File Coverage

erfasrc/src/atco13.c
Criterion Covered Total %
statement 0 6 0.0
branch 0 2 0.0
condition n/a
subroutine n/a
pod n/a
total 0 8 0.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 0           int eraAtco13(double rc, double dc,
4             double pr, double pd, double px, double rv,
5             double utc1, double utc2, double dut1,
6             double elong, double phi, double hm, double xp, double yp,
7             double phpa, double tc, double rh, double wl,
8             double *aob, double *zob, double *hob,
9             double *dob, double *rob, double *eo)
10             /*
11             ** - - - - - - - - - -
12             ** e r a A t c o 1 3
13             ** - - - - - - - - - -
14             **
15             ** ICRS RA,Dec to observed place. The caller supplies UTC, site
16             ** coordinates, ambient air conditions and observing wavelength.
17             **
18             ** ERFA models are used for the Earth ephemeris, bias-precession-
19             ** nutation, Earth orientation and refraction.
20             **
21             ** Given:
22             ** rc,dc double ICRS right ascension at J2000.0 (radians, Note 1)
23             ** pr double RA proper motion (radians/year; Note 2)
24             ** pd double Dec proper motion (radians/year)
25             ** px double parallax (arcsec)
26             ** rv double radial velocity (km/s, +ve if receding)
27             ** utc1 double UTC as a 2-part...
28             ** utc2 double ...quasi Julian Date (Notes 3-4)
29             ** dut1 double UT1-UTC (seconds, Note 5)
30             ** elong double longitude (radians, east +ve, Note 6)
31             ** phi double latitude (geodetic, radians, Note 6)
32             ** hm double height above ellipsoid (m, geodetic, Notes 6,8)
33             ** xp,yp double polar motion coordinates (radians, Note 7)
34             ** phpa double pressure at the observer (hPa = mB, Note 8)
35             ** tc double ambient temperature at the observer (deg C)
36             ** rh double relative humidity at the observer (range 0-1)
37             ** wl double wavelength (micrometers, Note 9)
38             **
39             ** Returned:
40             ** aob double* observed azimuth (radians: N=0,E=90)
41             ** zob double* observed zenith distance (radians)
42             ** hob double* observed hour angle (radians)
43             ** dob double* observed declination (radians)
44             ** rob double* observed right ascension (CIO-based, radians)
45             ** eo double* equation of the origins (ERA-GST)
46             **
47             ** Returned (function value):
48             ** int status: +1 = dubious year (Note 4)
49             ** 0 = OK
50             ** -1 = unacceptable date
51             **
52             ** Notes:
53             **
54             ** 1) Star data for an epoch other than J2000.0 (for example from the
55             ** Hipparcos catalog, which has an epoch of J1991.25) will require
56             ** a preliminary call to eraPmsafe before use.
57             **
58             ** 2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.
59             **
60             ** 3) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
61             ** convenient way between the two arguments, for example where utc1
62             ** is the Julian Day Number and utc2 is the fraction of a day.
63             **
64             ** However, JD cannot unambiguously represent UTC during a leap
65             ** second unless special measures are taken. The convention in the
66             ** present function is that the JD day represents UTC days whether
67             ** the length is 86399, 86400 or 86401 SI seconds.
68             **
69             ** Applications should use the function eraDtf2d to convert from
70             ** calendar date and time of day into 2-part quasi Julian Date, as
71             ** it implements the leap-second-ambiguity convention just
72             ** described.
73             **
74             ** 4) The warning status "dubious year" flags UTCs that predate the
75             ** introduction of the time scale or that are too far in the
76             ** future to be trusted. See eraDat for further details.
77             **
78             ** 5) UT1-UTC is tabulated in IERS bulletins. It increases by exactly
79             ** one second at the end of each positive UTC leap second,
80             ** introduced in order to keep UT1-UTC within +/- 0.9s. n.b. This
81             ** practice is under review, and in the future UT1-UTC may grow
82             ** essentially without limit.
83             **
84             ** 6) The geographical coordinates are with respect to the ERFA_WGS84
85             ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN: the
86             ** longitude required by the present function is east-positive
87             ** (i.e. right-handed), in accordance with geographical convention.
88             **
89             ** 7) The polar motion xp,yp can be obtained from IERS bulletins. The
90             ** values are the coordinates (in radians) of the Celestial
91             ** Intermediate Pole with respect to the International Terrestrial
92             ** Reference System (see IERS Conventions 2003), measured along the
93             ** meridians 0 and 90 deg west respectively. For many
94             ** applications, xp and yp can be set to zero.
95             **
96             ** 8) If hm, the height above the ellipsoid of the observing station
97             ** in meters, is not known but phpa, the pressure in hPa (=mB),
98             ** is available, an adequate estimate of hm can be obtained from
99             ** the expression
100             **
101             ** hm = -29.3 * tsl * log ( phpa / 1013.25 );
102             **
103             ** where tsl is the approximate sea-level air temperature in K
104             ** (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
105             ** 52). Similarly, if the pressure phpa is not known, it can be
106             ** estimated from the height of the observing station, hm, as
107             ** follows:
108             **
109             ** phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );
110             **
111             ** Note, however, that the refraction is nearly proportional to
112             ** the pressure and that an accurate phpa value is important for
113             ** precise work.
114             **
115             ** 9) The argument wl specifies the observing wavelength in
116             ** micrometers. The transition from optical to radio is assumed to
117             ** occur at 100 micrometers (about 3000 GHz).
118             **
119             ** 10) The accuracy of the result is limited by the corrections for
120             ** refraction, which use a simple A*tan(z) + B*tan^3(z) model.
121             ** Providing the meteorological parameters are known accurately and
122             ** there are no gross local effects, the predicted observed
123             ** coordinates should be within 0.05 arcsec (optical) or 1 arcsec
124             ** (radio) for a zenith distance of less than 70 degrees, better
125             ** than 30 arcsec (optical or radio) at 85 degrees and better
126             ** than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.
127             **
128             ** Without refraction, the complementary functions eraAtco13 and
129             ** eraAtoc13 are self-consistent to better than 1 microarcsecond
130             ** all over the celestial sphere. With refraction included,
131             ** consistency falls off at high zenith distances, but is still
132             ** better than 0.05 arcsec at 85 degrees.
133             **
134             ** 11) "Observed" Az,ZD means the position that would be seen by a
135             ** perfect geodetically aligned theodolite. (Zenith distance is
136             ** used rather than altitude in order to reflect the fact that no
137             ** allowance is made for depression of the horizon.) This is
138             ** related to the observed HA,Dec via the standard rotation, using
139             ** the geodetic latitude (corrected for polar motion), while the
140             ** observed HA and RA are related simply through the Earth rotation
141             ** angle and the site longitude. "Observed" RA,Dec or HA,Dec thus
142             ** means the position that would be seen by a perfect equatorial
143             ** with its polar axis aligned to the Earth's axis of rotation.
144             **
145             ** 12) It is advisable to take great care with units, as even unlikely
146             ** values of the input parameters are accepted and processed in
147             ** accordance with the models used.
148             **
149             ** Called:
150             ** eraApco13 astrometry parameters, ICRS-observed, 2013
151             ** eraAtciq quick ICRS to CIRS
152             ** eraAtioq quick CIRS to observed
153             **
154             ** Copyright (C) 2013-2019, NumFOCUS Foundation.
155             ** Derived, with permission, from the SOFA library. See notes at end of file.
156             */
157             {
158             int j;
159             eraASTROM astrom;
160             double ri, di;
161              
162              
163             /* Star-independent astrometry parameters. */
164 0           j = eraApco13(utc1, utc2, dut1, elong, phi, hm, xp, yp,
165             phpa, tc, rh, wl, &astrom, eo);
166              
167             /* Abort if bad UTC. */
168 0 0         if ( j < 0 ) return j;
169              
170             /* Transform ICRS to CIRS. */
171 0           eraAtciq(rc, dc, pr, pd, px, rv, &astrom, &ri, &di);
172              
173             /* Transform CIRS to observed. */
174 0           eraAtioq(ri, di, &astrom, aob, zob, hob, dob, rob);
175              
176             /* Return OK/warning status. */
177 0           return j;
178              
179             /* Finished. */
180              
181             }
182             /*----------------------------------------------------------------------
183             **
184             **
185             ** Copyright (C) 2013-2019, NumFOCUS Foundation.
186             ** All rights reserved.
187             **
188             ** This library is derived, with permission, from the International
189             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
190             ** available from http://www.iausofa.org.
191             **
192             ** The ERFA version is intended to retain identical functionality to
193             ** the SOFA library, but made distinct through different function and
194             ** file names, as set out in the SOFA license conditions. The SOFA
195             ** original has a role as a reference standard for the IAU and IERS,
196             ** and consequently redistribution is permitted only in its unaltered
197             ** state. The ERFA version is not subject to this restriction and
198             ** therefore can be included in distributions which do not support the
199             ** concept of "read only" software.
200             **
201             ** Although the intent is to replicate the SOFA API (other than
202             ** replacement of prefix names) and results (with the exception of
203             ** bugs; any that are discovered will be fixed), SOFA is not
204             ** responsible for any errors found in this version of the library.
205             **
206             ** If you wish to acknowledge the SOFA heritage, please acknowledge
207             ** that you are using a library derived from SOFA, rather than SOFA
208             ** itself.
209             **
210             **
211             ** TERMS AND CONDITIONS
212             **
213             ** Redistribution and use in source and binary forms, with or without
214             ** modification, are permitted provided that the following conditions
215             ** are met:
216             **
217             ** 1 Redistributions of source code must retain the above copyright
218             ** notice, this list of conditions and the following disclaimer.
219             **
220             ** 2 Redistributions in binary form must reproduce the above copyright
221             ** notice, this list of conditions and the following disclaimer in
222             ** the documentation and/or other materials provided with the
223             ** distribution.
224             **
225             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
226             ** the International Astronomical Union nor the names of its
227             ** contributors may be used to endorse or promote products derived
228             ** from this software without specific prior written permission.
229             **
230             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
231             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
232             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
233             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
234             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
235             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
236             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
237             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
238             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
239             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
240             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
241             ** POSSIBILITY OF SUCH DAMAGE.
242             **
243             */