File Coverage

erfasrc/src/apco13.c
Criterion Covered Total %
statement 0 16 0.0
branch 0 4 0.0
condition n/a
subroutine n/a
pod n/a
total 0 20 0.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 0           int eraApco13(double utc1, double utc2, double dut1,
4             double elong, double phi, double hm, double xp, double yp,
5             double phpa, double tc, double rh, double wl,
6             eraASTROM *astrom, double *eo)
7             /*
8             ** - - - - - - - - - -
9             ** e r a A p c o 1 3
10             ** - - - - - - - - - -
11             **
12             ** For a terrestrial observer, prepare star-independent astrometry
13             ** parameters for transformations between ICRS and observed
14             ** coordinates. The caller supplies UTC, site coordinates, ambient air
15             ** conditions and observing wavelength, and ERFA models are used to
16             ** obtain the Earth ephemeris, CIP/CIO and refraction constants.
17             **
18             ** The parameters produced by this function are required in the
19             ** parallax, light deflection, aberration, and bias-precession-nutation
20             ** parts of the ICRS/CIRS transformations.
21             **
22             ** Given:
23             ** utc1 double UTC as a 2-part...
24             ** utc2 double ...quasi Julian Date (Notes 1,2)
25             ** dut1 double UT1-UTC (seconds, Note 3)
26             ** elong double longitude (radians, east +ve, Note 4)
27             ** phi double latitude (geodetic, radians, Note 4)
28             ** hm double height above ellipsoid (m, geodetic, Notes 4,6)
29             ** xp,yp double polar motion coordinates (radians, Note 5)
30             ** phpa double pressure at the observer (hPa = mB, Note 6)
31             ** tc double ambient temperature at the observer (deg C)
32             ** rh double relative humidity at the observer (range 0-1)
33             ** wl double wavelength (micrometers, Note 7)
34             **
35             ** Returned:
36             ** astrom eraASTROM* star-independent astrometry parameters:
37             ** pmt double PM time interval (SSB, Julian years)
38             ** eb double[3] SSB to observer (vector, au)
39             ** eh double[3] Sun to observer (unit vector)
40             ** em double distance from Sun to observer (au)
41             ** v double[3] barycentric observer velocity (vector, c)
42             ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
43             ** bpn double[3][3] bias-precession-nutation matrix
44             ** along double longitude + s' (radians)
45             ** xpl double polar motion xp wrt local meridian (radians)
46             ** ypl double polar motion yp wrt local meridian (radians)
47             ** sphi double sine of geodetic latitude
48             ** cphi double cosine of geodetic latitude
49             ** diurab double magnitude of diurnal aberration vector
50             ** eral double "local" Earth rotation angle (radians)
51             ** refa double refraction constant A (radians)
52             ** refb double refraction constant B (radians)
53             ** eo double* equation of the origins (ERA-GST)
54             **
55             ** Returned (function value):
56             ** int status: +1 = dubious year (Note 2)
57             ** 0 = OK
58             ** -1 = unacceptable date
59             **
60             ** Notes:
61             **
62             ** 1) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
63             ** convenient way between the two arguments, for example where utc1
64             ** is the Julian Day Number and utc2 is the fraction of a day.
65             **
66             ** However, JD cannot unambiguously represent UTC during a leap
67             ** second unless special measures are taken. The convention in the
68             ** present function is that the JD day represents UTC days whether
69             ** the length is 86399, 86400 or 86401 SI seconds.
70             **
71             ** Applications should use the function eraDtf2d to convert from
72             ** calendar date and time of day into 2-part quasi Julian Date, as
73             ** it implements the leap-second-ambiguity convention just
74             ** described.
75             **
76             ** 2) The warning status "dubious year" flags UTCs that predate the
77             ** introduction of the time scale or that are too far in the
78             ** future to be trusted. See eraDat for further details.
79             **
80             ** 3) UT1-UTC is tabulated in IERS bulletins. It increases by exactly
81             ** one second at the end of each positive UTC leap second,
82             ** introduced in order to keep UT1-UTC within +/- 0.9s. n.b. This
83             ** practice is under review, and in the future UT1-UTC may grow
84             ** essentially without limit.
85             **
86             ** 4) The geographical coordinates are with respect to the ERFA_WGS84
87             ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN: the
88             ** longitude required by the present function is east-positive
89             ** (i.e. right-handed), in accordance with geographical convention.
90             **
91             ** 5) The polar motion xp,yp can be obtained from IERS bulletins. The
92             ** values are the coordinates (in radians) of the Celestial
93             ** Intermediate Pole with respect to the International Terrestrial
94             ** Reference System (see IERS Conventions 2003), measured along the
95             ** meridians 0 and 90 deg west respectively. For many
96             ** applications, xp and yp can be set to zero.
97             **
98             ** Internally, the polar motion is stored in a form rotated onto
99             ** the local meridian.
100             **
101             ** 6) If hm, the height above the ellipsoid of the observing station
102             ** in meters, is not known but phpa, the pressure in hPa (=mB), is
103             ** available, an adequate estimate of hm can be obtained from the
104             ** expression
105             **
106             ** hm = -29.3 * tsl * log ( phpa / 1013.25 );
107             **
108             ** where tsl is the approximate sea-level air temperature in K
109             ** (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
110             ** 52). Similarly, if the pressure phpa is not known, it can be
111             ** estimated from the height of the observing station, hm, as
112             ** follows:
113             **
114             ** phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );
115             **
116             ** Note, however, that the refraction is nearly proportional to
117             ** the pressure and that an accurate phpa value is important for
118             ** precise work.
119             **
120             ** 7) The argument wl specifies the observing wavelength in
121             ** micrometers. The transition from optical to radio is assumed to
122             ** occur at 100 micrometers (about 3000 GHz).
123             **
124             ** 8) It is advisable to take great care with units, as even unlikely
125             ** values of the input parameters are accepted and processed in
126             ** accordance with the models used.
127             **
128             ** 9) In cases where the caller wishes to supply his own Earth
129             ** ephemeris, Earth rotation information and refraction constants,
130             ** the function eraApco can be used instead of the present function.
131             **
132             ** 10) This is one of several functions that inserts into the astrom
133             ** structure star-independent parameters needed for the chain of
134             ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
135             **
136             ** The various functions support different classes of observer and
137             ** portions of the transformation chain:
138             **
139             ** functions observer transformation
140             **
141             ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
142             ** eraApci eraApci13 terrestrial ICRS <-> CIRS
143             ** eraApco eraApco13 terrestrial ICRS <-> observed
144             ** eraApcs eraApcs13 space ICRS <-> GCRS
145             ** eraAper eraAper13 terrestrial update Earth rotation
146             ** eraApio eraApio13 terrestrial CIRS <-> observed
147             **
148             ** Those with names ending in "13" use contemporary ERFA models to
149             ** compute the various ephemerides. The others accept ephemerides
150             ** supplied by the caller.
151             **
152             ** The transformation from ICRS to GCRS covers space motion,
153             ** parallax, light deflection, and aberration. From GCRS to CIRS
154             ** comprises frame bias and precession-nutation. From CIRS to
155             ** observed takes account of Earth rotation, polar motion, diurnal
156             ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
157             ** transformation), and atmospheric refraction.
158             **
159             ** 11) The context structure astrom produced by this function is used
160             ** by eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.
161             **
162             ** Called:
163             ** eraUtctai UTC to TAI
164             ** eraTaitt TAI to TT
165             ** eraUtcut1 UTC to UT1
166             ** eraEpv00 Earth position and velocity
167             ** eraPnm06a classical NPB matrix, IAU 2006/2000A
168             ** eraBpn2xy extract CIP X,Y coordinates from NPB matrix
169             ** eraS06 the CIO locator s, given X,Y, IAU 2006
170             ** eraEra00 Earth rotation angle, IAU 2000
171             ** eraSp00 the TIO locator s', IERS 2000
172             ** eraRefco refraction constants for given ambient conditions
173             ** eraApco astrometry parameters, ICRS-observed
174             ** eraEors equation of the origins, given NPB matrix and s
175             **
176             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
177             ** Derived, with permission, from the SOFA library. See notes at end of file.
178             */
179             {
180             int j;
181             double tai1, tai2, tt1, tt2, ut11, ut12, ehpv[2][3], ebpv[2][3],
182             r[3][3], x, y, s, theta, sp, refa, refb;
183              
184              
185             /* UTC to other time scales. */
186 0           j = eraUtctai(utc1, utc2, &tai1, &tai2);
187 0 0         if ( j < 0 ) return -1;
188 0           j = eraTaitt(tai1, tai2, &tt1, &tt2);
189 0           j = eraUtcut1(utc1, utc2, dut1, &ut11, &ut12);
190 0 0         if ( j < 0 ) return -1;
191              
192             /* Earth barycentric & heliocentric position/velocity (au, au/d). */
193 0           (void) eraEpv00(tt1, tt2, ehpv, ebpv);
194              
195             /* Form the equinox based BPN matrix, IAU 2006/2000A. */
196 0           eraPnm06a(tt1, tt2, r);
197              
198             /* Extract CIP X,Y. */
199 0           eraBpn2xy(r, &x, &y);
200              
201             /* Obtain CIO locator s. */
202 0           s = eraS06(tt1, tt2, x, y);
203              
204             /* Earth rotation angle. */
205 0           theta = eraEra00(ut11, ut12);
206              
207             /* TIO locator s'. */
208 0           sp = eraSp00(tt1, tt2);
209              
210             /* Refraction constants A and B. */
211 0           eraRefco(phpa, tc, rh, wl, &refa, &refb);
212              
213             /* Compute the star-independent astrometry parameters. */
214 0           eraApco(tt1, tt2, ebpv, ehpv[0], x, y, s, theta,
215             elong, phi, hm, xp, yp, sp, refa, refb, astrom);
216              
217             /* Equation of the origins. */
218 0           *eo = eraEors(r, s);
219              
220             /* Return any warning status. */
221 0           return j;
222              
223             /* Finished. */
224              
225             }
226             /*----------------------------------------------------------------------
227             **
228             **
229             ** Copyright (C) 2013-2020, NumFOCUS Foundation.
230             ** All rights reserved.
231             **
232             ** This library is derived, with permission, from the International
233             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
234             ** available from http://www.iausofa.org.
235             **
236             ** The ERFA version is intended to retain identical functionality to
237             ** the SOFA library, but made distinct through different function and
238             ** file names, as set out in the SOFA license conditions. The SOFA
239             ** original has a role as a reference standard for the IAU and IERS,
240             ** and consequently redistribution is permitted only in its unaltered
241             ** state. The ERFA version is not subject to this restriction and
242             ** therefore can be included in distributions which do not support the
243             ** concept of "read only" software.
244             **
245             ** Although the intent is to replicate the SOFA API (other than
246             ** replacement of prefix names) and results (with the exception of
247             ** bugs; any that are discovered will be fixed), SOFA is not
248             ** responsible for any errors found in this version of the library.
249             **
250             ** If you wish to acknowledge the SOFA heritage, please acknowledge
251             ** that you are using a library derived from SOFA, rather than SOFA
252             ** itself.
253             **
254             **
255             ** TERMS AND CONDITIONS
256             **
257             ** Redistribution and use in source and binary forms, with or without
258             ** modification, are permitted provided that the following conditions
259             ** are met:
260             **
261             ** 1 Redistributions of source code must retain the above copyright
262             ** notice, this list of conditions and the following disclaimer.
263             **
264             ** 2 Redistributions in binary form must reproduce the above copyright
265             ** notice, this list of conditions and the following disclaimer in
266             ** the documentation and/or other materials provided with the
267             ** distribution.
268             **
269             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
270             ** the International Astronomical Union nor the names of its
271             ** contributors may be used to endorse or promote products derived
272             ** from this software without specific prior written permission.
273             **
274             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
275             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
276             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
277             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
278             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
279             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
280             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
281             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
282             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
283             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
284             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
285             ** POSSIBILITY OF SUCH DAMAGE.
286             **
287             */