File Coverage

bson/bson-md5.c
Criterion Covered Total %
statement 0 116 0.0
branch 0 20 0.0
condition n/a
subroutine n/a
pod n/a
total 0 136 0.0


line stmt bran cond sub pod time code
1             /*
2             Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
3              
4             This software is provided 'as-is', without any express or implied
5             warranty. In no event will the authors be held liable for any damages
6             arising from the use of this software.
7              
8             Permission is granted to anyone to use this software for any purpose,
9             including commercial applications, and to alter it and redistribute it
10             freely, subject to the following restrictions:
11              
12             1. The origin of this software must not be misrepresented; you must not
13             claim that you wrote the original software. If you use this software
14             in a product, an acknowledgment in the product documentation would be
15             appreciated but is not required.
16             2. Altered source versions must be plainly marked as such, and must not be
17             misrepresented as being the original software.
18             3. This notice may not be removed or altered from any source distribution.
19              
20             L. Peter Deutsch
21             ghost@aladdin.com
22              
23             */
24             /* $Id: md5.c,v 1.6 2002/04/13 19:20:28 lpd Exp $ */
25             /*
26             Independent implementation of MD5 (RFC 1321).
27              
28             This code implements the MD5 Algorithm defined in RFC 1321, whose
29             text is available at
30             http://www.ietf.org/rfc/rfc1321.txt
31             The code is derived from the text of the RFC, including the test suite
32             (section A.5) but excluding the rest of Appendix A. It does not include
33             any code or documentation that is identified in the RFC as being
34             copyrighted.
35              
36             The original and principal author of md5.c is L. Peter Deutsch
37             . Other authors are noted in the change history
38             that follows (in reverse chronological order):
39              
40             2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
41             either statically or dynamically; added missing #include
42             in library.
43             2002-03-11 lpd Corrected argument list for main(), and added int return
44             type, in test program and T value program.
45             2002-02-21 lpd Added missing #include in test program.
46             2000-07-03 lpd Patched to eliminate warnings about "constant is
47             unsigned in ANSI C, signed in traditional"; made test program
48             self-checking.
49             1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
50             1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
51             1999-05-03 lpd Original version.
52             */
53              
54             /*
55             * The following MD5 implementation has been modified to use types as
56             * specified in libbson.
57             */
58              
59             #include "bson-compat.h"
60              
61             #include
62              
63             #include "bson-md5.h"
64              
65              
66             #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
67             #if BSON_BYTE_ORDER == BSON_BIG_ENDIAN
68             # define BYTE_ORDER 1
69             #else
70             # define BYTE_ORDER -1
71             #endif
72              
73             #define T_MASK ((uint32_t)~0)
74             #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
75             #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
76             #define T3 0x242070db
77             #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
78             #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
79             #define T6 0x4787c62a
80             #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
81             #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
82             #define T9 0x698098d8
83             #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
84             #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
85             #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
86             #define T13 0x6b901122
87             #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
88             #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
89             #define T16 0x49b40821
90             #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
91             #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
92             #define T19 0x265e5a51
93             #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
94             #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
95             #define T22 0x02441453
96             #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
97             #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
98             #define T25 0x21e1cde6
99             #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
100             #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
101             #define T28 0x455a14ed
102             #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
103             #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
104             #define T31 0x676f02d9
105             #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
106             #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
107             #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
108             #define T35 0x6d9d6122
109             #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
110             #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
111             #define T38 0x4bdecfa9
112             #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
113             #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
114             #define T41 0x289b7ec6
115             #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
116             #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
117             #define T44 0x04881d05
118             #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
119             #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
120             #define T47 0x1fa27cf8
121             #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
122             #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
123             #define T50 0x432aff97
124             #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
125             #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
126             #define T53 0x655b59c3
127             #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
128             #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
129             #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
130             #define T57 0x6fa87e4f
131             #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
132             #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
133             #define T60 0x4e0811a1
134             #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
135             #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
136             #define T63 0x2ad7d2bb
137             #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
138              
139              
140             static void
141 0           bson_md5_process (bson_md5_t *md5,
142             const uint8_t *data)
143             {
144 0           uint32_t a = md5->abcd[0];
145 0           uint32_t b = md5->abcd[1];
146 0           uint32_t c = md5->abcd[2];
147 0           uint32_t d = md5->abcd[3];
148             uint32_t t;
149              
150             #if BYTE_ORDER > 0
151             /* Define storage only for big-endian CPUs. */
152             uint32_t X[16];
153             #else
154             /* Define storage for little-endian or both types of CPUs. */
155             uint32_t xbuf[16];
156             const uint32_t *X;
157             #endif
158              
159             {
160             #if BYTE_ORDER == 0
161             /*
162             * Determine dynamically whether this is a big-endian or
163             * little-endian machine, since we can use a more efficient
164             * algorithm on the latter.
165             */
166             static const int w = 1;
167              
168             if (*((const uint8_t *)&w)) /* dynamic little-endian */
169             #endif
170             #if BYTE_ORDER <= 0 /* little-endian */
171             {
172             /*
173             * On little-endian machines, we can process properly aligned
174             * data without copying it.
175             */
176 0 0         if (!((data - (const uint8_t *)0) & 3)) {
177             /* data are properly aligned */
178             #ifdef __clang__
179             #pragma clang diagnostic push
180             #pragma clang diagnostic ignored "-Wcast-align"
181             #endif
182 0           X = (const uint32_t *)data;
183             #ifdef __clang__
184             #pragma clang diagnostic pop
185             #endif
186             }
187             else {
188             /* not aligned */
189 0           memcpy(xbuf, data, sizeof (xbuf));
190 0           X = xbuf;
191             }
192             }
193             #endif
194             #if BYTE_ORDER == 0
195             else /* dynamic big-endian */
196             #endif
197             #if BYTE_ORDER >= 0 /* big-endian */
198             {
199             /*
200             * On big-endian machines, we must arrange the bytes in the
201             * right order.
202             */
203             const uint8_t *xp = data;
204             int i;
205              
206             # if BYTE_ORDER == 0
207             X = xbuf; /* (dynamic only) */
208             # else
209             # define xbuf X /* (static only) */
210             # endif
211             for (i = 0; i < 16; ++i, xp += 4)
212             xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
213             }
214             #endif
215             }
216              
217             #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
218              
219             /* Round 1. */
220             /* Let [abcd k s i] denote the operation
221             a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
222             #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
223             #define SET(a, b, c, d, k, s, Ti)\
224             t = a + F(b,c,d) + X[k] + Ti;\
225             a = ROTATE_LEFT(t, s) + b
226             /* Do the following 16 operations. */
227 0           SET(a, b, c, d, 0, 7, T1);
228 0           SET(d, a, b, c, 1, 12, T2);
229 0           SET(c, d, a, b, 2, 17, T3);
230 0           SET(b, c, d, a, 3, 22, T4);
231 0           SET(a, b, c, d, 4, 7, T5);
232 0           SET(d, a, b, c, 5, 12, T6);
233 0           SET(c, d, a, b, 6, 17, T7);
234 0           SET(b, c, d, a, 7, 22, T8);
235 0           SET(a, b, c, d, 8, 7, T9);
236 0           SET(d, a, b, c, 9, 12, T10);
237 0           SET(c, d, a, b, 10, 17, T11);
238 0           SET(b, c, d, a, 11, 22, T12);
239 0           SET(a, b, c, d, 12, 7, T13);
240 0           SET(d, a, b, c, 13, 12, T14);
241 0           SET(c, d, a, b, 14, 17, T15);
242 0           SET(b, c, d, a, 15, 22, T16);
243             #undef SET
244              
245             /* Round 2. */
246             /* Let [abcd k s i] denote the operation
247             a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
248             #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
249             #define SET(a, b, c, d, k, s, Ti)\
250             t = a + G(b,c,d) + X[k] + Ti;\
251             a = ROTATE_LEFT(t, s) + b
252             /* Do the following 16 operations. */
253 0           SET(a, b, c, d, 1, 5, T17);
254 0           SET(d, a, b, c, 6, 9, T18);
255 0           SET(c, d, a, b, 11, 14, T19);
256 0           SET(b, c, d, a, 0, 20, T20);
257 0           SET(a, b, c, d, 5, 5, T21);
258 0           SET(d, a, b, c, 10, 9, T22);
259 0           SET(c, d, a, b, 15, 14, T23);
260 0           SET(b, c, d, a, 4, 20, T24);
261 0           SET(a, b, c, d, 9, 5, T25);
262 0           SET(d, a, b, c, 14, 9, T26);
263 0           SET(c, d, a, b, 3, 14, T27);
264 0           SET(b, c, d, a, 8, 20, T28);
265 0           SET(a, b, c, d, 13, 5, T29);
266 0           SET(d, a, b, c, 2, 9, T30);
267 0           SET(c, d, a, b, 7, 14, T31);
268 0           SET(b, c, d, a, 12, 20, T32);
269             #undef SET
270              
271             /* Round 3. */
272             /* Let [abcd k s t] denote the operation
273             a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
274             #define H(x, y, z) ((x) ^ (y) ^ (z))
275             #define SET(a, b, c, d, k, s, Ti)\
276             t = a + H(b,c,d) + X[k] + Ti;\
277             a = ROTATE_LEFT(t, s) + b
278             /* Do the following 16 operations. */
279 0           SET(a, b, c, d, 5, 4, T33);
280 0           SET(d, a, b, c, 8, 11, T34);
281 0           SET(c, d, a, b, 11, 16, T35);
282 0           SET(b, c, d, a, 14, 23, T36);
283 0           SET(a, b, c, d, 1, 4, T37);
284 0           SET(d, a, b, c, 4, 11, T38);
285 0           SET(c, d, a, b, 7, 16, T39);
286 0           SET(b, c, d, a, 10, 23, T40);
287 0           SET(a, b, c, d, 13, 4, T41);
288 0           SET(d, a, b, c, 0, 11, T42);
289 0           SET(c, d, a, b, 3, 16, T43);
290 0           SET(b, c, d, a, 6, 23, T44);
291 0           SET(a, b, c, d, 9, 4, T45);
292 0           SET(d, a, b, c, 12, 11, T46);
293 0           SET(c, d, a, b, 15, 16, T47);
294 0           SET(b, c, d, a, 2, 23, T48);
295             #undef SET
296              
297             /* Round 4. */
298             /* Let [abcd k s t] denote the operation
299             a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
300             #define I(x, y, z) ((y) ^ ((x) | ~(z)))
301             #define SET(a, b, c, d, k, s, Ti)\
302             t = a + I(b,c,d) + X[k] + Ti;\
303             a = ROTATE_LEFT(t, s) + b
304             /* Do the following 16 operations. */
305 0           SET(a, b, c, d, 0, 6, T49);
306 0           SET(d, a, b, c, 7, 10, T50);
307 0           SET(c, d, a, b, 14, 15, T51);
308 0           SET(b, c, d, a, 5, 21, T52);
309 0           SET(a, b, c, d, 12, 6, T53);
310 0           SET(d, a, b, c, 3, 10, T54);
311 0           SET(c, d, a, b, 10, 15, T55);
312 0           SET(b, c, d, a, 1, 21, T56);
313 0           SET(a, b, c, d, 8, 6, T57);
314 0           SET(d, a, b, c, 15, 10, T58);
315 0           SET(c, d, a, b, 6, 15, T59);
316 0           SET(b, c, d, a, 13, 21, T60);
317 0           SET(a, b, c, d, 4, 6, T61);
318 0           SET(d, a, b, c, 11, 10, T62);
319 0           SET(c, d, a, b, 2, 15, T63);
320 0           SET(b, c, d, a, 9, 21, T64);
321             #undef SET
322              
323             /* Then perform the following additions. (That is increment each
324             of the four registers by the value it had before this block
325             was started.) */
326 0           md5->abcd[0] += a;
327 0           md5->abcd[1] += b;
328 0           md5->abcd[2] += c;
329 0           md5->abcd[3] += d;
330 0           }
331              
332             void
333 0           bson_md5_init (bson_md5_t *pms)
334             {
335 0           pms->count[0] = pms->count[1] = 0;
336 0           pms->abcd[0] = 0x67452301;
337 0           pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
338 0           pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
339 0           pms->abcd[3] = 0x10325476;
340 0           }
341              
342             void
343 0           bson_md5_append (bson_md5_t *pms,
344             const uint8_t *data,
345             uint32_t nbytes)
346             {
347 0           const uint8_t *p = data;
348 0           int left = nbytes;
349 0           int offset = (pms->count[0] >> 3) & 63;
350 0           uint32_t nbits = (uint32_t)(nbytes << 3);
351              
352 0 0         if (nbytes <= 0)
353 0           return;
354              
355             /* Update the message length. */
356 0           pms->count[1] += nbytes >> 29;
357 0           pms->count[0] += nbits;
358 0 0         if (pms->count[0] < nbits)
359 0           pms->count[1]++;
360              
361             /* Process an initial partial block. */
362 0 0         if (offset) {
363 0 0         int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
364              
365 0           memcpy(pms->buf + offset, p, copy);
366 0 0         if (offset + copy < 64)
367 0           return;
368 0           p += copy;
369 0           left -= copy;
370 0           bson_md5_process(pms, pms->buf);
371             }
372              
373             /* Process full blocks. */
374 0 0         for (; left >= 64; p += 64, left -= 64)
375 0           bson_md5_process(pms, p);
376              
377             /* Process a final partial block. */
378 0 0         if (left)
379 0           memcpy(pms->buf, p, left);
380             }
381              
382             void
383 0           bson_md5_finish (bson_md5_t *pms,
384             uint8_t digest[16])
385             {
386             static const uint8_t pad[64] = {
387             0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
388             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
389             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
390             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
391             };
392             uint8_t data[8];
393             int i;
394              
395             /* Save the length before padding. */
396 0 0         for (i = 0; i < 8; ++i)
397 0           data[i] = (uint8_t)(pms->count[i >> 2] >> ((i & 3) << 3));
398             /* Pad to 56 bytes mod 64. */
399 0           bson_md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
400             /* Append the length. */
401 0           bson_md5_append(pms, data, sizeof (data));
402 0 0         for (i = 0; i < 16; ++i)
403 0           digest[i] = (uint8_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
404 0           }