File Coverage

erfasrc/src/eect00.c
Criterion Covered Total %
statement 0 20 0.0
branch 0 8 0.0
condition n/a
subroutine n/a
pod n/a
total 0 28 0.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 0           double eraEect00(double date1, double date2)
4             /*
5             ** - - - - - - - - - -
6             ** e r a E e c t 0 0
7             ** - - - - - - - - - -
8             **
9             ** Equation of the equinoxes complementary terms, consistent with
10             ** IAU 2000 resolutions.
11             **
12             ** Given:
13             ** date1,date2 double TT as a 2-part Julian Date (Note 1)
14             **
15             ** Returned (function value):
16             ** double complementary terms (Note 2)
17             **
18             ** Notes:
19             **
20             ** 1) The TT date date1+date2 is a Julian Date, apportioned in any
21             ** convenient way between the two arguments. For example,
22             ** JD(TT)=2450123.7 could be expressed in any of these ways,
23             ** among others:
24             **
25             ** date1 date2
26             **
27             ** 2450123.7 0.0 (JD method)
28             ** 2451545.0 -1421.3 (J2000 method)
29             ** 2400000.5 50123.2 (MJD method)
30             ** 2450123.5 0.2 (date & time method)
31             **
32             ** The JD method is the most natural and convenient to use in
33             ** cases where the loss of several decimal digits of resolution
34             ** is acceptable. The J2000 method is best matched to the way
35             ** the argument is handled internally and will deliver the
36             ** optimum resolution. The MJD method and the date & time methods
37             ** are both good compromises between resolution and convenience.
38             **
39             ** 2) The "complementary terms" are part of the equation of the
40             ** equinoxes (EE), classically the difference between apparent and
41             ** mean Sidereal Time:
42             **
43             ** GAST = GMST + EE
44             **
45             ** with:
46             **
47             ** EE = dpsi * cos(eps)
48             **
49             ** where dpsi is the nutation in longitude and eps is the obliquity
50             ** of date. However, if the rotation of the Earth were constant in
51             ** an inertial frame the classical formulation would lead to
52             ** apparent irregularities in the UT1 timescale traceable to side-
53             ** effects of precession-nutation. In order to eliminate these
54             ** effects from UT1, "complementary terms" were introduced in 1994
55             ** (IAU, 1994) and took effect from 1997 (Capitaine and Gontier,
56             ** 1993):
57             **
58             ** GAST = GMST + CT + EE
59             **
60             ** By convention, the complementary terms are included as part of
61             ** the equation of the equinoxes rather than as part of the mean
62             ** Sidereal Time. This slightly compromises the "geometrical"
63             ** interpretation of mean sidereal time but is otherwise
64             ** inconsequential.
65             **
66             ** The present function computes CT in the above expression,
67             ** compatible with IAU 2000 resolutions (Capitaine et al., 2002, and
68             ** IERS Conventions 2003).
69             **
70             ** Called:
71             ** eraFal03 mean anomaly of the Moon
72             ** eraFalp03 mean anomaly of the Sun
73             ** eraFaf03 mean argument of the latitude of the Moon
74             ** eraFad03 mean elongation of the Moon from the Sun
75             ** eraFaom03 mean longitude of the Moon's ascending node
76             ** eraFave03 mean longitude of Venus
77             ** eraFae03 mean longitude of Earth
78             ** eraFapa03 general accumulated precession in longitude
79             **
80             ** References:
81             **
82             ** Capitaine, N. & Gontier, A.-M., Astron.Astrophys., 275,
83             ** 645-650 (1993)
84             **
85             ** Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
86             ** implement the IAU 2000 definition of UT1", Astron.Astrophys., 406,
87             ** 1135-1149 (2003)
88             **
89             ** IAU Resolution C7, Recommendation 3 (1994)
90             **
91             ** McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
92             ** IERS Technical Note No. 32, BKG (2004)
93             **
94             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
95             ** Derived, with permission, from the SOFA library. See notes at end of file.
96             */
97             {
98             /* Time since J2000.0, in Julian centuries */
99             double t;
100              
101             /* Miscellaneous */
102             int i, j;
103             double a, s0, s1;
104              
105             /* Fundamental arguments */
106             double fa[14];
107              
108             /* Returned value. */
109             double eect;
110              
111             /* ----------------------------------------- */
112             /* The series for the EE complementary terms */
113             /* ----------------------------------------- */
114              
115             typedef struct {
116             int nfa[8]; /* coefficients of l,l',F,D,Om,LVe,LE,pA */
117             double s, c; /* sine and cosine coefficients */
118             } TERM;
119              
120             /* Terms of order t^0 */
121             static const TERM e0[] = {
122              
123             /* 1-10 */
124             {{ 0, 0, 0, 0, 1, 0, 0, 0}, 2640.96e-6, -0.39e-6 },
125             {{ 0, 0, 0, 0, 2, 0, 0, 0}, 63.52e-6, -0.02e-6 },
126             {{ 0, 0, 2, -2, 3, 0, 0, 0}, 11.75e-6, 0.01e-6 },
127             {{ 0, 0, 2, -2, 1, 0, 0, 0}, 11.21e-6, 0.01e-6 },
128             {{ 0, 0, 2, -2, 2, 0, 0, 0}, -4.55e-6, 0.00e-6 },
129             {{ 0, 0, 2, 0, 3, 0, 0, 0}, 2.02e-6, 0.00e-6 },
130             {{ 0, 0, 2, 0, 1, 0, 0, 0}, 1.98e-6, 0.00e-6 },
131             {{ 0, 0, 0, 0, 3, 0, 0, 0}, -1.72e-6, 0.00e-6 },
132             {{ 0, 1, 0, 0, 1, 0, 0, 0}, -1.41e-6, -0.01e-6 },
133             {{ 0, 1, 0, 0, -1, 0, 0, 0}, -1.26e-6, -0.01e-6 },
134              
135             /* 11-20 */
136             {{ 1, 0, 0, 0, -1, 0, 0, 0}, -0.63e-6, 0.00e-6 },
137             {{ 1, 0, 0, 0, 1, 0, 0, 0}, -0.63e-6, 0.00e-6 },
138             {{ 0, 1, 2, -2, 3, 0, 0, 0}, 0.46e-6, 0.00e-6 },
139             {{ 0, 1, 2, -2, 1, 0, 0, 0}, 0.45e-6, 0.00e-6 },
140             {{ 0, 0, 4, -4, 4, 0, 0, 0}, 0.36e-6, 0.00e-6 },
141             {{ 0, 0, 1, -1, 1, -8, 12, 0}, -0.24e-6, -0.12e-6 },
142             {{ 0, 0, 2, 0, 0, 0, 0, 0}, 0.32e-6, 0.00e-6 },
143             {{ 0, 0, 2, 0, 2, 0, 0, 0}, 0.28e-6, 0.00e-6 },
144             {{ 1, 0, 2, 0, 3, 0, 0, 0}, 0.27e-6, 0.00e-6 },
145             {{ 1, 0, 2, 0, 1, 0, 0, 0}, 0.26e-6, 0.00e-6 },
146              
147             /* 21-30 */
148             {{ 0, 0, 2, -2, 0, 0, 0, 0}, -0.21e-6, 0.00e-6 },
149             {{ 0, 1, -2, 2, -3, 0, 0, 0}, 0.19e-6, 0.00e-6 },
150             {{ 0, 1, -2, 2, -1, 0, 0, 0}, 0.18e-6, 0.00e-6 },
151             {{ 0, 0, 0, 0, 0, 8,-13, -1}, -0.10e-6, 0.05e-6 },
152             {{ 0, 0, 0, 2, 0, 0, 0, 0}, 0.15e-6, 0.00e-6 },
153             {{ 2, 0, -2, 0, -1, 0, 0, 0}, -0.14e-6, 0.00e-6 },
154             {{ 1, 0, 0, -2, 1, 0, 0, 0}, 0.14e-6, 0.00e-6 },
155             {{ 0, 1, 2, -2, 2, 0, 0, 0}, -0.14e-6, 0.00e-6 },
156             {{ 1, 0, 0, -2, -1, 0, 0, 0}, 0.14e-6, 0.00e-6 },
157             {{ 0, 0, 4, -2, 4, 0, 0, 0}, 0.13e-6, 0.00e-6 },
158              
159             /* 31-33 */
160             {{ 0, 0, 2, -2, 4, 0, 0, 0}, -0.11e-6, 0.00e-6 },
161             {{ 1, 0, -2, 0, -3, 0, 0, 0}, 0.11e-6, 0.00e-6 },
162             {{ 1, 0, -2, 0, -1, 0, 0, 0}, 0.11e-6, 0.00e-6 }
163             };
164              
165             /* Terms of order t^1 */
166             static const TERM e1[] = {
167             {{ 0, 0, 0, 0, 1, 0, 0, 0}, -0.87e-6, 0.00e-6 }
168             };
169              
170             /* Number of terms in the series */
171             const int NE0 = (int) (sizeof e0 / sizeof (TERM));
172             const int NE1 = (int) (sizeof e1 / sizeof (TERM));
173              
174             /* ------------------------------------------------------------------ */
175              
176             /* Interval between fundamental epoch J2000.0 and current date (JC). */
177 0           t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJC;
178              
179             /* Fundamental Arguments (from IERS Conventions 2003) */
180              
181             /* Mean anomaly of the Moon. */
182 0           fa[0] = eraFal03(t);
183              
184             /* Mean anomaly of the Sun. */
185 0           fa[1] = eraFalp03(t);
186              
187             /* Mean longitude of the Moon minus that of the ascending node. */
188 0           fa[2] = eraFaf03(t);
189              
190             /* Mean elongation of the Moon from the Sun. */
191 0           fa[3] = eraFad03(t);
192              
193             /* Mean longitude of the ascending node of the Moon. */
194 0           fa[4] = eraFaom03(t);
195              
196             /* Mean longitude of Venus. */
197 0           fa[5] = eraFave03(t);
198              
199             /* Mean longitude of Earth. */
200 0           fa[6] = eraFae03(t);
201              
202             /* General precession in longitude. */
203 0           fa[7] = eraFapa03(t);
204              
205             /* Evaluate the EE complementary terms. */
206             s0 = 0.0;
207             s1 = 0.0;
208              
209 0 0         for (i = NE0-1; i >= 0; i--) {
210             a = 0.0;
211 0 0         for (j = 0; j < 8; j++) {
212 0           a += (double)(e0[i].nfa[j]) * fa[j];
213             }
214 0           s0 += e0[i].s * sin(a) + e0[i].c * cos(a);
215             }
216              
217 0 0         for (i = NE1-1; i >= 0; i--) {
218             a = 0.0;
219 0 0         for (j = 0; j < 8; j++) {
220 0           a += (double)(e1[i].nfa[j]) * fa[j];
221             }
222 0           s1 += e1[i].s * sin(a) + e1[i].c * cos(a);
223             }
224              
225 0           eect = (s0 + s1 * t ) * ERFA_DAS2R;
226              
227 0           return eect;
228              
229             }
230             /*----------------------------------------------------------------------
231             **
232             **
233             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
234             ** All rights reserved.
235             **
236             ** This library is derived, with permission, from the International
237             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
238             ** available from http://www.iausofa.org.
239             **
240             ** The ERFA version is intended to retain identical functionality to
241             ** the SOFA library, but made distinct through different function and
242             ** file names, as set out in the SOFA license conditions. The SOFA
243             ** original has a role as a reference standard for the IAU and IERS,
244             ** and consequently redistribution is permitted only in its unaltered
245             ** state. The ERFA version is not subject to this restriction and
246             ** therefore can be included in distributions which do not support the
247             ** concept of "read only" software.
248             **
249             ** Although the intent is to replicate the SOFA API (other than
250             ** replacement of prefix names) and results (with the exception of
251             ** bugs; any that are discovered will be fixed), SOFA is not
252             ** responsible for any errors found in this version of the library.
253             **
254             ** If you wish to acknowledge the SOFA heritage, please acknowledge
255             ** that you are using a library derived from SOFA, rather than SOFA
256             ** itself.
257             **
258             **
259             ** TERMS AND CONDITIONS
260             **
261             ** Redistribution and use in source and binary forms, with or without
262             ** modification, are permitted provided that the following conditions
263             ** are met:
264             **
265             ** 1 Redistributions of source code must retain the above copyright
266             ** notice, this list of conditions and the following disclaimer.
267             **
268             ** 2 Redistributions in binary form must reproduce the above copyright
269             ** notice, this list of conditions and the following disclaimer in
270             ** the documentation and/or other materials provided with the
271             ** distribution.
272             **
273             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
274             ** the International Astronomical Union nor the names of its
275             ** contributors may be used to endorse or promote products derived
276             ** from this software without specific prior written permission.
277             **
278             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
279             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
280             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
281             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
282             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
283             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
284             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
285             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
286             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
287             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
288             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
289             ** POSSIBILITY OF SUCH DAMAGE.
290             **
291             */