
|
21
|
$dna_T_wt = $thymine + $deoxyribose_phosphate - $water; |
333
|
|
|
|
|
|
|
|
334
|
12
|
|
|
|
|
18
|
$rna_A_wt = $adenine + $ribose_phosphate - $water; |
335
|
12
|
|
|
|
|
18
|
$rna_C_wt = $cytosine + $ribose_phosphate - $water; |
336
|
12
|
|
|
|
|
26
|
$rna_G_wt = $guanine + $ribose_phosphate - $water; |
337
|
12
|
|
|
|
|
21
|
$rna_U_wt = $uracil + $ribose_phosphate - $water; |
338
|
|
|
|
|
|
|
|
339
|
12
|
|
|
|
|
125
|
$dna_weights = { |
340
|
|
|
|
|
|
|
'A' => [$dna_A_wt,$dna_A_wt], # Adenine |
341
|
|
|
|
|
|
|
'C' => [$dna_C_wt,$dna_C_wt], # Cytosine |
342
|
|
|
|
|
|
|
'G' => [$dna_G_wt,$dna_G_wt], # Guanine |
343
|
|
|
|
|
|
|
'T' => [$dna_T_wt,$dna_T_wt], # Thymine |
344
|
|
|
|
|
|
|
'M' => [$dna_C_wt,$dna_A_wt], # A or C |
345
|
|
|
|
|
|
|
'R' => [$dna_A_wt,$dna_G_wt], # A or G |
346
|
|
|
|
|
|
|
'W' => [$dna_T_wt,$dna_A_wt], # A or T |
347
|
|
|
|
|
|
|
'S' => [$dna_C_wt,$dna_G_wt], # C or G |
348
|
|
|
|
|
|
|
'Y' => [$dna_C_wt,$dna_T_wt], # C or T |
349
|
|
|
|
|
|
|
'K' => [$dna_T_wt,$dna_G_wt], # G or T |
350
|
|
|
|
|
|
|
'V' => [$dna_C_wt,$dna_G_wt], # A or C or G |
351
|
|
|
|
|
|
|
'H' => [$dna_C_wt,$dna_A_wt], # A or C or T |
352
|
|
|
|
|
|
|
'D' => [$dna_T_wt,$dna_G_wt], # A or G or T |
353
|
|
|
|
|
|
|
'B' => [$dna_C_wt,$dna_G_wt], # C or G or T |
354
|
|
|
|
|
|
|
'X' => [$dna_C_wt,$dna_G_wt], # G or A or T or C |
355
|
|
|
|
|
|
|
'N' => [$dna_C_wt,$dna_G_wt], # G or A or T or C |
356
|
|
|
|
|
|
|
}; |
357
|
|
|
|
|
|
|
|
358
|
12
|
|
|
|
|
105
|
$rna_weights = { |
359
|
|
|
|
|
|
|
'A' => [$rna_A_wt,$rna_A_wt], # Adenine |
360
|
|
|
|
|
|
|
'C' => [$rna_C_wt,$rna_C_wt], # Cytosine |
361
|
|
|
|
|
|
|
'G' => [$rna_G_wt,$rna_G_wt], # Guanine |
362
|
|
|
|
|
|
|
'U' => [$rna_U_wt,$rna_U_wt], # Uracil |
363
|
|
|
|
|
|
|
'M' => [$rna_C_wt,$rna_A_wt], # A or C |
364
|
|
|
|
|
|
|
'R' => [$rna_A_wt,$rna_G_wt], # A or G |
365
|
|
|
|
|
|
|
'W' => [$rna_U_wt,$rna_A_wt], # A or U |
366
|
|
|
|
|
|
|
'S' => [$rna_C_wt,$rna_G_wt], # C or G |
367
|
|
|
|
|
|
|
'Y' => [$rna_C_wt,$rna_U_wt], # C or U |
368
|
|
|
|
|
|
|
'K' => [$rna_U_wt,$rna_G_wt], # G or U |
369
|
|
|
|
|
|
|
'V' => [$rna_C_wt,$rna_G_wt], # A or C or G |
370
|
|
|
|
|
|
|
'H' => [$rna_C_wt,$rna_A_wt], # A or C or U |
371
|
|
|
|
|
|
|
'D' => [$rna_U_wt,$rna_G_wt], # A or G or U |
372
|
|
|
|
|
|
|
'B' => [$rna_C_wt,$rna_G_wt], # C or G or U |
373
|
|
|
|
|
|
|
'X' => [$rna_C_wt,$rna_G_wt], # G or A or U or C |
374
|
|
|
|
|
|
|
'N' => [$rna_C_wt,$rna_G_wt], # G or A or U or C |
375
|
|
|
|
|
|
|
}; |
376
|
|
|
|
|
|
|
|
377
|
12
|
|
|
|
|
85
|
%Weights = ( |
378
|
|
|
|
|
|
|
'dna' => $dna_weights, |
379
|
|
|
|
|
|
|
'rna' => $rna_weights, |
380
|
|
|
|
|
|
|
'protein' => $amino_weights, |
381
|
|
|
|
|
|
|
); |
382
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
# Amino acid scale: Hydropathicity. |
384
|
|
|
|
|
|
|
# Ref: Kyte J., Doolittle R.F. J. Mol. Biol. 157:105-132(1982). |
385
|
|
|
|
|
|
|
# http://au.expasy.org/tools/pscale/Hphob.Doolittle.html |
386
|
|
|
|
|
|
|
|
387
|
12
|
|
|
|
|
16753
|
$amino_hydropathicity = { |
388
|
|
|
|
|
|
|
A => 1.800, |
389
|
|
|
|
|
|
|
R => -4.500, |
390
|
|
|
|
|
|
|
N => -3.500, |
391
|
|
|
|
|
|
|
D => -3.500, |
392
|
|
|
|
|
|
|
C => 2.500, |
393
|
|
|
|
|
|
|
Q => -3.500, |
394
|
|
|
|
|
|
|
E => -3.500, |
395
|
|
|
|
|
|
|
G => -0.400, |
396
|
|
|
|
|
|
|
H => -3.200, |
397
|
|
|
|
|
|
|
I => 4.500, |
398
|
|
|
|
|
|
|
L => 3.800, |
399
|
|
|
|
|
|
|
K => -3.900, |
400
|
|
|
|
|
|
|
M => 1.900, |
401
|
|
|
|
|
|
|
F => 2.800, |
402
|
|
|
|
|
|
|
P => -1.600, |
403
|
|
|
|
|
|
|
S => -0.800, |
404
|
|
|
|
|
|
|
T => -0.700, |
405
|
|
|
|
|
|
|
W => -0.900, |
406
|
|
|
|
|
|
|
Y => -1.300, |
407
|
|
|
|
|
|
|
V => 4.200, |
408
|
|
|
|
|
|
|
}; |
409
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
} |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
sub new { |
413
|
5
|
|
|
5
|
1
|
409
|
my($class,@args) = @_; |
414
|
5
|
|
|
|
|
14
|
my $self = $class->SUPER::new(@args); |
415
|
|
|
|
|
|
|
|
416
|
5
|
|
|
|
|
16
|
my ($seqobj) = $self->_rearrange([qw(SEQ)],@args); |
417
|
5
|
50
|
|
|
|
26
|
unless ($seqobj->isa("Bio::PrimarySeqI")) { |
418
|
0
|
|
|
|
|
0
|
$self->throw("SeqStats works only on PrimarySeqI objects"); |
419
|
|
|
|
|
|
|
} |
420
|
5
|
50
|
33
|
|
|
11
|
if ( !defined $seqobj->alphabet || |
421
|
|
|
|
|
|
|
!defined $Alphabets{$seqobj->alphabet}) { |
422
|
0
|
|
|
|
|
0
|
$self->throw("Must have a valid alphabet defined for seq (". |
423
|
|
|
|
|
|
|
join(",",keys %Alphabets)); |
424
|
|
|
|
|
|
|
} |
425
|
5
|
|
|
|
|
7
|
$self->{'_seqref'} = $seqobj; |
426
|
|
|
|
|
|
|
# check the letters in the sequence |
427
|
5
|
|
|
|
|
8
|
$self->{'_is_strict'} = _is_alphabet_strict($seqobj); |
428
|
5
|
|
|
|
|
20
|
return $self; |
429
|
|
|
|
|
|
|
} |
430
|
|
|
|
|
|
|
|
431
|
|
|
|
|
|
|
=head2 count_monomers |
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
Title : count_monomers |
434
|
|
|
|
|
|
|
Usage : $rcount = $seq_stats->count_monomers(); |
435
|
|
|
|
|
|
|
or $rcount = $seq_stats->Bio::Tools::SeqStats->($seqobj); |
436
|
|
|
|
|
|
|
Function: Counts the number of each type of monomer (amino acid or |
437
|
|
|
|
|
|
|
base) in the sequence. |
438
|
|
|
|
|
|
|
Ts are counted as Us in RNA sequences. |
439
|
|
|
|
|
|
|
Example : |
440
|
|
|
|
|
|
|
Returns : Reference to a hash in which keys are letters of the |
441
|
|
|
|
|
|
|
genetic alphabet used and values are number of occurrences |
442
|
|
|
|
|
|
|
of the letter in the sequence. |
443
|
|
|
|
|
|
|
Args : None or reference to sequence object |
444
|
|
|
|
|
|
|
Throws : Throws an exception if type of sequence is unknown (ie amino |
445
|
|
|
|
|
|
|
or nucleic)or if unknown letter in alphabet. Ambiguous |
446
|
|
|
|
|
|
|
elements are allowed. |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
=cut |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
sub count_monomers{ |
451
|
18
|
|
|
18
|
1
|
260
|
my %count = (); |
452
|
18
|
|
|
|
|
26
|
my $seqobj; |
453
|
|
|
|
|
|
|
my $_is_strict; |
454
|
18
|
|
|
|
|
49
|
my $element = ''; |
455
|
18
|
|
|
|
|
23
|
my $_is_instance = 1 ; |
456
|
18
|
|
|
|
|
28
|
my $self = shift @_; |
457
|
18
|
|
|
|
|
24
|
my $object_argument = shift @_; |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
# First we need to determine if the present object is an instance |
460
|
|
|
|
|
|
|
# object or if the sequence object has been passed as an argument |
461
|
|
|
|
|
|
|
|
462
|
18
|
100
|
|
|
|
31
|
if (defined $object_argument) { |
463
|
13
|
|
|
|
|
17
|
$_is_instance = 0; |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
# If we are using an instance object... |
467
|
18
|
100
|
|
|
|
38
|
if ($_is_instance) { |
468
|
5
|
100
|
|
|
|
7
|
if ($self->{'_monomer_count'}) { |
469
|
1
|
|
|
|
|
3
|
return $self->{'_monomer_count'}; # return count if previously calculated |
470
|
|
|
|
|
|
|
} |
471
|
4
|
|
|
|
|
5
|
$_is_strict = $self->{'_is_strict'}; # retrieve "strictness" |
472
|
4
|
|
|
|
|
5
|
$seqobj = $self->{'_seqref'}; |
473
|
|
|
|
|
|
|
} else { |
474
|
|
|
|
|
|
|
# otherwise... |
475
|
13
|
|
|
|
|
17
|
$seqobj = $object_argument; |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
# Following two lines lead to error in "throw" routine |
478
|
13
|
50
|
|
|
|
40
|
$seqobj->isa("Bio::PrimarySeqI") || |
479
|
|
|
|
|
|
|
$self->throw("SeqStats works only on PrimarySeqI objects"); |
480
|
|
|
|
|
|
|
# is alphabet OK? Is it strict? |
481
|
13
|
|
|
|
|
26
|
$_is_strict = _is_alphabet_strict($seqobj); |
482
|
|
|
|
|
|
|
} |
483
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
my $alphabet = $_is_strict ? $Alphabets_strict{$seqobj->alphabet} : |
485
|
17
|
100
|
|
|
|
68
|
$Alphabets{$seqobj->alphabet} ; # get array of allowed letters |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
# convert everything to upper case to be safe |
488
|
17
|
|
|
|
|
41
|
my $seqstring = uc $seqobj->seq(); |
489
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
# Since T is used in RichSeq RNA sequences, do conversion locally |
491
|
17
|
100
|
|
|
|
37
|
$seqstring =~ s/T/U/g if $seqobj->alphabet eq 'rna'; |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
# For each letter, count the number of times it appears in |
494
|
|
|
|
|
|
|
# the sequence |
495
|
|
|
|
|
|
|
LETTER: |
496
|
17
|
|
|
|
|
36
|
foreach $element (@$alphabet) { |
497
|
|
|
|
|
|
|
# skip terminator symbol which may confuse regex |
498
|
241
|
100
|
|
|
|
418
|
next LETTER if $element eq '*'; |
499
|
240
|
|
|
|
|
2217
|
$count{$element} = ( $seqstring =~ s/$element/$element/g); |
500
|
|
|
|
|
|
|
} |
501
|
|
|
|
|
|
|
|
502
|
17
|
100
|
|
|
|
43
|
if ($_is_instance) { |
503
|
4
|
|
|
|
|
7
|
$self->{'_monomer_count'} = \%count; # Save in case called again later |
504
|
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
|
506
|
17
|
|
|
|
|
44
|
return \%count; |
507
|
|
|
|
|
|
|
} |
508
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
=head2 get_mol_wt |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
Title : get_mol_wt |
512
|
|
|
|
|
|
|
Usage : $wt = $seqobj->get_mol_wt() or |
513
|
|
|
|
|
|
|
$wt = Bio::Tools::SeqStats ->get_mol_wt($seqobj); |
514
|
|
|
|
|
|
|
Function: Calculate molecular weight of sequence |
515
|
|
|
|
|
|
|
Ts are counted as Us in RNA sequences. |
516
|
|
|
|
|
|
|
Example : |
517
|
|
|
|
|
|
|
|
518
|
|
|
|
|
|
|
Returns : Reference to two element array containing lower and upper |
519
|
|
|
|
|
|
|
bounds of molecule molecular weight. For DNA and RNA |
520
|
|
|
|
|
|
|
sequences single-stranded weights are returned. If |
521
|
|
|
|
|
|
|
sequence contains no ambiguous elements, both entries in |
522
|
|
|
|
|
|
|
array are equal to molecular weight of molecule. |
523
|
|
|
|
|
|
|
Args : None or reference to sequence object |
524
|
|
|
|
|
|
|
Throws : Exception if type of sequence is unknown (ie not amino or |
525
|
|
|
|
|
|
|
nucleic) or if unknown letter in alphabet. Ambiguous |
526
|
|
|
|
|
|
|
elements are allowed. |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
=cut |
529
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
sub get_mol_wt { |
531
|
12
|
|
|
12
|
1
|
1962
|
my $seqobj; |
532
|
|
|
|
|
|
|
my $_is_strict; |
533
|
12
|
|
|
|
|
21
|
my $element = ''; |
534
|
12
|
|
|
|
|
19
|
my $_is_instance = 1 ; |
535
|
12
|
|
|
|
|
24
|
my $self = shift @_; |
536
|
12
|
|
|
|
|
15
|
my $object_argument = shift @_; |
537
|
12
|
|
|
|
|
20
|
my ($weight_array, $rcount); |
538
|
|
|
|
|
|
|
|
539
|
12
|
100
|
|
|
|
24
|
if (defined $object_argument) { |
540
|
10
|
|
|
|
|
16
|
$_is_instance = 0; |
541
|
|
|
|
|
|
|
} |
542
|
|
|
|
|
|
|
|
543
|
12
|
100
|
|
|
|
26
|
if ($_is_instance) { |
544
|
2
|
50
|
|
|
|
4
|
if ($weight_array = $self->{'_mol_wt'}) { |
545
|
|
|
|
|
|
|
# return mol. weight if previously calculated |
546
|
0
|
|
|
|
|
0
|
return $weight_array; |
547
|
|
|
|
|
|
|
} |
548
|
2
|
|
|
|
|
3
|
$seqobj = $self->{'_seqref'}; |
549
|
2
|
|
|
|
|
2
|
$rcount = $self->count_monomers(); |
550
|
|
|
|
|
|
|
} else { |
551
|
10
|
|
|
|
|
16
|
$seqobj = $object_argument; |
552
|
10
|
50
|
|
|
|
41
|
$seqobj->isa("Bio::PrimarySeqI") || |
553
|
|
|
|
|
|
|
$self->throw("Error: SeqStats works only on PrimarySeqI objects"); |
554
|
10
|
|
|
|
|
32
|
$_is_strict = _is_alphabet_strict($seqobj); # is alphabet OK? |
555
|
10
|
|
|
|
|
31
|
$rcount = $self->count_monomers($seqobj); |
556
|
|
|
|
|
|
|
} |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
# We will also need to know what type of monomer we are dealing with |
559
|
12
|
|
|
|
|
35
|
my $moltype = $seqobj->alphabet(); |
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
# In general,the molecular weight is bounded below by the sum of the |
562
|
|
|
|
|
|
|
# weights of lower bounds of each alphabet symbol times the number of |
563
|
|
|
|
|
|
|
# occurrences of the symbol in the sequence. A similar upper bound on |
564
|
|
|
|
|
|
|
# the weight is also calculated. |
565
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
# Note that for "strict" (i.e. unambiguous) sequences there is an |
567
|
|
|
|
|
|
|
# inefficiency since the upper bound = the lower bound and there are |
568
|
|
|
|
|
|
|
# two calculations. However, this decrease in performance will be |
569
|
|
|
|
|
|
|
# minor and leads to significantly more readable code. |
570
|
|
|
|
|
|
|
|
571
|
12
|
|
|
|
|
19
|
my $weight_lower_bound = 0; |
572
|
12
|
|
|
|
|
16
|
my $weight_upper_bound = 0; |
573
|
12
|
|
|
|
|
21
|
my $weight_table = $Weights{$moltype}; |
574
|
12
|
|
|
|
|
17
|
my $total_res; |
575
|
|
|
|
|
|
|
|
576
|
|
|
|
|
|
|
# compute weight of all the residues |
577
|
12
|
|
|
|
|
54
|
foreach $element (keys %$rcount) { |
578
|
202
|
|
|
|
|
322
|
$weight_lower_bound += $$rcount{$element} * $$weight_table{$element}->[0]; |
579
|
202
|
|
|
|
|
200
|
$weight_upper_bound += $$rcount{$element} * $$weight_table{$element}->[1]; |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
# this tracks only the residues used for counting MW |
582
|
202
|
|
|
|
|
213
|
$total_res += $$rcount{$element}; |
583
|
|
|
|
|
|
|
} |
584
|
12
|
100
|
|
|
|
44
|
if ($moltype =~ /protein/) { |
585
|
|
|
|
|
|
|
# remove H2O during peptide bond formation. |
586
|
7
|
|
|
|
|
17
|
$weight_lower_bound -= $water * ($total_res - 1); |
587
|
7
|
|
|
|
|
19
|
$weight_upper_bound -= $water * ($total_res - 1); |
588
|
|
|
|
|
|
|
} else { |
589
|
|
|
|
|
|
|
# Correction because phosphate of 5' residue has additional OH and |
590
|
|
|
|
|
|
|
# sugar ring of 3' residue has additional H |
591
|
5
|
|
|
|
|
5
|
$weight_lower_bound += $water; |
592
|
5
|
|
|
|
|
6
|
$weight_upper_bound += $water; |
593
|
|
|
|
|
|
|
} |
594
|
|
|
|
|
|
|
|
595
|
12
|
|
|
|
|
153
|
$weight_lower_bound = sprintf("%.1f", $weight_lower_bound); |
596
|
12
|
|
|
|
|
44
|
$weight_upper_bound = sprintf("%.1f", $weight_upper_bound); |
597
|
|
|
|
|
|
|
|
598
|
12
|
|
|
|
|
32
|
$weight_array = [$weight_lower_bound, $weight_upper_bound]; |
599
|
|
|
|
|
|
|
|
600
|
12
|
100
|
|
|
|
59
|
if ($_is_instance) { |
601
|
2
|
|
|
|
|
3
|
$self->{'_mol_wt'} = $weight_array; # Save in case called again later |
602
|
|
|
|
|
|
|
} |
603
|
12
|
|
|
|
|
67
|
return $weight_array; |
604
|
|
|
|
|
|
|
} |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
=head2 count_codons |
608
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
Title : count_codons |
610
|
|
|
|
|
|
|
Usage : $rcount = $seqstats->count_codons() or |
611
|
|
|
|
|
|
|
$rcount = Bio::Tools::SeqStats->count_codons($seqobj) |
612
|
|
|
|
|
|
|
Function: Counts the number of each type of codons for a dna or rna |
613
|
|
|
|
|
|
|
sequence, starting at the 1st triple of the input sequence. |
614
|
|
|
|
|
|
|
Example : |
615
|
|
|
|
|
|
|
Returns : Reference to a hash in which keys are codons of the genetic |
616
|
|
|
|
|
|
|
alphabet used and values are number of occurrences of the |
617
|
|
|
|
|
|
|
codons in the sequence. All codons with "ambiguous" bases |
618
|
|
|
|
|
|
|
are counted together. |
619
|
|
|
|
|
|
|
Args : None or sequence object |
620
|
|
|
|
|
|
|
Throws : an exception if type of sequence is unknown or protein. |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
=cut |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
sub count_codons { |
625
|
3
|
|
|
3
|
1
|
2173
|
my $rcount = {}; |
626
|
3
|
|
|
|
|
9
|
my $codon ; |
627
|
|
|
|
|
|
|
my $seqobj; |
628
|
3
|
|
|
|
|
0
|
my $_is_strict; |
629
|
3
|
|
|
|
|
5
|
my $element = ''; |
630
|
3
|
|
|
|
|
3
|
my $_is_instance = 1 ; |
631
|
3
|
|
|
|
|
5
|
my $self = shift @_; |
632
|
3
|
|
|
|
|
4
|
my $object_argument = shift @_; |
633
|
|
|
|
|
|
|
|
634
|
3
|
100
|
|
|
|
10
|
if (defined $object_argument) { |
635
|
1
|
|
|
|
|
1
|
$_is_instance = 0; |
636
|
|
|
|
|
|
|
} |
637
|
|
|
|
|
|
|
|
638
|
3
|
100
|
|
|
|
6
|
if ($_is_instance) { |
639
|
2
|
50
|
|
|
|
6
|
if ($rcount = $self->{'_codon_count'}) { |
640
|
0
|
|
|
|
|
0
|
return $rcount; # return count if previously calculated |
641
|
|
|
|
|
|
|
} |
642
|
2
|
|
|
|
|
2
|
$_is_strict = $self->{'_is_strict'}; # retrieve "strictness" |
643
|
2
|
|
|
|
|
3
|
$seqobj = $self->{'_seqref'}; |
644
|
|
|
|
|
|
|
} else { |
645
|
1
|
|
|
|
|
2
|
$seqobj = $object_argument; |
646
|
1
|
50
|
|
|
|
11
|
$seqobj->isa("Bio::PrimarySeqI") || |
647
|
|
|
|
|
|
|
$self->throw("Error: SeqStats works only on PrimarySeqI objects"); |
648
|
1
|
|
|
|
|
3
|
$_is_strict = _is_alphabet_strict($seqobj); |
649
|
|
|
|
|
|
|
} |
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
# Codon counts only make sense for nucleic acid sequences |
652
|
3
|
|
|
|
|
10
|
my $alphabet = $seqobj->alphabet(); |
653
|
|
|
|
|
|
|
|
654
|
3
|
50
|
|
|
|
15
|
unless ($alphabet =~ /[dr]na/i) { |
655
|
0
|
|
|
|
|
0
|
$seqobj->throw("Codon counts only meaningful for dna or rna, ". |
656
|
|
|
|
|
|
|
"not for $alphabet sequences."); |
657
|
|
|
|
|
|
|
} |
658
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
# If sequence contains ambiguous bases, warn that codons |
660
|
|
|
|
|
|
|
# containing them will all be lumped together in the count. |
661
|
|
|
|
|
|
|
|
662
|
3
|
50
|
|
|
|
6
|
if (!$_is_strict ) { |
663
|
0
|
0
|
|
|
|
0
|
$seqobj->warn("Sequence $seqobj contains ambiguous bases.". |
664
|
|
|
|
|
|
|
" All codons with ambiguous bases will be added together in count.") |
665
|
|
|
|
|
|
|
if $self->verbose >= 0 ; |
666
|
|
|
|
|
|
|
} |
667
|
|
|
|
|
|
|
|
668
|
3
|
|
|
|
|
7
|
my $seq = $seqobj->seq(); |
669
|
|
|
|
|
|
|
|
670
|
|
|
|
|
|
|
# Now step through the string by threes and count the codons |
671
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
CODON: |
673
|
3
|
|
|
|
|
8
|
while (length($seq) > 2) { |
674
|
1112
|
|
|
|
|
1144
|
$codon = uc substr($seq,0,3); |
675
|
1112
|
|
|
|
|
1588
|
$seq = substr($seq,3); |
676
|
1112
|
50
|
|
|
|
1500
|
if ($codon =~ /[^ACTGU]/i) { |
677
|
0
|
|
|
|
|
0
|
$$rcount{'ambiguous'}++; #lump together ambiguous codons |
678
|
0
|
|
|
|
|
0
|
next CODON; |
679
|
|
|
|
|
|
|
} |
680
|
1112
|
100
|
|
|
|
1377
|
if (!defined $$rcount{$codon}) { |
681
|
122
|
|
|
|
|
144
|
$$rcount{$codon}= 1 ; |
682
|
122
|
|
|
|
|
156
|
next CODON; |
683
|
|
|
|
|
|
|
} |
684
|
990
|
|
|
|
|
1211
|
$$rcount{$codon}++; # default |
685
|
|
|
|
|
|
|
} |
686
|
|
|
|
|
|
|
|
687
|
3
|
100
|
|
|
|
7
|
if ($_is_instance) { |
688
|
2
|
|
|
|
|
3
|
$self->{'_codon_count'} = $rcount; # Save in case called again later |
689
|
|
|
|
|
|
|
} |
690
|
|
|
|
|
|
|
|
691
|
3
|
|
|
|
|
13
|
return $rcount; |
692
|
|
|
|
|
|
|
} |
693
|
|
|
|
|
|
|
|
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
=head2 hydropathicity |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
Title : hydropathicity |
698
|
|
|
|
|
|
|
Usage : $gravy = $seqstats->hydropathicity(); or |
699
|
|
|
|
|
|
|
$gravy = Bio::Tools::SeqStats->hydropathicity($seqobj); |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
Function: Calculates the mean Kyte-Doolittle hydropathicity for a |
702
|
|
|
|
|
|
|
protein sequence. Also known as the "gravy" score. Refer to |
703
|
|
|
|
|
|
|
Kyte J., Doolittle R.F., J. Mol. Biol. 157:105-132(1982). |
704
|
|
|
|
|
|
|
Example : |
705
|
|
|
|
|
|
|
Returns : float |
706
|
|
|
|
|
|
|
Args : None or reference to sequence object |
707
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
Throws : an exception if type of sequence is not protein. |
709
|
|
|
|
|
|
|
|
710
|
|
|
|
|
|
|
=cut |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
sub hydropathicity { |
713
|
4
|
|
|
4
|
1
|
8
|
my $seqobj; |
714
|
|
|
|
|
|
|
my $_is_strict; |
715
|
4
|
|
|
|
|
5
|
my $element = ''; |
716
|
4
|
|
|
|
|
4
|
my $_is_instance = 1 ; |
717
|
4
|
|
|
|
|
5
|
my $self = shift @_; |
718
|
4
|
|
|
|
|
4
|
my $object_argument = shift @_; |
719
|
|
|
|
|
|
|
|
720
|
4
|
50
|
|
|
|
7
|
if (defined $object_argument) { |
721
|
4
|
|
|
|
|
6
|
$_is_instance = 0; |
722
|
|
|
|
|
|
|
} |
723
|
|
|
|
|
|
|
|
724
|
4
|
50
|
|
|
|
7
|
if ($_is_instance) { |
725
|
0
|
0
|
|
|
|
0
|
if (my $gravy = $self->{'_hydropathicity'}) { |
726
|
0
|
|
|
|
|
0
|
return $gravy; # return value if previously calculated |
727
|
|
|
|
|
|
|
} |
728
|
0
|
|
|
|
|
0
|
$_is_strict = $self->{'_is_strict'}; # retrieve "strictness" |
729
|
0
|
|
|
|
|
0
|
$seqobj = $self->{'_seqref'}; |
730
|
|
|
|
|
|
|
} else { |
731
|
4
|
|
|
|
|
4
|
$seqobj = $object_argument; |
732
|
4
|
50
|
|
|
|
12
|
$seqobj->isa("Bio::PrimarySeqI") || |
733
|
|
|
|
|
|
|
$self->throw("Error: SeqStats works only on PrimarySeqI objects"); |
734
|
4
|
|
|
|
|
7
|
$_is_strict = _is_alphabet_strict($seqobj); |
735
|
|
|
|
|
|
|
} |
736
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
# hydropathicity not menaingful for empty sequences |
738
|
4
|
100
|
|
|
|
9
|
unless ($seqobj->length() > 0) { |
739
|
1
|
|
|
|
|
4
|
$seqobj->throw("hydropathicity not defined for zero-length sequences"); |
740
|
|
|
|
|
|
|
} |
741
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
# hydropathicity only make sense for protein sequences |
743
|
3
|
|
|
|
|
5
|
my $alphabet = $seqobj->alphabet(); |
744
|
|
|
|
|
|
|
|
745
|
3
|
100
|
|
|
|
10
|
unless ($alphabet =~ /protein/i) { |
746
|
1
|
|
|
|
|
4
|
$seqobj->throw("hydropathicity only meaningful for protein, ". |
747
|
|
|
|
|
|
|
"not for $alphabet sequences."); |
748
|
|
|
|
|
|
|
} |
749
|
|
|
|
|
|
|
|
750
|
|
|
|
|
|
|
# If sequence contains ambiguous bases, warn that codons |
751
|
|
|
|
|
|
|
# containing them will all be lumped together in the count. |
752
|
|
|
|
|
|
|
|
753
|
2
|
100
|
|
|
|
5
|
unless ($_is_strict ) { |
754
|
1
|
|
|
|
|
9
|
$seqobj->throw("Sequence $seqobj contains ambiguous amino acids. ". |
755
|
|
|
|
|
|
|
"Hydropathicity can not be caculated.") |
756
|
|
|
|
|
|
|
} |
757
|
|
|
|
|
|
|
|
758
|
1
|
|
|
|
|
2
|
my $seq = $seqobj->seq(); |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
# Now step through the string and add up the hydropathicity values |
761
|
|
|
|
|
|
|
|
762
|
1
|
|
|
|
|
2
|
my $gravy = 0; |
763
|
1
|
|
|
|
|
2
|
for my $i ( 0 .. length($seq) ) { |
764
|
30
|
|
|
|
|
27
|
my $codon = uc(substr($seq,$i,1)); |
765
|
30
|
|
100
|
|
|
45
|
$gravy += $amino_hydropathicity->{$codon}||0; # table look-up |
766
|
|
|
|
|
|
|
} |
767
|
1
|
|
|
|
|
2
|
$gravy /= length($seq); |
768
|
|
|
|
|
|
|
|
769
|
|
|
|
|
|
|
|
770
|
1
|
50
|
|
|
|
3
|
if ($_is_instance) { |
771
|
0
|
|
|
|
|
0
|
$self->{'_hydropathicity'} = $gravy; # Save in case called again later |
772
|
|
|
|
|
|
|
} |
773
|
|
|
|
|
|
|
|
774
|
1
|
|
|
|
|
3
|
return $gravy; |
775
|
|
|
|
|
|
|
} |
776
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
=head2 _is_alphabet_strict |
779
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
Title : _is_alphabet_strict |
781
|
|
|
|
|
|
|
Usage : |
782
|
|
|
|
|
|
|
Function: internal function to determine whether there are |
783
|
|
|
|
|
|
|
any ambiguous elements in the current sequence |
784
|
|
|
|
|
|
|
Example : |
785
|
|
|
|
|
|
|
Returns : 1 if strict alphabet is being used, |
786
|
|
|
|
|
|
|
0 if ambiguous elements are present |
787
|
|
|
|
|
|
|
Args : |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
Throws : an exception if type of sequence is unknown (ie amino or |
790
|
|
|
|
|
|
|
nucleic) or if unknown letter in alphabet. Ambiguous |
791
|
|
|
|
|
|
|
monomers are allowed. |
792
|
|
|
|
|
|
|
|
793
|
|
|
|
|
|
|
=cut |
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
sub _is_alphabet_strict { |
796
|
|
|
|
|
|
|
|
797
|
33
|
|
|
33
|
|
45
|
my ($seqobj) = @_; |
798
|
33
|
|
|
|
|
75
|
my $moltype = $seqobj->alphabet(); |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
# convert everything to upper case to be safe |
801
|
33
|
|
|
|
|
66
|
my $seqstring = uc $seqobj->seq(); |
802
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
# Since T is used in RichSeq RNA sequences, do conversion locally |
804
|
33
|
100
|
|
|
|
68
|
$seqstring =~ s/T/U/g if $seqobj->alphabet eq 'rna'; |
805
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
# First we check if only the 'strict' letters are present in the |
807
|
|
|
|
|
|
|
# sequence string If not, we check whether the remaining letters |
808
|
|
|
|
|
|
|
# are ambiguous monomers or whether there are illegal letters in |
809
|
|
|
|
|
|
|
# the string |
810
|
|
|
|
|
|
|
|
811
|
|
|
|
|
|
|
# $alpha_array is a ref to an array of the 'strictly' allowed letters |
812
|
33
|
|
|
|
|
66
|
my $alpha_array = $Alphabets_strict{$moltype} ; |
813
|
|
|
|
|
|
|
|
814
|
|
|
|
|
|
|
# $alphabet contains the allowed letters in string form |
815
|
33
|
|
|
|
|
90
|
my $alphabet = join ('', @$alpha_array) ; |
816
|
33
|
100
|
|
|
|
371
|
unless ($seqstring =~ /[^$alphabet]/) { |
817
|
25
|
|
|
|
|
66
|
return 1 ; |
818
|
|
|
|
|
|
|
} |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
# Next try to match with the alphabet's ambiguous letters |
821
|
8
|
|
|
|
|
12
|
$alpha_array = $Alphabets{$moltype} ; |
822
|
8
|
|
|
|
|
16
|
$alphabet = join ('', @$alpha_array) ; |
823
|
|
|
|
|
|
|
|
824
|
8
|
50
|
|
|
|
65
|
unless ($seqstring =~ /[^$alphabet]/) { |
825
|
8
|
|
|
|
|
19
|
return 0 ; |
826
|
|
|
|
|
|
|
} |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
# If we got here there is an illegal letter in the sequence |
829
|
0
|
|
|
|
|
|
$seqobj->throw("Alphabet not OK for $seqobj"); |
830
|
|
|
|
|
|
|
} |
831
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
=head2 _print_data |
833
|
|
|
|
|
|
|
|
834
|
|
|
|
|
|
|
Title : _print_data |
835
|
|
|
|
|
|
|
Usage : $seqobj->_print_data() or Bio::Tools::SeqStats->_print_data(); |
836
|
|
|
|
|
|
|
Function: Displays dna / rna parameters (used for debugging) |
837
|
|
|
|
|
|
|
Returns : 1 |
838
|
|
|
|
|
|
|
Args : None |
839
|
|
|
|
|
|
|
|
840
|
|
|
|
|
|
|
Used for debugging. |
841
|
|
|
|
|
|
|
|
842
|
|
|
|
|
|
|
=cut |
843
|
|
|
|
|
|
|
|
844
|
|
|
|
|
|
|
sub _print_data { |
845
|
|
|
|
|
|
|
|
846
|
0
|
|
|
0
|
|
|
print "\n adenine = : $adenine \n"; |
847
|
0
|
|
|
|
|
|
print "\n guanine = : $guanine \n"; |
848
|
0
|
|
|
|
|
|
print "\n cytosine = : $cytosine \n"; |
849
|
0
|
|
|
|
|
|
print "\n thymine = : $thymine \n"; |
850
|
0
|
|
|
|
|
|
print "\n uracil = : $uracil \n"; |
851
|
|
|
|
|
|
|
|
852
|
0
|
|
|
|
|
|
print "\n dna_A_wt = : $dna_A_wt \n"; |
853
|
0
|
|
|
|
|
|
print "\n dna_C_wt = : $dna_C_wt \n"; |
854
|
0
|
|
|
|
|
|
print "\n dna_G_wt = : $dna_G_wt \n"; |
855
|
0
|
|
|
|
|
|
print "\n dna_T_wt = : $dna_T_wt \n"; |
856
|
|
|
|
|
|
|
|
857
|
0
|
|
|
|
|
|
print "\n rna_A_wt = : $rna_A_wt \n"; |
858
|
0
|
|
|
|
|
|
print "\n rna_C_wt = : $rna_C_wt \n"; |
859
|
0
|
|
|
|
|
|
print "\n rna_G_wt = : $rna_G_wt \n"; |
860
|
0
|
|
|
|
|
|
print "\n rna_U_wt = : $rna_U_wt \n"; |
861
|
|
|
|
|
|
|
|
862
|
0
|
|
|
|
|
|
return 1; |
863
|
|
|
|
|
|
|
} |
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
1; |