line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# |
2
|
|
|
|
|
|
|
# bioperl module for Bio::SeqFeature::Tools::Unflattener |
3
|
|
|
|
|
|
|
# |
4
|
|
|
|
|
|
|
# Please direct questions and support issues to |
5
|
|
|
|
|
|
|
# |
6
|
|
|
|
|
|
|
# Cared for by Chris Mungall |
7
|
|
|
|
|
|
|
# |
8
|
|
|
|
|
|
|
# Copyright Chris Mungall |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# You may distribute this module under the same terms as perl itself |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
# POD documentation - main docs before the code |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Bio::SeqFeature::Tools::Unflattener - turns flat list of genbank-sourced features into a nested SeqFeatureI hierarchy |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 SYNOPSIS |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# standard / generic use - unflatten a genbank record |
21
|
|
|
|
|
|
|
use Bio::SeqIO; |
22
|
|
|
|
|
|
|
use Bio::SeqFeature::Tools::Unflattener; |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# generate an Unflattener object |
25
|
|
|
|
|
|
|
$unflattener = Bio::SeqFeature::Tools::Unflattener->new; |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# first fetch a genbank SeqI object |
28
|
|
|
|
|
|
|
$seqio = |
29
|
|
|
|
|
|
|
Bio::SeqIO->new(-file=>'AE003644.gbk', |
30
|
|
|
|
|
|
|
-format=>'GenBank'); |
31
|
|
|
|
|
|
|
my $out = |
32
|
|
|
|
|
|
|
Bio::SeqIO->new(-format=>'asciitree'); |
33
|
|
|
|
|
|
|
while ($seq = $seqio->next_seq()) { |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# get top level unflattended SeqFeatureI objects |
36
|
|
|
|
|
|
|
$unflattener->unflatten_seq(-seq=>$seq, |
37
|
|
|
|
|
|
|
-use_magic=>1); |
38
|
|
|
|
|
|
|
$out->write_seq($seq); |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
@top_sfs = $seq->get_SeqFeatures; |
41
|
|
|
|
|
|
|
foreach my $sf (@top_sfs) { |
42
|
|
|
|
|
|
|
# do something with top-level features (eg genes) |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
} |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=head1 DESCRIPTION |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
Most GenBank entries for annotated genomic DNA contain a B list |
50
|
|
|
|
|
|
|
of features. These features can be parsed into an equivalent flat list |
51
|
|
|
|
|
|
|
of L objects using the standard L |
52
|
|
|
|
|
|
|
classes. However, it is often desirable to B this list into |
53
|
|
|
|
|
|
|
something resembling actual B, in which genes, mRNAs and CDSs |
54
|
|
|
|
|
|
|
are B according to the nature of the gene model. |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
The BioPerl object model allows us to store these kind of associations |
57
|
|
|
|
|
|
|
between SeqFeatures in B -- any SeqFeatureI |
58
|
|
|
|
|
|
|
object can contain nested SeqFeatureI objects. The |
59
|
|
|
|
|
|
|
Bio::SeqFeature::Tools::Unflattener object facilitates construction of |
60
|
|
|
|
|
|
|
these hierarchies from the underlying GenBank flat-feature-list |
61
|
|
|
|
|
|
|
representation. |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
For example, if you were to look at a typical GenBank DNA entry, say, |
64
|
|
|
|
|
|
|
B, you would see a flat list of features: |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
source |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
gene CG4491 |
69
|
|
|
|
|
|
|
mRNA CG4491-RA |
70
|
|
|
|
|
|
|
CDS CG4491-PA |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
gene tRNA-Pro |
73
|
|
|
|
|
|
|
tRNA tRNA-Pro |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
gene CG32954 |
76
|
|
|
|
|
|
|
mRNA CG32954-RA |
77
|
|
|
|
|
|
|
mRNA CG32954-RC |
78
|
|
|
|
|
|
|
mRNA CG32954-RB |
79
|
|
|
|
|
|
|
CDS CG32954-PA |
80
|
|
|
|
|
|
|
CDS CG32954-PB |
81
|
|
|
|
|
|
|
CDS CG32954-PC |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
These features have sequence locations, but it is not immediately |
84
|
|
|
|
|
|
|
clear how to write code such that each mRNA is linked to the |
85
|
|
|
|
|
|
|
appropriate CDS (other than relying on IDs which is very bad) |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
We would like to convert the above list into the B
|
88
|
|
|
|
|
|
|
hierarchy>, shown below: |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
source |
91
|
|
|
|
|
|
|
gene |
92
|
|
|
|
|
|
|
mRNA CG4491-RA |
93
|
|
|
|
|
|
|
CDS CG4491-PA |
94
|
|
|
|
|
|
|
exon |
95
|
|
|
|
|
|
|
exon |
96
|
|
|
|
|
|
|
gene |
97
|
|
|
|
|
|
|
tRNA tRNA-Pro |
98
|
|
|
|
|
|
|
exon |
99
|
|
|
|
|
|
|
gene |
100
|
|
|
|
|
|
|
mRNA CG32954-RA |
101
|
|
|
|
|
|
|
CDS CG32954-PA |
102
|
|
|
|
|
|
|
exon |
103
|
|
|
|
|
|
|
exon |
104
|
|
|
|
|
|
|
mRNA CG32954-RC |
105
|
|
|
|
|
|
|
CDS CG32954-PC |
106
|
|
|
|
|
|
|
exon |
107
|
|
|
|
|
|
|
exon |
108
|
|
|
|
|
|
|
mRNA CG32954-RB |
109
|
|
|
|
|
|
|
CDS CG32954-PB |
110
|
|
|
|
|
|
|
exon |
111
|
|
|
|
|
|
|
exon |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
Where each feature is nested underneath its container. Note that exons |
114
|
|
|
|
|
|
|
have been automatically inferred (even for tRNA genes). |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
We do this using a call on a L |
117
|
|
|
|
|
|
|
object |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
@sfs = $unflattener->unflatten_seq(-seq=>$seq); |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
This would return a list of the B (i.e. container) |
122
|
|
|
|
|
|
|
SeqFeatureI objects - in this case, genes. Other top level features |
123
|
|
|
|
|
|
|
are possible; for instance, the B |
124
|
|
|
|
|
|
|
present, and other features such as B or B |
125
|
|
|
|
|
|
|
types. |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
The containment hierarchy can be accessed using the get_SeqFeature() |
128
|
|
|
|
|
|
|
call on any feature object - see L. |
129
|
|
|
|
|
|
|
The following code will traverse the containment hierarchy for a |
130
|
|
|
|
|
|
|
feature: |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
sub traverse { |
133
|
|
|
|
|
|
|
$sf = shift; # $sf isa Bio::SeqfeatureI |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
# ...do something with $sf! |
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
# depth first traversal of containment tree |
138
|
|
|
|
|
|
|
@contained_sfs = $sf->get_SeqFeatures; |
139
|
|
|
|
|
|
|
traverse($_) foreach @contained_sfs; |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Once you have built the hierarchy, you can do neat stuff like turn the |
143
|
|
|
|
|
|
|
features into 'rich' feature objects (eg |
144
|
|
|
|
|
|
|
L) or convert to a suitable |
145
|
|
|
|
|
|
|
format such as GFF3 or chadoxml (after mapping to the Sequence |
146
|
|
|
|
|
|
|
Ontology); this step is not described here. |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
=head1 USING MAGIC |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
Due to the quixotic nature of how features are stored in |
151
|
|
|
|
|
|
|
GenBank/EMBL/DDBJ, there is no guarantee that the default behaviour of |
152
|
|
|
|
|
|
|
this module will produce perfect results. Sometimes it is hard or |
153
|
|
|
|
|
|
|
impossible to build a correct containment hierarchy if the information |
154
|
|
|
|
|
|
|
provided is simply too lossy, as is often the case. If you care deeply |
155
|
|
|
|
|
|
|
about your data, you should always manually inspect the resulting |
156
|
|
|
|
|
|
|
containment hierarchy; you may have to customise the algorithm for |
157
|
|
|
|
|
|
|
building the hierarchy, or even manually tweak the resulting |
158
|
|
|
|
|
|
|
hierarchy. This is explained in more detail further on in the document. |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
However, if you are satisfied with the default behaviour, then you do |
161
|
|
|
|
|
|
|
not need to read any further. Just make sure you set the parameter |
162
|
|
|
|
|
|
|
B - this will invoke incantations which will magically |
163
|
|
|
|
|
|
|
produce good results no matter what the idiosyncracies of the |
164
|
|
|
|
|
|
|
particular GenBank record in question. |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
For example |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
$unflattener->unflatten_seq(-seq=>$seq, |
169
|
|
|
|
|
|
|
-use_magic=>1); |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
The success of this depends on the phase of the moon at the time the |
172
|
|
|
|
|
|
|
entry was submitted to GenBank. Note that the magical recipe is being |
173
|
|
|
|
|
|
|
constantly improved, so the results of invoking magic may vary |
174
|
|
|
|
|
|
|
depending on the bioperl release. |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
If you are skeptical of magic, or you wish to exact fine grained |
177
|
|
|
|
|
|
|
control over how the entry is unflattened, or you simply wish to |
178
|
|
|
|
|
|
|
understand more about how this crazy stuff works, then read on! |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=head1 PROBLEMATIC DATA AND INCONSISTENCIES |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
Occasionally the Unflattener will have problems with certain |
183
|
|
|
|
|
|
|
records. For example, the record may contain inconsistent data - maybe |
184
|
|
|
|
|
|
|
there is an B entry that has no corresponding B location. |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
The default behaviour is to throw an exception reporting the problem, |
187
|
|
|
|
|
|
|
if the problem is relatively serious - for example, inconsistent data. |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
You can exert more fine grained control over this - perhaps you want |
190
|
|
|
|
|
|
|
the Unflattener to do the best it can, and report any problems. This |
191
|
|
|
|
|
|
|
can be done - refer to the methods. |
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
error_threshold() |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
get_problems() |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
report_problems() |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
ignore_problems() |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
=head1 ALGORITHM |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
This is the default algorithm; you should be able to override any part |
204
|
|
|
|
|
|
|
of it to customise. |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
The core of the algorithm is in two parts |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
=over |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=item Partitioning the flat feature list into groups |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
=item Resolving the feature containment hierarchy for each group |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=back |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
There are other optional steps after the completion of these two |
217
|
|
|
|
|
|
|
steps, such as B; we now describe in more detail what |
218
|
|
|
|
|
|
|
is going on. |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
=head2 Partitioning into groups |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
First of all the flat feature list is partitioned into Bs. |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
The default way of doing this is to use the B attribute; if we |
225
|
|
|
|
|
|
|
look at two features from GenBank accession AE003644.3: |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
gene 20111..23268 |
228
|
|
|
|
|
|
|
/gene="noc" |
229
|
|
|
|
|
|
|
/locus_tag="CG4491" |
230
|
|
|
|
|
|
|
/note="last curated on Thu Dec 13 16:51:32 PST 2001" |
231
|
|
|
|
|
|
|
/map="35B2-35B2" |
232
|
|
|
|
|
|
|
/db_xref="FLYBASE:FBgn0005771" |
233
|
|
|
|
|
|
|
mRNA join(20111..20584,20887..23268) |
234
|
|
|
|
|
|
|
/gene="noc" |
235
|
|
|
|
|
|
|
/locus_tag="CG4491" |
236
|
|
|
|
|
|
|
/product="CG4491-RA" |
237
|
|
|
|
|
|
|
/db_xref="FLYBASE:FBgn0005771" |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
Both these features share the same /gene tag which is "noc", so they |
240
|
|
|
|
|
|
|
correspond to the same gene model (the CDS feature is not shown, but |
241
|
|
|
|
|
|
|
this also has a tag-value /gene="noc"). |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
Not all groups need to correspond to gene models, but this is the most |
244
|
|
|
|
|
|
|
common use case; later on we shall describe how to customise the |
245
|
|
|
|
|
|
|
grouping. |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
Sometimes other tags have to be used; for instance, if you look at the |
248
|
|
|
|
|
|
|
entire record for AE003644.3 you will see you actually need the use the |
249
|
|
|
|
|
|
|
/locus_tag attribute. This attribute is actually B in |
250
|
|
|
|
|
|
|
most records! |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
You can override this: |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
$collection->unflatten_seq(-seq=>$seq, -group_tag=>'locus_tag'); |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
Alternatively, if you B<-use_magic>, the object will try and make a |
257
|
|
|
|
|
|
|
guess as to what the correct group_tag should be. |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
At the end of this step, we should have a list of groups - there is no |
260
|
|
|
|
|
|
|
structure within a group; the group just serves to partition the flat |
261
|
|
|
|
|
|
|
features. For the example data above, we would have the following groups. |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
[ source ] |
264
|
|
|
|
|
|
|
[ gene mRNA CDS ] |
265
|
|
|
|
|
|
|
[ gene mRNA CDS ] |
266
|
|
|
|
|
|
|
[ gene mRNA CDS ] |
267
|
|
|
|
|
|
|
[ gene mRNA mRNA mRNA CDS CDS CDS ] |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head3 Multicopy Genes |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
Multicopy genes are usually rRNAs or tRNAs that are duplicated across |
272
|
|
|
|
|
|
|
the genome. Because they are functionally equivalent, and usually have |
273
|
|
|
|
|
|
|
the same sequence, they usually have the same group_tag (ie gene |
274
|
|
|
|
|
|
|
symbol); they often have a /note tag giving copy number. This means |
275
|
|
|
|
|
|
|
they will end up in the same group. This is undesirable, because they |
276
|
|
|
|
|
|
|
are spatially disconnected. |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
There is another step, which involves splitting spatially disconnected |
279
|
|
|
|
|
|
|
groups into distinct groups |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
this would turn this |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
[gene-rrn3 rRNA-rrn3 gene-rrn3 rRNA-rrn3] |
284
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
into this |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
[gene-rrn3 rRNA-rrn3] [gene-rrn3 rRNA-rrn3] |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
based on the coordinates |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
=head3 What next? |
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
The next step is to add some structure to each group, by making |
294
|
|
|
|
|
|
|
B, trees that represent how the features |
295
|
|
|
|
|
|
|
interrelate |
296
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
=head2 Resolving the containment hierarchy |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
After the grouping is done, we end up with a list of groups which |
300
|
|
|
|
|
|
|
probably contain features of type 'gene', 'mRNA', 'CDS' and so on. |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
Singleton groups (eg the 'source' feature) are ignored at this stage. |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
Each group is itself flat; we need to add an extra level of |
305
|
|
|
|
|
|
|
organisation. Usually this is because different spliceforms |
306
|
|
|
|
|
|
|
(represented by the 'mRNA' feature) can give rise to different |
307
|
|
|
|
|
|
|
protein products (indicated by the 'CDS' feature). We want to correctly |
308
|
|
|
|
|
|
|
associate mRNAs to CDSs. |
309
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
We want to go from a group like this: |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
[ gene mRNA mRNA mRNA CDS CDS CDS ] |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
to a containment hierarchy like this: |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
gene |
317
|
|
|
|
|
|
|
mRNA |
318
|
|
|
|
|
|
|
CDS |
319
|
|
|
|
|
|
|
mRNA |
320
|
|
|
|
|
|
|
CDS |
321
|
|
|
|
|
|
|
mRNA |
322
|
|
|
|
|
|
|
CDS |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
In which each CDS is nested underneath the correct corresponding mRNA. |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
For entries that contain no alternate splicing, this is simple; we |
327
|
|
|
|
|
|
|
know that the group |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
[ gene mRNA CDS ] |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
Must resolve to the tree |
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
gene |
334
|
|
|
|
|
|
|
mRNA |
335
|
|
|
|
|
|
|
CDS |
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
How can we do this in entries with alternate splicing? The bad |
338
|
|
|
|
|
|
|
news is that there is no guaranteed way of doing this correctly for |
339
|
|
|
|
|
|
|
any GenBank entry. Occasionally the submission will have been done in |
340
|
|
|
|
|
|
|
such a way as to reconstruct the containment hierarchy. However, this |
341
|
|
|
|
|
|
|
is not consistent across databank entries, so no generic solution can |
342
|
|
|
|
|
|
|
be provided by this object. This module does provide the framework |
343
|
|
|
|
|
|
|
within which you can customise a solution for the particular dataset |
344
|
|
|
|
|
|
|
you are interested in - see later. |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
The good news is that there is an inference we can do that should |
347
|
|
|
|
|
|
|
produce pretty good results the vast majority of the time. It uses |
348
|
|
|
|
|
|
|
splice coordinate data - this is the default behaviour of this module, |
349
|
|
|
|
|
|
|
and is described in detail below. |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
=head2 Using splice site coordinates to infer containment |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
If an mRNA is to be the container for a CDS, then the splice site |
354
|
|
|
|
|
|
|
coordinates (or intron coordinates, depending on how you look at it) |
355
|
|
|
|
|
|
|
of the CDS must fit inside the splice site coordinates of the mRNA. |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
Ambiguities can still arise, but the results produced should still be |
358
|
|
|
|
|
|
|
reasonable and consistent at the sequence level. Look at this fake |
359
|
|
|
|
|
|
|
example: |
360
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
mRNA XXX---XX--XXXXXX--XXXX join(1..3,7..8,11..16,19..23) |
362
|
|
|
|
|
|
|
mRNA XXX-------XXXXXX--XXXX join(1..3,11..16,19..23) |
363
|
|
|
|
|
|
|
CDS XXXX--XX join(13..16,19..20) |
364
|
|
|
|
|
|
|
CDS XXXX--XX join(13..16,19..20) |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
[obviously the positions have been scaled down] |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
We cannot unambiguously match mRNA with CDS based on splice sites, |
369
|
|
|
|
|
|
|
since both CDS share the splice site locations 16^17 and |
370
|
|
|
|
|
|
|
18^19. However, the consequences of making a wrong match are probably |
371
|
|
|
|
|
|
|
not very severe. Any annotation data attached to the first CDS is |
372
|
|
|
|
|
|
|
probably identical to the seconds CDS, other than identifiers. |
373
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
The default behaviour of this module is to make an arbitrary call |
375
|
|
|
|
|
|
|
where it is ambiguous (the mapping will always be bijective; i.e. one |
376
|
|
|
|
|
|
|
mRNA -E one CDS). |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
[TODO: NOTE: not tested on EMBL data, which may not be bijective; ie two |
379
|
|
|
|
|
|
|
mRNAs can share the same CDS??] |
380
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
This completes the building of the containment hierarchy; other |
382
|
|
|
|
|
|
|
optional step follow |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
=head1 POST-GROUPING STEPS |
385
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
=head2 Inferring exons from mRNAs |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
This step always occurs if B<-use_magic> is invoked. |
389
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
In a typical GenBank entry, the exons are B. That is they |
391
|
|
|
|
|
|
|
can be inferred from the mRNA location. |
392
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
For example: |
394
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
mRNA join(20111..20584,20887..23268) |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
This tells us that this particular transcript has two exons. In |
398
|
|
|
|
|
|
|
bioperl, the mRNA feature will have a 'split location'. |
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
If we call |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
$unflattener->feature_from_splitloc(-seq=>$seq); |
403
|
|
|
|
|
|
|
|
404
|
|
|
|
|
|
|
This will generate the necessary exon features, and nest them under |
405
|
|
|
|
|
|
|
the appropriate mRNAs. Note that the mRNAs will no longer have split |
406
|
|
|
|
|
|
|
locations - they will have simple locations spanning the extent of the |
407
|
|
|
|
|
|
|
exons. This is intentional, to avoid redundancy. |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
Occasionally a GenBank entry will have both implicit exons (from the |
410
|
|
|
|
|
|
|
mRNA location) B explicit exon features. |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
In this case, exons will still be transferred. Tag-value data from the |
413
|
|
|
|
|
|
|
explicit exon will be transfered to the implicit exon. If exons are |
414
|
|
|
|
|
|
|
shared between mRNAs these will be represented by different |
415
|
|
|
|
|
|
|
objects. Any inconsistencies between implicit and explicit will be |
416
|
|
|
|
|
|
|
reported. |
417
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
=head3 tRNAs and other noncoding RNAs |
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
exons will also be generated from these features |
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
=head2 Inferring mRNAs from CDS |
423
|
|
|
|
|
|
|
|
424
|
|
|
|
|
|
|
Some GenBank entries represent gene models using features of type |
425
|
|
|
|
|
|
|
gene, mRNA and CDS; some entries just use gene and CDS. |
426
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
If we only have gene and CDS, then the containment hierarchies will |
428
|
|
|
|
|
|
|
look like this: |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
gene |
431
|
|
|
|
|
|
|
CDS |
432
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
If we want the containment hierarchies to be uniform, like this |
434
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
gene |
436
|
|
|
|
|
|
|
mRNA |
437
|
|
|
|
|
|
|
CDS |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
Then we must create an mRNA feature. This will have identical |
440
|
|
|
|
|
|
|
coordinates to the CDS. The assumption is that there is either no |
441
|
|
|
|
|
|
|
untranslated region, or it is unknown. |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
To do this, we can call |
444
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
$unflattener->infer_mRNA_from_CDS(-seq=>$seq); |
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
This is taken care of automatically, if B<-use_magic> is invoked. |
448
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
=head1 ADVANCED |
450
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
=head2 Customising the grouping of features |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
The default behaviour is suited mostly to building models of protein |
454
|
|
|
|
|
|
|
coding genes and noncoding genes from genbank genomic DNA submissions. |
455
|
|
|
|
|
|
|
|
456
|
|
|
|
|
|
|
You can change the tag used to partition the feature by passing in a |
457
|
|
|
|
|
|
|
different group_tag argument - see the unflatten_seq() method |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
Other behaviour may be desirable. For example, even though SNPs |
460
|
|
|
|
|
|
|
(features of type 'variation' in GenBank) are not actually part of the |
461
|
|
|
|
|
|
|
gene model, it may be desirable to group SNPs that overlap or are |
462
|
|
|
|
|
|
|
nearby gene models. |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
It should certainly be possible to extend this module to do |
465
|
|
|
|
|
|
|
this. However, I have yet to code this part!!! If anyone would find |
466
|
|
|
|
|
|
|
this useful let me know. |
467
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
In the meantime, you could write your own grouping subroutine, and |
469
|
|
|
|
|
|
|
feed the results into unflatten_groups() [see the method documentation |
470
|
|
|
|
|
|
|
below] |
471
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
=head2 Customising the resolution of the containment hierarchy |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
Once the flat list of features has been partitioned into groups, the |
475
|
|
|
|
|
|
|
method unflatten_group() is called on each group to build a tree. |
476
|
|
|
|
|
|
|
|
477
|
|
|
|
|
|
|
The algorithm for doing this is described above; ambiguities are |
478
|
|
|
|
|
|
|
resolved by using splice coordinates. As discussed, this can be |
479
|
|
|
|
|
|
|
ambiguous. |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
Some submissions may contain information in tags/attributes that hint |
482
|
|
|
|
|
|
|
as to the mapping that needs to be made between the features. |
483
|
|
|
|
|
|
|
|
484
|
|
|
|
|
|
|
For example, with the Drosophila Melanogaster release 3 submission, we |
485
|
|
|
|
|
|
|
see that CDS features in alternately spliced mRNAs have a form like |
486
|
|
|
|
|
|
|
this: |
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
CDS join(145588..145686,145752..146156,146227..146493) |
489
|
|
|
|
|
|
|
/locus_tag="CG32954" |
490
|
|
|
|
|
|
|
/note="CG32954 gene product from transcript CG32954-RA" |
491
|
|
|
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
492
|
|
|
|
|
|
|
/codon_start=1 |
493
|
|
|
|
|
|
|
/product="CG32954-PA" |
494
|
|
|
|
|
|
|
/protein_id="AAF53403.1" |
495
|
|
|
|
|
|
|
/db_xref="GI:7298167" |
496
|
|
|
|
|
|
|
/db_xref="FLYBASE:FBgn0052954" |
497
|
|
|
|
|
|
|
/translation="MSFTLTNKNVIFVAGLGGIGLDTSKELLKRDLKNLVILDRIENP..." |
498
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
Here the /note tag provides the clue we need to link CDS to mRNA |
500
|
|
|
|
|
|
|
(highlighted with ^^^^). We just need to find the mRNA with the tag |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
/product="CG32954-RA" |
503
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
I have no idea how consistent this practice is across submissions; it |
505
|
|
|
|
|
|
|
is consistent for the fruitfly genome submission. |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
We can customise the behaviour of unflatten_group() by providing our |
508
|
|
|
|
|
|
|
own resolver method. This obviously requires a bit of extra |
509
|
|
|
|
|
|
|
programming, but there is no way to get around this. |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
Here is an example of how to pass in your own resolver; this example |
512
|
|
|
|
|
|
|
basically checks the parent (container) /product tag to see if it |
513
|
|
|
|
|
|
|
matches the required string in the child (contained) /note tag. |
514
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
$unflattener->unflatten_seq(-seq=>$seq, |
516
|
|
|
|
|
|
|
-group_tag=>'locus_tag', |
517
|
|
|
|
|
|
|
-resolver_method=>sub { |
518
|
|
|
|
|
|
|
my $self = shift; |
519
|
|
|
|
|
|
|
my ($sf, @candidate_container_sfs) = @_; |
520
|
|
|
|
|
|
|
if ($sf->has_tag('note')) { |
521
|
|
|
|
|
|
|
my @notes = $sf->get_tag_values('note'); |
522
|
|
|
|
|
|
|
my @trnames = map {/from transcript\s+(.*)/; |
523
|
|
|
|
|
|
|
$1} @notes; |
524
|
|
|
|
|
|
|
@trnames = grep {$_} @trnames; |
525
|
|
|
|
|
|
|
my $trname; |
526
|
|
|
|
|
|
|
if (@trnames == 0) { |
527
|
|
|
|
|
|
|
$self->throw("UNRESOLVABLE"); |
528
|
|
|
|
|
|
|
} |
529
|
|
|
|
|
|
|
elsif (@trnames == 1) { |
530
|
|
|
|
|
|
|
$trname = $trnames[0]; |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
else { |
533
|
|
|
|
|
|
|
$self->throw("AMBIGUOUS: @trnames"); |
534
|
|
|
|
|
|
|
} |
535
|
|
|
|
|
|
|
my @container_sfs = |
536
|
|
|
|
|
|
|
grep { |
537
|
|
|
|
|
|
|
my ($product) = |
538
|
|
|
|
|
|
|
$_->has_tag('product') ? |
539
|
|
|
|
|
|
|
$_->get_tag_values('product') : |
540
|
|
|
|
|
|
|
(''); |
541
|
|
|
|
|
|
|
$product eq $trname; |
542
|
|
|
|
|
|
|
} @candidate_container_sfs; |
543
|
|
|
|
|
|
|
if (@container_sfs == 0) { |
544
|
|
|
|
|
|
|
$self->throw("UNRESOLVABLE"); |
545
|
|
|
|
|
|
|
} |
546
|
|
|
|
|
|
|
elsif (@container_sfs == 1) { |
547
|
|
|
|
|
|
|
# we got it! |
548
|
|
|
|
|
|
|
return $container_sfs[0]; |
549
|
|
|
|
|
|
|
} |
550
|
|
|
|
|
|
|
else { |
551
|
|
|
|
|
|
|
$self->throw("AMBIGUOUS"); |
552
|
|
|
|
|
|
|
} |
553
|
|
|
|
|
|
|
} |
554
|
|
|
|
|
|
|
}); |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
the resolver method is only called when there is more than one spliceform. |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
=head2 Parsing mRNA records |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
Some of the entries in sequence databanks are for mRNA sequences as |
561
|
|
|
|
|
|
|
well as genomic DNA. We may want to build models from these too. |
562
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
NOT YET DONE - IN PROGRESS!!! |
564
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
Open question - what would these look like? |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
Ideally we would like a way of combining a mRNA record with the |
568
|
|
|
|
|
|
|
corresponding SeFeature entry from the appropriate genomic DNA |
569
|
|
|
|
|
|
|
record. This could be problemmatic in some cases - for example, the |
570
|
|
|
|
|
|
|
mRNA sequences may not match 100% (due to differences in strain, |
571
|
|
|
|
|
|
|
assembly problems, sequencing problems, etc). What then...? |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=head1 SEE ALSO |
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
Feature table description |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
http://www.ebi.ac.uk/embl/Documentation/FT_definitions/feature_table.html |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
=head1 FEEDBACK |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
=head2 Mailing Lists |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
User feedback is an integral part of the evolution of this and other |
584
|
|
|
|
|
|
|
Bioperl modules. Send your comments and suggestions preferably to the |
585
|
|
|
|
|
|
|
Bioperl mailing lists Your participation is much appreciated. |
586
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
bioperl-l@bioperl.org - General discussion |
588
|
|
|
|
|
|
|
http://bioperl.org/wiki/Mailing_lists - About the mailing lists |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
=head2 Support |
591
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
Please direct usage questions or support issues to the mailing list: |
593
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
I |
595
|
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
rather than to the module maintainer directly. Many experienced and |
597
|
|
|
|
|
|
|
reponsive experts will be able look at the problem and quickly |
598
|
|
|
|
|
|
|
address it. Please include a thorough description of the problem |
599
|
|
|
|
|
|
|
with code and data examples if at all possible. |
600
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
=head2 Reporting Bugs |
602
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
report bugs to the Bioperl bug tracking system to help us keep track |
604
|
|
|
|
|
|
|
the bugs and their resolution. Bug reports can be submitted via the |
605
|
|
|
|
|
|
|
web: |
606
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
https://github.com/bioperl/bioperl-live/issues |
608
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
=head1 AUTHOR - Chris Mungall |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
Email: cjm@fruitfly.org |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=head1 APPENDIX |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
The rest of the documentation details each of the object |
616
|
|
|
|
|
|
|
methods. Internal methods are usually preceded with a _ |
617
|
|
|
|
|
|
|
|
618
|
|
|
|
|
|
|
=cut |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
|
621
|
|
|
|
|
|
|
# Let the code begin... |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
package Bio::SeqFeature::Tools::Unflattener; |
624
|
3
|
|
|
3
|
|
1512
|
use strict; |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
70
|
|
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
# Object preamble - inherits from Bio::Root::Root |
627
|
3
|
|
|
3
|
|
9
|
use Bio::Location::Simple; |
|
3
|
|
|
|
|
3
|
|
|
3
|
|
|
|
|
44
|
|
628
|
3
|
|
|
3
|
|
345
|
use Bio::SeqFeature::Generic; |
|
3
|
|
|
|
|
3
|
|
|
3
|
|
|
|
|
48
|
|
629
|
3
|
|
|
3
|
|
9
|
use Bio::Range; |
|
3
|
|
|
|
|
2
|
|
|
3
|
|
|
|
|
46
|
|
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
|
632
|
3
|
|
|
3
|
|
9
|
use base qw(Bio::Root::Root); |
|
3
|
|
|
|
|
2
|
|
|
3
|
|
|
|
|
13295
|
|
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
=head2 new |
635
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
Title : new |
637
|
|
|
|
|
|
|
Usage : $unflattener = Bio::SeqFeature::Tools::Unflattener->new(); |
638
|
|
|
|
|
|
|
$unflattener->unflatten_seq(-seq=>$seq); |
639
|
|
|
|
|
|
|
Function: constructor |
640
|
|
|
|
|
|
|
Example : |
641
|
|
|
|
|
|
|
Returns : a new Bio::SeqFeature::Tools::Unflattener |
642
|
|
|
|
|
|
|
Args : see below |
643
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
Arguments |
645
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
-seq : A L object (optional) |
647
|
|
|
|
|
|
|
the sequence to unflatten; this can also be passed in |
648
|
|
|
|
|
|
|
when we call unflatten_seq() |
649
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
-group_tag : a string representing the /tag used to partition flat features |
651
|
|
|
|
|
|
|
(see discussion above) |
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
=cut |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
|
656
|
|
|
|
|
|
|
sub new { |
657
|
1
|
|
|
1
|
1
|
12
|
my($class,@args) = @_; |
658
|
1
|
|
|
|
|
11
|
my $self = $class->SUPER::new(@args); |
659
|
|
|
|
|
|
|
|
660
|
1
|
|
|
|
|
11
|
my($seq, $group_tag, $trust_grouptag) = |
661
|
|
|
|
|
|
|
$self->_rearrange([qw(SEQ |
662
|
|
|
|
|
|
|
GROUP_TAG |
663
|
|
|
|
|
|
|
TRUST_GROUPTAG |
664
|
|
|
|
|
|
|
)], |
665
|
|
|
|
|
|
|
@args); |
666
|
|
|
|
|
|
|
|
667
|
1
|
50
|
|
|
|
4
|
$seq && $self->seq($seq); |
668
|
1
|
50
|
|
|
|
2
|
$group_tag && $self->group_tag($group_tag); |
669
|
|
|
|
|
|
|
# $self->{'trust_grouptag'}= $trust_grouptag if($trust_grouptag); #dgg suggestion |
670
|
1
|
|
|
|
|
2
|
return $self; # success - we hope! |
671
|
|
|
|
|
|
|
} |
672
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
sub DESTROY { |
674
|
1
|
|
|
1
|
|
2
|
my $self = shift; |
675
|
1
|
50
|
|
|
|
4
|
return if $self->{_reported_problems}; |
676
|
1
|
50
|
|
|
|
3
|
return if $self->{_ignore_problems}; |
677
|
1
|
|
|
|
|
4
|
my @probs = $self->get_problems; |
678
|
1
|
50
|
50
|
|
|
6
|
if (!$self->{_problems_reported} && |
679
|
|
|
|
|
|
|
scalar(@probs)) { |
680
|
0
|
|
|
|
|
0
|
$self->warn( |
681
|
|
|
|
|
|
|
"WARNING: There are UNREPORTED PROBLEMS.\n". |
682
|
|
|
|
|
|
|
"You may wish to use the method report_problems(), \n", |
683
|
|
|
|
|
|
|
"or ignore_problems() on the Unflattener object\n"); |
684
|
|
|
|
|
|
|
} |
685
|
1
|
|
|
|
|
8
|
return; |
686
|
|
|
|
|
|
|
} |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
=head2 seq |
689
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
Title : seq |
691
|
|
|
|
|
|
|
Usage : $unflattener->seq($newval) |
692
|
|
|
|
|
|
|
Function: |
693
|
|
|
|
|
|
|
Example : |
694
|
|
|
|
|
|
|
Returns : value of seq (a Bio::SeqI) |
695
|
|
|
|
|
|
|
Args : on set, new value (a Bio::SeqI, optional) |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
The Bio::SeqI object should hold a flat list of Bio::SeqFeatureI |
698
|
|
|
|
|
|
|
objects; this is the list that will be unflattened. |
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
The sequence object can also be set when we call unflatten_seq() |
701
|
|
|
|
|
|
|
|
702
|
|
|
|
|
|
|
=cut |
703
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
sub seq{ |
705
|
12
|
|
|
12
|
1
|
17
|
my $self = shift; |
706
|
|
|
|
|
|
|
|
707
|
12
|
100
|
|
|
|
36
|
return $self->{'seq'} = shift if @_; |
708
|
11
|
|
|
|
|
34
|
return $self->{'seq'}; |
709
|
|
|
|
|
|
|
} |
710
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
=head2 group_tag |
712
|
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
Title : group_tag |
714
|
|
|
|
|
|
|
Usage : $unflattener->group_tag($newval) |
715
|
|
|
|
|
|
|
Function: |
716
|
|
|
|
|
|
|
Example : |
717
|
|
|
|
|
|
|
Returns : value of group_tag (a scalar) |
718
|
|
|
|
|
|
|
Args : on set, new value (a scalar or undef, optional) |
719
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
This is the tag that will be used to collect elements from the flat |
721
|
|
|
|
|
|
|
feature list into groups; for instance, if we look at two typical |
722
|
|
|
|
|
|
|
GenBank features: |
723
|
|
|
|
|
|
|
|
724
|
|
|
|
|
|
|
gene 20111..23268 |
725
|
|
|
|
|
|
|
/gene="noc" |
726
|
|
|
|
|
|
|
/locus_tag="CG4491" |
727
|
|
|
|
|
|
|
/note="last curated on Thu Dec 13 16:51:32 PST 2001" |
728
|
|
|
|
|
|
|
/map="35B2-35B2" |
729
|
|
|
|
|
|
|
/db_xref="FLYBASE:FBgn0005771" |
730
|
|
|
|
|
|
|
mRNA join(20111..20584,20887..23268) |
731
|
|
|
|
|
|
|
/gene="noc" |
732
|
|
|
|
|
|
|
/locus_tag="CG4491" |
733
|
|
|
|
|
|
|
/product="CG4491-RA" |
734
|
|
|
|
|
|
|
/db_xref="FLYBASE:FBgn0005771" |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
We can see that these comprise the same gene model because they share |
737
|
|
|
|
|
|
|
the same /gene attribute; we want to collect these together in groups. |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
Setting group_tag is optional. The default is to use 'gene'. In the |
740
|
|
|
|
|
|
|
example above, we could also use /locus_tag |
741
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
=cut |
743
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
sub group_tag{ |
745
|
9
|
|
|
9
|
1
|
15
|
my $self = shift; |
746
|
|
|
|
|
|
|
|
747
|
9
|
50
|
|
|
|
22
|
return $self->{'group_tag'} = shift if @_; |
748
|
9
|
|
|
|
|
35
|
return $self->{'group_tag'}; |
749
|
|
|
|
|
|
|
} |
750
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
=head2 partonomy |
752
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
Title : partonomy |
754
|
|
|
|
|
|
|
Usage : $unflattener->partonomy({mRNA=>'gene', CDS=>'mRNA') |
755
|
|
|
|
|
|
|
Function: |
756
|
|
|
|
|
|
|
Example : |
757
|
|
|
|
|
|
|
Returns : value of partonomy (a scalar) |
758
|
|
|
|
|
|
|
Args : on set, new value (a scalar or undef, optional) |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
A hash representing the containment structure that the seq_feature |
761
|
|
|
|
|
|
|
nesting should conform to; each key represents the contained (child) |
762
|
|
|
|
|
|
|
type; each value represents the container (parent) type. |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
=cut |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
sub partonomy{ |
767
|
28863
|
|
|
28863
|
1
|
18821
|
my $self = shift; |
768
|
|
|
|
|
|
|
|
769
|
28863
|
100
|
|
|
|
34429
|
return $self->{'partonomy'} = shift if @_; |
770
|
28849
|
100
|
|
|
|
34847
|
if (!$self->{'partonomy'}) { |
771
|
1
|
|
|
|
|
3
|
$self->{'partonomy'} = $self->_default_partonomy; |
772
|
|
|
|
|
|
|
} |
773
|
28849
|
|
|
|
|
23525
|
return $self->{'partonomy'}; |
774
|
|
|
|
|
|
|
} |
775
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
sub _default_partonomy{ |
777
|
|
|
|
|
|
|
return { |
778
|
1
|
|
|
1
|
|
12
|
mRNA => 'gene', |
779
|
|
|
|
|
|
|
tRNA => 'gene', |
780
|
|
|
|
|
|
|
rRNA => 'gene', |
781
|
|
|
|
|
|
|
scRNA => 'gene', |
782
|
|
|
|
|
|
|
snRNA => 'gene', |
783
|
|
|
|
|
|
|
snoRNA => 'gene', |
784
|
|
|
|
|
|
|
misc_RNA => 'gene', |
785
|
|
|
|
|
|
|
CDS => 'mRNA', |
786
|
|
|
|
|
|
|
exon => 'mRNA', |
787
|
|
|
|
|
|
|
intron => 'mRNA', |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
pseudoexon => 'pseudogene', |
790
|
|
|
|
|
|
|
pseudointron => 'pseudogene', |
791
|
|
|
|
|
|
|
pseudotranscript => 'pseudogene', |
792
|
|
|
|
|
|
|
}; |
793
|
|
|
|
|
|
|
} |
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
=head2 structure_type |
796
|
|
|
|
|
|
|
|
797
|
|
|
|
|
|
|
Title : structure_type |
798
|
|
|
|
|
|
|
Usage : $unflattener->structure_type($newval) |
799
|
|
|
|
|
|
|
Function: |
800
|
|
|
|
|
|
|
Example : |
801
|
|
|
|
|
|
|
Returns : value of structure_type (a scalar) |
802
|
|
|
|
|
|
|
Args : on set, new value (an int or undef, optional) |
803
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
GenBank entries conform to different flavours, or B
|
805
|
|
|
|
|
|
|
types>. Some have mRNAs, some do not. |
806
|
|
|
|
|
|
|
|
807
|
|
|
|
|
|
|
Right now there are only two base structure types defined. If you set |
808
|
|
|
|
|
|
|
the structure type, then appropriate unflattening action will be |
809
|
|
|
|
|
|
|
taken. The presence or absence of explicit exons does not affect the |
810
|
|
|
|
|
|
|
structure type. |
811
|
|
|
|
|
|
|
|
812
|
|
|
|
|
|
|
If you invoke B<-use_magic> then this will be set automatically, based |
813
|
|
|
|
|
|
|
on the content of the record. |
814
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
=over |
816
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
=item Type 0 (DEFAULT) |
818
|
|
|
|
|
|
|
|
819
|
|
|
|
|
|
|
typically contains |
820
|
|
|
|
|
|
|
|
821
|
|
|
|
|
|
|
source |
822
|
|
|
|
|
|
|
gene |
823
|
|
|
|
|
|
|
mRNA |
824
|
|
|
|
|
|
|
CDS |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
with this structure type, we want the seq_features to be nested like this |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
gene |
829
|
|
|
|
|
|
|
mRNA |
830
|
|
|
|
|
|
|
CDS |
831
|
|
|
|
|
|
|
exon |
832
|
|
|
|
|
|
|
|
833
|
|
|
|
|
|
|
exons and introns are implicit from the mRNA 'join' location |
834
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
to get exons from the mRNAs, you will need this call (see below) |
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
$unflattener->feature_from_splitloc(-seq=>$seq); |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
=item Type 1 |
840
|
|
|
|
|
|
|
|
841
|
|
|
|
|
|
|
typically contains |
842
|
|
|
|
|
|
|
|
843
|
|
|
|
|
|
|
source |
844
|
|
|
|
|
|
|
gene |
845
|
|
|
|
|
|
|
CDS |
846
|
|
|
|
|
|
|
exon [optional] |
847
|
|
|
|
|
|
|
intron [optional] |
848
|
|
|
|
|
|
|
|
849
|
|
|
|
|
|
|
there are no mRNA features |
850
|
|
|
|
|
|
|
|
851
|
|
|
|
|
|
|
with this structure type, we want the seq_features to be nested like this |
852
|
|
|
|
|
|
|
|
853
|
|
|
|
|
|
|
gene |
854
|
|
|
|
|
|
|
CDS |
855
|
|
|
|
|
|
|
exon |
856
|
|
|
|
|
|
|
intron |
857
|
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
exon and intron may or may not be present; they may be implicit from |
859
|
|
|
|
|
|
|
the CDS 'join' location |
860
|
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
=back |
862
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
=cut |
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
sub structure_type{ |
866
|
22
|
|
|
22
|
1
|
30
|
my $self = shift; |
867
|
|
|
|
|
|
|
|
868
|
22
|
100
|
|
|
|
66
|
return $self->{'structure_type'} = shift if @_; |
869
|
11
|
|
|
|
|
22
|
return $self->{'structure_type'}; |
870
|
|
|
|
|
|
|
} |
871
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
=head2 get_problems |
873
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
Title : get_problems |
875
|
|
|
|
|
|
|
Usage : @probs = get_problems() |
876
|
|
|
|
|
|
|
Function: Get the list of problem(s) for this object. |
877
|
|
|
|
|
|
|
Example : |
878
|
|
|
|
|
|
|
Returns : An array of [severity, description] pairs |
879
|
|
|
|
|
|
|
Args : |
880
|
|
|
|
|
|
|
|
881
|
|
|
|
|
|
|
In the course of unflattening a record, problems may occur. Some of |
882
|
|
|
|
|
|
|
these problems are non-fatal, and can be ignored. |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
Problems are represented as arrayrefs containing a pair [severity, |
885
|
|
|
|
|
|
|
description] |
886
|
|
|
|
|
|
|
|
887
|
|
|
|
|
|
|
severity is a number, the higher, the more severe the problem |
888
|
|
|
|
|
|
|
|
889
|
|
|
|
|
|
|
the description is a text string |
890
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
=cut |
892
|
|
|
|
|
|
|
|
893
|
|
|
|
|
|
|
sub get_problems{ |
894
|
2
|
|
|
2
|
1
|
341
|
my $self = shift; |
895
|
|
|
|
|
|
|
|
896
|
2
|
50
|
|
|
|
6
|
return @{$self->{'_problems'}} if exists($self->{'_problems'}); |
|
2
|
|
|
|
|
6
|
|
897
|
0
|
|
|
|
|
0
|
return (); |
898
|
|
|
|
|
|
|
} |
899
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
=head2 clear_problems |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
Title : clear_problems |
903
|
|
|
|
|
|
|
Usage : |
904
|
|
|
|
|
|
|
Function: resets the problem list to empty |
905
|
|
|
|
|
|
|
Example : |
906
|
|
|
|
|
|
|
Returns : |
907
|
|
|
|
|
|
|
Args : |
908
|
|
|
|
|
|
|
|
909
|
|
|
|
|
|
|
|
910
|
|
|
|
|
|
|
=cut |
911
|
|
|
|
|
|
|
|
912
|
|
|
|
|
|
|
sub clear_problems{ |
913
|
1
|
|
|
1
|
1
|
5
|
my ($self,@args) = @_; |
914
|
1
|
|
|
|
|
1
|
$self->{'_problems'} = []; |
915
|
1
|
|
|
|
|
3
|
return; |
916
|
|
|
|
|
|
|
} |
917
|
|
|
|
|
|
|
|
918
|
|
|
|
|
|
|
|
919
|
|
|
|
|
|
|
# PRIVATE |
920
|
|
|
|
|
|
|
# see get_problems |
921
|
|
|
|
|
|
|
sub add_problem{ |
922
|
6
|
|
|
6
|
0
|
7
|
my $self = shift; |
923
|
|
|
|
|
|
|
|
924
|
6
|
100
|
|
|
|
13
|
$self->{'_problems'} = [] unless exists($self->{'_problems'}); |
925
|
6
|
50
|
|
|
|
13
|
if ($self->verbose > 0) { |
926
|
0
|
|
|
|
|
0
|
warn( "PROBLEM: $_\n") foreach @_; |
927
|
|
|
|
|
|
|
} |
928
|
6
|
|
|
|
|
7
|
push(@{$self->{'_problems'}}, @_); |
|
6
|
|
|
|
|
13
|
|
929
|
|
|
|
|
|
|
} |
930
|
|
|
|
|
|
|
|
931
|
|
|
|
|
|
|
# PRIVATE |
932
|
|
|
|
|
|
|
# see get_problems |
933
|
|
|
|
|
|
|
sub problem { |
934
|
6
|
|
|
6
|
0
|
6
|
my $self = shift; |
935
|
6
|
|
|
|
|
9
|
my ($severity, $desc, @sfs) = @_; |
936
|
6
|
50
|
|
|
|
12
|
if (@sfs) { |
937
|
6
|
|
|
|
|
8
|
foreach my $sf (@sfs) { |
938
|
|
|
|
|
|
|
$desc .= |
939
|
|
|
|
|
|
|
sprintf("\nSF [$sf]: ". $sf->location->to_FTstring . "; %s\n", |
940
|
|
|
|
|
|
|
join('; ', |
941
|
|
|
|
|
|
|
$sf->primary_tag, |
942
|
|
|
|
|
|
|
map { |
943
|
6
|
100
|
|
|
|
16
|
$sf->has_tag($_) ? |
|
24
|
|
|
|
|
36
|
|
944
|
|
|
|
|
|
|
$sf->get_tag_values($_) : () |
945
|
|
|
|
|
|
|
} qw(locus_tag gene product label))); |
946
|
|
|
|
|
|
|
} |
947
|
|
|
|
|
|
|
} |
948
|
6
|
|
|
|
|
11
|
my $thresh = $self->error_threshold; |
949
|
6
|
50
|
|
|
|
9
|
if ($severity > $thresh) { |
950
|
0
|
|
|
|
|
0
|
$self->{_problems_reported} = 1; |
951
|
0
|
|
|
|
|
0
|
$self->throw("PROBLEM, SEVERITY==$severity\n$desc"); |
952
|
|
|
|
|
|
|
} |
953
|
6
|
|
|
|
|
12
|
$self->add_problem([$severity, $desc]); |
954
|
6
|
|
|
|
|
7
|
return; |
955
|
|
|
|
|
|
|
} |
956
|
|
|
|
|
|
|
|
957
|
|
|
|
|
|
|
=head2 report_problems |
958
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
Title : report_problems |
960
|
|
|
|
|
|
|
Usage : $unflattener->report_problems(\*STDERR); |
961
|
|
|
|
|
|
|
Function: |
962
|
|
|
|
|
|
|
Example : |
963
|
|
|
|
|
|
|
Returns : |
964
|
|
|
|
|
|
|
Args : FileHandle (defaults to STDERR) |
965
|
|
|
|
|
|
|
|
966
|
|
|
|
|
|
|
|
967
|
|
|
|
|
|
|
=cut |
968
|
|
|
|
|
|
|
|
969
|
|
|
|
|
|
|
sub report_problems{ |
970
|
0
|
|
|
0
|
1
|
0
|
my ($self, $fh) = @_; |
971
|
|
|
|
|
|
|
|
972
|
0
|
0
|
|
|
|
0
|
if (!$fh) { |
973
|
0
|
|
|
|
|
0
|
$fh = \*STDERR; |
974
|
|
|
|
|
|
|
} |
975
|
0
|
|
|
|
|
0
|
foreach my $problem ($self->get_problems) { |
976
|
0
|
|
|
|
|
0
|
my ($sev, $desc) = @$problem; |
977
|
0
|
|
|
|
|
0
|
printf $fh "PROBLEM, SEVERITY==$sev\n$desc\n"; |
978
|
|
|
|
|
|
|
} |
979
|
0
|
|
|
|
|
0
|
$self->{_problems_reported} = 1; |
980
|
0
|
|
|
|
|
0
|
return; |
981
|
|
|
|
|
|
|
} |
982
|
|
|
|
|
|
|
|
983
|
|
|
|
|
|
|
=head2 ignore_problems |
984
|
|
|
|
|
|
|
|
985
|
|
|
|
|
|
|
Title : ignore_problems |
986
|
|
|
|
|
|
|
Usage : $obj->ignore_problems(); |
987
|
|
|
|
|
|
|
Function: |
988
|
|
|
|
|
|
|
Example : |
989
|
|
|
|
|
|
|
Returns : |
990
|
|
|
|
|
|
|
Args : |
991
|
|
|
|
|
|
|
|
992
|
|
|
|
|
|
|
Unflattener is very particular about problems it finds along the |
993
|
|
|
|
|
|
|
way. If you have set the error_threshold such that less severe |
994
|
|
|
|
|
|
|
problems do not cause exceptions, Unflattener still expects you to |
995
|
|
|
|
|
|
|
report_problems() at the end, so that the user of the module is aware |
996
|
|
|
|
|
|
|
of any inconsistencies or problems with the data. In fact, a warning |
997
|
|
|
|
|
|
|
will be produced if there are unreported problems. To silence, this |
998
|
|
|
|
|
|
|
warning, call the ignore_problems() method before the Unflattener |
999
|
|
|
|
|
|
|
object is destroyed. |
1000
|
|
|
|
|
|
|
|
1001
|
|
|
|
|
|
|
=cut |
1002
|
|
|
|
|
|
|
|
1003
|
|
|
|
|
|
|
sub ignore_problems{ |
1004
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
1005
|
0
|
|
|
|
|
0
|
$self->{_ignore_problems} = 1; |
1006
|
0
|
|
|
|
|
0
|
return; |
1007
|
|
|
|
|
|
|
} |
1008
|
|
|
|
|
|
|
|
1009
|
|
|
|
|
|
|
|
1010
|
|
|
|
|
|
|
=head2 error_threshold |
1011
|
|
|
|
|
|
|
|
1012
|
|
|
|
|
|
|
Title : error_threshold |
1013
|
|
|
|
|
|
|
Usage : $obj->error_threshold($severity) |
1014
|
|
|
|
|
|
|
Function: |
1015
|
|
|
|
|
|
|
Example : |
1016
|
|
|
|
|
|
|
Returns : value of error_threshold (a scalar) |
1017
|
|
|
|
|
|
|
Args : on set, new value (an integer) |
1018
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
Sets the threshold above which errors cause this module to throw an |
1020
|
|
|
|
|
|
|
exception. The default is 0; all problems with a severity E 0 will |
1021
|
|
|
|
|
|
|
cause an exception. |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
If you raise the threshold to 1, then the unflattening process will be |
1024
|
|
|
|
|
|
|
more lax; problems of severity==1 are generally non-fatal, but may |
1025
|
|
|
|
|
|
|
indicate that the results should be inspected, for example, to make |
1026
|
|
|
|
|
|
|
sure there is no data loss. |
1027
|
|
|
|
|
|
|
|
1028
|
|
|
|
|
|
|
=cut |
1029
|
|
|
|
|
|
|
|
1030
|
|
|
|
|
|
|
sub error_threshold{ |
1031
|
7
|
|
|
7
|
1
|
14
|
my $self = shift; |
1032
|
|
|
|
|
|
|
|
1033
|
7
|
100
|
|
|
|
15
|
return $self->{'error_threshold'} = shift if @_; |
1034
|
6
|
|
50
|
|
|
14
|
return $self->{'error_threshold'} || 0; |
1035
|
|
|
|
|
|
|
} |
1036
|
|
|
|
|
|
|
|
1037
|
|
|
|
|
|
|
|
1038
|
|
|
|
|
|
|
|
1039
|
|
|
|
|
|
|
# PRIVATE |
1040
|
|
|
|
|
|
|
# |
1041
|
|
|
|
|
|
|
# given a type (eg mRNA), will return the container type (eg gene) |
1042
|
|
|
|
|
|
|
sub get_container_type{ |
1043
|
15023
|
|
|
15023
|
0
|
11894
|
my ($self,$type) = @_; |
1044
|
15023
|
|
|
|
|
15620
|
my @roots = $self->_get_partonomy_roots; |
1045
|
15023
|
100
|
|
|
|
14999
|
if (grep {$_ eq $type} @roots) { |
|
221597
|
|
|
|
|
177665
|
|
1046
|
|
|
|
|
|
|
# it is a root - no parents/containers |
1047
|
2725
|
|
|
|
|
4374
|
return; |
1048
|
|
|
|
|
|
|
} |
1049
|
12298
|
|
|
|
|
12793
|
my $ch = $self->partonomy; |
1050
|
12298
|
|
|
|
|
11204
|
my $ctype = $ch->{$type}; |
1051
|
12298
|
100
|
|
|
|
14685
|
if (!$ctype) { |
1052
|
|
|
|
|
|
|
# asterix acts as a wild card |
1053
|
192
|
|
|
|
|
166
|
$ctype = $ch->{'*'}; |
1054
|
|
|
|
|
|
|
} |
1055
|
12298
|
|
|
|
|
17167
|
return $ctype; |
1056
|
|
|
|
|
|
|
} |
1057
|
|
|
|
|
|
|
|
1058
|
|
|
|
|
|
|
# get root node of partonomy hierarchy (usually gene) |
1059
|
|
|
|
|
|
|
sub _get_partonomy_roots { |
1060
|
15023
|
|
|
15023
|
|
11059
|
my $self = shift; |
1061
|
15023
|
|
|
|
|
15468
|
my $ch = $self->partonomy; |
1062
|
15023
|
|
|
|
|
40798
|
my @parents = values %$ch; |
1063
|
|
|
|
|
|
|
# find parents that do not have parents themselves |
1064
|
15023
|
|
|
|
|
12142
|
return grep {!$ch->{$_}} @parents; |
|
309029
|
|
|
|
|
279736
|
|
1065
|
|
|
|
|
|
|
} |
1066
|
|
|
|
|
|
|
|
1067
|
|
|
|
|
|
|
|
1068
|
|
|
|
|
|
|
|
1069
|
|
|
|
|
|
|
=head2 unflatten_seq |
1070
|
|
|
|
|
|
|
|
1071
|
|
|
|
|
|
|
Title : unflatten_seq |
1072
|
|
|
|
|
|
|
Usage : @sfs = $unflattener->unflatten_seq($seq); |
1073
|
|
|
|
|
|
|
Function: turns a flat list of features into a list of holder features |
1074
|
|
|
|
|
|
|
Example : |
1075
|
|
|
|
|
|
|
Returns : list of Bio::SeqFeatureI objects |
1076
|
|
|
|
|
|
|
Args : see below |
1077
|
|
|
|
|
|
|
|
1078
|
|
|
|
|
|
|
partitions a list of features then arranges them in a nested tree; see |
1079
|
|
|
|
|
|
|
above for full explanation. |
1080
|
|
|
|
|
|
|
|
1081
|
|
|
|
|
|
|
note - the Bio::SeqI object passed in will be modified |
1082
|
|
|
|
|
|
|
|
1083
|
|
|
|
|
|
|
Arguments |
1084
|
|
|
|
|
|
|
|
1085
|
|
|
|
|
|
|
-seq : a Bio::SeqI object; must contain Bio::SeqFeatureI objects |
1086
|
|
|
|
|
|
|
(this is optional if seq has already been set) |
1087
|
|
|
|
|
|
|
|
1088
|
|
|
|
|
|
|
-use_magic: if TRUE (ie non-zero) then magic will be invoked; |
1089
|
|
|
|
|
|
|
see discussion above. |
1090
|
|
|
|
|
|
|
|
1091
|
|
|
|
|
|
|
-resolver_method: a CODE reference |
1092
|
|
|
|
|
|
|
see the documentation above for an example of |
1093
|
|
|
|
|
|
|
a subroutine that can be used to resolve hierarchies |
1094
|
|
|
|
|
|
|
within groups. |
1095
|
|
|
|
|
|
|
|
1096
|
|
|
|
|
|
|
this is optional - if nothing is supplied, a default |
1097
|
|
|
|
|
|
|
subroutine will be used (see below) |
1098
|
|
|
|
|
|
|
|
1099
|
|
|
|
|
|
|
-group_tag: a string |
1100
|
|
|
|
|
|
|
[ see the group_tag() method ] |
1101
|
|
|
|
|
|
|
this overrides the default group_tag which is 'gene' |
1102
|
|
|
|
|
|
|
|
1103
|
|
|
|
|
|
|
|
1104
|
|
|
|
|
|
|
|
1105
|
|
|
|
|
|
|
=cut |
1106
|
|
|
|
|
|
|
|
1107
|
|
|
|
|
|
|
sub unflatten_seq{ |
1108
|
11
|
|
|
11
|
1
|
334
|
my ($self,@args) = @_; |
1109
|
|
|
|
|
|
|
|
1110
|
11
|
|
|
|
|
64
|
my($seq, $resolver_method, $group_tag, $partonomy, |
1111
|
|
|
|
|
|
|
$structure_type, $resolver_tag, $use_magic, $noinfer) = |
1112
|
|
|
|
|
|
|
$self->_rearrange([qw(SEQ |
1113
|
|
|
|
|
|
|
RESOLVER_METHOD |
1114
|
|
|
|
|
|
|
GROUP_TAG |
1115
|
|
|
|
|
|
|
PARTONOMY |
1116
|
|
|
|
|
|
|
STRUCTURE_TYPE |
1117
|
|
|
|
|
|
|
RESOLVER_TAG |
1118
|
|
|
|
|
|
|
USE_MAGIC |
1119
|
|
|
|
|
|
|
NOINFER |
1120
|
|
|
|
|
|
|
)], |
1121
|
|
|
|
|
|
|
@args); |
1122
|
|
|
|
|
|
|
|
1123
|
|
|
|
|
|
|
# seq we want to unflatten |
1124
|
11
|
|
33
|
|
|
44
|
$seq = $seq || $self->seq; |
1125
|
11
|
100
|
|
|
|
38
|
if (!$self->seq) { |
1126
|
1
|
|
|
|
|
4
|
$self->seq($seq); |
1127
|
|
|
|
|
|
|
} |
1128
|
|
|
|
|
|
|
|
1129
|
|
|
|
|
|
|
|
1130
|
|
|
|
|
|
|
# prevent bad argument combinations |
1131
|
11
|
50
|
66
|
|
|
54
|
if ($partonomy && |
1132
|
|
|
|
|
|
|
defined($structure_type)) { |
1133
|
0
|
|
|
|
|
0
|
$self->throw("You cannot set both -partonomy and -structure_type\n". |
1134
|
|
|
|
|
|
|
"(the former is implied by the latter)"); |
1135
|
|
|
|
|
|
|
} |
1136
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
# remember the current value of partonomy, to reset later |
1138
|
11
|
|
|
|
|
38
|
my $old_partonomy = $self->partonomy; |
1139
|
11
|
100
|
|
|
|
35
|
$self->partonomy($partonomy) if defined $partonomy; |
1140
|
|
|
|
|
|
|
|
1141
|
|
|
|
|
|
|
# remember old structure_type |
1142
|
11
|
|
|
|
|
36
|
my $old_structure_type = $self->structure_type; |
1143
|
11
|
50
|
|
|
|
28
|
$self->structure_type($structure_type) if defined $structure_type; |
1144
|
|
|
|
|
|
|
|
1145
|
|
|
|
|
|
|
# if we are sourcing our data from genbank, all the |
1146
|
|
|
|
|
|
|
# features should be flat (eq no sub_SeqFeatures) |
1147
|
11
|
|
|
|
|
34
|
my @flat_seq_features = $seq->get_SeqFeatures; |
1148
|
11
|
|
|
|
|
351
|
my @all_seq_features = $seq->get_all_SeqFeatures; |
1149
|
|
|
|
|
|
|
|
1150
|
|
|
|
|
|
|
# sanity checks |
1151
|
11
|
50
|
|
|
|
289
|
if (@all_seq_features > @flat_seq_features) { |
1152
|
0
|
|
|
|
|
0
|
$self->throw("It looks as if this sequence has already been unflattened"); |
1153
|
|
|
|
|
|
|
} |
1154
|
11
|
50
|
|
|
|
33
|
if (@all_seq_features < @flat_seq_features) { |
1155
|
0
|
|
|
|
|
0
|
$self->throw("ASSERTION ERROR: something is seriously wrong with your features"); |
1156
|
|
|
|
|
|
|
} |
1157
|
|
|
|
|
|
|
|
1158
|
|
|
|
|
|
|
# tag for ungrouping; usually /gene or /locus_tag |
1159
|
|
|
|
|
|
|
# for example: /gene="foo" |
1160
|
11
|
|
66
|
|
|
55
|
$group_tag = $group_tag || $self->group_tag; |
1161
|
11
|
100
|
|
|
|
29
|
if ($use_magic) { |
1162
|
|
|
|
|
|
|
# use magic to guess the group tag |
1163
|
|
|
|
|
|
|
my @sfs_with_locus_tag = |
1164
|
7
|
|
|
|
|
30
|
grep {$_->has_tag("locus_tag")} @flat_seq_features; |
|
6020
|
|
|
|
|
6469
|
|
1165
|
|
|
|
|
|
|
my @sfs_with_gene_tag = |
1166
|
7
|
|
|
|
|
25
|
grep {$_->has_tag("gene")} @flat_seq_features; |
|
6020
|
|
|
|
|
6250
|
|
1167
|
|
|
|
|
|
|
my @sfs_with_product_tag = |
1168
|
7
|
|
|
|
|
22
|
grep {$_->has_tag("product")} @flat_seq_features; |
|
6020
|
|
|
|
|
6367
|
|
1169
|
|
|
|
|
|
|
|
1170
|
|
|
|
|
|
|
# if ($group_tag && $self->{'trust_grouptag'}) { # dgg suggestion |
1171
|
|
|
|
|
|
|
# |
1172
|
|
|
|
|
|
|
# } |
1173
|
|
|
|
|
|
|
# elsif |
1174
|
7
|
100
|
|
|
|
29
|
if (@sfs_with_locus_tag) { |
1175
|
|
|
|
|
|
|
# dgg note: would like to -use_magic with -group_tag = 'gene' for ensembl genomes |
1176
|
|
|
|
|
|
|
# where ensembl gene FT have both /locus_tag and /gene, but mRNA, CDS have /gene only |
1177
|
1
|
50
|
33
|
|
|
5
|
if ($group_tag && $group_tag ne 'locus_tag') { |
1178
|
0
|
|
|
|
|
0
|
$self->throw("You have explicitly set group_tag to be '$group_tag'\n". |
1179
|
|
|
|
|
|
|
"However, I detect that some features use /locus_tag\n". |
1180
|
|
|
|
|
|
|
"I believe that this is the correct group_tag to use\n". |
1181
|
|
|
|
|
|
|
"You can resolve this by either NOT setting -group_tag\n". |
1182
|
|
|
|
|
|
|
"OR you can unset -use_magic to regain control"); |
1183
|
|
|
|
|
|
|
} |
1184
|
|
|
|
|
|
|
|
1185
|
|
|
|
|
|
|
# use /locus_tag instead of /gene tag for grouping |
1186
|
|
|
|
|
|
|
# see GenBank entry AE003677 (version 3) for an example |
1187
|
1
|
|
|
|
|
2
|
$group_tag = 'locus_tag'; |
1188
|
1
|
50
|
|
|
|
5
|
if ($self->verbose > 0) { |
1189
|
0
|
|
|
|
|
0
|
warn "Set group tag to: $group_tag\n"; |
1190
|
|
|
|
|
|
|
} |
1191
|
|
|
|
|
|
|
} |
1192
|
|
|
|
|
|
|
|
1193
|
|
|
|
|
|
|
# on rare occasions, records will have no /gene or /locus_tag |
1194
|
|
|
|
|
|
|
# but it WILL have /product tags. These serve the same purpose |
1195
|
|
|
|
|
|
|
# for grouping. For an example, see AY763288 (also in t/data) |
1196
|
7
|
50
|
100
|
|
|
391
|
if (@sfs_with_locus_tag==0 && |
|
|
|
66
|
|
|
|
|
|
|
|
66
|
|
|
|
|
1197
|
|
|
|
|
|
|
@sfs_with_gene_tag==0 && |
1198
|
|
|
|
|
|
|
@sfs_with_product_tag>0 && |
1199
|
|
|
|
|
|
|
!$group_tag) { |
1200
|
1
|
|
|
|
|
3
|
$group_tag = 'product'; |
1201
|
1
|
50
|
|
|
|
3
|
if ($self->verbose > 0) { |
1202
|
0
|
|
|
|
|
0
|
warn "Set group tag to: $group_tag\n"; |
1203
|
|
|
|
|
|
|
} |
1204
|
|
|
|
|
|
|
|
1205
|
|
|
|
|
|
|
} |
1206
|
|
|
|
|
|
|
} |
1207
|
11
|
100
|
|
|
|
32
|
if (!$group_tag) { |
1208
|
7
|
|
|
|
|
19
|
$group_tag = 'gene'; |
1209
|
|
|
|
|
|
|
} |
1210
|
|
|
|
|
|
|
|
1211
|
|
|
|
|
|
|
# ------------------------------ |
1212
|
|
|
|
|
|
|
# GROUP FEATURES using $group_tag |
1213
|
|
|
|
|
|
|
# collect features into unstructured groups |
1214
|
|
|
|
|
|
|
# ------------------------------ |
1215
|
|
|
|
|
|
|
|
1216
|
|
|
|
|
|
|
# ------------- |
1217
|
|
|
|
|
|
|
# we want to generate a list of groups; |
1218
|
|
|
|
|
|
|
# each group is a list of SeqFeatures; this |
1219
|
|
|
|
|
|
|
# group probably (but not necessarily) |
1220
|
|
|
|
|
|
|
# corresponds to a gene model. |
1221
|
|
|
|
|
|
|
# |
1222
|
|
|
|
|
|
|
# this array will look something like this: |
1223
|
|
|
|
|
|
|
# ([$f1], [$f2, $f3, $f4], ...., [$f97, $f98, $f99]) |
1224
|
|
|
|
|
|
|
# |
1225
|
|
|
|
|
|
|
# there are also 'singleton' groups, with one member. |
1226
|
|
|
|
|
|
|
# for instance, the 'source' feature is in a singleton group; |
1227
|
|
|
|
|
|
|
# the same with others such as 'misc_feature' |
1228
|
11
|
|
|
|
|
20
|
my @groups = (); |
1229
|
|
|
|
|
|
|
# ------------- |
1230
|
|
|
|
|
|
|
|
1231
|
|
|
|
|
|
|
# -------------------- |
1232
|
|
|
|
|
|
|
# we hope that the genbank record allows us to group by some grouping |
1233
|
|
|
|
|
|
|
# tag. |
1234
|
|
|
|
|
|
|
# for instance, most of the time a gene model can be grouped using |
1235
|
|
|
|
|
|
|
# the gene tag - that is where you see |
1236
|
|
|
|
|
|
|
# /gene="foo" |
1237
|
|
|
|
|
|
|
# in a genbank record |
1238
|
|
|
|
|
|
|
# -------------------- |
1239
|
|
|
|
|
|
|
|
1240
|
|
|
|
|
|
|
# keep an index of groups by their |
1241
|
|
|
|
|
|
|
# grouping tag |
1242
|
11
|
|
|
|
|
32
|
my %group_by_tag = (); |
1243
|
|
|
|
|
|
|
|
1244
|
|
|
|
|
|
|
|
1245
|
|
|
|
|
|
|
# iterate through all features, putting them into groups |
1246
|
11
|
|
|
|
|
21
|
foreach my $sf (@flat_seq_features) { |
1247
|
6333
|
100
|
|
|
|
7481
|
if (!$sf->has_tag($group_tag)) { |
1248
|
|
|
|
|
|
|
# SINGLETON |
1249
|
|
|
|
|
|
|
# this is an ungroupable feature; |
1250
|
|
|
|
|
|
|
# add it to a group of its own |
1251
|
64
|
|
|
|
|
115
|
push(@groups, [$sf]); |
1252
|
|
|
|
|
|
|
} |
1253
|
|
|
|
|
|
|
else { |
1254
|
|
|
|
|
|
|
# NON-SINGLETON |
1255
|
6269
|
|
|
|
|
6526
|
my @group_tagvals = $sf->get_tag_values($group_tag); |
1256
|
6269
|
50
|
|
|
|
7584
|
if (@group_tagvals > 1) { |
1257
|
|
|
|
|
|
|
# sanity check: |
1258
|
|
|
|
|
|
|
# currently something can only belong to one group |
1259
|
0
|
|
|
|
|
0
|
$self->problem(2, |
1260
|
|
|
|
|
|
|
">1 value for /$group_tag: @group_tagvals\n". |
1261
|
|
|
|
|
|
|
"At this time this module is not equipped to handle this adequately", $sf); |
1262
|
|
|
|
|
|
|
} |
1263
|
|
|
|
|
|
|
# get value of group tag |
1264
|
6269
|
|
|
|
|
4443
|
my $gtv = shift @group_tagvals; |
1265
|
6269
|
50
|
|
|
|
6586
|
$gtv || $self->throw("Empty /$group_tag vals not allowed!"); |
1266
|
|
|
|
|
|
|
|
1267
|
|
|
|
|
|
|
# is this a new group? |
1268
|
6269
|
|
|
|
|
4531
|
my $group = $group_by_tag{$gtv}; |
1269
|
6269
|
100
|
|
|
|
5694
|
if ($group) { |
1270
|
|
|
|
|
|
|
# this group has been encountered before - add current |
1271
|
|
|
|
|
|
|
# sf to the end of the group |
1272
|
4253
|
|
|
|
|
5190
|
push(@$group, $sf); |
1273
|
|
|
|
|
|
|
} |
1274
|
|
|
|
|
|
|
else { |
1275
|
|
|
|
|
|
|
# new group; add to index and create new group |
1276
|
2016
|
|
|
|
|
1859
|
$group = [$sf]; # currently one member; probably more to come |
1277
|
2016
|
|
|
|
|
2391
|
$group_by_tag{$gtv} = $group; |
1278
|
2016
|
|
|
|
|
2410
|
push(@groups, $group); |
1279
|
|
|
|
|
|
|
} |
1280
|
|
|
|
|
|
|
} |
1281
|
|
|
|
|
|
|
} |
1282
|
|
|
|
|
|
|
|
1283
|
|
|
|
|
|
|
# as well as having the same group_tag, a group should be spatially |
1284
|
|
|
|
|
|
|
# connected. if not, then the group should be split into subgroups. |
1285
|
|
|
|
|
|
|
# this turns out to be necessary in the case of multicopy genes. |
1286
|
|
|
|
|
|
|
# the standard way to represent these is as spatially disconnected |
1287
|
|
|
|
|
|
|
# gene models (usually a 'gene' feature and some kind of RNA feature) |
1288
|
|
|
|
|
|
|
# with the same group tag; the code below will split these into |
1289
|
|
|
|
|
|
|
# seperate groups, one per copy. |
1290
|
11
|
|
|
|
|
27
|
@groups = map { $self->_split_group_if_disconnected($_) } @groups; |
|
2080
|
|
|
|
|
3759
|
|
1291
|
|
|
|
|
|
|
|
1292
|
|
|
|
|
|
|
# remove any duplicates; most of the time the method below has |
1293
|
|
|
|
|
|
|
# no effect. there are some unusual genbank records for which |
1294
|
|
|
|
|
|
|
# duplicate removal is necessary. see the comments in the |
1295
|
|
|
|
|
|
|
# _remove_duplicates_from_group() method if you want to know |
1296
|
|
|
|
|
|
|
# the ugly details |
1297
|
11
|
|
|
|
|
188
|
foreach my $group (@groups) { |
1298
|
2083
|
|
|
|
|
1950
|
$self->_remove_duplicates_from_group($group); |
1299
|
|
|
|
|
|
|
} |
1300
|
|
|
|
|
|
|
|
1301
|
|
|
|
|
|
|
# - |
1302
|
|
|
|
|
|
|
|
1303
|
|
|
|
|
|
|
# PSEUDOGENES, PSEUDOEXONS AND PSEUDOINTRONS |
1304
|
|
|
|
|
|
|
# these are indicated with the /pseudo tag |
1305
|
|
|
|
|
|
|
# these are mapped to a different type; they should NOT |
1306
|
|
|
|
|
|
|
# be treated as normal genes |
1307
|
11
|
|
|
|
|
51
|
foreach my $sf (@all_seq_features) { |
1308
|
6333
|
100
|
|
|
|
6490
|
if ($sf->has_tag('pseudo')) { |
1309
|
899
|
|
|
|
|
950
|
my $type = $sf->primary_tag; |
1310
|
|
|
|
|
|
|
# SO type is typically the same as the normal |
1311
|
|
|
|
|
|
|
# type but preceeded by "pseudo" |
1312
|
899
|
100
|
66
|
|
|
1982
|
if ($type eq 'misc_RNA' || $type eq 'mRNA') { |
1313
|
|
|
|
|
|
|
# dgg: see TypeMapper; both pseudo mRNA,misc_RNA should be pseudogenic_transcript |
1314
|
101
|
|
|
|
|
110
|
$sf->primary_tag("pseudotranscript"); |
1315
|
|
|
|
|
|
|
} |
1316
|
|
|
|
|
|
|
else { |
1317
|
798
|
|
|
|
|
1034
|
$sf->primary_tag("pseudo$type"); |
1318
|
|
|
|
|
|
|
} |
1319
|
|
|
|
|
|
|
} |
1320
|
|
|
|
|
|
|
} |
1321
|
|
|
|
|
|
|
# now some of the post-processing that follows which applies to |
1322
|
|
|
|
|
|
|
# genes will NOT be applied to pseudogenes; this is deliberate |
1323
|
|
|
|
|
|
|
# for example, gene models are normalised to be gene-transcript-exon |
1324
|
|
|
|
|
|
|
# for pseudogenes we leave them as pseudogene-pseudoexon |
1325
|
|
|
|
|
|
|
|
1326
|
|
|
|
|
|
|
# --- MAGIC --- |
1327
|
11
|
|
|
|
|
22
|
my $need_to_infer_exons = 0; |
1328
|
11
|
|
|
|
|
15
|
my $need_to_infer_mRNAs = 0; |
1329
|
11
|
|
|
|
|
20
|
my @removed_exons = (); |
1330
|
11
|
100
|
|
|
|
35
|
if ($use_magic) { |
1331
|
7
|
50
|
|
|
|
22
|
if (defined($structure_type)) { |
1332
|
0
|
|
|
|
|
0
|
$self->throw("Can't combine use_magic AND setting structure_type"); |
1333
|
|
|
|
|
|
|
} |
1334
|
|
|
|
|
|
|
my $n_introns = |
1335
|
7
|
|
|
|
|
26
|
scalar(grep {$_->primary_tag eq 'exon'} @flat_seq_features); |
|
6020
|
|
|
|
|
6296
|
|
1336
|
|
|
|
|
|
|
my $n_exons = |
1337
|
7
|
|
|
|
|
21
|
scalar(grep {$_->primary_tag eq 'exon'} @flat_seq_features); |
|
6020
|
|
|
|
|
6100
|
|
1338
|
|
|
|
|
|
|
my $n_mrnas = |
1339
|
7
|
|
|
|
|
24
|
scalar(grep {$_->primary_tag eq 'mRNA'} @flat_seq_features); |
|
6020
|
|
|
|
|
6106
|
|
1340
|
|
|
|
|
|
|
my $n_mrnas_attached_to_gene = |
1341
|
7
|
100
|
|
|
|
23
|
scalar(grep {$_->primary_tag eq 'mRNA' && |
|
6020
|
|
|
|
|
6672
|
|
1342
|
|
|
|
|
|
|
$_->has_tag($group_tag)} @flat_seq_features); |
1343
|
|
|
|
|
|
|
my $n_cdss = |
1344
|
7
|
|
|
|
|
25
|
scalar(grep {$_->primary_tag eq 'CDS'} @flat_seq_features); |
|
6020
|
|
|
|
|
6335
|
|
1345
|
|
|
|
|
|
|
my $n_rnas = |
1346
|
7
|
|
|
|
|
22
|
scalar(grep {$_->primary_tag =~ /RNA/} @flat_seq_features); |
|
6020
|
|
|
|
|
6647
|
|
1347
|
|
|
|
|
|
|
# Are there any CDS features in the record? |
1348
|
7
|
100
|
|
|
|
18
|
if ($n_cdss > 0) { |
1349
|
|
|
|
|
|
|
# YES |
1350
|
|
|
|
|
|
|
|
1351
|
|
|
|
|
|
|
# - a pc gene model should contain at the least a CDS |
1352
|
|
|
|
|
|
|
|
1353
|
|
|
|
|
|
|
# Are there any mRNA features in the record? |
1354
|
6
|
100
|
|
|
|
25
|
if ($n_mrnas == 0) { |
|
|
50
|
|
|
|
|
|
1355
|
|
|
|
|
|
|
# NO mRNAs: |
1356
|
|
|
|
|
|
|
# looks like structure_type == 1 |
1357
|
1
|
|
|
|
|
3
|
$structure_type = 1; |
1358
|
1
|
|
|
|
|
3
|
$need_to_infer_mRNAs = 1; |
1359
|
|
|
|
|
|
|
} |
1360
|
|
|
|
|
|
|
elsif ($n_mrnas_attached_to_gene == 0) { |
1361
|
|
|
|
|
|
|
# $n_mrnas > 0 |
1362
|
|
|
|
|
|
|
# $n_mrnas_attached_to_gene = 0 |
1363
|
|
|
|
|
|
|
# |
1364
|
|
|
|
|
|
|
# The entries _do_ contain mRNA features, |
1365
|
|
|
|
|
|
|
# but none of them are part of a group/gene, i.e. they |
1366
|
|
|
|
|
|
|
# are 'floating' |
1367
|
|
|
|
|
|
|
|
1368
|
|
|
|
|
|
|
# this is an annoying weird file that has some floating |
1369
|
|
|
|
|
|
|
# mRNA features; |
1370
|
|
|
|
|
|
|
# eg ftp.ncbi.nih.gov/genomes/Schizosaccharomyces_pombe/ |
1371
|
|
|
|
|
|
|
|
1372
|
0
|
0
|
|
|
|
0
|
if ($self->verbose) { |
1373
|
|
|
|
|
|
|
my @floating_mrnas = |
1374
|
0
|
0
|
|
|
|
0
|
grep {$_->primary_tag eq 'mRNA' && |
|
0
|
|
|
|
|
0
|
|
1375
|
|
|
|
|
|
|
!$_->has_tag($group_tag)} @flat_seq_features; |
1376
|
0
|
|
|
|
|
0
|
printf STDERR "Unattached mRNAs:\n"; |
1377
|
0
|
|
|
|
|
0
|
foreach my $mrna (@floating_mrnas) { |
1378
|
0
|
|
|
|
|
0
|
$self->_write_sf_detail($mrna); |
1379
|
|
|
|
|
|
|
} |
1380
|
0
|
|
|
|
|
0
|
printf STDERR "Don't know how to deal with these; filter at source?\n"; |
1381
|
|
|
|
|
|
|
} |
1382
|
|
|
|
|
|
|
|
1383
|
0
|
|
|
|
|
0
|
foreach (@flat_seq_features) { |
1384
|
0
|
0
|
|
|
|
0
|
if ($_->primary_tag eq 'mRNA') { |
1385
|
|
|
|
|
|
|
# what should we do?? |
1386
|
|
|
|
|
|
|
|
1387
|
|
|
|
|
|
|
# I think for pombe we just have to filter |
1388
|
|
|
|
|
|
|
# out bogus mRNAs prior to starting |
1389
|
|
|
|
|
|
|
} |
1390
|
|
|
|
|
|
|
} |
1391
|
|
|
|
|
|
|
|
1392
|
|
|
|
|
|
|
# looks like structure_type == 2 |
1393
|
0
|
|
|
|
|
0
|
$structure_type = 2; |
1394
|
0
|
|
|
|
|
0
|
$need_to_infer_mRNAs = 1; |
1395
|
|
|
|
|
|
|
} |
1396
|
|
|
|
|
|
|
else { |
1397
|
|
|
|
|
|
|
} |
1398
|
|
|
|
|
|
|
|
1399
|
|
|
|
|
|
|
# we always infer exons in magic mode |
1400
|
6
|
|
|
|
|
13
|
$need_to_infer_exons = 1; |
1401
|
|
|
|
|
|
|
} |
1402
|
|
|
|
|
|
|
else { |
1403
|
|
|
|
|
|
|
# this doesn't seem to be any kind of protein coding gene model |
1404
|
1
|
50
|
|
|
|
4
|
if ( $n_rnas > 0 ) { |
1405
|
1
|
|
|
|
|
2
|
$need_to_infer_exons = 1; |
1406
|
|
|
|
|
|
|
} |
1407
|
|
|
|
|
|
|
} |
1408
|
|
|
|
|
|
|
|
1409
|
7
|
50
|
|
|
|
21
|
$need_to_infer_exons = 0 if $noinfer; #NML |
1410
|
|
|
|
|
|
|
|
1411
|
7
|
50
|
|
|
|
21
|
if ($need_to_infer_exons) { |
1412
|
|
|
|
|
|
|
# remove exons and introns from group - |
1413
|
|
|
|
|
|
|
# we will infer exons later, and we |
1414
|
|
|
|
|
|
|
# can always infer introns from exons |
1415
|
7
|
|
|
|
|
20
|
foreach my $group (@groups) { |
1416
|
|
|
|
|
|
|
@$group = |
1417
|
|
|
|
|
|
|
grep { |
1418
|
1936
|
|
|
|
|
1723
|
my $type = $_->primary_tag(); |
|
6009
|
|
|
|
|
6390
|
|
1419
|
6009
|
100
|
|
|
|
7122
|
if ($type eq 'exon') { |
1420
|
|
|
|
|
|
|
# keep track of all removed exons, |
1421
|
|
|
|
|
|
|
# so we can do a sanity check later |
1422
|
130
|
|
|
|
|
108
|
push(@removed_exons, $_); |
1423
|
|
|
|
|
|
|
} |
1424
|
6009
|
100
|
|
|
|
14920
|
$type ne 'exon' && $type ne 'intron' |
1425
|
|
|
|
|
|
|
} @$group; |
1426
|
|
|
|
|
|
|
} |
1427
|
|
|
|
|
|
|
# get rid of any groups that have zero members |
1428
|
7
|
|
|
|
|
17
|
@groups = grep {scalar(@$_)} @groups; |
|
1936
|
|
|
|
|
1497
|
|
1429
|
|
|
|
|
|
|
} |
1430
|
|
|
|
|
|
|
} |
1431
|
|
|
|
|
|
|
# --- END OF MAGIC --- |
1432
|
|
|
|
|
|
|
|
1433
|
|
|
|
|
|
|
# LOGICAL ASSERTION |
1434
|
11
|
50
|
|
|
|
59
|
if (grep {!scalar(@$_)} @groups) { |
|
2078
|
|
|
|
|
1619
|
|
1435
|
0
|
|
|
|
|
0
|
$self->throw("ASSERTION ERROR: empty group"); |
1436
|
|
|
|
|
|
|
} |
1437
|
|
|
|
|
|
|
|
1438
|
|
|
|
|
|
|
# LOGGING |
1439
|
11
|
50
|
|
|
|
36
|
if ($self->verbose > 0) { |
1440
|
0
|
|
|
|
|
0
|
printf STDERR "GROUPS:\n"; |
1441
|
0
|
|
|
|
|
0
|
foreach my $group (@groups) { |
1442
|
0
|
|
|
|
|
0
|
$self->_write_group($group, $group_tag); |
1443
|
|
|
|
|
|
|
} |
1444
|
|
|
|
|
|
|
} |
1445
|
|
|
|
|
|
|
# - |
1446
|
|
|
|
|
|
|
|
1447
|
|
|
|
|
|
|
# --------- FINISHED GROUPING ------------- |
1448
|
|
|
|
|
|
|
|
1449
|
|
|
|
|
|
|
|
1450
|
|
|
|
|
|
|
# TYPE CONTAINMENT HIERARCHY (aka partonomy) |
1451
|
|
|
|
|
|
|
# set the containment hierarchy if desired |
1452
|
|
|
|
|
|
|
# see docs for structure_type() method |
1453
|
11
|
100
|
|
|
|
36
|
if ($structure_type) { |
1454
|
1
|
50
|
|
|
|
5
|
if ($structure_type == 1) { |
1455
|
1
|
|
|
|
|
7
|
$self->partonomy( |
1456
|
|
|
|
|
|
|
{CDS => 'gene', |
1457
|
|
|
|
|
|
|
exon => 'CDS', |
1458
|
|
|
|
|
|
|
intron => 'CDS', |
1459
|
|
|
|
|
|
|
} |
1460
|
|
|
|
|
|
|
); |
1461
|
|
|
|
|
|
|
} |
1462
|
|
|
|
|
|
|
else { |
1463
|
0
|
|
|
|
|
0
|
$self->throw("structure_type $structure_type is currently unknown"); |
1464
|
|
|
|
|
|
|
} |
1465
|
|
|
|
|
|
|
} |
1466
|
|
|
|
|
|
|
|
1467
|
|
|
|
|
|
|
# see if we have an obvious resolver_tag |
1468
|
11
|
100
|
|
|
|
21
|
if ($use_magic) { |
1469
|
7
|
|
|
|
|
17
|
foreach my $sf (@all_seq_features) { |
1470
|
6020
|
100
|
|
|
|
6139
|
if ($sf->has_tag('derived_from')) { |
1471
|
2
|
|
|
|
|
4
|
$resolver_tag = 'derived_from'; |
1472
|
|
|
|
|
|
|
} |
1473
|
|
|
|
|
|
|
} |
1474
|
|
|
|
|
|
|
} |
1475
|
|
|
|
|
|
|
|
1476
|
11
|
100
|
|
|
|
29
|
if ($use_magic) { |
1477
|
|
|
|
|
|
|
# point all feature types without a container type to the root type. |
1478
|
|
|
|
|
|
|
# |
1479
|
|
|
|
|
|
|
# for example, if we have an unanticipated feature_type, say |
1480
|
|
|
|
|
|
|
# 'aberration', this should by default point to the parent 'gene' |
1481
|
7
|
|
|
|
|
17
|
foreach my $group (@groups) { |
1482
|
1931
|
|
|
|
|
3207
|
my @sfs = @$group; |
1483
|
1931
|
100
|
|
|
|
2469
|
if (@sfs > 1) { |
1484
|
1384
|
|
|
|
|
1125
|
foreach my $sf (@sfs) { |
1485
|
5227
|
|
|
|
|
6526
|
my $type = $sf->primary_tag; |
1486
|
5227
|
100
|
|
|
|
6573
|
next if $type eq 'gene'; |
1487
|
3989
|
|
|
|
|
3689
|
my $container_type = $self->get_container_type($type); |
1488
|
3989
|
100
|
|
|
|
5929
|
if (!$container_type) { |
1489
|
9
|
|
|
|
|
14
|
$self->partonomy->{$type} = 'gene'; |
1490
|
|
|
|
|
|
|
} |
1491
|
|
|
|
|
|
|
} |
1492
|
|
|
|
|
|
|
} |
1493
|
|
|
|
|
|
|
} |
1494
|
|
|
|
|
|
|
} |
1495
|
|
|
|
|
|
|
|
1496
|
|
|
|
|
|
|
# we have done the first part of the unflattening. |
1497
|
|
|
|
|
|
|
# we now have a list of groups; each group is a list of seqfeatures. |
1498
|
|
|
|
|
|
|
# the actual group itself is flat; we may want to unflatten this further; |
1499
|
|
|
|
|
|
|
# for instance, a gene model can contain multiple mRNAs and CDSs. We may want |
1500
|
|
|
|
|
|
|
# to link the correct mRNA to the correct CDS via the bioperl sub_SeqFeature tree. |
1501
|
|
|
|
|
|
|
# |
1502
|
|
|
|
|
|
|
# what we would end up with would be |
1503
|
|
|
|
|
|
|
# gene1 |
1504
|
|
|
|
|
|
|
# mRNA-a |
1505
|
|
|
|
|
|
|
# CDS-a |
1506
|
|
|
|
|
|
|
# mRNA-b |
1507
|
|
|
|
|
|
|
# CDS-b |
1508
|
11
|
|
|
|
|
81
|
my @top_sfs = $self->unflatten_groups(-groups=>\@groups, |
1509
|
|
|
|
|
|
|
-resolver_method=>$resolver_method, |
1510
|
|
|
|
|
|
|
-resolver_tag=>$resolver_tag); |
1511
|
|
|
|
|
|
|
|
1512
|
|
|
|
|
|
|
# restore settings |
1513
|
11
|
|
|
|
|
161
|
$self->partonomy($old_partonomy); |
1514
|
|
|
|
|
|
|
|
1515
|
|
|
|
|
|
|
# restore settings |
1516
|
11
|
|
|
|
|
38
|
$self->structure_type($old_structure_type); |
1517
|
|
|
|
|
|
|
|
1518
|
|
|
|
|
|
|
# modify the original Seq object - the top seqfeatures are now |
1519
|
|
|
|
|
|
|
# the top features from each group |
1520
|
11
|
|
|
|
|
71
|
$seq->remove_SeqFeatures; |
1521
|
11
|
|
|
|
|
52
|
$seq->add_SeqFeature($_) foreach @top_sfs; |
1522
|
|
|
|
|
|
|
|
1523
|
|
|
|
|
|
|
# --------- FINISHED UNFLATTENING ------------- |
1524
|
|
|
|
|
|
|
|
1525
|
|
|
|
|
|
|
# lets see if there are any post-unflattening tasks we need to do |
1526
|
|
|
|
|
|
|
|
1527
|
|
|
|
|
|
|
|
1528
|
|
|
|
|
|
|
|
1529
|
|
|
|
|
|
|
# INFERRING mRNAs |
1530
|
11
|
100
|
|
|
|
33
|
if ($need_to_infer_mRNAs) { |
1531
|
1
|
50
|
|
|
|
5
|
if ($self->verbose > 0) { |
1532
|
0
|
|
|
|
|
0
|
printf STDERR "** INFERRING mRNA from CDS\n"; |
1533
|
|
|
|
|
|
|
} |
1534
|
1
|
|
|
|
|
7
|
$self->infer_mRNA_from_CDS(-seq=>$seq, -noinfer=>$noinfer); |
1535
|
|
|
|
|
|
|
} |
1536
|
|
|
|
|
|
|
|
1537
|
|
|
|
|
|
|
# INFERRING exons |
1538
|
11
|
100
|
|
|
|
24
|
if ($need_to_infer_exons) { |
1539
|
|
|
|
|
|
|
|
1540
|
|
|
|
|
|
|
# infer exons, one group/gene at a time |
1541
|
7
|
|
|
|
|
14
|
foreach my $sf (@top_sfs) { |
1542
|
2034
|
|
|
|
|
4679
|
my @sub_sfs = ($sf, $sf->get_all_SeqFeatures); |
1543
|
2034
|
|
|
|
|
5502
|
$self->feature_from_splitloc(-features=>\@sub_sfs); |
1544
|
|
|
|
|
|
|
} |
1545
|
|
|
|
|
|
|
|
1546
|
|
|
|
|
|
|
# some exons are stated explicitly; ie there is an "exon" feature |
1547
|
|
|
|
|
|
|
# most exons are inferred; ie there is a "mRNA" feature with |
1548
|
|
|
|
|
|
|
# split locations |
1549
|
|
|
|
|
|
|
# |
1550
|
|
|
|
|
|
|
# if there were exons explicitly stated in the entry, we need to |
1551
|
|
|
|
|
|
|
# do two things: |
1552
|
|
|
|
|
|
|
# |
1553
|
|
|
|
|
|
|
# make sure these exons are consistent with the inferred exons |
1554
|
|
|
|
|
|
|
# (you never know) |
1555
|
|
|
|
|
|
|
# |
1556
|
|
|
|
|
|
|
# transfer annotation (tag-vals) from the explicit exon to the |
1557
|
|
|
|
|
|
|
# new inferred exon |
1558
|
7
|
100
|
|
|
|
26
|
if (@removed_exons) { |
1559
|
2
|
|
|
|
|
10
|
my @allfeats = $seq->get_all_SeqFeatures; |
1560
|
|
|
|
|
|
|
|
1561
|
|
|
|
|
|
|
# find all the inferred exons that are children of mRNA |
1562
|
2
|
|
|
|
|
7
|
my @mrnas = grep {$_->primary_tag eq 'mRNA'} @allfeats; |
|
213
|
|
|
|
|
222
|
|
1563
|
|
|
|
|
|
|
my @exons = |
1564
|
160
|
|
|
|
|
165
|
grep {$_->primary_tag eq 'exon'} |
1565
|
2
|
|
|
|
|
4
|
map {$_->get_SeqFeatures} @mrnas; |
|
26
|
|
|
|
|
30
|
|
1566
|
|
|
|
|
|
|
|
1567
|
2
|
|
|
|
|
8
|
my %exon_h = (); # index of exons by location; |
1568
|
|
|
|
|
|
|
|
1569
|
|
|
|
|
|
|
# there CAN be >1 exon at a location; we can represent these redundantly |
1570
|
|
|
|
|
|
|
# (ie as a tree, not a graph) |
1571
|
2
|
|
|
|
|
4
|
push(@{$exon_h{$self->_locstr($_)}}, $_) foreach @exons; |
|
134
|
|
|
|
|
151
|
|
1572
|
2
|
|
|
|
|
4
|
my @problems = (); # list of problems; |
1573
|
|
|
|
|
|
|
# each problem is a |
1574
|
|
|
|
|
|
|
# [$severity, $description] pair |
1575
|
2
|
|
|
|
|
3
|
my $problem = ''; |
1576
|
2
|
|
|
|
|
8
|
my ($n_exons, $n_removed_exons) = |
1577
|
|
|
|
|
|
|
(scalar(keys %exon_h), scalar(@removed_exons)); |
1578
|
2
|
|
|
|
|
6
|
foreach my $removed_exon (@removed_exons) { |
1579
|
130
|
|
|
|
|
161
|
my $locstr = $self->_locstr($removed_exon); |
1580
|
130
|
|
|
|
|
158
|
my $inferred_exons = $exon_h{$locstr}; |
1581
|
130
|
|
|
|
|
128
|
delete $exon_h{$locstr}; |
1582
|
130
|
50
|
|
|
|
152
|
if ($inferred_exons) { |
1583
|
130
|
|
|
|
|
123
|
my %exons_done = (); |
1584
|
130
|
|
|
|
|
124
|
foreach my $exon (@$inferred_exons) { |
1585
|
|
|
|
|
|
|
|
1586
|
|
|
|
|
|
|
# make sure we don't move stuff twice |
1587
|
134
|
100
|
|
|
|
243
|
next if $exons_done{$exon}; |
1588
|
130
|
|
|
|
|
146
|
$exons_done{$exon} = 1; |
1589
|
|
|
|
|
|
|
|
1590
|
|
|
|
|
|
|
# we need to tranfer any tag-values from the explicit |
1591
|
|
|
|
|
|
|
# exon to the implicit exon |
1592
|
130
|
|
|
|
|
174
|
foreach my $tag ($removed_exon->get_all_tags) { |
1593
|
284
|
|
|
|
|
324
|
my @vals = $removed_exon->get_tag_values($tag); |
1594
|
284
|
50
|
|
|
|
583
|
if (!$exon->can("add_tag_value")) { |
1595
|
|
|
|
|
|
|
# I'm puzzled as to what should be done here; |
1596
|
|
|
|
|
|
|
# SeqFeatureIs are not necessarily mutable, |
1597
|
|
|
|
|
|
|
# but we know that in practice the implementing |
1598
|
|
|
|
|
|
|
# class is mutable |
1599
|
0
|
|
|
|
|
0
|
$self->throw("The SeqFeature object does not ". |
1600
|
|
|
|
|
|
|
"implement add_tag_value()"); |
1601
|
|
|
|
|
|
|
} |
1602
|
284
|
|
|
|
|
367
|
$exon->add_tag_value($tag, @vals); |
1603
|
|
|
|
|
|
|
} |
1604
|
|
|
|
|
|
|
} |
1605
|
|
|
|
|
|
|
} |
1606
|
|
|
|
|
|
|
else { |
1607
|
|
|
|
|
|
|
# no exons inferred at $locstr |
1608
|
0
|
|
|
|
|
0
|
push(@problems, |
1609
|
|
|
|
|
|
|
[1, |
1610
|
|
|
|
|
|
|
"there is a conflict with exons; there was an explicitly ". |
1611
|
|
|
|
|
|
|
"stated exon with location $locstr, yet I cannot generate ". |
1612
|
|
|
|
|
|
|
"this exon from the supplied mRNA locations\n"]); |
1613
|
|
|
|
|
|
|
} |
1614
|
|
|
|
|
|
|
} |
1615
|
|
|
|
|
|
|
# do we have any inferred exons left over, that were not |
1616
|
|
|
|
|
|
|
# covered in the explicit exons? |
1617
|
2
|
50
|
|
|
|
7
|
if (keys %exon_h) { |
1618
|
|
|
|
|
|
|
# TODO - we ignore this problem for now |
1619
|
0
|
|
|
|
|
0
|
push(@problems, |
1620
|
|
|
|
|
|
|
[1, |
1621
|
|
|
|
|
|
|
sprintf("There are some inferred exons that are not in the ". |
1622
|
|
|
|
|
|
|
"explicit exon list; they are the exons at locations:\n". |
1623
|
|
|
|
|
|
|
join("\n", keys %exon_h)."\n")]); |
1624
|
|
|
|
|
|
|
} |
1625
|
|
|
|
|
|
|
|
1626
|
|
|
|
|
|
|
# report any problems |
1627
|
2
|
50
|
|
|
|
23
|
if (@problems) { |
1628
|
0
|
|
|
|
|
0
|
my $thresh = $self->error_threshold; |
1629
|
0
|
|
|
|
|
0
|
my @bad_problems = grep {$_->[0] > $thresh} @problems; |
|
0
|
|
|
|
|
0
|
|
1630
|
0
|
0
|
|
|
|
0
|
if (@bad_problems) { |
1631
|
0
|
|
|
|
|
0
|
printf STDERR "PROBLEM:\n"; |
1632
|
0
|
|
|
|
|
0
|
$self->_write_hier(\@top_sfs); |
1633
|
|
|
|
|
|
|
# TODO - allow more fine grained control over this |
1634
|
0
|
|
|
|
|
0
|
$self->{_problems_reported} = 1; |
1635
|
|
|
|
|
|
|
$self->throw(join("\n", |
1636
|
0
|
|
|
|
|
0
|
map {"@$_"} @bad_problems)); |
|
0
|
|
|
|
|
0
|
|
1637
|
|
|
|
|
|
|
} |
1638
|
0
|
|
|
|
|
0
|
$self->problem(@$_) foreach @problems; |
1639
|
|
|
|
|
|
|
} |
1640
|
|
|
|
|
|
|
} |
1641
|
|
|
|
|
|
|
} |
1642
|
|
|
|
|
|
|
# --- end of inferring exons -- |
1643
|
|
|
|
|
|
|
|
1644
|
|
|
|
|
|
|
# return new top level features; this can also |
1645
|
|
|
|
|
|
|
# be retrieved via |
1646
|
|
|
|
|
|
|
# $seq->get_SeqFeatures(); |
1647
|
|
|
|
|
|
|
# return @top_sfs; |
1648
|
11
|
|
|
|
|
50
|
return $seq->get_SeqFeatures; |
1649
|
|
|
|
|
|
|
} |
1650
|
|
|
|
|
|
|
|
1651
|
|
|
|
|
|
|
# _split_group_if_disconnected([@sfs]) |
1652
|
|
|
|
|
|
|
# |
1653
|
|
|
|
|
|
|
# as well as having the same group_tag, a group should be spatially |
1654
|
|
|
|
|
|
|
# connected. if not, then the group should be split into subgroups. |
1655
|
|
|
|
|
|
|
# this turns out to be necessary in the case of multicopy genes. |
1656
|
|
|
|
|
|
|
# the standard way to represent these is as spatially disconnected |
1657
|
|
|
|
|
|
|
# gene models (usually a 'gene' feature and some kind of RNA feature) |
1658
|
|
|
|
|
|
|
# with the same group tag; the code below will split these into |
1659
|
|
|
|
|
|
|
# seperate groups, one per copy. |
1660
|
|
|
|
|
|
|
|
1661
|
|
|
|
|
|
|
sub _split_group_if_disconnected { |
1662
|
2080
|
|
|
2080
|
|
1947
|
my $self = shift; |
1663
|
2080
|
|
|
|
|
1805
|
my $group = shift; |
1664
|
2080
|
|
|
|
|
3976
|
my @sfs = @$group; |
1665
|
2080
|
|
|
|
|
4568
|
my @ranges = |
1666
|
|
|
|
|
|
|
Bio::Range->disconnected_ranges(@sfs); |
1667
|
2080
|
|
|
|
|
1924
|
my @groups; |
1668
|
2080
|
50
|
|
|
|
4087
|
if (@ranges == 0) { |
|
|
100
|
|
|
|
|
|
1669
|
0
|
|
|
|
|
0
|
$self->throw("ASSERTION ERROR"); |
1670
|
|
|
|
|
|
|
} |
1671
|
|
|
|
|
|
|
elsif (@ranges == 1) { |
1672
|
|
|
|
|
|
|
# no need to split the group |
1673
|
2077
|
|
|
|
|
2372
|
@groups = ($group); |
1674
|
|
|
|
|
|
|
} |
1675
|
|
|
|
|
|
|
else { |
1676
|
|
|
|
|
|
|
# @ranges > 1 |
1677
|
|
|
|
|
|
|
# split the group into disconnected ranges |
1678
|
3
|
50
|
|
|
|
10
|
if ($self->verbose > 0) { |
1679
|
0
|
|
|
|
|
0
|
printf STDERR "GROUP PRE-SPLIT:\n"; |
1680
|
0
|
|
|
|
|
0
|
$self->_write_group($group, $self->group_tag); |
1681
|
|
|
|
|
|
|
} |
1682
|
|
|
|
|
|
|
@groups = |
1683
|
|
|
|
|
|
|
map { |
1684
|
3
|
|
|
|
|
9
|
my $range = $_; |
|
6
|
|
|
|
|
7
|
|
1685
|
|
|
|
|
|
|
[grep { |
1686
|
6
|
|
|
|
|
18
|
$_->intersection($range); |
|
136
|
|
|
|
|
231
|
|
1687
|
|
|
|
|
|
|
} @sfs] |
1688
|
|
|
|
|
|
|
} @ranges; |
1689
|
3
|
50
|
|
|
|
12
|
if ($self->verbose > 0) { |
1690
|
0
|
|
|
|
|
0
|
printf STDERR "SPLIT GROUPS:\n"; |
1691
|
0
|
|
|
|
|
0
|
$self->_write_group($_, $self->group_tag) foreach @groups; |
1692
|
|
|
|
|
|
|
} |
1693
|
|
|
|
|
|
|
} |
1694
|
2080
|
|
|
|
|
3390
|
return @groups; |
1695
|
|
|
|
|
|
|
} |
1696
|
|
|
|
|
|
|
|
1697
|
|
|
|
|
|
|
sub _remove_duplicates_from_group { |
1698
|
2083
|
|
|
2083
|
|
1297
|
my $self = shift; |
1699
|
2083
|
|
|
|
|
1372
|
my $group = shift; |
1700
|
|
|
|
|
|
|
|
1701
|
|
|
|
|
|
|
# ::: WEIRD BOUNDARY CASE CODE ::: |
1702
|
|
|
|
|
|
|
# for some reason, there are some gb records with two gene |
1703
|
|
|
|
|
|
|
# features for one gene; for example, see ATF14F8.gbk |
1704
|
|
|
|
|
|
|
# in the t/data directory |
1705
|
|
|
|
|
|
|
# |
1706
|
|
|
|
|
|
|
# in this case, we get rid of one of the genes |
1707
|
|
|
|
|
|
|
|
1708
|
2083
|
|
|
|
|
1796
|
my @genes = grep {$_->primary_tag eq 'gene'} @$group; |
|
6333
|
|
|
|
|
8269
|
|
1709
|
2083
|
100
|
|
|
|
2503
|
if (@genes > 1) { |
1710
|
|
|
|
|
|
|
# OK, if we look at ATF14F8.gbk we see that some genes |
1711
|
|
|
|
|
|
|
# just exist as a single location, some exist as a multisplit location; |
1712
|
|
|
|
|
|
|
# |
1713
|
|
|
|
|
|
|
# eg |
1714
|
|
|
|
|
|
|
|
1715
|
|
|
|
|
|
|
# gene 16790..26395 |
1716
|
|
|
|
|
|
|
# /gene="F14F8_60" |
1717
|
|
|
|
|
|
|
# ... |
1718
|
|
|
|
|
|
|
# gene complement(join(16790..19855,20136..20912,21378..21497, |
1719
|
|
|
|
|
|
|
# 21654..21876,22204..22400,22527..23158,23335..23448, |
1720
|
|
|
|
|
|
|
# 23538..23938,24175..24536,24604..24715,24889..24984, |
1721
|
|
|
|
|
|
|
# 25114..25171,25257..25329,25544..25589,25900..26018, |
1722
|
|
|
|
|
|
|
# 26300..26395)) |
1723
|
|
|
|
|
|
|
# /gene="F14F8_60" |
1724
|
|
|
|
|
|
|
|
1725
|
|
|
|
|
|
|
# the former is the 'standard' way of representing the gene in genbank; |
1726
|
|
|
|
|
|
|
# the latter is redundant with the CDS entry. So we shall get rid of |
1727
|
|
|
|
|
|
|
# the latter with the following filter |
1728
|
|
|
|
|
|
|
|
1729
|
11
|
50
|
|
|
|
18
|
if ($self->verbose > 0) { |
1730
|
0
|
|
|
|
|
0
|
printf STDERR "REMOVING DUPLICATES:\n"; |
1731
|
|
|
|
|
|
|
} |
1732
|
|
|
|
|
|
|
|
1733
|
|
|
|
|
|
|
@genes = |
1734
|
|
|
|
|
|
|
grep { |
1735
|
11
|
|
|
|
|
9
|
my $loc = $_->location; |
|
22
|
|
|
|
|
32
|
|
1736
|
22
|
100
|
|
|
|
58
|
if ($loc->isa("Bio::Location::SplitLocationI")) { |
1737
|
10
|
|
|
|
|
17
|
my @locs = $loc->each_Location; |
1738
|
10
|
50
|
|
|
|
17
|
if (@locs > 1) { |
1739
|
10
|
|
|
|
|
14
|
0; |
1740
|
|
|
|
|
|
|
} |
1741
|
|
|
|
|
|
|
else { |
1742
|
0
|
|
|
|
|
0
|
1; |
1743
|
|
|
|
|
|
|
} |
1744
|
|
|
|
|
|
|
} |
1745
|
|
|
|
|
|
|
else { |
1746
|
12
|
|
|
|
|
16
|
1; |
1747
|
|
|
|
|
|
|
} |
1748
|
|
|
|
|
|
|
} @genes; |
1749
|
|
|
|
|
|
|
|
1750
|
11
|
100
|
|
|
|
17
|
if (@genes > 1) { |
1751
|
|
|
|
|
|
|
# OK, that didn't work. Our only resort is to just pick one at random |
1752
|
1
|
|
|
|
|
3
|
@genes = ($genes[0]); |
1753
|
|
|
|
|
|
|
} |
1754
|
11
|
50
|
|
|
|
17
|
if (@genes) { |
1755
|
11
|
50
|
|
|
|
15
|
@genes == 1 || $self->throw("ASSERTION ERROR"); |
1756
|
|
|
|
|
|
|
@$group = |
1757
|
11
|
|
|
|
|
14
|
($genes[0], grep {$_->primary_tag ne 'gene'} @$group); |
|
170
|
|
|
|
|
179
|
|
1758
|
|
|
|
|
|
|
} |
1759
|
|
|
|
|
|
|
} |
1760
|
|
|
|
|
|
|
# its a dirty job but someone's gotta do it |
1761
|
2083
|
|
|
|
|
1977
|
return; |
1762
|
|
|
|
|
|
|
} |
1763
|
|
|
|
|
|
|
|
1764
|
|
|
|
|
|
|
|
1765
|
|
|
|
|
|
|
=head2 unflatten_groups |
1766
|
|
|
|
|
|
|
|
1767
|
|
|
|
|
|
|
Title : unflatten_groups |
1768
|
|
|
|
|
|
|
Usage : |
1769
|
|
|
|
|
|
|
Function: iterates over groups, calling unflatten_group() [see below] |
1770
|
|
|
|
|
|
|
Example : |
1771
|
|
|
|
|
|
|
Returns : list of Bio::SeqFeatureI objects that are holders |
1772
|
|
|
|
|
|
|
Args : see below |
1773
|
|
|
|
|
|
|
|
1774
|
|
|
|
|
|
|
Arguments |
1775
|
|
|
|
|
|
|
|
1776
|
|
|
|
|
|
|
-groups: list of list references; inner list is of Bio::SeqFeatureI objects |
1777
|
|
|
|
|
|
|
e.g. ( [$sf1], [$sf2, $sf3, $sf4], [$sf5, ...], ...) |
1778
|
|
|
|
|
|
|
|
1779
|
|
|
|
|
|
|
-resolver_method: a CODE reference |
1780
|
|
|
|
|
|
|
see the documentation above for an example of |
1781
|
|
|
|
|
|
|
a subroutine that can be used to resolve hierarchies |
1782
|
|
|
|
|
|
|
within groups. |
1783
|
|
|
|
|
|
|
|
1784
|
|
|
|
|
|
|
this is optional - a default subroutine will be used |
1785
|
|
|
|
|
|
|
|
1786
|
|
|
|
|
|
|
|
1787
|
|
|
|
|
|
|
NOTE: You should not need to call this method, unless you want fine |
1788
|
|
|
|
|
|
|
grained control over how the unflattening process. |
1789
|
|
|
|
|
|
|
|
1790
|
|
|
|
|
|
|
=cut |
1791
|
|
|
|
|
|
|
|
1792
|
|
|
|
|
|
|
sub unflatten_groups{ |
1793
|
11
|
|
|
11
|
1
|
24
|
my ($self,@args) = @_; |
1794
|
11
|
|
|
|
|
52
|
my($groups, $resolver_method, $resolver_tag) = |
1795
|
|
|
|
|
|
|
$self->_rearrange([qw(GROUPS |
1796
|
|
|
|
|
|
|
RESOLVER_METHOD |
1797
|
|
|
|
|
|
|
RESOLVER_TAG |
1798
|
|
|
|
|
|
|
)], |
1799
|
|
|
|
|
|
|
@args); |
1800
|
|
|
|
|
|
|
|
1801
|
|
|
|
|
|
|
# this is just a simple wrapper for unflatten_group() |
1802
|
|
|
|
|
|
|
return |
1803
|
|
|
|
|
|
|
map { |
1804
|
11
|
|
|
|
|
30
|
$self->unflatten_group(-group=>$_, |
|
2078
|
|
|
|
|
5670
|
|
1805
|
|
|
|
|
|
|
-resolver_method=>$resolver_method, |
1806
|
|
|
|
|
|
|
-resolver_tag=>$resolver_tag) |
1807
|
|
|
|
|
|
|
} @$groups; |
1808
|
|
|
|
|
|
|
} |
1809
|
|
|
|
|
|
|
|
1810
|
|
|
|
|
|
|
=head2 unflatten_group |
1811
|
|
|
|
|
|
|
|
1812
|
|
|
|
|
|
|
Title : unflatten_group |
1813
|
|
|
|
|
|
|
Usage : |
1814
|
|
|
|
|
|
|
Function: nests a group of features into a feature containment hierarchy |
1815
|
|
|
|
|
|
|
Example : |
1816
|
|
|
|
|
|
|
Returns : Bio::SeqFeatureI objects that holds other features |
1817
|
|
|
|
|
|
|
Args : see below |
1818
|
|
|
|
|
|
|
|
1819
|
|
|
|
|
|
|
Arguments |
1820
|
|
|
|
|
|
|
|
1821
|
|
|
|
|
|
|
-group: reference to list of Bio::SeqFeatureI objects |
1822
|
|
|
|
|
|
|
|
1823
|
|
|
|
|
|
|
-resolver_method: a CODE reference |
1824
|
|
|
|
|
|
|
see the documentation above for an example of |
1825
|
|
|
|
|
|
|
a subroutine that can be used to resolve hierarchies |
1826
|
|
|
|
|
|
|
within groups |
1827
|
|
|
|
|
|
|
|
1828
|
|
|
|
|
|
|
this is optional - a default subroutine will be used |
1829
|
|
|
|
|
|
|
|
1830
|
|
|
|
|
|
|
|
1831
|
|
|
|
|
|
|
NOTE: You should not need to call this method, unless you want fine |
1832
|
|
|
|
|
|
|
grained control over how the unflattening process. |
1833
|
|
|
|
|
|
|
|
1834
|
|
|
|
|
|
|
=cut |
1835
|
|
|
|
|
|
|
|
1836
|
|
|
|
|
|
|
sub unflatten_group{ |
1837
|
2078
|
|
|
2078
|
1
|
3244
|
my ($self,@args) = @_; |
1838
|
|
|
|
|
|
|
|
1839
|
2078
|
|
|
|
|
5643
|
my($group, $resolver_method, $resolver_tag) = |
1840
|
|
|
|
|
|
|
$self->_rearrange([qw(GROUP |
1841
|
|
|
|
|
|
|
RESOLVER_METHOD |
1842
|
|
|
|
|
|
|
RESOLVER_TAG |
1843
|
|
|
|
|
|
|
)], |
1844
|
|
|
|
|
|
|
@args); |
1845
|
|
|
|
|
|
|
|
1846
|
2078
|
50
|
|
|
|
5222
|
if ($self->verbose > 0) { |
1847
|
0
|
|
|
|
|
0
|
printf STDERR "UNFLATTENING GROUP:\n"; |
1848
|
0
|
|
|
|
|
0
|
$self->_write_group($group, $self->group_tag); |
1849
|
|
|
|
|
|
|
} |
1850
|
|
|
|
|
|
|
|
1851
|
2078
|
|
|
|
|
4389
|
my @sfs = @$group; |
1852
|
|
|
|
|
|
|
|
1853
|
|
|
|
|
|
|
# we can safely ignore singletons (e.g. [source]) |
1854
|
2078
|
100
|
|
|
|
4285
|
return $sfs[0] if @sfs == 1; |
1855
|
|
|
|
|
|
|
|
1856
|
1508
|
|
|
|
|
2542
|
my $partonomy = $self->partonomy; |
1857
|
|
|
|
|
|
|
|
1858
|
|
|
|
|
|
|
# $resolver_method is a reference to a SUB that will resolve |
1859
|
|
|
|
|
|
|
# ambiguous parent/child containment; for example, determining |
1860
|
|
|
|
|
|
|
# which mRNAs go with which CDSs |
1861
|
1508
|
|
100
|
|
|
4167
|
$resolver_method = $resolver_method || \&_resolve_container_for_sf; |
1862
|
|
|
|
|
|
|
|
1863
|
|
|
|
|
|
|
# TAG BASED RESOLVING OF HIERARCHIES |
1864
|
|
|
|
|
|
|
# |
1865
|
|
|
|
|
|
|
# if the user specifies $resolver_tag, then we use this tag |
1866
|
|
|
|
|
|
|
# to pair up ambiguous parents and children; |
1867
|
|
|
|
|
|
|
# |
1868
|
|
|
|
|
|
|
# for example, the CDS feature may have a resolver tag of /derives_from |
1869
|
|
|
|
|
|
|
# which is a 'foreign key' into the /label tag of the mRNA feature |
1870
|
|
|
|
|
|
|
# |
1871
|
|
|
|
|
|
|
# this kind of tag-based resolution is possible for a certain subset |
1872
|
|
|
|
|
|
|
# of genbank records |
1873
|
|
|
|
|
|
|
# |
1874
|
|
|
|
|
|
|
# if no resolver tag is specified, we revert to the normal |
1875
|
|
|
|
|
|
|
# resolver_method |
1876
|
1508
|
100
|
|
|
|
2181
|
if ($resolver_tag) { |
1877
|
1
|
|
|
|
|
3
|
my $backup_resolver_method = $resolver_method; |
1878
|
|
|
|
|
|
|
# closure: $resolver_tag is remembered by this sub |
1879
|
|
|
|
|
|
|
my $sub = |
1880
|
|
|
|
|
|
|
sub { |
1881
|
2
|
|
|
2
|
|
4
|
my ($self, $sf, @possible_container_sfs) = @_; |
1882
|
2
|
|
|
|
|
5
|
my @container_sfs = (); |
1883
|
2
|
50
|
|
|
|
8
|
if ($sf->has_tag($resolver_tag)) { |
1884
|
2
|
|
|
|
|
6
|
my ($resolver_tagval) = $sf->get_tag_values($resolver_tag); |
1885
|
|
|
|
|
|
|
# if a feature has a resolver_tag (e.g. /derives_from) |
1886
|
|
|
|
|
|
|
# this specifies the /product, /symbol or /label for the |
1887
|
|
|
|
|
|
|
# parent feature |
1888
|
|
|
|
|
|
|
@container_sfs = |
1889
|
|
|
|
|
|
|
grep { |
1890
|
2
|
|
|
|
|
3
|
my $match = 0; |
|
4
|
|
|
|
|
4
|
|
1891
|
4
|
50
|
|
|
|
14
|
$self->_write_sf($_) if $self->verbose > 0; |
1892
|
4
|
|
|
|
|
6
|
foreach my $tag (qw(product symbol label)) { |
1893
|
10
|
100
|
|
|
|
16
|
if ($_->has_tag($tag)) { |
1894
|
6
|
|
|
|
|
193
|
my @vals = |
1895
|
|
|
|
|
|
|
$_->get_tag_values($tag); |
1896
|
6
|
100
|
|
|
|
7
|
if (grep {$_ eq $resolver_tagval} @vals) { |
|
6
|
|
|
|
|
18
|
|
1897
|
2
|
|
|
|
|
3
|
$match = 1; |
1898
|
2
|
|
|
|
|
5
|
last; |
1899
|
|
|
|
|
|
|
} |
1900
|
|
|
|
|
|
|
} |
1901
|
|
|
|
|
|
|
} |
1902
|
4
|
|
|
|
|
7
|
$match; |
1903
|
|
|
|
|
|
|
} @possible_container_sfs; |
1904
|
|
|
|
|
|
|
} |
1905
|
|
|
|
|
|
|
else { |
1906
|
0
|
|
|
|
|
0
|
return $backup_resolver_method->($sf, @possible_container_sfs); |
1907
|
|
|
|
|
|
|
} |
1908
|
2
|
|
|
|
|
3
|
return map {$_=>0} @container_sfs; |
|
2
|
|
|
|
|
8
|
|
1909
|
1
|
|
|
|
|
8
|
}; |
1910
|
1
|
|
|
|
|
3
|
$resolver_method = $sub; |
1911
|
|
|
|
|
|
|
} |
1912
|
|
|
|
|
|
|
else { |
1913
|
|
|
|
|
|
|
# CONDITION: $resolver_tag is NOT set |
1914
|
1507
|
50
|
|
|
|
2520
|
$self->throw("assertion error") if $resolver_tag; |
1915
|
|
|
|
|
|
|
} |
1916
|
|
|
|
|
|
|
# we have now set $resolver_method to a subroutine for |
1917
|
|
|
|
|
|
|
# disambiguatimng parent/child relationships. we will |
1918
|
|
|
|
|
|
|
# now build the whole containment hierarchy for this group |
1919
|
|
|
|
|
|
|
|
1920
|
|
|
|
|
|
|
|
1921
|
|
|
|
|
|
|
# FIND TOP/ROOT SEQFEATURES |
1922
|
|
|
|
|
|
|
# |
1923
|
|
|
|
|
|
|
# find all the features for which there is no |
1924
|
|
|
|
|
|
|
# containing feature type (eg genes) |
1925
|
|
|
|
|
|
|
my @top_sfs = |
1926
|
|
|
|
|
|
|
grep { |
1927
|
1508
|
|
|
|
|
1925
|
!$self->get_container_type($_->primary_tag); |
|
5517
|
|
|
|
|
8935
|
|
1928
|
|
|
|
|
|
|
} @sfs; |
1929
|
|
|
|
|
|
|
|
1930
|
|
|
|
|
|
|
# CONDITION: there must be at most one root |
1931
|
1508
|
50
|
|
|
|
2353
|
if (@top_sfs > 1) { |
1932
|
0
|
|
|
|
|
0
|
$self->_write_group($group, $self->group_tag); |
1933
|
0
|
|
|
|
|
0
|
printf STDERR "TOP SFS:\n"; |
1934
|
0
|
|
|
|
|
0
|
$self->_write_sf($_) foreach @top_sfs; |
1935
|
0
|
|
|
|
|
0
|
$self->throw("multiple top-sfs in group"); |
1936
|
|
|
|
|
|
|
} |
1937
|
1508
|
|
|
|
|
1344
|
my $top_sf = $top_sfs[0]; |
1938
|
|
|
|
|
|
|
|
1939
|
|
|
|
|
|
|
# CREATE INDEX OF SEQFEATURES BY TYPE |
1940
|
1508
|
|
|
|
|
1866
|
my %sfs_by_type = (); |
1941
|
1508
|
|
|
|
|
2160
|
foreach my $sf (@sfs) { |
1942
|
5517
|
|
|
|
|
3800
|
push(@{$sfs_by_type{$sf->primary_tag}}, $sf); |
|
5517
|
|
|
|
|
6465
|
|
1943
|
|
|
|
|
|
|
} |
1944
|
|
|
|
|
|
|
|
1945
|
|
|
|
|
|
|
# containment index; keyed by child; lookup parent |
1946
|
|
|
|
|
|
|
# note: this index uses the stringified object reference of |
1947
|
|
|
|
|
|
|
# the object as a surrogate lookup key |
1948
|
|
|
|
|
|
|
|
1949
|
1508
|
|
|
|
|
1630
|
my %container = (); # child -> parent |
1950
|
|
|
|
|
|
|
|
1951
|
|
|
|
|
|
|
# ALGORITHM: build containment graph |
1952
|
|
|
|
|
|
|
# |
1953
|
|
|
|
|
|
|
# find all possible containers for each SF; |
1954
|
|
|
|
|
|
|
# for instance, for a CDS, the possible containers are all |
1955
|
|
|
|
|
|
|
# the mRNAs in the same group. For a mRNA, the possible |
1956
|
|
|
|
|
|
|
# containers are any SFs of type 'gene' (should only be 1). |
1957
|
|
|
|
|
|
|
# (these container-type mappings can be overridden) |
1958
|
|
|
|
|
|
|
# |
1959
|
|
|
|
|
|
|
# contention is resolved by checking coordinates of splice sites |
1960
|
|
|
|
|
|
|
# (this is the default, but can be overridden) |
1961
|
|
|
|
|
|
|
# |
1962
|
|
|
|
|
|
|
# most of the time, there is no problem identifying a unique |
1963
|
|
|
|
|
|
|
# parent for every child; this can be ambiguous when constructing |
1964
|
|
|
|
|
|
|
# CDS to mRNA relationships with lots of alternate splicing |
1965
|
|
|
|
|
|
|
# |
1966
|
|
|
|
|
|
|
# a hash of child->parent relationships is constructed (%container) |
1967
|
|
|
|
|
|
|
# any mappings that need further resolution (eg CDS to mRNA) are |
1968
|
|
|
|
|
|
|
# placed in %unresolved |
1969
|
|
|
|
|
|
|
|
1970
|
|
|
|
|
|
|
# %unresolved index |
1971
|
|
|
|
|
|
|
# (keyed by stringified object reference of child seqfeature) |
1972
|
1508
|
|
|
|
|
1527
|
my %unresolved = (); # child -> [parent,score] to be resolved |
1973
|
|
|
|
|
|
|
|
1974
|
|
|
|
|
|
|
# index of seqfeatures by their stringified object reference; |
1975
|
|
|
|
|
|
|
# this is essentially a way of 'reviving' an object from its stringified |
1976
|
|
|
|
|
|
|
# reference |
1977
|
|
|
|
|
|
|
# (see NOTE ON USING OBJECTS AS KEYS IN HASHES, below) |
1978
|
1508
|
|
|
|
|
1322
|
my %idxsf = map {$_=>$_} @sfs; |
|
5517
|
|
|
|
|
9576
|
|
1979
|
|
|
|
|
|
|
|
1980
|
1508
|
|
|
|
|
1739
|
foreach my $sf (@sfs) { |
1981
|
5517
|
|
|
|
|
8040
|
my $type = $sf->primary_tag; |
1982
|
|
|
|
|
|
|
|
1983
|
|
|
|
|
|
|
# container type (e.g. the container type for CDS is usually mRNA) |
1984
|
5517
|
|
|
|
|
7006
|
my $container_type = |
1985
|
|
|
|
|
|
|
$self->get_container_type($type); |
1986
|
5517
|
100
|
|
|
|
7154
|
if ($container_type) { |
1987
|
|
|
|
|
|
|
|
1988
|
|
|
|
|
|
|
my @possible_container_sfs = |
1989
|
4155
|
100
|
|
|
|
2796
|
@{$sfs_by_type{$container_type} || []}; |
|
4155
|
|
|
|
|
8139
|
|
1990
|
|
|
|
|
|
|
# we now have a list of possible containers |
1991
|
|
|
|
|
|
|
# (eg for a CDS in an alternately spliced gene, this |
1992
|
|
|
|
|
|
|
# would be a list of all the mRNAs for this gene) |
1993
|
|
|
|
|
|
|
|
1994
|
4155
|
100
|
|
|
|
5236
|
if (!@possible_container_sfs) { |
1995
|
|
|
|
|
|
|
# root of hierarchy |
1996
|
|
|
|
|
|
|
} |
1997
|
|
|
|
|
|
|
else { |
1998
|
3906
|
100
|
|
|
|
4718
|
if (@possible_container_sfs == 1) { |
1999
|
|
|
|
|
|
|
# this is the easy situation, whereby the containment |
2000
|
|
|
|
|
|
|
# hierarchy is unambiguous. this will probably be the |
2001
|
|
|
|
|
|
|
# case if the genbank record has no alternate splicing |
2002
|
|
|
|
|
|
|
# within it |
2003
|
|
|
|
|
|
|
|
2004
|
|
|
|
|
|
|
# ONE OPTION ONLY - resolved! |
2005
|
2934
|
|
|
|
|
6108
|
$container{$sf} = $possible_container_sfs[0]; |
2006
|
|
|
|
|
|
|
|
2007
|
|
|
|
|
|
|
} |
2008
|
|
|
|
|
|
|
else { |
2009
|
|
|
|
|
|
|
# MULTIPLE CONTAINER CHOICES |
2010
|
972
|
50
|
|
|
|
1502
|
$self->throw("ASSERTION ERROR") unless @possible_container_sfs > 1; |
2011
|
|
|
|
|
|
|
|
2012
|
|
|
|
|
|
|
# push this onto the %unresolved graph, and deal with it |
2013
|
|
|
|
|
|
|
# later |
2014
|
|
|
|
|
|
|
|
2015
|
|
|
|
|
|
|
# for now we hardcode things such that the only type |
2016
|
|
|
|
|
|
|
# with ambiguous parents is a CDS; if this is violated, |
2017
|
|
|
|
|
|
|
# it has a weak problem class of '1' so the API user |
2018
|
|
|
|
|
|
|
# can easily set things to ignore these |
2019
|
972
|
50
|
|
|
|
1546
|
if ($sf->primary_tag ne 'CDS') { |
2020
|
0
|
|
|
|
|
0
|
$self->problem(1, |
2021
|
|
|
|
|
|
|
"multiple container choice for non-CDS; ". |
2022
|
|
|
|
|
|
|
"CDS to mRNA should be the only ". |
2023
|
|
|
|
|
|
|
"relationships requiring resolving", |
2024
|
|
|
|
|
|
|
$sf); |
2025
|
|
|
|
|
|
|
} |
2026
|
|
|
|
|
|
|
|
2027
|
|
|
|
|
|
|
# previously we set the SUB $resolver_method |
2028
|
972
|
50
|
|
|
|
1853
|
$self->throw("ASSERTION ERROR") |
2029
|
|
|
|
|
|
|
unless $resolver_method; |
2030
|
|
|
|
|
|
|
|
2031
|
|
|
|
|
|
|
# $resolver_method will assign scores to |
2032
|
|
|
|
|
|
|
# parent/child combinations; later on we |
2033
|
|
|
|
|
|
|
# will use these scores to find the optimal |
2034
|
|
|
|
|
|
|
# parent/child pairings |
2035
|
|
|
|
|
|
|
|
2036
|
|
|
|
|
|
|
# the default $resolver_method uses splice sites to |
2037
|
|
|
|
|
|
|
# score possible parent/child matches |
2038
|
|
|
|
|
|
|
|
2039
|
972
|
|
|
|
|
1735
|
my %container_sfh = |
2040
|
|
|
|
|
|
|
$resolver_method->($self, $sf, @possible_container_sfs); |
2041
|
972
|
100
|
|
|
|
3715
|
if (!%container_sfh) { |
2042
|
6
|
|
|
|
|
23
|
$self->problem(2, |
2043
|
|
|
|
|
|
|
"no containers possible for SeqFeature of ". |
2044
|
|
|
|
|
|
|
"type: $type; this SF is being placed at ". |
2045
|
|
|
|
|
|
|
"root level", |
2046
|
|
|
|
|
|
|
$sf); |
2047
|
|
|
|
|
|
|
# RESOLVED! (sort of - placed at root/gene level) |
2048
|
6
|
|
|
|
|
14
|
$container{$sf} = $top_sf; |
2049
|
|
|
|
|
|
|
|
2050
|
|
|
|
|
|
|
# this sort of thing happens if the record is |
2051
|
|
|
|
|
|
|
# badly messed up and there is absolutely no indication |
2052
|
|
|
|
|
|
|
# of where to put the CDS. Perhaps we should just |
2053
|
|
|
|
|
|
|
# place it with a random mRNA? |
2054
|
|
|
|
|
|
|
} |
2055
|
972
|
|
|
|
|
1946
|
foreach my $jsf (keys %container_sfh) { |
2056
|
|
|
|
|
|
|
|
2057
|
|
|
|
|
|
|
# add [score, parent] pairs to the %unresolved |
2058
|
|
|
|
|
|
|
# lookup table/graph |
2059
|
1748
|
|
|
|
|
7614
|
push(@{$unresolved{$sf}}, |
2060
|
1748
|
|
100
|
|
|
1270
|
[$idxsf{$jsf}, $container_sfh{$jsf} || 0]); |
2061
|
|
|
|
|
|
|
} |
2062
|
|
|
|
|
|
|
} |
2063
|
|
|
|
|
|
|
} |
2064
|
|
|
|
|
|
|
} |
2065
|
|
|
|
|
|
|
else { |
2066
|
|
|
|
|
|
|
# CONDITION: |
2067
|
|
|
|
|
|
|
# not container type for $sf->primary_tag |
2068
|
|
|
|
|
|
|
|
2069
|
|
|
|
|
|
|
# CONDITION: |
2070
|
|
|
|
|
|
|
# $sf must be a root/top node (eg gene) |
2071
|
|
|
|
|
|
|
} |
2072
|
|
|
|
|
|
|
} |
2073
|
|
|
|
|
|
|
|
2074
|
1508
|
|
|
|
|
1157
|
if (0) { |
2075
|
|
|
|
|
|
|
|
2076
|
|
|
|
|
|
|
# CODE CURRENTLY DISABLED |
2077
|
|
|
|
|
|
|
|
2078
|
|
|
|
|
|
|
# we require a 1:1 mapping between mRNAs and CDSs; |
2079
|
|
|
|
|
|
|
# create artificial duplicates if we can't do this... |
2080
|
|
|
|
|
|
|
if (%unresolved) { |
2081
|
|
|
|
|
|
|
my %childh = map {$_=>1} keys %unresolved; |
2082
|
|
|
|
|
|
|
my %parenth = map {$_->[0]=>1} map {@$_} values %unresolved; |
2083
|
|
|
|
|
|
|
if ($self->verbose > 0) { |
2084
|
|
|
|
|
|
|
printf STDERR "MATCHING %d CHILDREN TO %d PARENTS\n", |
2085
|
|
|
|
|
|
|
scalar(keys %childh), scalar(keys %parenth); |
2086
|
|
|
|
|
|
|
} |
2087
|
|
|
|
|
|
|
# 99.99% of the time in genbank genomic record of structure type 0, we |
2088
|
|
|
|
|
|
|
# see one CDS for every mRNA; one exception is the S Pombe |
2089
|
|
|
|
|
|
|
# genome, which is all CDS, bar a few spurious mRNAs; we have to |
2090
|
|
|
|
|
|
|
# filter out the spurious mRNAs in this case |
2091
|
|
|
|
|
|
|
# |
2092
|
|
|
|
|
|
|
# another strange case is in the mouse genome, NT_078847.1 |
2093
|
|
|
|
|
|
|
# for Pcdh13 you will notice there is 4 mRNAs and 5 CDSs. |
2094
|
|
|
|
|
|
|
# most unusual! |
2095
|
|
|
|
|
|
|
# I'm at a loss for a really clever thing to do here. I think the |
2096
|
|
|
|
|
|
|
# best thing is to create duplicate features to preserve the 1:1 mapping |
2097
|
|
|
|
|
|
|
# my $suffix_id = 1; |
2098
|
|
|
|
|
|
|
# while (keys %childh > keys %parenth) { |
2099
|
|
|
|
|
|
|
# |
2100
|
|
|
|
|
|
|
# } |
2101
|
|
|
|
|
|
|
} |
2102
|
|
|
|
|
|
|
} |
2103
|
|
|
|
|
|
|
|
2104
|
|
|
|
|
|
|
# DEBUGGING CODE |
2105
|
1508
|
0
|
50
|
|
|
2672
|
if ($self->verbose > 0 && scalar(keys %unresolved)) { |
2106
|
0
|
|
|
|
|
0
|
printf STDERR "UNRESOLVED PAIRS:\n"; |
2107
|
0
|
|
|
|
|
0
|
foreach my $childsf (keys %unresolved) { |
2108
|
0
|
|
|
|
|
0
|
my @poss = @{$unresolved{$childsf}}; |
|
0
|
|
|
|
|
0
|
|
2109
|
0
|
|
|
|
|
0
|
foreach my $p (@poss) { |
2110
|
0
|
|
|
|
|
0
|
my $parentsf = $p->[0]; |
2111
|
0
|
|
|
|
|
0
|
$childsf = $idxsf{$childsf}; |
2112
|
0
|
|
|
|
|
0
|
my @clabels = ($childsf->get_tagset_values(qw(protein_id label product)), "?"); |
2113
|
0
|
|
|
|
|
0
|
my @plabels = ($parentsf->get_tagset_values(qw(transcript_id label product)), "?"); |
2114
|
0
|
|
|
|
|
0
|
printf STDERR |
2115
|
|
|
|
|
|
|
(" PAIR: $clabels[0] => $plabels[0] (of %d)\n", |
2116
|
|
|
|
|
|
|
scalar(@poss)); |
2117
|
|
|
|
|
|
|
} |
2118
|
|
|
|
|
|
|
} |
2119
|
|
|
|
|
|
|
} # -- end of verbose |
2120
|
|
|
|
|
|
|
|
2121
|
|
|
|
|
|
|
# Now we have to fully resolve the containment hierarchy; remember, |
2122
|
|
|
|
|
|
|
# the graph %container has the fully resolved child->parent links; |
2123
|
|
|
|
|
|
|
# |
2124
|
|
|
|
|
|
|
# the graph %unresolved is keyed by children missing parents; we |
2125
|
|
|
|
|
|
|
# need to put all these orphans in the %container graph |
2126
|
|
|
|
|
|
|
# |
2127
|
|
|
|
|
|
|
# we do this using the scores in %unresolved, with the |
2128
|
|
|
|
|
|
|
# find_best_matches() algorithm |
2129
|
1508
|
|
|
|
|
1532
|
my $unresolved_problem_reported = 0; |
2130
|
1508
|
100
|
|
|
|
2173
|
if (%unresolved) { |
2131
|
322
|
|
|
|
|
1025
|
my $new_pairs = |
2132
|
|
|
|
|
|
|
$self->find_best_matches(\%unresolved, []); |
2133
|
322
|
50
|
|
|
|
750
|
if (!$new_pairs) { |
2134
|
0
|
|
0
|
|
|
0
|
my ($g) = $sfs[0]->get_tagset_values($self->group_tag || 'gene'); |
2135
|
0
|
|
|
|
|
0
|
$self->problem(2, |
2136
|
|
|
|
|
|
|
"Could not resolve hierarchy for $g"); |
2137
|
0
|
|
|
|
|
0
|
$new_pairs = []; |
2138
|
0
|
|
|
|
|
0
|
$unresolved_problem_reported = 1; |
2139
|
|
|
|
|
|
|
} |
2140
|
322
|
|
|
|
|
577
|
foreach my $pair (@$new_pairs) { |
2141
|
966
|
50
|
|
|
|
1500
|
if ($self->verbose > 0) { |
2142
|
0
|
|
|
|
|
0
|
printf STDERR " resolved pair @$pair\n"; |
2143
|
|
|
|
|
|
|
} |
2144
|
966
|
|
|
|
|
1125
|
$container{$pair->[0]} = $pair->[1]; |
2145
|
966
|
|
|
|
|
1904
|
delete $unresolved{$pair->[0]}; |
2146
|
|
|
|
|
|
|
} |
2147
|
|
|
|
|
|
|
} |
2148
|
|
|
|
|
|
|
|
2149
|
|
|
|
|
|
|
# CONDITION: containment hierarchy resolved |
2150
|
1508
|
50
|
|
|
|
2348
|
if (%unresolved) { |
2151
|
0
|
0
|
|
|
|
0
|
$self->throw("UNRESOLVED: %unresolved") |
2152
|
|
|
|
|
|
|
unless $unresolved_problem_reported; |
2153
|
|
|
|
|
|
|
} |
2154
|
|
|
|
|
|
|
|
2155
|
|
|
|
|
|
|
# make nested SeqFeature hierarchy from @containment_pairs |
2156
|
|
|
|
|
|
|
# ie put child SeqFeatures into parent SeqFeatures |
2157
|
1508
|
|
|
|
|
1519
|
my @top = (); |
2158
|
1508
|
|
|
|
|
1733
|
foreach my $sf (@sfs) { |
2159
|
5517
|
|
|
|
|
7503
|
my $container_sf = $container{$sf}; |
2160
|
5517
|
100
|
|
|
|
5993
|
if ($container_sf) { |
2161
|
|
|
|
|
|
|
# make $sf nested inside $container_sf |
2162
|
|
|
|
|
|
|
|
2163
|
|
|
|
|
|
|
# first check if the container spatially contains the containee |
2164
|
3906
|
50
|
|
|
|
7139
|
if ($container_sf->contains($sf)) { |
2165
|
|
|
|
|
|
|
# add containee |
2166
|
3906
|
|
|
|
|
7352
|
$container_sf->add_SeqFeature($sf); |
2167
|
|
|
|
|
|
|
} |
2168
|
|
|
|
|
|
|
else { |
2169
|
|
|
|
|
|
|
# weird case - the container does NOT spatially |
2170
|
|
|
|
|
|
|
# contain the containee; |
2171
|
|
|
|
|
|
|
# we expand and throw a warning |
2172
|
|
|
|
|
|
|
# |
2173
|
|
|
|
|
|
|
# for an example of this see ZFP91-CNTF dicistronic gene |
2174
|
|
|
|
|
|
|
# in NCBI chrom 11 build 34.3 |
2175
|
0
|
|
|
|
|
0
|
$self->problem(1, |
2176
|
|
|
|
|
|
|
"Container feature does not spatially contain ". |
2177
|
|
|
|
|
|
|
"subfeature. Perhaps this is a dicistronic gene? ". |
2178
|
|
|
|
|
|
|
"I am expanding the parent feature", |
2179
|
|
|
|
|
|
|
$container_sf, |
2180
|
|
|
|
|
|
|
$sf); |
2181
|
0
|
|
|
|
|
0
|
$container_sf->add_SeqFeature($sf, 'EXPAND'); |
2182
|
|
|
|
|
|
|
} |
2183
|
|
|
|
|
|
|
} |
2184
|
|
|
|
|
|
|
else { |
2185
|
1611
|
|
|
|
|
2023
|
push(@top, $sf); |
2186
|
|
|
|
|
|
|
} |
2187
|
|
|
|
|
|
|
} |
2188
|
1508
|
|
|
|
|
9129
|
return @top; |
2189
|
|
|
|
|
|
|
} # -- end of unflatten_group |
2190
|
|
|
|
|
|
|
|
2191
|
|
|
|
|
|
|
# ------- |
2192
|
|
|
|
|
|
|
# A NOTE ON USING OBJECTS AS KEYS IN HASHES (stringified objects) |
2193
|
|
|
|
|
|
|
# |
2194
|
|
|
|
|
|
|
# Often we with to use seqfeatures as keys in a hashtable; because seqfeatures |
2195
|
|
|
|
|
|
|
# in bioperl have no unique ID, we use a surrogate ID in the form of the |
2196
|
|
|
|
|
|
|
# stringified object references - this is just what you get if you say |
2197
|
|
|
|
|
|
|
# |
2198
|
|
|
|
|
|
|
# print "$sf\n"; |
2199
|
|
|
|
|
|
|
# |
2200
|
|
|
|
|
|
|
# this is guaranteed to be unique (within a particular perl execution) |
2201
|
|
|
|
|
|
|
# |
2202
|
|
|
|
|
|
|
# often we want to 'revive' the objects used as keys in a hash - once the |
2203
|
|
|
|
|
|
|
# objects are used as keys, remember it is the *strings* used as keys and |
2204
|
|
|
|
|
|
|
# not the object itself, so the object needs to be revived using another |
2205
|
|
|
|
|
|
|
# hashtable that looks like this |
2206
|
|
|
|
|
|
|
# |
2207
|
|
|
|
|
|
|
# %sfidx = map { $_ => $_ } @sfs |
2208
|
|
|
|
|
|
|
# |
2209
|
|
|
|
|
|
|
# ------- |
2210
|
|
|
|
|
|
|
|
2211
|
|
|
|
|
|
|
|
2212
|
|
|
|
|
|
|
# recursively finds the best set of pairings from a matrix of possible pairings |
2213
|
|
|
|
|
|
|
# |
2214
|
|
|
|
|
|
|
# tries to make sure nothing is unpaired |
2215
|
|
|
|
|
|
|
# |
2216
|
|
|
|
|
|
|
# given a matrix of POSSIBLE matches |
2217
|
|
|
|
|
|
|
# (matrix expressed as hash/lookup; keyed by child object; val = [parent, score] |
2218
|
|
|
|
|
|
|
# |
2219
|
|
|
|
|
|
|
# |
2220
|
|
|
|
|
|
|
sub find_best_matches { |
2221
|
1288
|
|
|
1288
|
0
|
1146
|
my $self = shift; |
2222
|
1288
|
|
|
|
|
1041
|
my $matrix = shift; |
2223
|
1288
|
|
|
|
|
986
|
my $pairs = shift; # [child,parent] pairs already selected |
2224
|
|
|
|
|
|
|
|
2225
|
1288
|
|
|
|
|
1775
|
my $verbose = $self->verbose; |
2226
|
|
|
|
|
|
|
#################################print "I"; |
2227
|
1288
|
50
|
|
|
|
1957
|
if ($verbose > 0) { |
2228
|
0
|
|
|
|
|
0
|
printf STDERR "find_best_matches: (/%d)\n", scalar(@$pairs); |
2229
|
|
|
|
|
|
|
} |
2230
|
|
|
|
|
|
|
|
2231
|
1288
|
|
|
|
|
1555
|
my %selected_children = map {($_->[0]=>1)} @$pairs; |
|
2302
|
|
|
|
|
3289
|
|
2232
|
1288
|
|
|
|
|
1576
|
my %selected_parents = map {($_->[1]=>1)} @$pairs; |
|
2302
|
|
|
|
|
3753
|
|
2233
|
|
|
|
|
|
|
|
2234
|
|
|
|
|
|
|
# make a copy of the matrix with the portions still to be |
2235
|
|
|
|
|
|
|
# resolved |
2236
|
1288
|
|
|
|
|
1506
|
my %unresolved_parents = (); |
2237
|
|
|
|
|
|
|
my %unresolved = |
2238
|
|
|
|
|
|
|
map { |
2239
|
1288
|
50
|
|
|
|
1783
|
if ($verbose > 0) { |
|
4604
|
|
|
|
|
5686
|
|
2240
|
0
|
|
|
|
|
0
|
printf STDERR " $_ : %s\n", join("; ", map {"[@$_]"} @{$matrix->{$_}}); |
|
0
|
|
|
|
|
0
|
|
|
0
|
|
|
|
|
0
|
|
2241
|
|
|
|
|
|
|
} |
2242
|
4604
|
100
|
|
|
|
5010
|
if ($selected_children{$_}) { |
2243
|
2302
|
|
|
|
|
2243
|
(); |
2244
|
|
|
|
|
|
|
} |
2245
|
|
|
|
|
|
|
else { |
2246
|
|
|
|
|
|
|
my @parents = |
2247
|
|
|
|
|
|
|
grep { |
2248
|
5133
|
|
|
|
|
8321
|
!$selected_parents{$_->[0]} |
2249
|
2302
|
|
|
|
|
1529
|
} @{$matrix->{$_}}; |
|
2302
|
|
|
|
|
2540
|
|
2250
|
2302
|
|
|
|
|
5409
|
$unresolved_parents{$_} = 1 foreach @parents; |
2251
|
|
|
|
|
|
|
# new parents |
2252
|
2302
|
|
|
|
|
4310
|
($_ => [@parents]); |
2253
|
|
|
|
|
|
|
} |
2254
|
|
|
|
|
|
|
} keys %$matrix; |
2255
|
|
|
|
|
|
|
|
2256
|
1288
|
|
|
|
|
2304
|
my @I = keys %unresolved; |
2257
|
|
|
|
|
|
|
|
2258
|
1288
|
100
|
|
|
|
2498
|
return $pairs if !scalar(keys %unresolved_parents); |
2259
|
|
|
|
|
|
|
# NECESSARY CONDITION: |
2260
|
|
|
|
|
|
|
# all possible parents have a child match |
2261
|
|
|
|
|
|
|
|
2262
|
966
|
50
|
|
|
|
1316
|
return $pairs if !scalar(@I); |
2263
|
|
|
|
|
|
|
# NECESSARY CONDITION: |
2264
|
|
|
|
|
|
|
# all possible children have a parent match |
2265
|
|
|
|
|
|
|
|
2266
|
|
|
|
|
|
|
# give those with fewest choices highest priority |
2267
|
|
|
|
|
|
|
@I = sort { |
2268
|
|
|
|
|
|
|
# n possible parents |
2269
|
966
|
|
|
|
|
2279
|
scalar(@{$unresolved{$a}}) |
|
2063
|
|
|
|
|
1617
|
|
2270
|
|
|
|
|
|
|
<=> |
2271
|
2063
|
|
|
|
|
1291
|
scalar(@{$unresolved{$b}}) ; |
|
2063
|
|
|
|
|
2115
|
|
2272
|
|
|
|
|
|
|
} @I; |
2273
|
|
|
|
|
|
|
|
2274
|
966
|
|
|
|
|
1283
|
my $csf = shift @I; |
2275
|
|
|
|
|
|
|
|
2276
|
966
|
|
|
|
|
806
|
my @J = @{$unresolved{$csf}}; # array of [parent, score] |
|
966
|
|
|
|
|
1338
|
|
2277
|
|
|
|
|
|
|
|
2278
|
|
|
|
|
|
|
# sort by score, highest first |
2279
|
|
|
|
|
|
|
@J = |
2280
|
|
|
|
|
|
|
sort { |
2281
|
966
|
|
|
|
|
1030
|
$b->[1] <=> $a->[1] |
|
372
|
|
|
|
|
524
|
|
2282
|
|
|
|
|
|
|
} @J; |
2283
|
|
|
|
|
|
|
|
2284
|
|
|
|
|
|
|
# select pair(s) from remaining matrix of possible pairs |
2285
|
|
|
|
|
|
|
# by iterating through possible parents |
2286
|
|
|
|
|
|
|
|
2287
|
966
|
|
|
|
|
837
|
my $successful_pairs; |
2288
|
966
|
|
|
|
|
1008
|
foreach my $j (@J) { |
2289
|
966
|
|
|
|
|
1262
|
my ($psf, $score) = @$j; |
2290
|
|
|
|
|
|
|
# would selecting $csf, $psf as a pair |
2291
|
|
|
|
|
|
|
# remove all choices from another? |
2292
|
966
|
|
|
|
|
1016
|
my $bad = 0; |
2293
|
966
|
|
|
|
|
863
|
foreach my $sf (@I) { |
2294
|
1336
|
50
|
|
|
|
878
|
if (!grep {$_->[0] ne $psf} @{$unresolved{$sf}}) { |
|
2854
|
|
|
|
|
5158
|
|
|
1336
|
|
|
|
|
1477
|
|
2295
|
|
|
|
|
|
|
# $psf was the only parent choice for $sf |
2296
|
0
|
|
|
|
|
0
|
$bad = 1; |
2297
|
0
|
|
|
|
|
0
|
last; |
2298
|
|
|
|
|
|
|
} |
2299
|
|
|
|
|
|
|
} |
2300
|
966
|
50
|
|
|
|
1414
|
if (!$bad) { |
2301
|
966
|
|
|
|
|
1284
|
my $pair = [$csf, $psf]; |
2302
|
966
|
|
|
|
|
1213
|
my $new_pairs = [@$pairs, $pair]; |
2303
|
966
|
|
|
|
|
1815
|
my $set = $self->find_best_matches($matrix, $new_pairs); |
2304
|
966
|
50
|
|
|
|
1269
|
if ($set) { |
2305
|
966
|
|
|
|
|
658
|
$successful_pairs = $set; |
2306
|
966
|
|
|
|
|
1352
|
last; |
2307
|
|
|
|
|
|
|
} |
2308
|
|
|
|
|
|
|
} |
2309
|
|
|
|
|
|
|
} |
2310
|
|
|
|
|
|
|
# success |
2311
|
966
|
50
|
|
|
|
3398
|
return $successful_pairs if $successful_pairs; |
2312
|
|
|
|
|
|
|
# fail |
2313
|
0
|
|
|
|
|
0
|
return 0; |
2314
|
|
|
|
|
|
|
} |
2315
|
|
|
|
|
|
|
|
2316
|
|
|
|
|
|
|
# ---------------------------------------------- |
2317
|
|
|
|
|
|
|
# writes a group to stdout |
2318
|
|
|
|
|
|
|
# |
2319
|
|
|
|
|
|
|
# mostly for logging/debugging |
2320
|
|
|
|
|
|
|
# ---------------------------------------------- |
2321
|
|
|
|
|
|
|
sub _write_group { |
2322
|
0
|
|
|
0
|
|
0
|
my $self = shift; |
2323
|
0
|
|
|
|
|
0
|
my $group = shift; |
2324
|
0
|
|
0
|
|
|
0
|
my $group_tag = shift || 'gene'; |
2325
|
|
|
|
|
|
|
|
2326
|
0
|
|
|
|
|
0
|
my $f = $group->[0]; |
2327
|
0
|
|
|
|
|
0
|
my $label = '?'; |
2328
|
0
|
0
|
|
|
|
0
|
if ($f->has_tag($group_tag)) { |
2329
|
0
|
|
|
|
|
0
|
($label) = $f->get_tag_values($group_tag); |
2330
|
|
|
|
|
|
|
} |
2331
|
0
|
0
|
|
|
|
0
|
if( $self->verbose > 0 ) { |
2332
|
|
|
|
|
|
|
printf STDERR (" GROUP [%s]:%s\n", |
2333
|
|
|
|
|
|
|
$label, |
2334
|
|
|
|
|
|
|
join(' ', |
2335
|
0
|
|
|
|
|
0
|
map { $_->primary_tag } @$group)); |
|
0
|
|
|
|
|
0
|
|
2336
|
|
|
|
|
|
|
} |
2337
|
|
|
|
|
|
|
|
2338
|
|
|
|
|
|
|
} |
2339
|
|
|
|
|
|
|
|
2340
|
|
|
|
|
|
|
sub _write_sf { |
2341
|
0
|
|
|
0
|
|
0
|
my $self = shift; |
2342
|
0
|
|
|
|
|
0
|
my $sf = shift; |
2343
|
0
|
|
|
|
|
0
|
printf STDERR "TYPE:%s\n", $sf->primary_tag; |
2344
|
0
|
|
|
|
|
0
|
return; |
2345
|
|
|
|
|
|
|
} |
2346
|
|
|
|
|
|
|
|
2347
|
|
|
|
|
|
|
sub _write_sf_detail { |
2348
|
0
|
|
|
0
|
|
0
|
my $self = shift; |
2349
|
0
|
|
|
|
|
0
|
my $sf = shift; |
2350
|
0
|
|
|
|
|
0
|
printf STDERR "TYPE:%s\n", $sf->primary_tag; |
2351
|
0
|
|
|
|
|
0
|
my @locs = $sf->location->each_Location; |
2352
|
0
|
|
|
|
|
0
|
printf STDERR " %s,%s [%s]\n", $_->start, $_->end, $_->strand foreach @locs; |
2353
|
0
|
|
|
|
|
0
|
return; |
2354
|
|
|
|
|
|
|
} |
2355
|
|
|
|
|
|
|
|
2356
|
|
|
|
|
|
|
sub _write_hier { |
2357
|
0
|
|
|
0
|
|
0
|
my $self = shift; |
2358
|
0
|
0
|
|
|
|
0
|
my @sfs = @{shift || []}; |
|
0
|
|
|
|
|
0
|
|
2359
|
0
|
|
0
|
|
|
0
|
my $indent = shift || 0; |
2360
|
0
|
0
|
|
|
|
0
|
if( $self->verbose > 0 ) { |
2361
|
0
|
|
|
|
|
0
|
foreach my $sf (@sfs) { |
2362
|
0
|
|
|
|
|
0
|
my $label = '?'; |
2363
|
0
|
0
|
|
|
|
0
|
if ($sf->has_tag('product')) { |
2364
|
0
|
|
|
|
|
0
|
($label) = $sf->get_tag_values('product'); |
2365
|
|
|
|
|
|
|
} |
2366
|
0
|
|
|
|
|
0
|
printf STDERR "%s%s $label\n", ' ' x $indent, $sf->primary_tag; |
2367
|
0
|
|
|
|
|
0
|
my @sub_sfs = $sf->sub_SeqFeature; |
2368
|
0
|
|
|
|
|
0
|
$self->_write_hier(\@sub_sfs, $indent+1); |
2369
|
|
|
|
|
|
|
} |
2370
|
|
|
|
|
|
|
} |
2371
|
|
|
|
|
|
|
} |
2372
|
|
|
|
|
|
|
|
2373
|
|
|
|
|
|
|
# ----------------------------------------------- |
2374
|
|
|
|
|
|
|
# |
2375
|
|
|
|
|
|
|
# returns all possible containers for an SF based |
2376
|
|
|
|
|
|
|
# on splice site coordinates; splice site coords |
2377
|
|
|
|
|
|
|
# must be contained |
2378
|
|
|
|
|
|
|
# ----------------------------------------------- |
2379
|
|
|
|
|
|
|
sub _resolve_container_for_sf{ |
2380
|
962
|
|
|
962
|
|
1271
|
my ($self, $sf, @possible_container_sfs) = @_; |
2381
|
|
|
|
|
|
|
|
2382
|
962
|
|
|
|
|
1643
|
my @coords = $self->_get_splice_coords_for_sf($sf); |
2383
|
962
|
|
|
|
|
2089
|
my $start = $sf->start; |
2384
|
962
|
|
|
|
|
1572
|
my $end = $sf->end; |
2385
|
962
|
|
|
|
|
2692
|
my $splice_uniq_str = "@coords"; |
2386
|
|
|
|
|
|
|
|
2387
|
962
|
|
|
|
|
1106
|
my @sf_score_pairs = (); |
2388
|
|
|
|
|
|
|
# a CDS is contained by a mRNA if the locations of the splice |
2389
|
|
|
|
|
|
|
# coordinates are identical |
2390
|
962
|
|
|
|
|
1365
|
foreach (@possible_container_sfs) { |
2391
|
3606
|
|
|
|
|
5035
|
my @container_coords = $self->_get_splice_coords_for_sf($_); |
2392
|
3606
|
|
100
|
|
|
17918
|
my $inside = |
2393
|
|
|
|
|
|
|
!$splice_uniq_str || |
2394
|
|
|
|
|
|
|
index("@container_coords", $splice_uniq_str) > -1; |
2395
|
3606
|
100
|
|
|
|
5653
|
if ($inside) { |
2396
|
|
|
|
|
|
|
# the container cannot be smaller than the thing contained |
2397
|
1742
|
100
|
66
|
|
|
3125
|
if ($_->start > $start || $_->end < $end) { |
2398
|
20
|
|
|
|
|
34
|
$inside = 0; |
2399
|
|
|
|
|
|
|
} |
2400
|
|
|
|
|
|
|
} |
2401
|
|
|
|
|
|
|
|
2402
|
|
|
|
|
|
|
|
2403
|
|
|
|
|
|
|
# SPECIAL CASE FOR /ribosomal_slippage |
2404
|
|
|
|
|
|
|
# See: https://www.ncbi.nlm.nih.gov/collab/FT/ |
2405
|
3606
|
100
|
100
|
|
|
8385
|
if (!$inside && $sf->has_tag('ribosomal_slippage')) { |
2406
|
22
|
50
|
|
|
|
39
|
if ($self->verbose > 0) { |
2407
|
0
|
|
|
|
|
0
|
printf STDERR " Checking for ribosomal_slippage\n"; |
2408
|
|
|
|
|
|
|
} |
2409
|
|
|
|
|
|
|
|
2410
|
|
|
|
|
|
|
# TODO: rewrite this to match introns; |
2411
|
|
|
|
|
|
|
# each slippage will be a "fake" small CDS exon |
2412
|
22
|
|
|
|
|
34
|
my @transcript_splice_sites = @container_coords; |
2413
|
22
|
|
|
|
|
27
|
my @cds_splice_sites = @coords; |
2414
|
|
|
|
|
|
|
##printf STDERR "xxTR SSs: @transcript_splice_sites :: %s\n", $_->get_tag_values('product'); |
2415
|
|
|
|
|
|
|
##printf STDERR "xxCD SSs: @cds_splice_sites :: %s\n\n", $sf->get_tag_values('product'); |
2416
|
|
|
|
|
|
|
|
2417
|
|
|
|
|
|
|
# find the the first splice site within the CDS |
2418
|
22
|
|
100
|
|
|
78
|
while (scalar(@transcript_splice_sites) && |
2419
|
|
|
|
|
|
|
$transcript_splice_sites[0] < $cds_splice_sites[0]) { |
2420
|
29
|
|
|
|
|
67
|
shift @transcript_splice_sites; |
2421
|
|
|
|
|
|
|
} |
2422
|
|
|
|
|
|
|
|
2423
|
|
|
|
|
|
|
##print STDERR "TR SSs: @transcript_splice_sites\n"; |
2424
|
|
|
|
|
|
|
##print STDERR "CD SSs: @cds_splice_sites\n\n"; |
2425
|
|
|
|
|
|
|
|
2426
|
22
|
100
|
100
|
|
|
62
|
if (!(scalar(@transcript_splice_sites)) || |
2427
|
|
|
|
|
|
|
$transcript_splice_sites[0] == $cds_splice_sites[0]) { |
2428
|
|
|
|
|
|
|
|
2429
|
|
|
|
|
|
|
# we will now try and align all splice remaining sites in the transcript and CDS; |
2430
|
|
|
|
|
|
|
# any splice site that can't be aligned is assumed to be a ribosomal slippage |
2431
|
|
|
|
|
|
|
|
2432
|
16
|
|
|
|
|
17
|
my @slips = (); |
2433
|
16
|
|
|
|
|
16
|
my $in_exon = 1; |
2434
|
16
|
|
|
|
|
10
|
$inside = 1; # innocent until proven guilty.. |
2435
|
16
|
|
|
|
|
24
|
while (@cds_splice_sites) { |
2436
|
36
|
100
|
|
|
|
51
|
if (!@transcript_splice_sites) { |
|
|
100
|
|
|
|
|
|
2437
|
|
|
|
|
|
|
|
2438
|
|
|
|
|
|
|
# ribosomal slippage is after the last transcript splice site |
2439
|
|
|
|
|
|
|
# Example: (NC_00007, isoform 3 of PEG10) |
2440
|
|
|
|
|
|
|
# mRNA join(85682..85903,92646..99007) |
2441
|
|
|
|
|
|
|
# mRNA join(85682..85903,92646..99007) |
2442
|
|
|
|
|
|
|
# CDS join(85899..85903,92646..93825,93825..94994) |
2443
|
|
|
|
|
|
|
|
2444
|
|
|
|
|
|
|
# OR: None of the splice sites align; |
2445
|
|
|
|
|
|
|
# may be a single CDS exon with one slippage inside it. |
2446
|
|
|
|
|
|
|
# Example: (NC_00007, isoform 4 of PEG10) |
2447
|
|
|
|
|
|
|
# mRNA join(85637..85892,92646..99007) |
2448
|
|
|
|
|
|
|
# CDS join(92767..93825,93825..94994) |
2449
|
|
|
|
|
|
|
|
2450
|
|
|
|
|
|
|
# Yes, this code is repeated below... |
2451
|
14
|
|
|
|
|
11
|
my $p1 = shift @cds_splice_sites; |
2452
|
14
|
|
|
|
|
12
|
my $p2 = shift @cds_splice_sites; |
2453
|
14
|
50
|
|
|
|
19
|
if ($self->verbose > 0) { |
2454
|
0
|
|
|
|
|
0
|
printf STDERR " Found the ribosomal_slippage: $p1..$p2\n"; |
2455
|
|
|
|
|
|
|
} |
2456
|
14
|
|
|
|
|
38
|
push(@slips, ($p2-$p1)-1); |
2457
|
|
|
|
|
|
|
} |
2458
|
|
|
|
|
|
|
elsif ($cds_splice_sites[0] == $transcript_splice_sites[0]) { |
2459
|
|
|
|
|
|
|
# splice sites align: this is not the slippage |
2460
|
20
|
|
|
|
|
15
|
shift @cds_splice_sites; |
2461
|
20
|
|
|
|
|
27
|
shift @transcript_splice_sites; |
2462
|
|
|
|
|
|
|
##print STDERR "MATCH\n"; |
2463
|
|
|
|
|
|
|
} |
2464
|
|
|
|
|
|
|
else { |
2465
|
|
|
|
|
|
|
# mismatch |
2466
|
2
|
50
|
|
|
|
4
|
if ($cds_splice_sites[0] < $transcript_splice_sites[0]) { |
2467
|
|
|
|
|
|
|
# potential slippage |
2468
|
|
|
|
|
|
|
# v |
2469
|
|
|
|
|
|
|
# ---TTTTTTTTTT---- |
2470
|
|
|
|
|
|
|
# ---CCCC--CCCC---- |
2471
|
|
|
|
|
|
|
# ^ |
2472
|
|
|
|
|
|
|
|
2473
|
2
|
|
|
|
|
3
|
my $p1 = shift @cds_splice_sites; |
2474
|
2
|
|
|
|
|
3
|
my $p2 = shift @cds_splice_sites; |
2475
|
2
|
50
|
|
|
|
5
|
if ($self->verbose > 0) { |
2476
|
0
|
|
|
|
|
0
|
printf STDERR " Found the ribosomal_slippage: $p1..$p2\n"; |
2477
|
|
|
|
|
|
|
} |
2478
|
2
|
|
|
|
|
6
|
push(@slips, ($p2-$p1)-1); |
2479
|
|
|
|
|
|
|
} |
2480
|
|
|
|
|
|
|
else { |
2481
|
|
|
|
|
|
|
# not a potential ribosomal slippage |
2482
|
0
|
|
|
|
|
0
|
$inside = 0; # guilty! |
2483
|
|
|
|
|
|
|
##print STDERR "FAIL\n"; |
2484
|
0
|
|
|
|
|
0
|
last; |
2485
|
|
|
|
|
|
|
} |
2486
|
|
|
|
|
|
|
} |
2487
|
|
|
|
|
|
|
} |
2488
|
16
|
50
|
|
|
|
28
|
if ($inside) { |
2489
|
|
|
|
|
|
|
# TODO: this is currently completely arbitrary. How many ribosomal slippages do we allow? |
2490
|
|
|
|
|
|
|
# perhaps we need some mini-statistical model here....? |
2491
|
16
|
50
|
|
|
|
23
|
if (@slips > 1) { |
2492
|
0
|
|
|
|
|
0
|
$inside = 0; |
2493
|
|
|
|
|
|
|
} |
2494
|
|
|
|
|
|
|
# TODO: this is currently completely arbitrary. What is the maximum size of a ribosomal slippage? |
2495
|
|
|
|
|
|
|
# perhaps we need some mini-statistical model here....? |
2496
|
16
|
50
|
|
|
|
19
|
if (grep {$_ > 2} @slips) { |
|
16
|
|
|
|
|
42
|
|
2497
|
0
|
|
|
|
|
0
|
$inside = 0; |
2498
|
|
|
|
|
|
|
} |
2499
|
|
|
|
|
|
|
} |
2500
|
|
|
|
|
|
|
} |
2501
|
|
|
|
|
|
|
else { |
2502
|
|
|
|
|
|
|
# not a ribosomal_slippage, sorry |
2503
|
|
|
|
|
|
|
} |
2504
|
|
|
|
|
|
|
} |
2505
|
3606
|
50
|
|
|
|
7320
|
if ($self->verbose > 0) { |
2506
|
0
|
|
|
|
|
0
|
printf STDERR " Checking containment:[$inside] (@container_coords) IN ($splice_uniq_str)\n"; |
2507
|
|
|
|
|
|
|
} |
2508
|
3606
|
100
|
|
|
|
6986
|
if ($inside) { |
2509
|
|
|
|
|
|
|
# SCORE: matching (ss-scoords+2)/(n-container-ss-coords+2) |
2510
|
1738
|
|
|
|
|
2595
|
my $score = |
2511
|
|
|
|
|
|
|
(scalar(@coords)+2)/(scalar(@container_coords)+2); |
2512
|
1738
|
|
|
|
|
4051
|
push(@sf_score_pairs, |
2513
|
|
|
|
|
|
|
$_=>$score); |
2514
|
|
|
|
|
|
|
} |
2515
|
|
|
|
|
|
|
} |
2516
|
962
|
|
|
|
|
5527
|
return @sf_score_pairs; |
2517
|
|
|
|
|
|
|
} |
2518
|
|
|
|
|
|
|
|
2519
|
|
|
|
|
|
|
sub _get_splice_coords_for_sf { |
2520
|
4568
|
|
|
4568
|
|
4625
|
my $self = shift; |
2521
|
4568
|
|
|
|
|
3330
|
my $sf = shift; |
2522
|
|
|
|
|
|
|
|
2523
|
4568
|
|
|
|
|
7533
|
my @locs = $sf->location; |
2524
|
4568
|
100
|
|
|
|
6039
|
if ($sf->location->isa("Bio::Location::SplitLocationI")) { |
2525
|
4467
|
|
|
|
|
5822
|
@locs = $sf->location->each_Location; |
2526
|
|
|
|
|
|
|
} |
2527
|
|
|
|
|
|
|
|
2528
|
|
|
|
|
|
|
# get an ordered list of (start, end) positions |
2529
|
|
|
|
|
|
|
|
2530
|
|
|
|
|
|
|
# my @coords = |
2531
|
|
|
|
|
|
|
# map { |
2532
|
|
|
|
|
|
|
# $_->strand > 0 ? ($_->start, $_->end) : ($_->end, $_->start) |
2533
|
|
|
|
|
|
|
# } @locs; |
2534
|
|
|
|
|
|
|
|
2535
|
4568
|
|
|
|
|
6283
|
my @coords = map {($_->start, $_->end)} @locs; |
|
50783
|
|
|
|
|
58315
|
|
2536
|
|
|
|
|
|
|
|
2537
|
|
|
|
|
|
|
# remove first and last leaving only splice sites |
2538
|
4568
|
|
|
|
|
5859
|
pop @coords; |
2539
|
4568
|
|
|
|
|
3630
|
shift @coords; |
2540
|
4568
|
|
|
|
|
16622
|
return @coords; |
2541
|
|
|
|
|
|
|
} |
2542
|
|
|
|
|
|
|
|
2543
|
|
|
|
|
|
|
=head2 feature_from_splitloc |
2544
|
|
|
|
|
|
|
|
2545
|
|
|
|
|
|
|
Title : feature_from_splitloc |
2546
|
|
|
|
|
|
|
Usage : $unflattener->feature_from_splitloc(-features=>$sfs); |
2547
|
|
|
|
|
|
|
Function: |
2548
|
|
|
|
|
|
|
Example : |
2549
|
|
|
|
|
|
|
Returns : |
2550
|
|
|
|
|
|
|
Args : see below |
2551
|
|
|
|
|
|
|
|
2552
|
|
|
|
|
|
|
At this time all this method does is generate exons for mRNA or other RNA features |
2553
|
|
|
|
|
|
|
|
2554
|
|
|
|
|
|
|
Arguments: |
2555
|
|
|
|
|
|
|
|
2556
|
|
|
|
|
|
|
-feature: a Bio::SeqFeatureI object (that conforms to Bio::FeatureHolderI) |
2557
|
|
|
|
|
|
|
-seq: a Bio::SeqI object that contains Bio::SeqFeatureI objects |
2558
|
|
|
|
|
|
|
-features: an arrayref of Bio::SeqFeatureI object |
2559
|
|
|
|
|
|
|
|
2560
|
|
|
|
|
|
|
|
2561
|
|
|
|
|
|
|
=cut |
2562
|
|
|
|
|
|
|
|
2563
|
|
|
|
|
|
|
sub feature_from_splitloc{ |
2564
|
2035
|
|
|
2035
|
1
|
2374
|
my ($self,@args) = @_; |
2565
|
|
|
|
|
|
|
|
2566
|
2035
|
|
|
|
|
5284
|
my($sf, $seq, $sfs) = |
2567
|
|
|
|
|
|
|
$self->_rearrange([qw(FEATURE |
2568
|
|
|
|
|
|
|
SEQ |
2569
|
|
|
|
|
|
|
FEATURES |
2570
|
|
|
|
|
|
|
)], |
2571
|
|
|
|
|
|
|
@args); |
2572
|
2035
|
100
|
|
|
|
2887
|
my @sfs = (@{$sfs || []}); |
|
2035
|
|
|
|
|
4469
|
|
2573
|
2035
|
50
|
|
|
|
3002
|
push(@sfs, $sf) if $sf; |
2574
|
2035
|
100
|
|
|
|
3055
|
if ($seq) { |
2575
|
1
|
50
|
|
|
|
6
|
$seq->isa("Bio::SeqI") || $self->throw("$seq NOT A SeqI"); |
2576
|
1
|
|
|
|
|
6
|
@sfs = $seq->get_all_SeqFeatures; |
2577
|
|
|
|
|
|
|
} |
2578
|
2035
|
|
|
|
|
2123
|
my @exons = grep {$_->primary_tag eq 'exon'} @sfs; |
|
5856
|
|
|
|
|
7377
|
|
2579
|
2035
|
50
|
|
|
|
3114
|
if (@exons) { |
2580
|
0
|
|
|
|
|
0
|
$self->problem(2, |
2581
|
|
|
|
|
|
|
"There are already exons, so I will not infer exons"); |
2582
|
|
|
|
|
|
|
} |
2583
|
|
|
|
|
|
|
|
2584
|
|
|
|
|
|
|
# index of features by type+location |
2585
|
2035
|
|
|
|
|
2175
|
my %loc_h = (); |
2586
|
|
|
|
|
|
|
|
2587
|
|
|
|
|
|
|
# infer for every feature |
2588
|
2035
|
|
|
|
|
2128
|
foreach my $sf (@sfs) { |
2589
|
|
|
|
|
|
|
|
2590
|
5856
|
50
|
|
|
|
12559
|
$sf->isa("Bio::SeqFeatureI") || $self->throw("$sf NOT A SeqFeatureI"); |
2591
|
5856
|
50
|
|
|
|
9900
|
$sf->isa("Bio::FeatureHolderI") || $self->throw("$sf NOT A FeatureHolderI"); |
2592
|
|
|
|
|
|
|
|
2593
|
5856
|
|
|
|
|
7659
|
my $type = $sf->primary_tag; |
2594
|
5856
|
100
|
100
|
|
|
20432
|
next unless $type eq 'mRNA' or $type =~ /RNA/; |
2595
|
|
|
|
|
|
|
|
2596
|
|
|
|
|
|
|
# an mRNA from genbank will have a discontinuous location, |
2597
|
|
|
|
|
|
|
# with each sub-location being equivalent to an exon |
2598
|
1991
|
|
|
|
|
3068
|
my @locs = $sf->location; |
2599
|
|
|
|
|
|
|
|
2600
|
1991
|
100
|
|
|
|
2681
|
if ($sf->location->isa("Bio::Location::SplitLocationI")) { |
2601
|
1762
|
|
|
|
|
2336
|
@locs = $sf->location->each_Location; |
2602
|
|
|
|
|
|
|
} |
2603
|
|
|
|
|
|
|
|
2604
|
1991
|
50
|
|
|
|
4075
|
if (!@locs) { |
2605
|
3
|
|
|
3
|
|
15
|
use Data::Dumper; |
|
3
|
|
|
|
|
3
|
|
|
3
|
|
|
|
|
3107
|
|
2606
|
0
|
|
|
|
|
0
|
print Dumper $sf; |
2607
|
0
|
|
|
|
|
0
|
$self->throw("ASSERTION ERROR: sf has no location objects"); |
2608
|
|
|
|
|
|
|
} |
2609
|
|
|
|
|
|
|
|
2610
|
|
|
|
|
|
|
# make exons from locations |
2611
|
|
|
|
|
|
|
my @subsfs = |
2612
|
|
|
|
|
|
|
map { |
2613
|
1991
|
|
|
|
|
2466
|
my $subsf = Bio::SeqFeature::Generic->new(-location=>$_, |
|
18260
|
|
|
|
|
49173
|
|
2614
|
|
|
|
|
|
|
-primary_tag=>'exon'); |
2615
|
|
|
|
|
|
|
## Provide seq_id to new feature: |
2616
|
18260
|
50
|
|
|
|
29966
|
$subsf->seq_id($sf->seq_id) if $sf->seq_id; |
2617
|
18260
|
50
|
|
|
|
26476
|
$subsf->source_tag($sf->source_tag) if $sf->source_tag; |
2618
|
|
|
|
|
|
|
## Transfer /locus_tag and /gene tag values to inferred |
2619
|
|
|
|
|
|
|
## features. TODO: Perhaps? this should not be done |
2620
|
|
|
|
|
|
|
## indiscriminantly but rather by virtue of the setting |
2621
|
|
|
|
|
|
|
## of group_tag. |
2622
|
18260
|
|
|
|
|
32465
|
foreach my $tag (grep /gene|locus_tag/, $sf->get_all_tags) { |
2623
|
34683
|
|
|
|
|
47126
|
my @vals = $sf->get_tag_values($tag); |
2624
|
34683
|
|
|
|
|
49312
|
$subsf->add_tag_value($tag, @vals); |
2625
|
|
|
|
|
|
|
} |
2626
|
|
|
|
|
|
|
|
2627
|
18260
|
|
|
|
|
38969
|
my $locstr = 'exon::'.$self->_locstr($subsf); |
2628
|
|
|
|
|
|
|
|
2629
|
|
|
|
|
|
|
# re-use feature if type and location the same |
2630
|
18260
|
100
|
|
|
|
32151
|
if ($loc_h{$locstr}) { |
2631
|
7266
|
|
|
|
|
8637
|
$subsf = $loc_h{$locstr}; |
2632
|
|
|
|
|
|
|
} |
2633
|
|
|
|
|
|
|
else { |
2634
|
10994
|
|
|
|
|
17155
|
$loc_h{$locstr} = $subsf; |
2635
|
|
|
|
|
|
|
} |
2636
|
18260
|
|
|
|
|
29015
|
$subsf; |
2637
|
|
|
|
|
|
|
} @locs; |
2638
|
|
|
|
|
|
|
|
2639
|
|
|
|
|
|
|
# PARANOID CHECK |
2640
|
1991
|
|
|
|
|
3831
|
$self->_check_order_is_consistent($sf->location->strand,@subsfs); |
2641
|
|
|
|
|
|
|
#---- |
2642
|
|
|
|
|
|
|
|
2643
|
1991
|
|
|
|
|
4371
|
$sf->location(Bio::Location::Simple->new()); |
2644
|
|
|
|
|
|
|
|
2645
|
|
|
|
|
|
|
# we allow the exons to define the boundaries of the transcript |
2646
|
1991
|
|
|
|
|
5701
|
$sf->add_SeqFeature($_, 'EXPAND') foreach @subsfs; |
2647
|
|
|
|
|
|
|
|
2648
|
|
|
|
|
|
|
|
2649
|
1991
|
50
|
|
|
|
3029
|
if (!$sf->location->strand) { |
2650
|
|
|
|
|
|
|
# correct weird bioperl bug in previous versions; |
2651
|
|
|
|
|
|
|
# strand was not being set correctly |
2652
|
0
|
|
|
|
|
0
|
$sf->location->strand($subsfs[0]->location->strand); |
2653
|
|
|
|
|
|
|
} |
2654
|
|
|
|
|
|
|
|
2655
|
|
|
|
|
|
|
|
2656
|
|
|
|
|
|
|
} |
2657
|
2035
|
|
|
|
|
8862
|
return; |
2658
|
|
|
|
|
|
|
} |
2659
|
|
|
|
|
|
|
|
2660
|
|
|
|
|
|
|
#sub merge_features_with_same_loc { |
2661
|
|
|
|
|
|
|
# my ($self,@args) = @_; |
2662
|
|
|
|
|
|
|
|
2663
|
|
|
|
|
|
|
# my($sfs, $seq) = |
2664
|
|
|
|
|
|
|
# $self->_rearrange([qw(FEATURES |
2665
|
|
|
|
|
|
|
# SEQ |
2666
|
|
|
|
|
|
|
# )], |
2667
|
|
|
|
|
|
|
# @args); |
2668
|
|
|
|
|
|
|
# my @sfs = (@$sfs); |
2669
|
|
|
|
|
|
|
# if ($seq) { |
2670
|
|
|
|
|
|
|
# $seq->isa("Bio::SeqI") || $self->throw("$seq NOT A SeqI"); |
2671
|
|
|
|
|
|
|
# @sfs = $seq->get_all_SeqFeatures; |
2672
|
|
|
|
|
|
|
# } |
2673
|
|
|
|
|
|
|
|
2674
|
|
|
|
|
|
|
|
2675
|
|
|
|
|
|
|
# my %loc_h = (); |
2676
|
|
|
|
|
|
|
# foreach my $sf (@sfs) { |
2677
|
|
|
|
|
|
|
# my $type = $sf->primary_tag; |
2678
|
|
|
|
|
|
|
# my $locstr = $self->_locstr($sf); |
2679
|
|
|
|
|
|
|
## $loc_h{$type.$locstr} |
2680
|
|
|
|
|
|
|
# push(@{$exon_h{$self->_locstr($_)}}, $_) foreach @exons; |
2681
|
|
|
|
|
|
|
# } |
2682
|
|
|
|
|
|
|
#} |
2683
|
|
|
|
|
|
|
|
2684
|
|
|
|
|
|
|
=head2 infer_mRNA_from_CDS |
2685
|
|
|
|
|
|
|
|
2686
|
|
|
|
|
|
|
Title : infer_mRNA_from_CDS |
2687
|
|
|
|
|
|
|
Usage : |
2688
|
|
|
|
|
|
|
Function: |
2689
|
|
|
|
|
|
|
Example : |
2690
|
|
|
|
|
|
|
Returns : |
2691
|
|
|
|
|
|
|
Args : |
2692
|
|
|
|
|
|
|
|
2693
|
|
|
|
|
|
|
given a "type 1" containment hierarchy |
2694
|
|
|
|
|
|
|
|
2695
|
|
|
|
|
|
|
gene |
2696
|
|
|
|
|
|
|
CDS |
2697
|
|
|
|
|
|
|
exon |
2698
|
|
|
|
|
|
|
|
2699
|
|
|
|
|
|
|
this will infer the uniform "type 0" containment hierarchy |
2700
|
|
|
|
|
|
|
|
2701
|
|
|
|
|
|
|
gene |
2702
|
|
|
|
|
|
|
mRNA |
2703
|
|
|
|
|
|
|
CDS |
2704
|
|
|
|
|
|
|
exon |
2705
|
|
|
|
|
|
|
|
2706
|
|
|
|
|
|
|
all the children of the CDS will be moved to the mRNA |
2707
|
|
|
|
|
|
|
|
2708
|
|
|
|
|
|
|
a "type 2" containment hierarchy is mixed type "0" and "1" (for |
2709
|
|
|
|
|
|
|
example, see ftp.ncbi.nih.gov/genomes/Schizosaccharomyces_pombe/) |
2710
|
|
|
|
|
|
|
|
2711
|
|
|
|
|
|
|
=cut |
2712
|
|
|
|
|
|
|
|
2713
|
|
|
|
|
|
|
sub infer_mRNA_from_CDS{ |
2714
|
1
|
|
|
1
|
1
|
3
|
my ($self,@args) = @_; |
2715
|
|
|
|
|
|
|
|
2716
|
1
|
|
|
|
|
6
|
my($sf, $seq, $noinfer) = |
2717
|
|
|
|
|
|
|
$self->_rearrange([qw(FEATURE |
2718
|
|
|
|
|
|
|
SEQ |
2719
|
|
|
|
|
|
|
NOINFER |
2720
|
|
|
|
|
|
|
)], |
2721
|
|
|
|
|
|
|
@args); |
2722
|
1
|
|
|
|
|
3
|
my @sfs = ($sf); |
2723
|
1
|
50
|
|
|
|
4
|
if ($seq) { |
2724
|
1
|
50
|
|
|
|
6
|
$seq->isa("Bio::SeqI") || $self->throw("$seq NOT A SeqI"); |
2725
|
1
|
|
|
|
|
5
|
@sfs = $seq->get_all_SeqFeatures; |
2726
|
|
|
|
|
|
|
} |
2727
|
|
|
|
|
|
|
|
2728
|
1
|
|
|
|
|
4
|
foreach my $sf (@sfs) { |
2729
|
|
|
|
|
|
|
|
2730
|
52
|
50
|
|
|
|
124
|
$sf->isa("Bio::SeqFeatureI") || $self->throw("$sf NOT A SeqFeatureI"); |
2731
|
52
|
50
|
|
|
|
96
|
$sf->isa("Bio::FeatureHolderI") || $self->throw("$sf NOT A FeatureHolderI"); |
2732
|
52
|
50
|
|
|
|
87
|
if ($self->verbose > 0) { |
2733
|
0
|
|
|
|
|
0
|
printf STDERR " Checking $sf %s\n", $sf->primary_tag; |
2734
|
|
|
|
|
|
|
} |
2735
|
|
|
|
|
|
|
|
2736
|
52
|
50
|
|
|
|
78
|
if ($sf->primary_tag eq 'mRNA') { |
2737
|
0
|
|
|
|
|
0
|
$self->problem(2, |
2738
|
|
|
|
|
|
|
"Inferring mRNAs when there are already mRNAs present"); |
2739
|
|
|
|
|
|
|
} |
2740
|
|
|
|
|
|
|
|
2741
|
52
|
|
|
|
|
80
|
my @cdsl = grep {$_->primary_tag eq 'CDS' } $sf->get_SeqFeatures; |
|
24
|
|
|
|
|
35
|
|
2742
|
52
|
100
|
|
|
|
91
|
if (@cdsl) { |
2743
|
24
|
|
|
|
|
37
|
my @children = grep {$_->primary_tag ne 'CDS'} $sf->get_SeqFeatures; |
|
24
|
|
|
|
|
33
|
|
2744
|
24
|
|
|
|
|
27
|
my @mrnas = (); |
2745
|
|
|
|
|
|
|
|
2746
|
|
|
|
|
|
|
|
2747
|
24
|
|
|
|
|
27
|
foreach my $cds (@cdsl) { |
2748
|
|
|
|
|
|
|
|
2749
|
24
|
50
|
|
|
|
38
|
if ($self->verbose > 0) { |
2750
|
0
|
|
|
|
|
0
|
print " Inferring mRNA from CDS $cds\n"; |
2751
|
|
|
|
|
|
|
} |
2752
|
24
|
|
|
|
|
42
|
$self->_check_order_is_consistent($cds->location->strand,$cds->location->each_Location); |
2753
|
|
|
|
|
|
|
|
2754
|
24
|
|
|
|
|
61
|
my $loc = Bio::Location::Split->new; |
2755
|
24
|
|
|
|
|
50
|
foreach my $cdsexonloc ($cds->location->each_Location) { |
2756
|
124
|
|
|
|
|
235
|
my $subloc = |
2757
|
|
|
|
|
|
|
Bio::Location::Simple->new(-start=>$cdsexonloc->start, |
2758
|
|
|
|
|
|
|
-end=>$cdsexonloc->end, |
2759
|
|
|
|
|
|
|
-strand=>$cdsexonloc->strand); |
2760
|
124
|
|
|
|
|
249
|
$loc->add_sub_Location($subloc); |
2761
|
|
|
|
|
|
|
} |
2762
|
24
|
50
|
|
|
|
40
|
if ($noinfer) { |
2763
|
0
|
|
|
|
|
0
|
push(@mrnas, $cds); |
2764
|
|
|
|
|
|
|
} |
2765
|
|
|
|
|
|
|
else { |
2766
|
|
|
|
|
|
|
# share the same location |
2767
|
24
|
|
|
|
|
88
|
my $mrna = |
2768
|
|
|
|
|
|
|
Bio::SeqFeature::Generic->new(-location=>$loc, |
2769
|
|
|
|
|
|
|
-primary_tag=>'mRNA'); |
2770
|
|
|
|
|
|
|
|
2771
|
|
|
|
|
|
|
## Provide seq_id to new feature: |
2772
|
24
|
50
|
|
|
|
52
|
$mrna->seq_id($cds->seq_id) if $cds->seq_id; |
2773
|
24
|
50
|
|
|
|
39
|
$mrna->source_tag($cds->source_tag) if $cds->source_tag; |
2774
|
|
|
|
|
|
|
|
2775
|
24
|
|
|
|
|
43
|
$self->_check_order_is_consistent($mrna->location->strand,$mrna->location->each_Location); |
2776
|
|
|
|
|
|
|
|
2777
|
|
|
|
|
|
|
# make the mRNA hold the CDS; no EXPAND option, |
2778
|
|
|
|
|
|
|
# the CDS cannot be wider than the mRNA |
2779
|
24
|
|
|
|
|
58
|
$mrna->add_SeqFeature($cds); |
2780
|
|
|
|
|
|
|
|
2781
|
|
|
|
|
|
|
# mRNA steals children of CDS |
2782
|
24
|
|
|
|
|
46
|
foreach my $subsf ($cds->get_SeqFeatures) { |
2783
|
0
|
|
|
|
|
0
|
$mrna->add_SeqFeature($subsf); |
2784
|
|
|
|
|
|
|
} |
2785
|
24
|
|
|
|
|
45
|
$cds->remove_SeqFeatures; |
2786
|
24
|
|
|
|
|
42
|
push(@mrnas, $mrna); |
2787
|
|
|
|
|
|
|
} |
2788
|
|
|
|
|
|
|
} |
2789
|
|
|
|
|
|
|
# change gene/CDS to gene/mRNA |
2790
|
24
|
|
|
|
|
36
|
$sf->remove_SeqFeatures; |
2791
|
24
|
|
|
|
|
49
|
$sf->add_SeqFeature($_) foreach (@mrnas, @children); |
2792
|
|
|
|
|
|
|
} |
2793
|
|
|
|
|
|
|
} |
2794
|
1
|
|
|
|
|
8
|
return; |
2795
|
|
|
|
|
|
|
|
2796
|
|
|
|
|
|
|
|
2797
|
|
|
|
|
|
|
} |
2798
|
|
|
|
|
|
|
|
2799
|
|
|
|
|
|
|
=head2 remove_types |
2800
|
|
|
|
|
|
|
|
2801
|
|
|
|
|
|
|
Title : remove_types |
2802
|
|
|
|
|
|
|
Usage : $unf->remove_types(-seq=>$seq, -types=>["mRNA"]); |
2803
|
|
|
|
|
|
|
Function: |
2804
|
|
|
|
|
|
|
Example : |
2805
|
|
|
|
|
|
|
Returns : |
2806
|
|
|
|
|
|
|
Args : |
2807
|
|
|
|
|
|
|
|
2808
|
|
|
|
|
|
|
removes features of a set type |
2809
|
|
|
|
|
|
|
|
2810
|
|
|
|
|
|
|
useful for pre-filtering a genbank record; eg to get rid of STSs |
2811
|
|
|
|
|
|
|
|
2812
|
|
|
|
|
|
|
also, there is no way to unflatten |
2813
|
|
|
|
|
|
|
ftp.ncbi.nih.gov/genomes/Schizosaccharomyces_pombe/ UNLESS the bogus |
2814
|
|
|
|
|
|
|
mRNAs in these records are removed (or changed to a different type) - |
2815
|
|
|
|
|
|
|
they just confuse things too much |
2816
|
|
|
|
|
|
|
|
2817
|
|
|
|
|
|
|
=cut |
2818
|
|
|
|
|
|
|
|
2819
|
|
|
|
|
|
|
sub remove_types{ |
2820
|
0
|
|
|
0
|
1
|
0
|
my ($self,@args) = @_; |
2821
|
|
|
|
|
|
|
|
2822
|
0
|
|
|
|
|
0
|
my($seq, $types) = |
2823
|
|
|
|
|
|
|
$self->_rearrange([qw( |
2824
|
|
|
|
|
|
|
SEQ |
2825
|
|
|
|
|
|
|
TYPES |
2826
|
|
|
|
|
|
|
)], |
2827
|
|
|
|
|
|
|
@args); |
2828
|
0
|
0
|
|
|
|
0
|
$seq->isa("Bio::SeqI") || $self->throw("$seq NOT A SeqI"); |
2829
|
0
|
|
|
|
|
0
|
my @sfs = $seq->get_all_SeqFeatures; |
2830
|
0
|
|
|
|
|
0
|
my %rh = map {$_=>1} @$types; |
|
0
|
|
|
|
|
0
|
|
2831
|
0
|
|
|
|
|
0
|
@sfs = grep {!$rh{$_->primary_tag}} @sfs; |
|
0
|
|
|
|
|
0
|
|
2832
|
0
|
|
|
|
|
0
|
$seq->remove_SeqFeatures; |
2833
|
0
|
|
|
|
|
0
|
$seq->add_SeqFeature($_) foreach @sfs; |
2834
|
0
|
|
|
|
|
0
|
return; |
2835
|
|
|
|
|
|
|
} |
2836
|
|
|
|
|
|
|
|
2837
|
|
|
|
|
|
|
|
2838
|
|
|
|
|
|
|
# _check_order_is_consistent($strand,$ranges) RETURNS BOOL |
2839
|
|
|
|
|
|
|
# |
2840
|
|
|
|
|
|
|
# note: the value of this test is moot - there are many valid, |
2841
|
|
|
|
|
|
|
# if unusual cases where it would flag an anomaly. for example |
2842
|
|
|
|
|
|
|
# transpliced genes such as mod(mdg4) in dmel on AE003744, and |
2843
|
|
|
|
|
|
|
# the following spliced gene on NC_001284: |
2844
|
|
|
|
|
|
|
# |
2845
|
|
|
|
|
|
|
# mRNA complement(join(20571..20717,21692..22086,190740..190761, |
2846
|
|
|
|
|
|
|
# 140724..141939,142769..142998)) |
2847
|
|
|
|
|
|
|
# /gene="nad5" |
2848
|
|
|
|
|
|
|
# /note="trans-splicing, RNA editing" |
2849
|
|
|
|
|
|
|
# /db_xref="GeneID:814567" |
2850
|
|
|
|
|
|
|
# |
2851
|
|
|
|
|
|
|
# note how the exons are not in order |
2852
|
|
|
|
|
|
|
# this will flag a level-3 warning, the user of this module |
2853
|
|
|
|
|
|
|
# can ignore this and deal appropriately with the resulting |
2854
|
|
|
|
|
|
|
# unordered exons |
2855
|
|
|
|
|
|
|
sub _check_order_is_consistent { |
2856
|
2039
|
|
|
2039
|
|
1768
|
my $self = shift; |
2857
|
|
|
|
|
|
|
|
2858
|
2039
|
|
|
|
|
1699
|
my $parent_strand = shift; # this does nothing..? |
2859
|
2039
|
|
|
|
|
3012
|
my @ranges = @_; |
2860
|
2039
|
50
|
|
|
|
3251
|
return unless @ranges; |
2861
|
|
|
|
|
|
|
my $rangestr = |
2862
|
2039
|
|
|
|
|
2518
|
join(" ",map{sprintf("[%s,%s]",$_->start,$_->end)} @ranges); |
|
18508
|
|
|
|
|
24773
|
|
2863
|
2039
|
|
|
|
|
4557
|
my $strand = $ranges[0]->strand; |
2864
|
2039
|
|
|
|
|
4539
|
for (my $i=1; $i<@ranges;$i++) { |
2865
|
16469
|
50
|
|
|
|
18927
|
if ($ranges[$i]->strand != $strand) { |
2866
|
0
|
|
|
|
|
0
|
$self->problem(1,"inconsistent strands. Trans-spliced gene? Range: $rangestr"); |
2867
|
0
|
|
|
|
|
0
|
return 1; |
2868
|
|
|
|
|
|
|
# mixed ranges - autopass |
2869
|
|
|
|
|
|
|
# some mRNAs have exons on both strands; for |
2870
|
|
|
|
|
|
|
# example, the dmel mod(mdg4) gene which is |
2871
|
|
|
|
|
|
|
# trans-spliced (in actual fact two mRNAs) |
2872
|
|
|
|
|
|
|
} |
2873
|
|
|
|
|
|
|
} |
2874
|
2039
|
|
|
|
|
1867
|
my $pass = 1; |
2875
|
2039
|
|
|
|
|
2953
|
for (my $i=1; $i<@ranges;$i++) { |
2876
|
16469
|
|
|
|
|
13885
|
my $rangeP = $ranges[$i-1]; |
2877
|
16469
|
|
|
|
|
12836
|
my $range = $ranges[$i]; |
2878
|
16469
|
50
|
|
|
|
20730
|
if ($rangeP->start > $range->end) { |
2879
|
0
|
0
|
|
|
|
0
|
if ($self->seq->is_circular) { |
2880
|
|
|
|
|
|
|
# see for example NC_006578.gbk |
2881
|
|
|
|
|
|
|
# we make exceptions for circular genomes here. |
2882
|
|
|
|
|
|
|
# see Re: [Gmod-ajax] flatfile-to-json.pl error with GFF |
2883
|
|
|
|
|
|
|
# 2010-07-26 |
2884
|
|
|
|
|
|
|
} |
2885
|
|
|
|
|
|
|
else { |
2886
|
|
|
|
|
|
|
# failed - but still get one more chance.. |
2887
|
0
|
|
|
|
|
0
|
$pass = 0; |
2888
|
0
|
|
|
|
|
0
|
$self->problem(2,"Ranges not in correct order. Strange ensembl genbank entry? Range: $rangestr"); |
2889
|
0
|
|
|
|
|
0
|
last; |
2890
|
|
|
|
|
|
|
} |
2891
|
|
|
|
|
|
|
} |
2892
|
|
|
|
|
|
|
} |
2893
|
|
|
|
|
|
|
|
2894
|
2039
|
50
|
|
|
|
3367
|
if (!$pass) { |
2895
|
|
|
|
|
|
|
# sometimes (eg ensembl flavour genbank files) |
2896
|
|
|
|
|
|
|
# exons on reverse strand listed in reverse order |
2897
|
|
|
|
|
|
|
# eg join(complement(R1),...,complement(Rn)) |
2898
|
|
|
|
|
|
|
# where R1 > R2 |
2899
|
0
|
|
|
|
|
0
|
for (my $i=1; $i<@ranges;$i++) { |
2900
|
0
|
|
|
|
|
0
|
my $rangeP = $ranges[$i-1]; |
2901
|
0
|
|
|
|
|
0
|
my $range = $ranges[$i]; |
2902
|
0
|
0
|
|
|
|
0
|
if ($rangeP->end < $range->start) { |
2903
|
0
|
|
|
|
|
0
|
$self->problem(3,"inconsistent order. Range: $rangestr"); |
2904
|
0
|
|
|
|
|
0
|
return 0; |
2905
|
|
|
|
|
|
|
} |
2906
|
|
|
|
|
|
|
} |
2907
|
|
|
|
|
|
|
} |
2908
|
2039
|
|
|
|
|
2939
|
return 1; # pass |
2909
|
|
|
|
|
|
|
} |
2910
|
|
|
|
|
|
|
|
2911
|
|
|
|
|
|
|
# PRIVATE METHOD: _locstr($sf) |
2912
|
|
|
|
|
|
|
# |
2913
|
|
|
|
|
|
|
# returns a location string for a feature; just the outer boundaries |
2914
|
|
|
|
|
|
|
sub _locstr { |
2915
|
18524
|
|
|
18524
|
|
13441
|
my $self = shift; |
2916
|
18524
|
|
|
|
|
11908
|
my $sf = shift; |
2917
|
|
|
|
|
|
|
return |
2918
|
18524
|
|
|
|
|
27981
|
sprintf("%d..%d", $sf->start, $sf->end); |
2919
|
|
|
|
|
|
|
} |
2920
|
|
|
|
|
|
|
|
2921
|
|
|
|
|
|
|
sub iterate_containment_tree { |
2922
|
0
|
|
|
0
|
0
|
|
my $self = shift; |
2923
|
0
|
|
|
|
|
|
my $feature_holder = shift; |
2924
|
0
|
|
|
|
|
|
my $sub = shift; |
2925
|
0
|
|
|
|
|
|
$sub->($feature_holder); |
2926
|
0
|
|
|
|
|
|
my @sfs = $feature_holder->get_SeqFeatures; |
2927
|
0
|
|
|
|
|
|
$self->iterate_containment_tree($_) foreach @sfs; |
2928
|
|
|
|
|
|
|
} |
2929
|
|
|
|
|
|
|
|
2930
|
|
|
|
|
|
|
sub find_best_pairs { |
2931
|
0
|
|
|
0
|
0
|
|
my $matrix = shift; |
2932
|
0
|
|
|
|
|
|
my $size = shift; |
2933
|
0
|
|
0
|
|
|
|
my $i = shift || 0; |
2934
|
|
|
|
|
|
|
|
2935
|
0
|
|
|
|
|
|
for (my $j=0; $j < $size; $j++) { |
2936
|
0
|
|
|
|
|
|
my $score = $matrix->[$i][$j]; |
2937
|
0
|
0
|
|
|
|
|
if (!defined($score)) { |
2938
|
0
|
|
|
|
|
|
next; |
2939
|
|
|
|
|
|
|
} |
2940
|
|
|
|
|
|
|
|
2941
|
|
|
|
|
|
|
} |
2942
|
|
|
|
|
|
|
|
2943
|
|
|
|
|
|
|
} |
2944
|
|
|
|
|
|
|
|
2945
|
|
|
|
|
|
|
1; |