File Coverage

palsrc/palAopqk.c
Criterion Covered Total %
statement 42 42 100.0
branch 6 8 75.0
condition n/a
subroutine n/a
pod n/a
total 48 50 96.0


line stmt bran cond sub pod time code
1             /*
2             *+
3             * Name:
4             * palAopqk
5              
6             * Purpose:
7             * Quick apparent to observed place
8              
9             * Language:
10             * Starlink ANSI C
11              
12             * Type of Module:
13             * Library routine
14              
15             * Invocation:
16             * void palAopqk ( double rap, double dap, const double aoprms[14],
17             * double *aob, double *zob, double *hob,
18             * double *dob, double *rob );
19              
20             * Arguments:
21             * rap = double (Given)
22             * Geocentric apparent right ascension
23             * dap = double (Given)
24             * Geocentric apparent declination
25             * aoprms = const double [14] (Given)
26             * Star-independent apparent-to-observed parameters.
27             *
28             * [0] geodetic latitude (radians)
29             * [1,2] sine and cosine of geodetic latitude
30             * [3] magnitude of diurnal aberration vector
31             * [4] height (HM)
32             * [5] ambient temperature (T)
33             * [6] pressure (P)
34             * [7] relative humidity (RH)
35             * [8] wavelength (WL)
36             * [9] lapse rate (TLR)
37             * [10,11] refraction constants A and B (radians)
38             * [12] longitude + eqn of equinoxes + sidereal DUT (radians)
39             * [13] local apparent sidereal time (radians)
40             * aob = double * (Returned)
41             * Observed azimuth (radians: N=0,E=90)
42             * zob = double * (Returned)
43             * Observed zenith distance (radians)
44             * hob = double * (Returned)
45             * Observed Hour Angle (radians)
46             * dob = double * (Returned)
47             * Observed Declination (radians)
48             * rob = double * (Returned)
49             * Observed Right Ascension (radians)
50              
51             * Description:
52             * Quick apparent to observed place.
53              
54             * Authors:
55             * TIMJ: Tim Jenness (JAC, Hawaii)
56             * PTW: Patrick T. Wallace
57             * {enter_new_authors_here}
58              
59             * Notes:
60             * - This routine returns zenith distance rather than elevation
61             * in order to reflect the fact that no allowance is made for
62             * depression of the horizon.
63             *
64             * - The accuracy of the result is limited by the corrections for
65             * refraction. Providing the meteorological parameters are
66             * known accurately and there are no gross local effects, the
67             * observed RA,Dec predicted by this routine should be within
68             * about 0.1 arcsec for a zenith distance of less than 70 degrees.
69             * Even at a topocentric zenith distance of 90 degrees, the
70             * accuracy in elevation should be better than 1 arcmin; useful
71             * results are available for a further 3 degrees, beyond which
72             * the palRefro routine returns a fixed value of the refraction.
73             * The complementary routines palAop (or palAopqk) and palOap
74             * (or palOapqk) are self-consistent to better than 1 micro-
75             * arcsecond all over the celestial sphere.
76             *
77             * - It is advisable to take great care with units, as even
78             * unlikely values of the input parameters are accepted and
79             * processed in accordance with the models used.
80             *
81             * - "Apparent" place means the geocentric apparent right ascension
82             * and declination, which is obtained from a catalogue mean place
83             * by allowing for space motion, parallax, precession, nutation,
84             * annual aberration, and the Sun's gravitational lens effect. For
85             * star positions in the FK5 system (i.e. J2000), these effects can
86             * be applied by means of the palMap etc routines. Starting from
87             * other mean place systems, additional transformations will be
88             * needed; for example, FK4 (i.e. B1950) mean places would first
89             * have to be converted to FK5, which can be done with the
90             * palFk425 etc routines.
91             *
92             * - "Observed" Az,El means the position that would be seen by a
93             * perfect theodolite located at the observer. This is obtained
94             * from the geocentric apparent RA,Dec by allowing for Earth
95             * orientation and diurnal aberration, rotating from equator
96             * to horizon coordinates, and then adjusting for refraction.
97             * The HA,Dec is obtained by rotating back into equatorial
98             * coordinates, using the geodetic latitude corrected for polar
99             * motion, and is the position that would be seen by a perfect
100             * equatorial located at the observer and with its polar axis
101             * aligned to the Earth's axis of rotation (n.b. not to the
102             * refracted pole). Finally, the RA is obtained by subtracting
103             * the HA from the local apparent ST.
104             *
105             * - To predict the required setting of a real telescope, the
106             * observed place produced by this routine would have to be
107             * adjusted for the tilt of the azimuth or polar axis of the
108             * mounting (with appropriate corrections for mount flexures),
109             * for non-perpendicularity between the mounting axes, for the
110             * position of the rotator axis and the pointing axis relative
111             * to it, for tube flexure, for gear and encoder errors, and
112             * finally for encoder zero points. Some telescopes would, of
113             * course, exhibit other properties which would need to be
114             * accounted for at the appropriate point in the sequence.
115             *
116             * - The star-independent apparent-to-observed-place parameters
117             * in AOPRMS may be computed by means of the palAoppa routine.
118             * If nothing has changed significantly except the time, the
119             * palAoppat routine may be used to perform the requisite
120             * partial recomputation of AOPRMS.
121             *
122             * - At zenith distances beyond about 76 degrees, the need for
123             * special care with the corrections for refraction causes a
124             * marked increase in execution time. Moreover, the effect
125             * gets worse with increasing zenith distance. Adroit
126             * programming in the calling application may allow the
127             * problem to be reduced. Prepare an alternative AOPRMS array,
128             * computed for zero air-pressure; this will disable the
129             * refraction corrections and cause rapid execution. Using
130             * this AOPRMS array, a preliminary call to the present routine
131             * will, depending on the application, produce a rough position
132             * which may be enough to establish whether the full, slow
133             * calculation (using the real AOPRMS array) is worthwhile.
134             * For example, there would be no need for the full calculation
135             * if the preliminary call had already established that the
136             * source was well below the elevation limits for a particular
137             * telescope.
138             *
139             * - The azimuths etc produced by the present routine are with
140             * respect to the celestial pole. Corrections to the terrestrial
141             * pole can be computed using palPolmo.
142              
143             * History:
144             * 2012-08-25 (TIMJ):
145             * Initial version, copied from Fortran SLA
146             * Adapted with permission from the Fortran SLALIB library.
147             * {enter_further_changes_here}
148              
149             * Copyright:
150             * Copyright (C) 2003 Rutherford Appleton Laboratory
151             * Copyright (C) 2012 Science and Technology Facilities Council.
152             * All Rights Reserved.
153              
154             * Licence:
155             * This program is free software; you can redistribute it and/or
156             * modify it under the terms of the GNU General Public License as
157             * published by the Free Software Foundation; either version 3 of
158             * the License, or (at your option) any later version.
159             *
160             * This program is distributed in the hope that it will be
161             * useful, but WITHOUT ANY WARRANTY; without even the implied
162             * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
163             * PURPOSE. See the GNU General Public License for more details.
164             *
165             * You should have received a copy of the GNU General Public License
166             * along with this program; if not, write to the Free Software
167             * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
168             * MA 02110-1301, USA.
169              
170             * Bugs:
171             * {note_any_bugs_here}
172             *-
173             */
174              
175             #include
176              
177             #include "pal.h"
178              
179 3           void palAopqk ( double rap, double dap, const double aoprms[14],
180             double *aob, double *zob, double *hob,
181             double *dob, double *rob ) {
182              
183             /* Breakpoint for fast/slow refraction algorithm:
184             * ZD greater than arctan(4), (see palRefco routine)
185             * or vector Z less than cosine(arctan(Z)) = 1/sqrt(17) */
186             const double zbreak = 0.242535625;
187             int i;
188              
189             double sphi,cphi,st,v[3],xhd,yhd,zhd,diurab,f,
190             xhdt,yhdt,zhdt,xaet,yaet,zaet,azobs,
191             zdt,refa,refb,zdobs,dzd,dref,ce,
192             xaeo,yaeo,zaeo,hmobs,dcobs,raobs;
193              
194             /* sin, cos of latitude */
195 3           sphi = aoprms[1];
196 3           cphi = aoprms[2];
197              
198             /* local apparent sidereal time */
199 3           st = aoprms[13];
200              
201             /* apparent ra,dec to cartesian -ha,dec */
202 3           palDcs2c( rap-st, dap, v );
203 3           xhd = v[0];
204 3           yhd = v[1];
205 3           zhd = v[2];
206              
207             /* diurnal aberration */
208 3           diurab = aoprms[3];
209 3           f = (1.0-diurab*yhd);
210 3           xhdt = f*xhd;
211 3           yhdt = f*(yhd+diurab);
212 3           zhdt = f*zhd;
213              
214             /* cartesian -ha,dec to cartesian az,el (s=0,e=90) */
215 3           xaet = sphi*xhdt-cphi*zhdt;
216             yaet = yhdt;
217 3           zaet = cphi*xhdt+sphi*zhdt;
218              
219             /* azimuth (n=0,e=90) */
220 3 50         if (xaet == 0.0 && yaet == 0.0) {
221             azobs = 0.0;
222             } else {
223 3           azobs = atan2(yaet,-xaet);
224             }
225              
226             /* topocentric zenith distance */
227 3           zdt = atan2(sqrt(xaet*xaet+yaet*yaet),zaet);
228              
229             /*
230             * refraction
231             * ---------- */
232              
233             /* fast algorithm using two constant model */
234 3           refa = aoprms[10];
235 3           refb = aoprms[11];
236 3           palRefz(zdt,refa,refb,&zdobs);
237              
238             /* large zenith distance? */
239 3 100         if (cos(zdobs) < zbreak) {
240              
241             /* yes: use rigorous algorithm */
242              
243             /* initialize loop (maximum of 10 iterations) */
244             i = 1;
245             dzd = 1.0e1;
246 4 100         while (fabs(dzd) > 1e-10 && i <= 10) {
    50          
247              
248             /* compute refraction using current estimate of observed zd */
249 3           palRefro(zdobs,aoprms[4],aoprms[5],aoprms[6],
250             aoprms[7],aoprms[8],aoprms[0],
251             aoprms[9],1e-8,&dref);
252              
253             /* remaining discrepancy */
254 3           dzd = zdobs+dref-zdt;
255              
256             /* update the estimate */
257 3           zdobs = zdobs-dzd;
258              
259             /* increment the iteration counter */
260 3           i++;
261             }
262             }
263              
264             /* to cartesian az/zd */
265 3           ce = sin(zdobs);
266 3           xaeo = -cos(azobs)*ce;
267 3           yaeo = sin(azobs)*ce;
268 3           zaeo = cos(zdobs);
269              
270             /* cartesian az/zd to cartesian -ha,dec */
271 3           v[0] = sphi*xaeo+cphi*zaeo;
272 3           v[1] = yaeo;
273 3           v[2] = -cphi*xaeo+sphi*zaeo;
274              
275             /* to spherical -ha,dec */
276 3           palDcc2s(v,&hmobs,&dcobs);
277              
278             /* right ascension */
279 3           raobs = palDranrm(st+hmobs);
280              
281             /* return the results */
282 3           *aob = azobs;
283 3           *zob = zdobs;
284 3           *hob = -hmobs;
285 3           *dob = dcobs;
286 3           *rob = raobs;
287              
288 3           }