File Coverage

erfasrc/src/pn00.c
Criterion Covered Total %
statement 0 9 0.0
branch n/a
condition n/a
subroutine n/a
pod n/a
total 0 9 0.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 0           void eraPn00(double date1, double date2, double dpsi, double deps,
4             double *epsa,
5             double rb[3][3], double rp[3][3], double rbp[3][3],
6             double rn[3][3], double rbpn[3][3])
7             /*
8             ** - - - - - - - -
9             ** e r a P n 0 0
10             ** - - - - - - - -
11             **
12             ** Precession-nutation, IAU 2000 model: a multi-purpose function,
13             ** supporting classical (equinox-based) use directly and CIO-based
14             ** use indirectly.
15             **
16             ** Given:
17             ** date1,date2 double TT as a 2-part Julian Date (Note 1)
18             ** dpsi,deps double nutation (Note 2)
19             **
20             ** Returned:
21             ** epsa double mean obliquity (Note 3)
22             ** rb double[3][3] frame bias matrix (Note 4)
23             ** rp double[3][3] precession matrix (Note 5)
24             ** rbp double[3][3] bias-precession matrix (Note 6)
25             ** rn double[3][3] nutation matrix (Note 7)
26             ** rbpn double[3][3] GCRS-to-true matrix (Note 8)
27             **
28             ** Notes:
29             **
30             ** 1) The TT date date1+date2 is a Julian Date, apportioned in any
31             ** convenient way between the two arguments. For example,
32             ** JD(TT)=2450123.7 could be expressed in any of these ways,
33             ** among others:
34             **
35             ** date1 date2
36             **
37             ** 2450123.7 0.0 (JD method)
38             ** 2451545.0 -1421.3 (J2000 method)
39             ** 2400000.5 50123.2 (MJD method)
40             ** 2450123.5 0.2 (date & time method)
41             **
42             ** The JD method is the most natural and convenient to use in
43             ** cases where the loss of several decimal digits of resolution
44             ** is acceptable. The J2000 method is best matched to the way
45             ** the argument is handled internally and will deliver the
46             ** optimum resolution. The MJD method and the date & time methods
47             ** are both good compromises between resolution and convenience.
48             **
49             ** 2) The caller is responsible for providing the nutation components;
50             ** they are in longitude and obliquity, in radians and are with
51             ** respect to the equinox and ecliptic of date. For high-accuracy
52             ** applications, free core nutation should be included as well as
53             ** any other relevant corrections to the position of the CIP.
54             **
55             ** 3) The returned mean obliquity is consistent with the IAU 2000
56             ** precession-nutation models.
57             **
58             ** 4) The matrix rb transforms vectors from GCRS to J2000.0 mean
59             ** equator and equinox by applying frame bias.
60             **
61             ** 5) The matrix rp transforms vectors from J2000.0 mean equator and
62             ** equinox to mean equator and equinox of date by applying
63             ** precession.
64             **
65             ** 6) The matrix rbp transforms vectors from GCRS to mean equator and
66             ** equinox of date by applying frame bias then precession. It is
67             ** the product rp x rb.
68             **
69             ** 7) The matrix rn transforms vectors from mean equator and equinox of
70             ** date to true equator and equinox of date by applying the nutation
71             ** (luni-solar + planetary).
72             **
73             ** 8) The matrix rbpn transforms vectors from GCRS to true equator and
74             ** equinox of date. It is the product rn x rbp, applying frame
75             ** bias, precession and nutation in that order.
76             **
77             ** 9) It is permissible to re-use the same array in the returned
78             ** arguments. The arrays are filled in the order given.
79             **
80             ** Called:
81             ** eraPr00 IAU 2000 precession adjustments
82             ** eraObl80 mean obliquity, IAU 1980
83             ** eraBp00 frame bias and precession matrices, IAU 2000
84             ** eraCr copy r-matrix
85             ** eraNumat form nutation matrix
86             ** eraRxr product of two r-matrices
87             **
88             ** Reference:
89             **
90             ** Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
91             ** "Expressions for the Celestial Intermediate Pole and Celestial
92             ** Ephemeris Origin consistent with the IAU 2000A precession-
93             ** nutation model", Astron.Astrophys. 400, 1145-1154 (2003)
94             **
95             ** n.b. The celestial ephemeris origin (CEO) was renamed "celestial
96             ** intermediate origin" (CIO) by IAU 2006 Resolution 2.
97             **
98             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
99             ** Derived, with permission, from the SOFA library. See notes at end of file.
100             */
101             {
102             double dpsipr, depspr, rbpw[3][3], rnw[3][3];
103              
104              
105             /* IAU 2000 precession-rate adjustments. */
106 0           eraPr00(date1, date2, &dpsipr, &depspr);
107              
108             /* Mean obliquity, consistent with IAU 2000 precession-nutation. */
109 0           *epsa = eraObl80(date1, date2) + depspr;
110              
111             /* Frame bias and precession matrices and their product. */
112 0           eraBp00(date1, date2, rb, rp, rbpw);
113 0           eraCr(rbpw, rbp);
114              
115             /* Nutation matrix. */
116 0           eraNumat(*epsa, dpsi, deps, rnw);
117 0           eraCr(rnw, rn);
118              
119             /* Bias-precession-nutation matrix (classical). */
120 0           eraRxr(rnw, rbpw, rbpn);
121              
122 0           return;
123              
124             }
125             /*----------------------------------------------------------------------
126             **
127             **
128             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
129             ** All rights reserved.
130             **
131             ** This library is derived, with permission, from the International
132             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
133             ** available from http://www.iausofa.org.
134             **
135             ** The ERFA version is intended to retain identical functionality to
136             ** the SOFA library, but made distinct through different function and
137             ** file names, as set out in the SOFA license conditions. The SOFA
138             ** original has a role as a reference standard for the IAU and IERS,
139             ** and consequently redistribution is permitted only in its unaltered
140             ** state. The ERFA version is not subject to this restriction and
141             ** therefore can be included in distributions which do not support the
142             ** concept of "read only" software.
143             **
144             ** Although the intent is to replicate the SOFA API (other than
145             ** replacement of prefix names) and results (with the exception of
146             ** bugs; any that are discovered will be fixed), SOFA is not
147             ** responsible for any errors found in this version of the library.
148             **
149             ** If you wish to acknowledge the SOFA heritage, please acknowledge
150             ** that you are using a library derived from SOFA, rather than SOFA
151             ** itself.
152             **
153             **
154             ** TERMS AND CONDITIONS
155             **
156             ** Redistribution and use in source and binary forms, with or without
157             ** modification, are permitted provided that the following conditions
158             ** are met:
159             **
160             ** 1 Redistributions of source code must retain the above copyright
161             ** notice, this list of conditions and the following disclaimer.
162             **
163             ** 2 Redistributions in binary form must reproduce the above copyright
164             ** notice, this list of conditions and the following disclaimer in
165             ** the documentation and/or other materials provided with the
166             ** distribution.
167             **
168             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
169             ** the International Astronomical Union nor the names of its
170             ** contributors may be used to endorse or promote products derived
171             ** from this software without specific prior written permission.
172             **
173             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
174             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
175             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
176             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
177             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
178             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
179             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
180             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
181             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
182             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
183             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
184             ** POSSIBILITY OF SUCH DAMAGE.
185             **
186             */