line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
*+ |
3
|
|
|
|
|
|
|
* Name: |
4
|
|
|
|
|
|
|
* palDmat |
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
* Purpose: |
7
|
|
|
|
|
|
|
* Matrix inversion & solution of simultaneous equations |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
* Language: |
10
|
|
|
|
|
|
|
* Starlink ANSI C |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
* Type of Module: |
13
|
|
|
|
|
|
|
* Library routine |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
* Invocation: |
16
|
|
|
|
|
|
|
* void palDmat( int n, double *a, double *y, double *d, int *jf, |
17
|
|
|
|
|
|
|
* int *iw ); |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
* Arguments: |
20
|
|
|
|
|
|
|
* n = int (Given) |
21
|
|
|
|
|
|
|
* Number of simultaneous equations and number of unknowns. |
22
|
|
|
|
|
|
|
* a = double[] (Given & Returned) |
23
|
|
|
|
|
|
|
* A non-singular NxN matrix (implemented as a contiguous block |
24
|
|
|
|
|
|
|
* of memory). After calling this routine "a" contains the |
25
|
|
|
|
|
|
|
* inverse of the matrix. |
26
|
|
|
|
|
|
|
* y = double[] (Given & Returned) |
27
|
|
|
|
|
|
|
* On input the vector of N knowns. On exit this vector contains the |
28
|
|
|
|
|
|
|
* N solutions. |
29
|
|
|
|
|
|
|
* d = double * (Returned) |
30
|
|
|
|
|
|
|
* The determinant. |
31
|
|
|
|
|
|
|
* jf = int * (Returned) |
32
|
|
|
|
|
|
|
* The singularity flag. If the matrix is non-singular, jf=0 |
33
|
|
|
|
|
|
|
* is returned. If the matrix is singular, jf=-1 & d=0.0 are |
34
|
|
|
|
|
|
|
* returned. In the latter case, the contents of array "a" on |
35
|
|
|
|
|
|
|
* return are undefined. |
36
|
|
|
|
|
|
|
* iw = int[] (Given) |
37
|
|
|
|
|
|
|
* Integer workspace of size N. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
* Description: |
40
|
|
|
|
|
|
|
* Matrix inversion & solution of simultaneous equations |
41
|
|
|
|
|
|
|
* For the set of n simultaneous equations in n unknowns: |
42
|
|
|
|
|
|
|
* A.Y = X |
43
|
|
|
|
|
|
|
* this routine calculates the inverse of A, the determinant |
44
|
|
|
|
|
|
|
* of matrix A and the vector of N unknowns. |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
* Authors: |
47
|
|
|
|
|
|
|
* PTW: Pat Wallace (STFC) |
48
|
|
|
|
|
|
|
* TIMJ: Tim Jenness (JAC, Hawaii) |
49
|
|
|
|
|
|
|
* {enter_new_authors_here} |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
* History: |
52
|
|
|
|
|
|
|
* 2012-02-11 (TIMJ): |
53
|
|
|
|
|
|
|
* Combination of a port of the Fortran and a comparison |
54
|
|
|
|
|
|
|
* with the obfuscated GPL C routine. |
55
|
|
|
|
|
|
|
* Adapted with permission from the Fortran SLALIB library. |
56
|
|
|
|
|
|
|
* {enter_further_changes_here} |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
* Notes: |
59
|
|
|
|
|
|
|
* - Implemented using Gaussian elimination with partial pivoting. |
60
|
|
|
|
|
|
|
* - Optimized for speed rather than accuracy with errors 1 to 4 |
61
|
|
|
|
|
|
|
* times those of routines optimized for accuracy. |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
* Copyright: |
64
|
|
|
|
|
|
|
* Copyright (C) 2001 Rutherford Appleton Laboratory. |
65
|
|
|
|
|
|
|
* Copyright (C) 2012 Science and Technology Facilities Council. |
66
|
|
|
|
|
|
|
* All Rights Reserved. |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
* Licence: |
69
|
|
|
|
|
|
|
* This program is free software: you can redistribute it and/or |
70
|
|
|
|
|
|
|
* modify it under the terms of the GNU Lesser General Public |
71
|
|
|
|
|
|
|
* License as published by the Free Software Foundation, either |
72
|
|
|
|
|
|
|
* version 3 of the License, or (at your option) any later |
73
|
|
|
|
|
|
|
* version. |
74
|
|
|
|
|
|
|
* |
75
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be useful, |
76
|
|
|
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
77
|
|
|
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
78
|
|
|
|
|
|
|
* GNU Lesser General Public License for more details. |
79
|
|
|
|
|
|
|
* |
80
|
|
|
|
|
|
|
* You should have received a copy of the GNU Lesser General |
81
|
|
|
|
|
|
|
* License along with this program. If not, see |
82
|
|
|
|
|
|
|
* . |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
* Bugs: |
85
|
|
|
|
|
|
|
* {note_any_bugs_here} |
86
|
|
|
|
|
|
|
*- |
87
|
|
|
|
|
|
|
*/ |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
#include "pal.h" |
90
|
|
|
|
|
|
|
|
91
|
3
|
|
|
|
|
|
void palDmat ( int n, double *a, double *y, double *d, int *jf, int *iw ) { |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
const double SFA = 1e-20; |
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
int k; |
96
|
|
|
|
|
|
|
double*aoff; |
97
|
|
|
|
|
|
|
|
98
|
3
|
|
|
|
|
|
*jf=0; |
99
|
3
|
|
|
|
|
|
*d=1.0; |
100
|
14
|
100
|
|
|
|
|
for(k=0,aoff=a; k
|
101
|
|
|
|
|
|
|
int imx; |
102
|
|
|
|
|
|
|
double * aoff2 = aoff; |
103
|
11
|
|
|
|
|
|
double amx=fabs(aoff[k]); |
104
|
|
|
|
|
|
|
imx=k; |
105
|
11
|
50
|
|
|
|
|
if(k!=n){ |
106
|
|
|
|
|
|
|
int i; |
107
|
|
|
|
|
|
|
double *apos2; |
108
|
26
|
100
|
|
|
|
|
for(i=k+1,apos2=aoff+n;i
|
109
|
15
|
|
|
|
|
|
double t=fabs(apos2[k]); |
110
|
15
|
100
|
|
|
|
|
if(t>amx){ |
111
|
|
|
|
|
|
|
amx=t; |
112
|
|
|
|
|
|
|
imx=i; |
113
|
|
|
|
|
|
|
aoff2=apos2; |
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
} |
116
|
|
|
|
|
|
|
} |
117
|
11
|
50
|
|
|
|
|
if(amx
|
118
|
0
|
|
|
|
|
|
*jf=-1; |
119
|
|
|
|
|
|
|
} else { |
120
|
11
|
100
|
|
|
|
|
if(imx!=k){ |
121
|
|
|
|
|
|
|
double t; |
122
|
|
|
|
|
|
|
int j; |
123
|
28
|
100
|
|
|
|
|
for(j=0;j
|
124
|
22
|
|
|
|
|
|
t=aoff[j]; |
125
|
22
|
|
|
|
|
|
aoff[j]=aoff2[j]; |
126
|
22
|
|
|
|
|
|
aoff2[j]=t; |
127
|
|
|
|
|
|
|
} |
128
|
6
|
|
|
|
|
|
t=y[k]; |
129
|
6
|
|
|
|
|
|
y[k]=y[imx]; |
130
|
6
|
|
|
|
|
|
y[imx]=t;*d=-*d; |
131
|
|
|
|
|
|
|
} |
132
|
11
|
|
|
|
|
|
iw[k]=imx; |
133
|
11
|
|
|
|
|
|
*d*=aoff[k]; |
134
|
11
|
50
|
|
|
|
|
if(fabs(*d)
|
135
|
0
|
|
|
|
|
|
*jf=-1; |
136
|
|
|
|
|
|
|
} else { |
137
|
|
|
|
|
|
|
double yk; |
138
|
|
|
|
|
|
|
double * apos2; |
139
|
|
|
|
|
|
|
int i, j; |
140
|
11
|
|
|
|
|
|
aoff[k]=1.0/aoff[k]; |
141
|
52
|
100
|
|
|
|
|
for(j=0;j
|
142
|
41
|
100
|
|
|
|
|
if(j!=k){ |
143
|
30
|
|
|
|
|
|
aoff[j]*=aoff[k]; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
} |
146
|
11
|
|
|
|
|
|
yk=y[k]*aoff[k]; |
147
|
11
|
|
|
|
|
|
y[k]=yk; |
148
|
52
|
100
|
|
|
|
|
for(i=0,apos2=a;i
|
149
|
41
|
100
|
|
|
|
|
if(i!=k){ |
150
|
144
|
100
|
|
|
|
|
for(j=0;j
|
151
|
114
|
100
|
|
|
|
|
if(j!=k){ |
152
|
84
|
|
|
|
|
|
apos2[j]-=apos2[k]*aoff[j]; |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
} |
155
|
30
|
|
|
|
|
|
y[i]-=apos2[k]*yk; |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
} |
158
|
52
|
100
|
|
|
|
|
for(i=0,apos2=a;i
|
159
|
41
|
100
|
|
|
|
|
if(i!=k){ |
160
|
30
|
|
|
|
|
|
apos2[k]*=-aoff[k]; |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
} |
166
|
3
|
50
|
|
|
|
|
if(*jf!=0){ |
167
|
0
|
|
|
|
|
|
*d=0.0; |
168
|
|
|
|
|
|
|
} else { |
169
|
14
|
100
|
|
|
|
|
for(k=n;k-->0;){ |
170
|
11
|
|
|
|
|
|
int ki=iw[k]; |
171
|
11
|
100
|
|
|
|
|
if(k!=ki){ |
172
|
|
|
|
|
|
|
int i; |
173
|
|
|
|
|
|
|
double *apos = a; |
174
|
33
|
100
|
|
|
|
|
for(i=0;i
|
175
|
22
|
|
|
|
|
|
double t=apos[k]; |
176
|
22
|
|
|
|
|
|
apos[k]=apos[ki]; |
177
|
22
|
|
|
|
|
|
apos[ki]=t; |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
} |
181
|
|
|
|
|
|
|
} |
182
|
3
|
|
|
|
|
|
} |