File Coverage

erfasrc/src/pvstar.c
Criterion Covered Total %
statement 24 24 100.0
branch 4 8 50.0
condition n/a
subroutine n/a
pod n/a
total 28 32 87.5


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 1           int eraPvstar(double pv[2][3], double *ra, double *dec,
4             double *pmr, double *pmd, double *px, double *rv)
5             /*
6             ** - - - - - - - - - -
7             ** e r a P v s t a r
8             ** - - - - - - - - - -
9             **
10             ** Convert star position+velocity vector to catalog coordinates.
11             **
12             ** Given (Note 1):
13             ** pv double[2][3] pv-vector (au, au/day)
14             **
15             ** Returned (Note 2):
16             ** ra double right ascension (radians)
17             ** dec double declination (radians)
18             ** pmr double RA proper motion (radians/year)
19             ** pmd double Dec proper motion (radians/year)
20             ** px double parallax (arcsec)
21             ** rv double radial velocity (km/s, positive = receding)
22             **
23             ** Returned (function value):
24             ** int status:
25             ** 0 = OK
26             ** -1 = superluminal speed (Note 5)
27             ** -2 = null position vector
28             **
29             ** Notes:
30             **
31             ** 1) The specified pv-vector is the coordinate direction (and its rate
32             ** of change) for the date at which the light leaving the star
33             ** reached the solar-system barycenter.
34             **
35             ** 2) The star data returned by this function are "observables" for an
36             ** imaginary observer at the solar-system barycenter. Proper motion
37             ** and radial velocity are, strictly, in terms of barycentric
38             ** coordinate time, TCB. For most practical applications, it is
39             ** permissible to neglect the distinction between TCB and ordinary
40             ** "proper" time on Earth (TT/TAI). The result will, as a rule, be
41             ** limited by the intrinsic accuracy of the proper-motion and
42             ** radial-velocity data; moreover, the supplied pv-vector is likely
43             ** to be merely an intermediate result (for example generated by the
44             ** function eraStarpv), so that a change of time unit will cancel
45             ** out overall.
46             **
47             ** In accordance with normal star-catalog conventions, the object's
48             ** right ascension and declination are freed from the effects of
49             ** secular aberration. The frame, which is aligned to the catalog
50             ** equator and equinox, is Lorentzian and centered on the SSB.
51             **
52             ** Summarizing, the specified pv-vector is for most stars almost
53             ** identical to the result of applying the standard geometrical
54             ** "space motion" transformation to the catalog data. The
55             ** differences, which are the subject of the Stumpff paper cited
56             ** below, are:
57             **
58             ** (i) In stars with significant radial velocity and proper motion,
59             ** the constantly changing light-time distorts the apparent proper
60             ** motion. Note that this is a classical, not a relativistic,
61             ** effect.
62             **
63             ** (ii) The transformation complies with special relativity.
64             **
65             ** 3) Care is needed with units. The star coordinates are in radians
66             ** and the proper motions in radians per Julian year, but the
67             ** parallax is in arcseconds; the radial velocity is in km/s, but
68             ** the pv-vector result is in au and au/day.
69             **
70             ** 4) The proper motions are the rate of change of the right ascension
71             ** and declination at the catalog epoch and are in radians per Julian
72             ** year. The RA proper motion is in terms of coordinate angle, not
73             ** true angle, and will thus be numerically larger at high
74             ** declinations.
75             **
76             ** 5) Straight-line motion at constant speed in the inertial frame is
77             ** assumed. If the speed is greater than or equal to the speed of
78             ** light, the function aborts with an error status.
79             **
80             ** 6) The inverse transformation is performed by the function eraStarpv.
81             **
82             ** Called:
83             ** eraPn decompose p-vector into modulus and direction
84             ** eraPdp scalar product of two p-vectors
85             ** eraSxp multiply p-vector by scalar
86             ** eraPmp p-vector minus p-vector
87             ** eraPm modulus of p-vector
88             ** eraPpp p-vector plus p-vector
89             ** eraPv2s pv-vector to spherical
90             ** eraAnp normalize angle into range 0 to 2pi
91             **
92             ** Reference:
93             **
94             ** Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.
95             **
96             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
97             ** Derived, with permission, from the SOFA library. See notes at end of file.
98             */
99             {
100             double r, x[3], vr, ur[3], vt, ut[3], bett, betr, d, w, del,
101             usr[3], ust[3], a, rad, decd, rd;
102              
103              
104             /* Isolate the radial component of the velocity (au/day, inertial). */
105 1           eraPn(pv[0], &r, x);
106 1           vr = eraPdp(x, pv[1]);
107 1           eraSxp(vr, x, ur);
108              
109             /* Isolate the transverse component of the velocity (au/day, inertial). */
110 1           eraPmp(pv[1], ur, ut);
111 1           vt = eraPm(ut);
112              
113             /* Special-relativity dimensionless parameters. */
114 1           bett = vt / ERFA_DC;
115 1           betr = vr / ERFA_DC;
116              
117             /* The inertial-to-observed correction terms. */
118 1           d = 1.0 + betr;
119 1           w = betr*betr + bett*bett;
120 1 50         if (d == 0.0 || w > 1.0) return -1;
    50          
121 1           del = - w / (sqrt(1.0-w) + 1.0);
122              
123             /* Apply relativistic correction factor to radial velocity component. */
124 1 50         w = (betr != 0) ? (betr - del) / (betr * d) : 1.0;
125 1           eraSxp(w, ur, usr);
126              
127             /* Apply relativistic correction factor to tangential velocity */
128             /* component. */
129 1           eraSxp(1.0/d, ut, ust);
130              
131             /* Combine the two to obtain the observed velocity vector (au/day). */
132 1           eraPpp(usr, ust, pv[1]);
133              
134             /* Cartesian to spherical. */
135 1           eraPv2s(pv, &a, dec, &r, &rad, &decd, &rd);
136 1 50         if (r == 0.0) return -2;
137              
138             /* Return RA in range 0 to 2pi. */
139 1           *ra = eraAnp(a);
140              
141             /* Return proper motions in radians per year. */
142 1           *pmr = rad * ERFA_DJY;
143 1           *pmd = decd * ERFA_DJY;
144              
145             /* Return parallax in arcsec. */
146 1           *px = ERFA_DR2AS / r;
147              
148             /* Return radial velocity in km/s. */
149 1           *rv = 1e-3 * rd * ERFA_DAU / ERFA_DAYSEC;
150              
151             /* OK status. */
152 1           return 0;
153              
154             }
155             /*----------------------------------------------------------------------
156             **
157             **
158             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
159             ** All rights reserved.
160             **
161             ** This library is derived, with permission, from the International
162             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
163             ** available from http://www.iausofa.org.
164             **
165             ** The ERFA version is intended to retain identical functionality to
166             ** the SOFA library, but made distinct through different function and
167             ** file names, as set out in the SOFA license conditions. The SOFA
168             ** original has a role as a reference standard for the IAU and IERS,
169             ** and consequently redistribution is permitted only in its unaltered
170             ** state. The ERFA version is not subject to this restriction and
171             ** therefore can be included in distributions which do not support the
172             ** concept of "read only" software.
173             **
174             ** Although the intent is to replicate the SOFA API (other than
175             ** replacement of prefix names) and results (with the exception of
176             ** bugs; any that are discovered will be fixed), SOFA is not
177             ** responsible for any errors found in this version of the library.
178             **
179             ** If you wish to acknowledge the SOFA heritage, please acknowledge
180             ** that you are using a library derived from SOFA, rather than SOFA
181             ** itself.
182             **
183             **
184             ** TERMS AND CONDITIONS
185             **
186             ** Redistribution and use in source and binary forms, with or without
187             ** modification, are permitted provided that the following conditions
188             ** are met:
189             **
190             ** 1 Redistributions of source code must retain the above copyright
191             ** notice, this list of conditions and the following disclaimer.
192             **
193             ** 2 Redistributions in binary form must reproduce the above copyright
194             ** notice, this list of conditions and the following disclaimer in
195             ** the documentation and/or other materials provided with the
196             ** distribution.
197             **
198             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
199             ** the International Astronomical Union nor the names of its
200             ** contributors may be used to endorse or promote products derived
201             ** from this software without specific prior written permission.
202             **
203             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
204             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
205             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
206             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
207             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
208             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
209             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
210             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
211             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
212             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
213             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
214             ** POSSIBILITY OF SUCH DAMAGE.
215             **
216             */