File Coverage

erfasrc/src/p06e.c
Criterion Covered Total %
statement 78 78 100.0
branch n/a
condition n/a
subroutine n/a
pod n/a
total 78 78 100.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 10           void eraP06e(double date1, double date2,
4             double *eps0, double *psia, double *oma, double *bpa,
5             double *bqa, double *pia, double *bpia,
6             double *epsa, double *chia, double *za, double *zetaa,
7             double *thetaa, double *pa,
8             double *gam, double *phi, double *psi)
9             /*
10             ** - - - - - - - -
11             ** e r a P 0 6 e
12             ** - - - - - - - -
13             **
14             ** Precession angles, IAU 2006, equinox based.
15             **
16             ** Given:
17             ** date1,date2 double TT as a 2-part Julian Date (Note 1)
18             **
19             ** Returned (see Note 2):
20             ** eps0 double epsilon_0
21             ** psia double psi_A
22             ** oma double omega_A
23             ** bpa double P_A
24             ** bqa double Q_A
25             ** pia double pi_A
26             ** bpia double Pi_A
27             ** epsa double obliquity epsilon_A
28             ** chia double chi_A
29             ** za double z_A
30             ** zetaa double zeta_A
31             ** thetaa double theta_A
32             ** pa double p_A
33             ** gam double F-W angle gamma_J2000
34             ** phi double F-W angle phi_J2000
35             ** psi double F-W angle psi_J2000
36             **
37             ** Notes:
38             **
39             ** 1) The TT date date1+date2 is a Julian Date, apportioned in any
40             ** convenient way between the two arguments. For example,
41             ** JD(TT)=2450123.7 could be expressed in any of these ways,
42             ** among others:
43             **
44             ** date1 date2
45             **
46             ** 2450123.7 0.0 (JD method)
47             ** 2451545.0 -1421.3 (J2000 method)
48             ** 2400000.5 50123.2 (MJD method)
49             ** 2450123.5 0.2 (date & time method)
50             **
51             ** The JD method is the most natural and convenient to use in
52             ** cases where the loss of several decimal digits of resolution
53             ** is acceptable. The J2000 method is best matched to the way
54             ** the argument is handled internally and will deliver the
55             ** optimum resolution. The MJD method and the date & time methods
56             ** are both good compromises between resolution and convenience.
57             **
58             ** 2) This function returns the set of equinox based angles for the
59             ** Capitaine et al. "P03" precession theory, adopted by the IAU in
60             ** 2006. The angles are set out in Table 1 of Hilton et al. (2006):
61             **
62             ** eps0 epsilon_0 obliquity at J2000.0
63             ** psia psi_A luni-solar precession
64             ** oma omega_A inclination of equator wrt J2000.0 ecliptic
65             ** bpa P_A ecliptic pole x, J2000.0 ecliptic triad
66             ** bqa Q_A ecliptic pole -y, J2000.0 ecliptic triad
67             ** pia pi_A angle between moving and J2000.0 ecliptics
68             ** bpia Pi_A longitude of ascending node of the ecliptic
69             ** epsa epsilon_A obliquity of the ecliptic
70             ** chia chi_A planetary precession
71             ** za z_A equatorial precession: -3rd 323 Euler angle
72             ** zetaa zeta_A equatorial precession: -1st 323 Euler angle
73             ** thetaa theta_A equatorial precession: 2nd 323 Euler angle
74             ** pa p_A general precession (n.b. see below)
75             ** gam gamma_J2000 J2000.0 RA difference of ecliptic poles
76             ** phi phi_J2000 J2000.0 codeclination of ecliptic pole
77             ** psi psi_J2000 longitude difference of equator poles, J2000.0
78             **
79             ** The returned values are all radians.
80             **
81             ** Note that the t^5 coefficient in the series for p_A from
82             ** Capitaine et al. (2003) is incorrectly signed in Hilton et al.
83             ** (2006).
84             **
85             ** 3) Hilton et al. (2006) Table 1 also contains angles that depend on
86             ** models distinct from the P03 precession theory itself, namely the
87             ** IAU 2000A frame bias and nutation. The quoted polynomials are
88             ** used in other ERFA functions:
89             **
90             ** . eraXy06 contains the polynomial parts of the X and Y series.
91             **
92             ** . eraS06 contains the polynomial part of the s+XY/2 series.
93             **
94             ** . eraPfw06 implements the series for the Fukushima-Williams
95             ** angles that are with respect to the GCRS pole (i.e. the variants
96             ** that include frame bias).
97             **
98             ** 4) The IAU resolution stipulated that the choice of parameterization
99             ** was left to the user, and so an IAU compliant precession
100             ** implementation can be constructed using various combinations of
101             ** the angles returned by the present function.
102             **
103             ** 5) The parameterization used by ERFA is the version of the Fukushima-
104             ** Williams angles that refers directly to the GCRS pole. These
105             ** angles may be calculated by calling the function eraPfw06. ERFA
106             ** also supports the direct computation of the CIP GCRS X,Y by
107             ** series, available by calling eraXy06.
108             **
109             ** 6) The agreement between the different parameterizations is at the
110             ** 1 microarcsecond level in the present era.
111             **
112             ** 7) When constructing a precession formulation that refers to the GCRS
113             ** pole rather than the dynamical pole, it may (depending on the
114             ** choice of angles) be necessary to introduce the frame bias
115             ** explicitly.
116             **
117             ** 8) It is permissible to re-use the same variable in the returned
118             ** arguments. The quantities are stored in the stated order.
119             **
120             ** References:
121             **
122             ** Capitaine, N., Wallace, P.T. & Chapront, J., 2003,
123             ** Astron.Astrophys., 412, 567
124             **
125             ** Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351
126             **
127             ** Called:
128             ** eraObl06 mean obliquity, IAU 2006
129             **
130             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
131             ** Derived, with permission, from the SOFA library. See notes at end of file.
132             */
133             {
134             double t;
135              
136              
137             /* Interval between fundamental date J2000.0 and given date (JC). */
138 10           t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
139              
140             /* Obliquity at J2000.0. */
141              
142 10           *eps0 = 84381.406 * ERFA_DAS2R;
143              
144             /* Luni-solar precession. */
145              
146 20           *psia = ( 5038.481507 +
147 10           ( -1.0790069 +
148 10           ( -0.00114045 +
149 10           ( 0.000132851 +
150             ( -0.0000000951 )
151 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
152              
153             /* Inclination of mean equator with respect to the J2000.0 ecliptic. */
154              
155 30           *oma = *eps0 + ( -0.025754 +
156 10           ( 0.0512623 +
157 10           ( -0.00772503 +
158 10           ( -0.000000467 +
159             ( 0.0000003337 )
160 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
161              
162             /* Ecliptic pole x, J2000.0 ecliptic triad. */
163              
164 20           *bpa = ( 4.199094 +
165 10           ( 0.1939873 +
166 10           ( -0.00022466 +
167 10           ( -0.000000912 +
168             ( 0.0000000120 )
169 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
170              
171             /* Ecliptic pole -y, J2000.0 ecliptic triad. */
172              
173 20           *bqa = ( -46.811015 +
174 10           ( 0.0510283 +
175 10           ( 0.00052413 +
176 10           ( -0.000000646 +
177             ( -0.0000000172 )
178 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
179              
180             /* Angle between moving and J2000.0 ecliptics. */
181              
182 20           *pia = ( 46.998973 +
183 10           ( -0.0334926 +
184 10           ( -0.00012559 +
185 10           ( 0.000000113 +
186             ( -0.0000000022 )
187 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
188              
189             /* Longitude of ascending node of the moving ecliptic. */
190              
191 20           *bpia = ( 629546.7936 +
192 10           ( -867.95758 +
193 10           ( 0.157992 +
194 10           ( -0.0005371 +
195 10           ( -0.00004797 +
196             ( 0.000000072 )
197 60           * t) * t) * t) * t) * t) * ERFA_DAS2R;
198              
199             /* Mean obliquity of the ecliptic. */
200              
201 10           *epsa = eraObl06(date1, date2);
202              
203             /* Planetary precession. */
204              
205 20           *chia = ( 10.556403 +
206 10           ( -2.3814292 +
207 10           ( -0.00121197 +
208 10           ( 0.000170663 +
209             ( -0.0000000560 )
210 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
211              
212             /* Equatorial precession: minus the third of the 323 Euler angles. */
213              
214 20           *za = ( -2.650545 +
215 10           ( 2306.077181 +
216 10           ( 1.0927348 +
217 10           ( 0.01826837 +
218 10           ( -0.000028596 +
219             ( -0.0000002904 )
220 60           * t) * t) * t) * t) * t) * ERFA_DAS2R;
221              
222             /* Equatorial precession: minus the first of the 323 Euler angles. */
223              
224 20           *zetaa = ( 2.650545 +
225 10           ( 2306.083227 +
226 10           ( 0.2988499 +
227 10           ( 0.01801828 +
228 10           ( -0.000005971 +
229             ( -0.0000003173 )
230 60           * t) * t) * t) * t) * t) * ERFA_DAS2R;
231              
232             /* Equatorial precession: second of the 323 Euler angles. */
233              
234 20           *thetaa = ( 2004.191903 +
235 10           ( -0.4294934 +
236 10           ( -0.04182264 +
237 10           ( -0.000007089 +
238             ( -0.0000001274 )
239 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
240              
241             /* General precession. */
242              
243 20           *pa = ( 5028.796195 +
244 10           ( 1.1054348 +
245 10           ( 0.00007964 +
246 10           ( -0.000023857 +
247             ( -0.0000000383 )
248 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
249              
250             /* Fukushima-Williams angles for precession. */
251              
252 20           *gam = ( 10.556403 +
253 10           ( 0.4932044 +
254 10           ( -0.00031238 +
255 10           ( -0.000002788 +
256             ( 0.0000000260 )
257 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
258              
259 30           *phi = *eps0 + ( -46.811015 +
260 10           ( 0.0511269 +
261 10           ( 0.00053289 +
262 10           ( -0.000000440 +
263             ( -0.0000000176 )
264 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
265              
266 20           *psi = ( 5038.481507 +
267 10           ( 1.5584176 +
268 10           ( -0.00018522 +
269 10           ( -0.000026452 +
270             ( -0.0000000148 )
271 50           * t) * t) * t) * t) * t * ERFA_DAS2R;
272              
273 10           return;
274              
275             }
276             /*----------------------------------------------------------------------
277             **
278             **
279             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
280             ** All rights reserved.
281             **
282             ** This library is derived, with permission, from the International
283             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
284             ** available from http://www.iausofa.org.
285             **
286             ** The ERFA version is intended to retain identical functionality to
287             ** the SOFA library, but made distinct through different function and
288             ** file names, as set out in the SOFA license conditions. The SOFA
289             ** original has a role as a reference standard for the IAU and IERS,
290             ** and consequently redistribution is permitted only in its unaltered
291             ** state. The ERFA version is not subject to this restriction and
292             ** therefore can be included in distributions which do not support the
293             ** concept of "read only" software.
294             **
295             ** Although the intent is to replicate the SOFA API (other than
296             ** replacement of prefix names) and results (with the exception of
297             ** bugs; any that are discovered will be fixed), SOFA is not
298             ** responsible for any errors found in this version of the library.
299             **
300             ** If you wish to acknowledge the SOFA heritage, please acknowledge
301             ** that you are using a library derived from SOFA, rather than SOFA
302             ** itself.
303             **
304             **
305             ** TERMS AND CONDITIONS
306             **
307             ** Redistribution and use in source and binary forms, with or without
308             ** modification, are permitted provided that the following conditions
309             ** are met:
310             **
311             ** 1 Redistributions of source code must retain the above copyright
312             ** notice, this list of conditions and the following disclaimer.
313             **
314             ** 2 Redistributions in binary form must reproduce the above copyright
315             ** notice, this list of conditions and the following disclaimer in
316             ** the documentation and/or other materials provided with the
317             ** distribution.
318             **
319             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
320             ** the International Astronomical Union nor the names of its
321             ** contributors may be used to endorse or promote products derived
322             ** from this software without specific prior written permission.
323             **
324             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
325             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
326             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
327             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
328             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
329             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
330             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
331             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
332             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
333             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
334             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
335             ** POSSIBILITY OF SUCH DAMAGE.
336             **
337             */