line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
3
|
|
|
|
|
|
|
lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
These are functions for producing 32-bit hashes for hash table lookup. |
6
|
|
|
|
|
|
|
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
7
|
|
|
|
|
|
|
are externally useful functions. Routines to test the hash are included |
8
|
|
|
|
|
|
|
if SELF_TEST is defined. You can use this free for any purpose. It's in |
9
|
|
|
|
|
|
|
the public domain. It has no warranty. |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
You probably want to use hashlittle(). hashlittle() and hashbig() |
12
|
|
|
|
|
|
|
hash byte arrays. hashlittle() is is faster than hashbig() on |
13
|
|
|
|
|
|
|
little-endian machines. Intel and AMD are little-endian machines. |
14
|
|
|
|
|
|
|
On second thought, you probably want hashlittle2(), which is identical to |
15
|
|
|
|
|
|
|
hashlittle() except it returns two 32-bit hashes for the price of one. |
16
|
|
|
|
|
|
|
You could implement hashbig2() if you wanted but I haven't bothered here. |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
If you want to find a hash of, say, exactly 7 integers, do |
19
|
|
|
|
|
|
|
a = i1; b = i2; c = i3; |
20
|
|
|
|
|
|
|
mix(a,b,c); |
21
|
|
|
|
|
|
|
a += i4; b += i5; c += i6; |
22
|
|
|
|
|
|
|
mix(a,b,c); |
23
|
|
|
|
|
|
|
a += i7; |
24
|
|
|
|
|
|
|
final(a,b,c); |
25
|
|
|
|
|
|
|
then use c as the hash value. If you have a variable length array of |
26
|
|
|
|
|
|
|
4-byte integers to hash, use hashword(). If you have a byte array (like |
27
|
|
|
|
|
|
|
a character string), use hashlittle(). If you have several byte arrays, or |
28
|
|
|
|
|
|
|
a mix of things, see the comments above hashlittle(). |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
31
|
|
|
|
|
|
|
then mix those integers. This is fast (you can do a lot more thorough |
32
|
|
|
|
|
|
|
mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
33
|
|
|
|
|
|
|
on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
34
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
35
|
|
|
|
|
|
|
*/ |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#ifdef linux |
38
|
|
|
|
|
|
|
#include /* attempt to define endianness */ |
39
|
|
|
|
|
|
|
#include /* attempt to define endianness */ |
40
|
|
|
|
|
|
|
#endif |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/* |
43
|
|
|
|
|
|
|
* My best guess at if you are big-endian or little-endian. This may |
44
|
|
|
|
|
|
|
* need adjustment. |
45
|
|
|
|
|
|
|
*/ |
46
|
|
|
|
|
|
|
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
47
|
|
|
|
|
|
|
__BYTE_ORDER == __LITTLE_ENDIAN) || \ |
48
|
|
|
|
|
|
|
(defined(i386) || defined(__i386__) || defined(__i486__) || \ |
49
|
|
|
|
|
|
|
defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
50
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 1 |
51
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 0 |
52
|
|
|
|
|
|
|
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
53
|
|
|
|
|
|
|
__BYTE_ORDER == __BIG_ENDIAN) || \ |
54
|
|
|
|
|
|
|
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
55
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 0 |
56
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 1 |
57
|
|
|
|
|
|
|
#else |
58
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 0 |
59
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 0 |
60
|
|
|
|
|
|
|
#endif |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
#define hashsize(n) ((uint32_t)1<<(n)) |
63
|
|
|
|
|
|
|
#define hashmask(n) (hashsize(n)-1) |
64
|
|
|
|
|
|
|
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
/* |
67
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
68
|
|
|
|
|
|
|
mix -- mix 3 32-bit values reversibly. |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
This is reversible, so any information in (a,b,c) before mix() is |
71
|
|
|
|
|
|
|
still in (a,b,c) after mix(). |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through |
74
|
|
|
|
|
|
|
mix() in reverse, there are at least 32 bits of the output that |
75
|
|
|
|
|
|
|
are sometimes the same for one pair and different for another pair. |
76
|
|
|
|
|
|
|
This was tested for: |
77
|
|
|
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination |
78
|
|
|
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
79
|
|
|
|
|
|
|
(a,b,c). |
80
|
|
|
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
81
|
|
|
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
82
|
|
|
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit |
83
|
|
|
|
|
|
|
difference. |
84
|
|
|
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or |
85
|
|
|
|
|
|
|
all zero plus a counter that starts at zero. |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
88
|
|
|
|
|
|
|
satisfy this are |
89
|
|
|
|
|
|
|
4 6 8 16 19 4 |
90
|
|
|
|
|
|
|
9 15 3 18 27 15 |
91
|
|
|
|
|
|
|
14 9 3 7 17 3 |
92
|
|
|
|
|
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
93
|
|
|
|
|
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I |
94
|
|
|
|
|
|
|
used http://burtleburtle.net/bob/hash/avalanche.html to choose |
95
|
|
|
|
|
|
|
the operations, constants, and arrangements of the variables. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
This does not achieve avalanche. There are input bits of (a,b,c) |
98
|
|
|
|
|
|
|
that fail to affect some output bits of (a,b,c), especially of a. The |
99
|
|
|
|
|
|
|
most thoroughly mixed value is c, but it doesn't really even achieve |
100
|
|
|
|
|
|
|
avalanche in c. |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
This allows some parallelism. Read-after-writes are good at doubling |
103
|
|
|
|
|
|
|
the number of bits affected, so the goal of mixing pulls in the opposite |
104
|
|
|
|
|
|
|
direction as the goal of parallelism. I did what I could. Rotates |
105
|
|
|
|
|
|
|
seem to cost as much as shifts on every machine I could lay my hands |
106
|
|
|
|
|
|
|
on, and rotates are much kinder to the top and bottom bits, so I used |
107
|
|
|
|
|
|
|
rotates. |
108
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
109
|
|
|
|
|
|
|
*/ |
110
|
|
|
|
|
|
|
#define mix(a,b,c) \ |
111
|
|
|
|
|
|
|
{ \ |
112
|
|
|
|
|
|
|
a -= c; a ^= rot(c, 4); c += b; \ |
113
|
|
|
|
|
|
|
b -= a; b ^= rot(a, 6); a += c; \ |
114
|
|
|
|
|
|
|
c -= b; c ^= rot(b, 8); b += a; \ |
115
|
|
|
|
|
|
|
a -= c; a ^= rot(c,16); c += b; \ |
116
|
|
|
|
|
|
|
b -= a; b ^= rot(a,19); a += c; \ |
117
|
|
|
|
|
|
|
c -= b; c ^= rot(b, 4); b += a; \ |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
/* |
121
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
122
|
|
|
|
|
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
Pairs of (a,b,c) values differing in only a few bits will usually |
125
|
|
|
|
|
|
|
produce values of c that look totally different. This was tested for |
126
|
|
|
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination |
127
|
|
|
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
128
|
|
|
|
|
|
|
(a,b,c). |
129
|
|
|
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
130
|
|
|
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
131
|
|
|
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit |
132
|
|
|
|
|
|
|
difference. |
133
|
|
|
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or |
134
|
|
|
|
|
|
|
all zero plus a counter that starts at zero. |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
These constants passed: |
137
|
|
|
|
|
|
|
14 11 25 16 4 14 24 |
138
|
|
|
|
|
|
|
12 14 25 16 4 14 24 |
139
|
|
|
|
|
|
|
and these came close: |
140
|
|
|
|
|
|
|
4 8 15 26 3 22 24 |
141
|
|
|
|
|
|
|
10 8 15 26 3 22 24 |
142
|
|
|
|
|
|
|
11 8 15 26 3 22 24 |
143
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
144
|
|
|
|
|
|
|
*/ |
145
|
|
|
|
|
|
|
#define final(a,b,c) \ |
146
|
|
|
|
|
|
|
{ \ |
147
|
|
|
|
|
|
|
c ^= b; c -= rot(b,14); \ |
148
|
|
|
|
|
|
|
a ^= c; a -= rot(c,11); \ |
149
|
|
|
|
|
|
|
b ^= a; b -= rot(a,25); \ |
150
|
|
|
|
|
|
|
c ^= b; c -= rot(b,16); \ |
151
|
|
|
|
|
|
|
a ^= c; a -= rot(c,4); \ |
152
|
|
|
|
|
|
|
b ^= a; b -= rot(a,14); \ |
153
|
|
|
|
|
|
|
c ^= b; c -= rot(b,24); \ |
154
|
|
|
|
|
|
|
} |
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
/* |
158
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
159
|
|
|
|
|
|
|
hashlittle() -- hash a variable-length key into a 32-bit value |
160
|
|
|
|
|
|
|
k : the key (the unaligned variable-length array of bytes) |
161
|
|
|
|
|
|
|
length : the length of the key, counting by bytes |
162
|
|
|
|
|
|
|
initval : can be any 4-byte value |
163
|
|
|
|
|
|
|
Returns a 32-bit value. Every bit of the key affects every bit of |
164
|
|
|
|
|
|
|
the return value. Two keys differing by one or two bits will have |
165
|
|
|
|
|
|
|
totally different hash values. |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
The best hash table sizes are powers of 2. There is no need to do |
168
|
|
|
|
|
|
|
mod a prime (mod is sooo slow!). If you need less than 32 bits, |
169
|
|
|
|
|
|
|
use a bitmask. For example, if you need only 10 bits, do |
170
|
|
|
|
|
|
|
h = (h & hashmask(10)); |
171
|
|
|
|
|
|
|
In which case, the hash table should have hashsize(10) elements. |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
If you are hashing n strings (uint8_t **)k, do it like this: |
174
|
|
|
|
|
|
|
for (i=0, h=0; i
|
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
177
|
|
|
|
|
|
|
code any way you wish, private, educational, or commercial. It's free. |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
Use for hash table lookup, or anything where one collision in 2^^32 is |
180
|
|
|
|
|
|
|
acceptable. Do NOT use for cryptographic purposes. |
181
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
182
|
|
|
|
|
|
|
*/ |
183
|
|
|
|
|
|
|
|
184
|
196
|
|
|
|
|
|
uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
185
|
|
|
|
|
|
|
{ |
186
|
|
|
|
|
|
|
uint32_t a,b,c; /* internal state */ |
187
|
|
|
|
|
|
|
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
/* Set up the internal state */ |
190
|
196
|
|
|
|
|
|
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
191
|
|
|
|
|
|
|
|
192
|
196
|
|
|
|
|
|
u.ptr = key; |
193
|
196
|
50
|
|
|
|
|
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
194
|
196
|
|
|
|
|
|
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
195
|
|
|
|
|
|
|
const uint8_t *k8; |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
198
|
1283
|
100
|
|
|
|
|
while (length > 12) |
199
|
|
|
|
|
|
|
{ |
200
|
1087
|
|
|
|
|
|
a += k[0]; |
201
|
1087
|
|
|
|
|
|
b += k[1]; |
202
|
1087
|
|
|
|
|
|
c += k[2]; |
203
|
1087
|
|
|
|
|
|
mix(a,b,c); |
204
|
1087
|
|
|
|
|
|
length -= 12; |
205
|
1087
|
|
|
|
|
|
k += 3; |
206
|
|
|
|
|
|
|
} |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */ |
209
|
|
|
|
|
|
|
/* |
210
|
|
|
|
|
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but |
211
|
|
|
|
|
|
|
* then masks off the part it's not allowed to read. Because the |
212
|
|
|
|
|
|
|
* string is aligned, the masked-off tail is in the same word as the |
213
|
|
|
|
|
|
|
* rest of the string. Every machine with memory protection I've seen |
214
|
|
|
|
|
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will |
215
|
|
|
|
|
|
|
* still catch it and complain. The masking trick does make the hash |
216
|
|
|
|
|
|
|
* noticably faster for short strings (like English words). |
217
|
|
|
|
|
|
|
*/ |
218
|
|
|
|
|
|
|
#ifndef VALGRIND |
219
|
|
|
|
|
|
|
|
220
|
196
|
|
|
|
|
|
switch(length) |
221
|
|
|
|
|
|
|
{ |
222
|
10
|
|
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
223
|
18
|
|
|
|
|
|
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
224
|
14
|
|
|
|
|
|
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
225
|
20
|
|
|
|
|
|
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
226
|
14
|
|
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break; |
227
|
16
|
|
|
|
|
|
case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
228
|
18
|
|
|
|
|
|
case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
229
|
20
|
|
|
|
|
|
case 5 : b+=k[1]&0xff; a+=k[0]; break; |
230
|
24
|
|
|
|
|
|
case 4 : a+=k[0]; break; |
231
|
14
|
|
|
|
|
|
case 3 : a+=k[0]&0xffffff; break; |
232
|
17
|
|
|
|
|
|
case 2 : a+=k[0]&0xffff; break; |
233
|
11
|
|
|
|
|
|
case 1 : a+=k[0]&0xff; break; |
234
|
196
|
|
|
|
|
|
case 0 : return c; /* zero length strings require no mixing */ |
235
|
|
|
|
|
|
|
} |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
#else /* make valgrind happy */ |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
k8 = (const uint8_t *)k; |
240
|
|
|
|
|
|
|
switch(length) |
241
|
|
|
|
|
|
|
{ |
242
|
|
|
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
243
|
|
|
|
|
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
244
|
|
|
|
|
|
|
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
245
|
|
|
|
|
|
|
case 9 : c+=k8[8]; /* fall through */ |
246
|
|
|
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break; |
247
|
|
|
|
|
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
248
|
|
|
|
|
|
|
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
249
|
|
|
|
|
|
|
case 5 : b+=k8[4]; /* fall through */ |
250
|
|
|
|
|
|
|
case 4 : a+=k[0]; break; |
251
|
|
|
|
|
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
252
|
|
|
|
|
|
|
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
253
|
|
|
|
|
|
|
case 1 : a+=k8[0]; break; |
254
|
|
|
|
|
|
|
case 0 : return c; |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
#endif /* !valgrind */ |
258
|
|
|
|
|
|
|
|
259
|
0
|
0
|
|
|
|
|
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
260
|
0
|
|
|
|
|
|
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
261
|
|
|
|
|
|
|
const uint8_t *k8; |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
/*--------------- all but last block: aligned reads and different mixing */ |
264
|
0
|
0
|
|
|
|
|
while (length > 12) |
265
|
|
|
|
|
|
|
{ |
266
|
0
|
|
|
|
|
|
a += k[0] + (((uint32_t)k[1])<<16); |
267
|
0
|
|
|
|
|
|
b += k[2] + (((uint32_t)k[3])<<16); |
268
|
0
|
|
|
|
|
|
c += k[4] + (((uint32_t)k[5])<<16); |
269
|
0
|
|
|
|
|
|
mix(a,b,c); |
270
|
0
|
|
|
|
|
|
length -= 12; |
271
|
0
|
|
|
|
|
|
k += 6; |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */ |
275
|
0
|
|
|
|
|
|
k8 = (const uint8_t *)k; |
276
|
0
|
|
|
|
|
|
switch(length) |
277
|
|
|
|
|
|
|
{ |
278
|
0
|
|
|
|
|
|
case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
279
|
0
|
|
|
|
|
|
b+=k[2]+(((uint32_t)k[3])<<16); |
280
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
281
|
0
|
|
|
|
|
|
break; |
282
|
0
|
|
|
|
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
283
|
0
|
|
|
|
|
|
case 10: c+=k[4]; |
284
|
0
|
|
|
|
|
|
b+=k[2]+(((uint32_t)k[3])<<16); |
285
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
286
|
0
|
|
|
|
|
|
break; |
287
|
0
|
|
|
|
|
|
case 9 : c+=k8[8]; /* fall through */ |
288
|
0
|
|
|
|
|
|
case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
289
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
290
|
0
|
|
|
|
|
|
break; |
291
|
0
|
|
|
|
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
292
|
0
|
|
|
|
|
|
case 6 : b+=k[2]; |
293
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
294
|
0
|
|
|
|
|
|
break; |
295
|
0
|
|
|
|
|
|
case 5 : b+=k8[4]; /* fall through */ |
296
|
0
|
|
|
|
|
|
case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
297
|
0
|
|
|
|
|
|
break; |
298
|
0
|
|
|
|
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
299
|
0
|
|
|
|
|
|
case 2 : a+=k[0]; |
300
|
0
|
|
|
|
|
|
break; |
301
|
0
|
|
|
|
|
|
case 1 : a+=k8[0]; |
302
|
0
|
|
|
|
|
|
break; |
303
|
0
|
|
|
|
|
|
case 0 : return c; /* zero length requires no mixing */ |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
} else { /* need to read the key one byte at a time */ |
307
|
0
|
|
|
|
|
|
const uint8_t *k = (const uint8_t *)key; |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
310
|
0
|
0
|
|
|
|
|
while (length > 12) |
311
|
|
|
|
|
|
|
{ |
312
|
0
|
|
|
|
|
|
a += k[0]; |
313
|
0
|
|
|
|
|
|
a += ((uint32_t)k[1])<<8; |
314
|
0
|
|
|
|
|
|
a += ((uint32_t)k[2])<<16; |
315
|
0
|
|
|
|
|
|
a += ((uint32_t)k[3])<<24; |
316
|
0
|
|
|
|
|
|
b += k[4]; |
317
|
0
|
|
|
|
|
|
b += ((uint32_t)k[5])<<8; |
318
|
0
|
|
|
|
|
|
b += ((uint32_t)k[6])<<16; |
319
|
0
|
|
|
|
|
|
b += ((uint32_t)k[7])<<24; |
320
|
0
|
|
|
|
|
|
c += k[8]; |
321
|
0
|
|
|
|
|
|
c += ((uint32_t)k[9])<<8; |
322
|
0
|
|
|
|
|
|
c += ((uint32_t)k[10])<<16; |
323
|
0
|
|
|
|
|
|
c += ((uint32_t)k[11])<<24; |
324
|
0
|
|
|
|
|
|
mix(a,b,c); |
325
|
0
|
|
|
|
|
|
length -= 12; |
326
|
0
|
|
|
|
|
|
k += 12; |
327
|
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */ |
330
|
0
|
|
|
|
|
|
switch(length) /* all the case statements fall through */ |
331
|
|
|
|
|
|
|
{ |
332
|
0
|
|
|
|
|
|
case 12: c+=((uint32_t)k[11])<<24; |
333
|
0
|
|
|
|
|
|
case 11: c+=((uint32_t)k[10])<<16; |
334
|
0
|
|
|
|
|
|
case 10: c+=((uint32_t)k[9])<<8; |
335
|
0
|
|
|
|
|
|
case 9 : c+=k[8]; |
336
|
0
|
|
|
|
|
|
case 8 : b+=((uint32_t)k[7])<<24; |
337
|
0
|
|
|
|
|
|
case 7 : b+=((uint32_t)k[6])<<16; |
338
|
0
|
|
|
|
|
|
case 6 : b+=((uint32_t)k[5])<<8; |
339
|
0
|
|
|
|
|
|
case 5 : b+=k[4]; |
340
|
0
|
|
|
|
|
|
case 4 : a+=((uint32_t)k[3])<<24; |
341
|
0
|
|
|
|
|
|
case 3 : a+=((uint32_t)k[2])<<16; |
342
|
0
|
|
|
|
|
|
case 2 : a+=((uint32_t)k[1])<<8; |
343
|
0
|
|
|
|
|
|
case 1 : a+=k[0]; |
344
|
0
|
|
|
|
|
|
break; |
345
|
0
|
|
|
|
|
|
case 0 : return c; |
346
|
|
|
|
|
|
|
} |
347
|
|
|
|
|
|
|
} |
348
|
|
|
|
|
|
|
|
349
|
196
|
|
|
|
|
|
final(a,b,c); |
350
|
196
|
|
|
|
|
|
return c; |
351
|
|
|
|
|
|
|
} |